

Algorithms 2022, 15, 447. https://doi.org/10.3390/a15120447 www.mdpi.com/journal/algorithms

Article

Physics-Informed Neural Networks (PINNs)-Based Traffic

State Estimation: An Application to Traffic Network

Muhammad Usama, Rui Ma *, Jason Hart and Mikaela Wojcik

Department of Civil and Environmental Engineering, The University of Alabama in Huntsville,

Huntsville, AL 35899, USA

* Correspondence: rui.ma@uah.edu

Abstract: Traffic state estimation (TSE) is a critical component of the efficient intelligent transporta-

tion systems (ITS) operations. In the literature, TSE methods are divided into model-driven methods

and data-driven methods. Each approach has its limitations. The physics information-based neural

network (PINN) framework emerges to mitigate the limitations of the traditional TSE methods,

while the state-of-art of such a framework has focused on single road segments but can hardly deal

with traffic networks. This paper introduces a PINN framework that can effectively make use of a

small amount of observational speed data to obtain high-quality TSEs for a traffic network. Both

model-driven and data-driven components are incorporated into PINNs to combine the advantages

of both approaches and to overcome their disadvantages. Simulation data of simple traffic networks

are used for studying the highway network TSE. This paper demonstrates how to solve the popular

LWR physical traffic flow model with a PINN for a traffic network. Experimental results confirm

that the proposed approach is promising for estimating network traffic accurately.

Keywords: traffic state estimation (TSE); PINNs; deep learning; traffic flow models; LWR

1. Introduction

The traffic conditions on road segments in a network are usually described by mac-

roscopic traffic state variables, such as flow rate, vehicle speed, and vehicle density as

traffic streams. Transport planners identify congestion levels and traffic demands, as well

as bottlenecks on roadways, through these indicators [1]. However, these important meas-

urements are not available for all locations or times due to physical and budget constraints

of the measurements; even if the availability issue is not a concern, undesired noises in

the measurements have been making ITS traffic management operations difficult [2].

Combining factors such as the cost of sensor installation, the accuracy of vehicle detection

techniques, and restrictions on data storage and transmission can often lead to partial ob-

servations of traffic state variables [3]. To deliver effective traffic management, it is vital

to estimate traffic state variables at locations without sensor data.

Traffic state estimation (TSE) refers to the prediction of traffic state variables such as

flow, density, and speed of road segments using partially observed traffic data [4]. Ap-

proaches to TSE can be roughly categorized into two groups based on the a priori

knowledge they depend on: model-driven and data-driven. In model-driven approaches,

traffic flow state predictions are based on prior knowledge of the flow, usually embodied

in physics-based models such as the Lighthill–Whitham–Richards (LWR) model or the

Aw–Rascle–Zhang (ARZ) model [5,6]. Physical processes play a key role in how these

models work, such as the way the state variable changes across space and time. These

models are much less limited by data availability and can make predictions without the

training data. A model-based approach assumes that the physics-based models are repre-

sentative of traffic dynamics and can be utilized to determine unobserved values based

Citation: Usama, M.; Ma, R.; Hart, J.;

Wojcik, M. Physics-Informed Neural

Networks (PINNs)-Based Traffic

State Estimation: An Application to

Traffic Network. Algorithms 2022, 15,

447. https://doi.org/10.3390/

a15120447

Academic Editors: Weiwei Jiang and

Haiyong Luo

Received: 18 October 2022

Accepted: 25 November 2022

Published: 27 November 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Algorithms 2022, 15, 447 2 of 21

on partially observed data. Despite the independence from data requirements, the phys-

ics-based models suffer from a few challenges that may lead to low-quality estimates.

Some of these challenges include: (i) they can only capture a limited set of traffic dynamics

in real-world situations; (ii) they are derived under ideal conditions, entail large effort for

parameter calibrations; and (iii) they are difficult to apply with noisy/fluctuating traffic

data. The other group of TSE methods is the data-driven models based on machine learn-

ing. Data-driven models employ statistical relationships in data and are model-free so that

formulating specific underlying physics is not necessary. Data-driven methods have been

intensively studied recently due to the increasing availability of data, as they do not re-

quire specific theoretical assumptions and have a remarkably low computing cost during

the testing phase. However, the data-driven nature of those machine learning (ML) mod-

els leaves them vulnerable to the following situations: (i) insufficient training data to learn

the system’s complexity, (ii) training samples with misleading information, and (iii) test

samples that are not representative of the training samples. Dramatic performance drops

alongside large and/or biased estimations are not rare in these scenarios, which unfortu-

nately are very common in the real world. In addition, the machine learning models are

difficult to interpret because of their ‘black-box’ nature.

Very recent studies on the hybrid approaches integrate physics knowledge from traf-

fic flow models and machine learning models, in order to mitigate the limitations of the

above-mentioned approaches. For instance, Yuan et al. (2021) presented the physics reg-

ularized Gaussian process (PRGP) method for TSE by integrating macroscopic traffic flow

models with Gaussian process (GP) [7]. Raissi et al. were the first ones to propose imple-

mentations of fully connected neural networks that incorporate residuals from partial dif-

ferential equations (PDEs) into their loss function as regularizers, which restrains the fea-

sible solution space [8]. The major advantage of physics-informed learning (PIL) is that an

effective loss function can be implemented using a modest amount of data. However,

there is a major limitation to using PIL: their high training costs can cause adverse effects

on their performance, which is especially of concern when dealing with real-world appli-

cations. Using the domain decomposition approach, Jagtap and Karniadakis (2020) accel-

erated the convergence of these models without compromising their performance by par-

titioning the computational domain into more than one subdomain, and then defining

boundaries between these subdomains that are subject to some continuity conditions [9].

The presented numerical experiments were, however, limited to the partitioning of a sin-

gle solution space, which is not representative of the network’s links in a true sense. In a

traffic network, the state variables are correlated with the physical characteristics of the

links for example number of lanes, road geometry, etc. The existing PIL studies consider

the training data from the exact solution space of the governing partial differential equa-

tion. The macroscopic traffic state variables, on the other hand, are estimated through sen-

sors and are subject to various measurement biases and approximations. Therefore, the

real or simulated traffic data does not strictly follow the traffic governing physics model.

Another limitation of the existing hybrid studies for training neural networks is that

they mainly consider the exact solution of the traffic flow model over a spatiotemporal

space subject to relevant initial and boundary conditions. Such an approach with the exact

analytical solution may lead to two potential shortcomings: (1) the analytical solution of

PDE contains negative traffic state variables, which is not realistic; (2) the data generated

from a continuous road segment cannot have any merging or diverging points. Such de-

ficiency is critical for a real-world traffic network, as the traffic dynamics with and without

the network consideration are significantly different. The state-of-art of the hybrid models

are only applicable to one road segment or a sequence of segments without merges or

divergences, which greatly limits their applications. It is therefore imperative that such

studies be extended to realistic road networks.

This study aims to fill the above research gaps by extending physics-informed neural

network application to simulated traffic network data following the domain decomposi-

tion approach. In a domain decomposition approach, we divide the whole traffic network

Algorithms 2022, 15, 447 3 of 21

into individual links. Afterwards, the individual links are joined together (stitching pro-

cess) corresponding to their connectivity in the network. The flow conservation condition

is applied at the joints (merge/diverge sections) while stitching the link. The domain de-

composition in the framework is very useful in three major aspects. First, different physi-

cal properties on different links in a traffic network can be properly modeled. Second, the

decomposition of a large network into individual links may help to reduce the require-

ment on the structural complexity of the neural network for each link to facilitate the train-

ing. Third, given the finite number of links, a massively parallel computation can be per-

formed. Moreover, large-scale problems can be effectively handled by such domain de-

composition method.

To the best of our knowledge, this is the first article to introduce PINNs for a traffic

network. This study seeks to fuse traffic flow models and ML techniques in a traffic net-

work setting with the physics-informed neural networks for network TSE. We present a

novel and extensive study of the PINNs for the network TSE in this paper. The paper

contributes in the following ways. First, it introduces a specific setup and training meth-

odology to support a traffic network consisting of links. Sparse data grids within each link

are unified into a regular grid. Links are processed in the neural networks and are stitched

together. Second, the link connectivity matrix that contains information about the network

structure is utilized in the PINNs to facilitate the stitching process by utilizing flow con-

servation constraints at merge and diverge points. Third, this study demonstrates a single

sparse data source is sufficient for training PINNs, even in the absence of the complete

dataset or an enhanced dataset augmented by micro-simulation.

The rest of the paper is organized as follows: Section 2 ‘Related Work’ briefly reviews

related work. The architecture of the proposed framework and data description are pre-

sented in Sections 3 ‘Methodology’ and 4 ‘Data’, respectively. In Section 5 ‘Experimental

setup and discussion’, we present numerical experiment and discussions. Conclusions

summarize the findings and suggest future research.

2. Related Work

We briefly review the traffic flow model, the data-driven approach, and the hybrid

approach in the start-of-art of traffic state estimation in this section. This section also re-

views the important references to PINNs.

2.1. Traffic Flow Models

The traffic state variables, i.e., speed, density, and volume, play a vital role in under-

standing and operating an intelligent transportation system. Fundamental diagrams are

widely used to approximate the continuous traffic state using the key elements of the mac-

roscopic model of traffic flow. There are usually two parts to a deterministic traffic flow

model [4]: the conservation law equation and the fundamental relationship. Model-driven

TSE methodologies require the development and extension of a macroscopic traffic flow

model which describes the dynamics of real-world systems comprehensively. Essentially,

these models can be broken down into two categories: first- and second-order models.

LWR [5,6] is a first-order traffic flow model that can reproduce simple aggregate traffic

behaviors, such as traffic jam propagation and dissipation. Although LWR assumes den-

sity-velocity equilibrium, it is unable to model more complicated phenomena, such as

traffic stop and go [10]. To work around this problem, second-order models have been

developed, such as the Payne–Whitham (PW) model [11] and the ARZ model [12,13]. In

comparison to the PW model, the ARZ model more accurately describes traffic dynamics

information flow. In addition, a range of models has been utilized to simulate traffic flows,

including the cell transmission model (CTM) and the switching mode model (SMM).

Algorithms 2022, 15, 447 4 of 21

2.2. Data-Driven Approach

The data-driven TSE approach, on the other hand, makes an estimate based on the

data itself fusing machine learning and statistical methods. The study by Smith et al. 2003

uses historical data and compares statistical methods using a data augmentation [14].

Based on information from spatial neighbor detectors, Chen et al. 2003 developed a linear

regression model [15], and Zhong et al. 2004 presented an autoregressive integrated mov-

ing average (ARIMA), based on time series data [16]. As a means to improve estimation

accuracy and robustness, Ni and Leonard (2005) proposed Bayesian networks (BN) inte-

grated into time series models [17]. Tan et al. 2014 developed a method to consider the

traffic flow capacity as well as the temporal correlation based on robust principal compo-

nent analysis (RPCA) [18]. Moreover, spatiotemporal information has been incorporated

into tensor-based methods by utilizing Tucker decomposition [19]. As described in Polson

and Sokolov 2017, they used the Bayesian particle filter (BPF) to estimate traffic states for

three different regimes: free-flowing, breakdown, and recovery [20].

Chen and Chen (2022) presented a new reinforced dynamic graph convolutional net-

work model in [21] to simultaneously impute data as well as predict traffic flow at the

network-wide level. To enhance the robustness of network-wide traffic flow prediction,

they used a multigraph convolutional fusion network for data imputation [21]. To repre-

sent dynamic spatiotemporal dependencies between the stations, a dynamic graph learn-

ing method using deep reinforcement learning was developed to adaptably generate a

graph adjacency matrix based on a dynamic graph learning approach. To impute missing

traffic state data, Xu et al. 2022 presented a Graph Aggregate Generative Adversarial Net-

work (GA-GAN), consisting of graph sample and aggregate data (GraphSAGE) and a gen-

erative adversarial network (GAN) [22]. Using GAN, they generated complete traffic state

data from the extracted temporal-spatial information. By capturing spatiotemporal de-

pendencies among nodes in the graph, Zhang and Guo (2022) presented a novel graph-

attention LSTM structure to solve the traffic flow prediction problem by exploiting the

strength of graph-attention for non-Euclidean structured data modeling as well as the

strength of LSTM cells for time series modeling [23]. In order to accurately estimate space-

time traffic speeds, Rempe et al. (2022) trained deep convolutional neural networks

(DCNNs) and exhaustively analyzed unseen complex congestion scenarios [24]. The

graph convolutional bidirectional recurrent neural network (GCBRNN) is a state-of-the-

art spatiotemporal deep learning architecture that integrates network-scale data imputa-

tion and traffic prediction [25]. To capture spatial and temporal dependencies in traffic

data, Zhang et al. (2021) further developed a graph convolutional gated recurrent unit

(NGC-GRU) within the GCBRNN. In addition, studies focused on the use of convolutional

autoencoders to encode and decode spatial-temporal features to reconstruct traffic state

[26,27]. In order to overcome the shortcomings of graph neural networks, Liang at al. 2022

developed a deep learning framework called memory-augmented dynamic graph convo-

lution networks (MDGCN) for imputed traffic data, utilizing an external memory network

to store and share global spatial and temporal information across the traffic network, as

well as a graph structure estimation technique for learning dynamic spatial dependencies

directly from traffic [28].

In addition, some other approaches are also available in the literature, however, the

research on hybrid TSE methods is lacking.

2.3. Hybrid Approach

The use of hybrid approaches has been introduced in recent years to mitigate the

limitations of the above-mentioned approaches by integrating physics knowledge from

traffic flow models with machine learning models. Using macroscopic traffic flow models

with the Gaussian process (GP), Yuan and colleagues developed a physics-regularized

Gaussian process (PRGP) for TSE [7]. As described by the general nonlinear partial differ-

ential equations, physics-informed learning (PIL) involves the training of neural networks

Algorithms 2022, 15, 447 5 of 21

to solve machine learning problems. Raissi and Karniadakis introduced PIL as a substitute

for numerical schemes for solving PDEs [8]. Using a deep neural network to encode the

PDE, the PIL approach approximates the unknown variables as well as assesses its con-

sistency with the physical parameters provided. Agarwal and Huang validated the Green-

shields-based LWR using SUMO simulated data for loop detector scenarios using PIL [29].

The combined micro-macro models developed by Barreau et al. aimed to model TSE using

sensor data collected from probe vehicles [30]. Using loop detectors and probe vehicle

data, Shi et al. extended PIL-based TSE to the second-order ARZ model [31]. In addition,

they extended their study to estimate fundamental diagrams (FDs) and determine model

parameters through machine learning surrogates under the PIL framework [32]. In a re-

cent paper, deep convolutional neural networks are employed to estimate high-resolution

traffic speed dynamics with sparse probe vehicle movements [33]. However, all these

studies are limited to a single stretch of a road. In complex road networks, traffic dynamics

differ significantly from those of a single road segment. Additionally, the traffic on one

transport network link is not independent of traffic on other networks.

2.4. Physics-Informed Neural Networks

The physics-informed neural networks technique is introduced for solving problems

related to partial differential equations. Through automatic differentiation, the PINNs em-

bed PDEs into a neural network’s loss function, enabling seamless integration of both the

measurements and PDEs. As opposed to fitting a neural network to a set of state-value

pairs, PINNs consider the underlying PDE or physics of the problem. Owhadi revealed a

promising way to leverage prior knowledge about a solution in earlier research about cre-

ating physics-informed machine learning [34]. For a variety of physical problems, Raissi

et al. used Gaussian process regression to infer solutions and estimate uncertainty [35].

Raissi et al. conducted the first study that demonstrated the implementation of the PINNs

approach for solving nonlinear PDEs such as Schrödinger, Burgers, and Allen–Cahn equa-

tions [7]. Their PINNs approach estimated the solutions to governing mathematical for-

ward and inverse problems, where model parameters were fine-tuned using the data. In

the following years, PINNs attracted considerable attention from scientific computing re-

searchers because of their high flexibility and expressive ability. To solve spatiotemporal

fractional equations, Pang et al. 2019 extended PINNs to fractional PINNs (fPINNs) by

using both automatic differentiation for integer-order operators as well as numerical dis-

cretization for fractional operators to construct residuals in the loss function. Since the

standard chain rule in integer calculus is not valid in fractional calculus, their approach

solved the difficulty of using automatic differentiation with fractional operators [36]. In

2020, Zhang et al. extended PINNs to solve time-dependent stochastic partial differential

equations (SPDEs), such as the advection equation, stochastic Burger’s equation, and non-

linear reaction-diffusion equation. To determine the loss function, they incorporated dy-

namically orthogonal (DO) constraints and borthogonal constraints (BO) [37]. Kharazmi

et al. 2021 presented an hp-VPINN variant using least-squares residuals based on sub-

domain Petrov–Galerkin methods, where trial space consists of neural network spaces

and test space consists of localized non-overlapping high-order polynomials [38].

In order to solve the ill-posed inverse problems encountered in the evaluation of non-

destructive testing, Shukla et al. 2022 employed PINNs to identify the material through

its spatial variation in compliance coefficients. In this study, they analyzed the microstruc-

ture of polycrystalline nickel by using realistic ultrasonic surface acoustic wavefield data.

They integrated in-plane and out-of-plane elastic wave equations and adaptive activation

functions to physically inform the neural network and accelerate its convergence, respec-

tively [39]. Leveraging the PINN’s ability to integrate experimental data and the govern-

ing physical laws, Jagtap et al. 2022 extended its application to strongly nonlinear and

weakly dispersive surface water waves problems represented by asymptotic Serre–

Green–Naghdi system. They also discussed how to determine the optimal gauge locations

for the best predictive accuracy [40].

Algorithms 2022, 15, 447 6 of 21

To accurately solve the problems where the gradient and solution changes swiftly,

McClenny and Braga-Neto presented a novel self-adaptive PINN (SA-PINNs) based on

the conceptual soft self-attention mechanism used in Computer Vision where the model

autonomously identifies the most important inputs during training [41]. Mao et al. 2020

extended PINNs to one-dimensional and two-dimensional Euler equations using ini-

tial/boundary conditions to solve forward and inverse problems for high-speed aerody-

namic flows [42]. They solved the situations with smooth solutions and discontinuous

solutions and their results showed that the clustered training points, which are associated

with more data surrounding discontinuities, led to more accurate results compared to

random or uniform training points. For solving problems involving conservation laws,

Jagtap et al. 2020 applied a domain decomposition approach (cPINNs) using separate neu-

ral networks within each subdomain [43]. In addition to solving Burgers and Korteweg–

de Vries equations, they also solved systems of conservation laws, such as compressible

Euler equations. Unlike fixed activation functions, their cPINN uses locally adaptive acti-

vation functions, which means training the model is faster. In 2020, Jagtap and Karniada-

kis extended cPINNs and proposed a framework defined as eXtended PINNs (XPINNs)

to solve complex-geometry nonlinear PDEs [9]. Due to the inherent property of deploying

multiple neural networks within smaller subdomains, XPINNs can represent and paral-

lelize a wide range of PDEs, unlike conventional PINNs and cPINNs. Using a program-

ming model, Shukla et al. 2021 devised a hybrid parallel algorithm that employs cPINNs

and XPINNs [44]. They presented both weak and strong scaling results by comparing the

cPINN and XPINN distributed methodology for forward and inverse problems. Jagtap et

al. 2022 further extended XPINNs to solve notoriously difficult inverse supersonic com-

pressible flow problems [45]. Based on a rigorous explanation of how PINNs help approx-

imate solutions to a large class of inverse problems for PDEs, Mishra and Molinaro 2021

focused on the data assimilation or unique continuation problems [46]. Ryck et al. 2022

applied XPINNs to incompressible Navier–Stokes equations and demonstrated that PDE

residuals for Tanh neural networks with two hidden layers are arbitrarily small [47]. Hu

et al. 2022 also studied the performance and generalization capabilities of PINNs and

XPINNs using several PDEs [48].

3. Methodology

This section introduces the PINNs framework in terms of traffic state estimation.

Here we describe the basic terminology used in the follow-up presentation. The notations

are majorly inherited from [9] and [23].

Link: The road links Ωq, q = 1… N refer to the non-overlapping links of the whole

transport network Ω such that Ω = ⋃q = 1…N (Ωq) and Ωi ∩ Ωj = ∂Ωij, i ≠ j. N represents the

total number of road links in the network. The links interact only at the intersection points

i.e., merge or diverge point ∂Ωij.

Link-Net: The link-net refers to the individual PINN with its own set of optimized

hyper parameters, λ described later in the article, employed in each link.

Intersection: The intersection is the common point between two or more links, where

the corresponding Link-Nets communicate with each other.

Intersection Condition: These conditions are used to stitch the decomposed links to-

gether to obtain a solution for the governing PDEs over the complete network. We employ

flow conservation conditions at diverge and merge points.

Figure 1 presents the architecture of the PINN Link-Net. The proposed framework

consists of parts, i.e., physics-uninformed neural network (PUNN) and physics-informed

neural network (PINN). The PUNN and PINN parts are described in detail in the follow-

ing subsections.

Algorithms 2022, 15, 447 7 of 21

Figure 1. Neural network architecture of the proposed algorithm.

3.1. PUNN

The physics-uninformed neural network corresponds to purely the data part. The

growing amount of scientific data and rapid advances in machine learning have made

data-driven approaches increasingly popular. Instead of using an existing theory, a ma-

chine learning algorithm can be employed to analyze a complex problem based solely on

data. The scientific challenge is to find a model that can accurately predict new experi-

mental measurements given existing experimental data points resulting from an un-

known physical phenomenon. Input data points can be used to train neural networks,

which can predict the response variable based on the set of input variables. This is usually

achieved by minimizing the mean-squared error between its predictions and the given

training points. In the proposed framework, the data-dependent part is the physics-unin-

formed neural network, owing to its black-box nature and lack of understanding of the

underlying physical system. Fulari et al. 2017 developed an artificial neural network

(ANN) model for traffic state estimation using erroneous data [49]. He et al. 2016 esti-

mated freeway speeds using neural network-based fusion modules designed to combine

traffic information from cellular handoff probe systems and microwave sensors [50].

3.2. PINN

Many scientific fields have adopted machine learning algorithms, but do these algo-

rithms understand the underlying physical systems they are attempting to solve? For neu-

ral network models to understand the underlying physical system, prior scientific

knowledge is incorporated into the network through governing differential equations.

PINN algorithms combine the contribution of the neural network with residual terms

from the governing equations, which are used as penalties to constrain the space of ac-

ceptable solutions. A PINN algorithm for the LWR Model is shown in Figure 1 with the

neural network along with a physics-informed component. In addition to the contribution

from the neural network, the loss function is evaluated based on the residual of the gov-

erning equation. In PINN part, the loss function consists of errors from governing PDE,

initial condition, and intersection conditions. The intersection conditions include the traf-

fic flow continuity and flow conservation at the intersection points. In order to minimize

the loss function, weights (w) and biases (b) are determined such that the loss function is

minimized below a specified threshold or until a maximum number of iterations is

reached. The following studies have focused on PINNs in transportation related studies.

Using SUMO simulated data, Agarwal and Huang validated Greenshields-based

LWR models for loop detector scenarios using the PIL algorithm [29]. Based on the data

Algorithms 2022, 15, 447 8 of 21

collected from probe vehicles, Barreau et al. developed a PINNs model for trajectory re-

construction [30]. Shi et al. (2020) integrated second-order ARZ model for TSE by using

loop detectors and probe vehicle data [31]. They also expanded their study to estimate

fundamental diagrams (FDs) and determine model parameters [32].

To illustrate the method in an example network, Figure 2 presents a small traffic flow

network, which is composed of four links. Link-Nets are employed in each link with the

different architecture of the neural networks to solve the integrated traffic flow model.

The Link-Nets offer better computational efficiency through parallelization of the net-

work. Moreover, shallow and deep networks could be employed for various links de-

pending upon the complexity of traffic on the links.

Figure 2. Illustration of network, Links, and Intersections.

On the traffic flow model, the general form of the partial differential equation of the

Lighthill–Whitham–Richards (LWR) model of traffic flow is given by:

𝜕𝑡𝜌 + 𝜕𝑥(𝜌𝑣) = 0; 𝑣 = 𝑉(𝜌) (1)

where 𝜌: ℝ + → [0, 1] is the traffic density, i.e., the number of vehicles per unit length v is

the traffic speed, and V (𝜌) is the flux which is a speed-density function.

Consider a traffic flow network consisting of N number of non-overlapping links. Let

D[⋅] be a general differential operator and Ωq be a subset of the computational domain Ω.

The traffic state 𝜌(𝑥, 𝑡) at each point (𝑥, 𝑡) in a continuous domain is determined such

that the following traffic flow model PDE could be satisfied:

𝜕𝑡𝜌 + 𝐷[𝜌(𝑥, 𝑡)] = 0, 𝑥 ∈ Ω𝑞 , 𝑡 ∈ [0, 𝑇] (2)

The output of the PINNs for the qth link is given by

2(;) 1, ,, , ...,
q

q q Nz z qN

 =   (3)

Let 1{ }
u q

q

Ni

u ix = , 1{ } qf

q

i

f

N

ix = , and 1{ } qI

q

i

I

N

ix = be the set of randomly drawn training, resid-

ual and intersection points in the qth link, respectively. In a qth link, the number training,

residual, and intersection points are respectively represented by
u q

N ,
qf

N , and
qI

N . On the

ML part, under the PINN algorithm, the loss from PUNN and PINN for TSE is respec-

tively given by
q

 and
q

f  . Then, a generalized form is to solve the following optimi-

zation problem:

()min
q

q




(4)

where

1 1() ({ ;)} ({)} ;uq f q

q q q

N Ni i
q q qu u i f f iMSE x MSE x  = == + (5)

The following flow conservation equation helps to combine the individual links and

thus to find the traffic state over the entire network;

Algorithms 2022, 15, 447 9 of 21

1 1
,)(

q qNI NI

i qiq qQ Q Q V 
+ −

= =
= =  (6)

Q represents the link flow which is a speed density function, and i, j ∈ Ω are the

inward and outward traffic flow links, respectively, represented by q+ and q–, at any in-

tersection I.

Using the above set of Equation (6), the proposed neural network framework aims to

predict the traffic state over the entire traffic network. The link-wise defined loss functions

are extended for the whole network by connecting individual links using a connectivity

matrix subject to the relevant flow continuity and conservation equations. Thus, the loss

function for a qth link is given by:

1 1 1() ({ ;) ({ ;) ({ ;)} } }
uq f q I q

q q q q q q q q

N N Ni i i
q q q qu u u i f f f i I I I iW MSE x W MSE x W MSE x   = = == + + (7)

where
quW ,

qf
W , and

qI
W represent the weights assigned to errors related to the train-

ing data, residual, and intersection points, respectively. At this stage, the weights are as-

signed manually, though they can be chosen dynamically for faster convergence, this will

increase the computational load. The mean-squared errors (MSEs) are given by Equation

(8).

() 2

1 1

2

1 1

1 1 1

1
({ ;) | (;) |

1
({ ;) | (;) |

1
({)

}

}

} ; []

u uq q

q q q

q

q q

q q q

q

I
q q

q

q

f f

I If

N Ni i i
q qu u i ui

u

N Ni i
q qi i

N NNi
qI i q q I

f

i

f

i

f f

I

f

MSE x x
N

MSE x f x
N

MSE x Q Q
N

   

 

 + −

= =

= =

= = =

= −

=

= −





 

 (8)

The term MSEu and MSEf are the MSE for data discrepancy (PUNN part) and physics

discrepancy (PINN part) for the link q, respectively. In addition, the following flow conti-

nuity condition could be integrated into the loss function:

1 2

1 01

1
({ ;) | (;) (;) |}

I qI q

q q q

q

N cN ci i q i q
q q qc Ic i Ic N Ici

Ic

MSE x f x f x
N

   +

= =
= − (9)

The MSEc corresponds to the residual continuity condition at a common point of two

connected links given by two different neural networks. The continuity condition is a spe-

cial case of flow conservation where there is only one inward flow and one outward flow

link. The continuity condition can be useful where the physical characteristics of the road

change like the number of lanes, etc., and it is desired to split the link to separately model

their traffic flow. The MSEI is the residual flux conservation condition at the intersection

given by different neural networks of the links q+ and q-. The superscript + over q repre-

sents the inward flow links and − over q represents the outward flow links at the intersec-

tions. The flow conservation ensures that the flow information from the incoming links is

propagating to the outward flow links at the intersection. The term (;)
q

i
qff x  repre-

sents the residual of the governing PDE of the qth link which is given by Equation (10).

(;) : (;) [(;)]
q q q

i i i
q q qf t f ff x x N x    =  − (10)

We find
*

q to minimize the loss function ()q for each link. A good solution can

be obtained for the whole network by wisely designing the network’s architecture and

providing sufficient training data points. Several optimization algorithms can be used to

Algorithms 2022, 15, 447 10 of 21

minimize the loss function. Stochastic gradient descent is an extensively used method. In

SGD, a small set of points is randomly selected in each iteration to determine the direction

of the gradient. Under the condition of single-point convexity, the SGD algorithm can

avoid local minima during PUNN training. Particularly, we use the Adam optimizer,

which is a version of SGD. The basic form to update the parameters in the qth link, given

the initial value of parameter q , is given by Equation (11).

(1)

()

()
| , 1,2,...,n

q q

n n q
q q

q

r q N
 


 



+

=
= −  = (11)

where r is the learning rate. As explained above, the traffic flux Q is described by a speed-

density function with some parameters λ that best describe the data. It is difficult to obtain

fine-tuned parameters, with a modest amount of data, which best explain the unknown

hidden state of the system.

3.3. Activation Function (AF)

The activation function transforms the weighted summed input from the node into

an output value, which is then fed to the next hidden layer or used as output. It is the

activation function that decides whether or not a neuron should be activated. The activa-

tion function determines whether a neuron should be activated, i.e., whether the neuron’s

input to the network is important in predicting the future. In the absence of an activation

function, neurons simply perform linear transformations on inputs using weights and bi-

ases. Moreover, a neuron’s activation function adds nonlinearity to its output, enabling it

to solve complex problems. Different activation functions may be used in different por-

tions of a model, and they affect the capabilities and performances of the neural network.

A neural network is usually trained with a backpropagation algorithm that requires the

derivative of prediction error to update the weights of the model, which requires differ-

entiable activation functions. There are a variety of activation functions available in the

literature, including sigmoid, tanh functions, ReLUs, ELU, swish, softmax, etc. [51,52].

In addition to predefined functions, Jagtap et al. introduced adaptive activation func-

tions by integrating a trainable hyper-parameter that accelerates PINN convergence. In

their study, they showed that the adaptive activation function could be used to solve a

range of forward and inverse problems more quickly and accurately [53]. For layer-wise

and neuron-wise activation functions, they introduced an activation slope-based slope re-

covery term in the loss function to further reduce the training cost [54]. Researchers also

employed physical activation functions (PAFs) derived from physical laws governing the

phenomena under study [55]. They validated the performance of PAFs integrated with

neurons of hidden layers in combination with other AFs by solving harmonic oscillations

equation, Burger’s equation, Advection–Convection equation, etc.

Jagtap et al. 2022 proposed a Rowdy-Net with Rowdy activation functions based on

Kronecker neural networks (KNNs) [56]. In KNN, Kronecker’s product made the network

wide while keeping the number of trainable parameters low, thereby enabling faster con-

vergence whereas the Rowdy activation removed the saturation zone from every layer in

the network, allowing it to explore more and learn faster.

In this study, we chose the tanh activation function. In addition, we used adaptive

activation, following the approach presented in [53].

4. Data

In this study, we use VISSIM simulation to generate traffic trajectory data for the

circular network presented in Figure 3a, which is not on scale and it is for illustration

purpose only. The traffic network consists of three links, and the length of link is set to L

meters. Note that there is diverge point and a merge point in Figure 3a denoted by 1 and

2, respectively. We use connectors to join the road links in VISSIM. The traffic state data

Algorithms 2022, 15, 447 11 of 21

of the connectors obtained from the VISSIM were not very accurate due to the following

dilemma. Connectors in VISSIM (and also in other similar simulation environments) are

not dimensionless points but rather a small segment with physical length. The traffic char-

acteristics of the short connectors are then presented by VISSIM as the average along the

short distance. To achieve a higher accuracy for the average value, in theory, the connect-

ors should be as short as possible to mimic the dimensionless points so that the data at the

beginning, the ending, and throughout a short segment should be the same or very close

to that. On the other hand, if segments in the simulation are too short, it may lead to com-

putational issues such as frequent zero volume and missing observation regarding speed

and density. Such a dilemma shows that there is no easy way to get the instantaneous

values of speed, density, and volume of a short connector accurately. Such challenges im-

pact the fulfillment of flow conservation equations at the merge and diverge points. In

this study, we balance such challenges by keeping the connectors to be reasonably short

and then try to maintain the flow conservation by using the segment data of the links at

their beginnings and endings.

The traffic flows are assigned to the starting points of links L1, L2, and L3, and the

traffic is let to run in the network. The obtained vehicles’ trajectory data are used to esti-

mate the traffic speed, density, and flow. On a stretch of road with length L and time

interval T, the time-space is discretized into a uniform grid with cell size dT × dL. The

discrete area to estimate the traffic states is illustrated in Figure 3b. The total number of

cells in the time and space dimensions are NT and NL, respectively.

(a) (b)

Figure 3. (a) Traffic network with three links and two intersection points; (b) the trajectories of the

vehicles and a discrete area to estimate the traffic states.

4.1. Speed

The speed is assumed a constant in each cell, which is the average slope of spatio-

temporal trajectories in that cell. For cells where no trajectory is detected, the speed of the

adjacent cell is used to replace missing values. The average speed of cell i, j is denoted by

vij where i = 1… NT, j = 1… NL and is given by Equation (12).

1

1 v v
ij

v v j

N

i

v

L
v

TN =

 
=  

 
 (12)

∆Lv is the distance l traveled by any vehicle v in time ∆T, and speed is stored in a matrix V

∈ R + (NT × NL).

4.2. Density

The average traffic density ρij of a cell in a time-space diagram is evaluated by

Algorithms 2022, 15, 447 12 of 21

1

1
 ?

vN

ij vv
ij

T
A


=

= 


 (13)

∑∆T is the total time traveled by all vehicles in a certain cell and ∆Aij = dL × dT is the area

of the cell.

4.3. Flow

The average traffic flow Qij of a cell in a time-space diagram is evaluated by:

1

1 v

ij v

i
v

j

N

A
Q L

=



=  (14)

∑∆L is the total distance traveled by all vehicles in a certain cell and ∆Aij = dL × dT is the

area of the cell.

5. Experimental Setup and Discussion

In this section, we test the performance of the proposed framework to estimate traffic

dynamics in a traffic network based on the LWR model. Traffic data are obtained from the

circular traffic network shown in Figure 3 using PTV VISSIM. The length of each link is

set to 15,015 m.

In this study, we use synthetic demand to simulate the traffic in VISSIM. The traffic

input flows are randomly assigned, for the initial 900 s of a simulation run, to the starting

points of Links L1, L2 and L3 are 3000, 1000, and 2000 vehicles per hour, respectively, as

presented in Table 1. In addition, to generate more dynamics in traffic behavior, speed

reduction areas are activated for some time during the simulation run as well as activating

a stochastic behavior of the vehicles. After the initial 900 s of a simulation run, the traffic

is allowed to stabilize in the network for another 300 s, and trajectory data of the following

800 s are used in this study. We considered a closed traffic network in this study to observe

the complete shockwave and congestion spillover in the network.

Table 1. Synthetic traffic demand assigned to links in the network.

Link Interval Traffic Volume Volume Type

L1

0–900 3000 Stochastic

900–1800 0 Stochastic

2700–3600 0 Stochastic

L2

0–900 1000 Stochastic

900–1800 0 Stochastic

1800–2700 0 Stochastic

2700–3600 0 Stochastic

L3

0–900 2000 Stochastic

900–1800 0 Stochastic

1800–2700 0 Stochastic

2700–3600 0 Stochastic

To estimate the macroscopic traffic flow parameters, the cell size in the time-space

diagram is set to 5 s along the time dimension, and 5 m along the space dimension. Thus,

the size of the obtained uniform grid is 160 × 3003. Five seconds is a common time step

length for realistic speed data. For instance, we have real world speed data every five

seconds for the major freeways from Alabama Department of Transportation. Some

widely used datasets such as PeMS in California also provide speed data every five sec-

ond. Therefore, we choose 5 s as ∆T. The segment length is on trial basis. It is not too short

Algorithms 2022, 15, 447 13 of 21

to have the frequent empty cells with no detected vehicles. It is not too long to have sig-

nificant heterogeneity on traffic states within each road segment.

In the obtained data, there are cells, named empty cells, where the vehicles are not

detected. The flow and density in the empty cells are zero, but the speed should be either

close to free flow or the average speed of nearby cells. For simplicity, the speed in the

empty cells is set to constant between two cells. The speed contour plot of all three links

before and after filling the empty cells is presented in Figure 4(a) and 4(b), respectively.

(a) (b)

Figure 4. (a) Speed contour plot showing cells where no vehicle detected; (b) speed contour where

missing cells filled with the speed of neighboring cells.

The speed, density, and flow data of the network are explored in Figure 5. The figure

shows that flow-density-speed follows a similar pattern; however, the jam density and

peak flows are different in various links of the network. Therefore, we left this part on the

framework to estimate the best-fit parameters. The LWR model is given by 𝜕𝑡 𝜌 +

 𝜕𝑥 𝑉[𝜌] = 0. The flux function V = ρv is described as a speed-density function, and den-

sity can also be described as a function of velocity. Figure 5 shows a nonlinear relationship

between speed and density. However, we consider a linear relationship following Green-

shield’s Model, i.e., ρ = λ1 v + λ2. The flux function is given by V(v) = v(λ1 v + λ2), and the

resulting LWR model would be λ2⋅vx + 2⋅λ1⋅v⋅vx + λ1⋅vt = 0, where λ1 and λ2 are the parame-

ters that define the nature of the relationship between traffic state variables, and these

parameters are trained during the training of the neural network.

Algorithms 2022, 15, 447 14 of 21

Figure 5. Speed, density, and flow plot of links in the network.

The individual links are stitched together based on the connectivity matrix in Table

2. Each row (sub vector) in the matrix represents one link. The first, second, and third

elements of a row denote link ID, start point, and end point, respectively. Node 1 or inter-

section 1 is the diverge point where traffic from link L1 diverges to links L2 and L3. Simi-

larly, Node 2 is a merging point in the network where traffic from links L2 and L3 merges

onto L1.

Table 2. Links and their connectivity matrix.

Link Start Node End Node

L1 2 1

L2 1 2

L3 1 2

To train the proposed model, 1200 data points are randomly selected from each link

of the network. There are 10 layers and 30 neurons in each layer in PINNs architecture

and the input training and residual data points are 1200 and 30,000, respectively. The in-

put data show that the model is trained using only about 0.25% of the total data points in

the network.

Accuracy and performance are greatly influenced by the framework’s width, depth,

and learning rate. In line with the literature, 8 hidden layers are selected for the network

and a sensitivity analysis is performed to determine its width and learning rate. Learning

rate is crucial when seeking global minima. The studies showed that the computational

cost of a small learning rate can increase even though it moves towards global minima

gradually, whereas a large learning rate can skip the global minima altogether [53]. A

sensitivity analysis is presented in Table 3, which compares the relative errors of the var-

ious links for the fixed tanh activation function. A model with 8 hidden layers and 30

neurons performs the best with a learning rate of 0.001. Keeping in view the optimal pa-

rameters, the PINNs architecture and the input data points are summarized in Table 4.

There are 10 layers, including an input layer, 8 hidden layers, and 1 output layer.

Table 3. Relative error of links for the fixed tanh activation function.

Learning Rate Layers L1 L2 L3

0.0001 8 × [30] 0.1508 0.1604 0.1302

Algorithms 2022, 15, 447 15 of 21

8 × [50] 0.1077 0.17493 0.1193

0.001
8 × [30] 0.05498 0.07536 0.05237

8 × [50] 0.0849 0.1557 0.127

0.01
8 × [30] 0.2984 0.3038 0.3044

8 × [50] 0.2984 0.3038 0.3043

Table 4. PINNs architecture and summary of data points in each link of the network.

Link L1 L2 L3

No. of layers 10 10 10

Neurons 30 30 30

No. of Training points 1200 1200 1200

No. of Residual points 30,000 30,000 30,000

Total points in the link 480,480 480,480 480,480

Keeping in view Figure 3 from the previous section, the conservation conditions Q11

= Q12 + Q13 and Q21 = Q22 + Q23 are integrated into the model for diverging and merging

points, respectively. Q represents the flow V and the first and second digits in subscript

refer to node and link, respectively.

After training the model, the complete dataset of the network is passed to the model

to estimate the traffic state. The predicted speeds for the links L1, L2, and L3 are respec-

tively reported in Figure 6a–c. The predicted speed contours for all the links of the net-

work are pretty similar to the actual speed contours counterparts in Figure 4b. The model

has successfully captured the traffic dynamics of the network. The predicted data are fur-

ther compared at different fixed locations along time and space dimensions. Figure 7 pre-

sents actual and predicted speed at three different times 125, 250, and 675 respectively

given by the first, second, and third columns. The first, second, and third rows respec-

tively represent the network’s links, L1, L2, and L3, that show the promising results.

(a) (b) (c)

Figure 6. (a) Predicted traffic speed of Link L1, (b) predicted traffic speed of Link L2; (c) predicted

traffic speed of Link L3.

Algorithms 2022, 15, 447 16 of 21

Figure 7. Actual and predicted speed at three different times 125, 250, and 675 respectively given by

the first, second, and third columns. The first, second, and third rows respectively represent the

network’s links L1, L2, and L3.

The pointwise error of all three links and the loss convergence history are presented

in Figure 8 and Figure 9, respectively. Based on Figure 8, the dominant blue color indicates

lower prediction error, which indicates the model effectively captures the general conges-

tion pattern. It is evident from Figure 9 that even after 15,000 epochs, the loss for all three

links remains continuously decreasing.

In our case, we use an adaptive activation function in accordance with Jagtap et al.

[53]. However, the adaptive activation function does not significantly improve the results.

Figures 10 and 11 present representative results of the framework with adaptive activa-

tion. In Figure 11, the loss of links L1 and L2 does not diminish after about 50 epochs,

despite a rapid convergence at the initial epochs.

Figure 8. Pointwise error of Links L1, L2, and L3.

Figure 9. Loss history over the number of epochs with fixed tanh activation function.

Algorithms 2022, 15, 447 17 of 21

Figure 10. Actual and predicted speed at three different time intervals of Link L3 with adaptive

activation function.

Figure 11. Loss history of all three links for 500 epochs with adaptive activation function.

Although the proposed approach successfully captured the complex traffic behavior

in the network, the model needs further improvements and fine tuning to eliminate the

large errors. In addition, the lesser accuracy is likely due to ambiguities in the data collec-

tion process. For example, the assumption of constant traffic state across a cell may be

reasonable from a macroscopic perspective, but it may not necessarily satisfy the partial

differential equation that describes traffic flow. Moreover, the data failed to follow the

basic flow conservation phenomenon at the intersecting points. We further compare the

data and model predictions at the intersection using Figure 12.

Figure 12. Actual and predicted speed at two intersections i.e., at x = 0 and x = 15,015 m, respectively

given by the first and second columns. The first, second, and third rows respectively represent the

network’s links L1, L2, and L3.

The larger error at the intersection points is due to discrepancies in the actual data.

Since the data are estimated as described in the previous section and the data are not pre-

processed to strictly satisfy the flow conservation at the intersection points. Figure 13

Algorithms 2022, 15, 447 18 of 21

shows the flow conservation error1 and error2 at intersections 1 and 2, respectively. The

flow conservation error in the observed data is due to the assumption of grid cells while

estimating the traffic state variables from the trajectory data. The error could be reduced

to zero by assuming a minimally small-sized cell. The time complexity of the algorithm to

compute traffic state variables from the space-time diagram is O(n2), and a too small-sized

cell could be computationally expensive. The flow conservation error distribution shows

lesser violations at intersection 2 and that the prediction results are better as compared to

intersection 1.

Figure 13. Flow conservation error in the actual data at the intersection points.

6. Conclusions

In this paper, we presented a physics-informed neural networks (PINNs) framework

for traffic state estimation (TSE) in a traffic network. The study demonstrates that PINNs

have the potential of utilizing extremely sparse traffic data and utilizing deep learning

techniques for TSE in high accuracy using an integrated traffic flow model. A domain-

decomposition approach is employed in the framework which is very useful to model

characteristics of individual links in the network and change the structural complexity of

the neural network of the individual links to facilitate the training process.

The experimental results show that the presented framework accurately learns the

complex traffic dynamics over a circular traffic network. The predicted speeds match the

actual speeds at almost all the locations other than the intersection points. The error at the

intersection points is due to discrepancies in the actual data. Theoretically, the flow con-

servation condition must be satisfied at the intersection points. However, the actual sim-

ulated data violate the flow conservation, and this violation is potentially the result of

considering average speeds over small cells. The performance of the network could be

improved by refining the data through a tradeoff between the space–time diagram cell

size and the computational time and improving the hyper-parameters of the neural net-

work in future research. Moreover, equal weights are applied to various errors in the cu-

mulative loss function while training the model, which may be tuned up in the future

research to achieve better performances. The application of the proposed framework can

be expanded to large-scale networks with data fusion from multiple sources in future re-

search and practices.

Author Contributions: The authors confirm contribution to the paper as follows: study conception

and design: R.M. and M.U.; data preparation: M.W. and J.H.; analysis and interpretation of results:

R.M. and M.U.; draft manuscript preparation: R.M. and M.U. All authors have read and agreed to

the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2022, 15, 447 19 of 21

References

1. Treiber, M.; Kesting, A.; Wilson, R.E. Reconstructing the traffic state by fusion of heterogeneous data. Comput. Aided Civ. Infra-

struct. Eng. 2010, 26, 408–419. https://doi.org/10.1111/J.1467-8667.2010.00698.X.

2. Bekiaris-Liberis, N.; Roncoli, C.; Papageorgiou, M. Highway traffic state estimation with mixed connected and conventional

vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3484–3497. https://doi.org/10.1109/TITS.2016.2552639.

3. Agarwal, S.; Kachroo, P.; Contreras, S. A Dynamic Network Modeling-based approach for traffic observability problem. IEEE

Trans. Intell. Transp. Syst. 2016, 17, 1168–1178. https://doi.org/10.1109/TITS.2015.2499538.

4. Seo, T.; Bayen, A.M.; Kusakabe, T.; Asakura, Y. Traffic State Estimation on Highway: A Comprehensive Survey. Annu. Rev.

Control 2017, 43, 128–151. https://doi.org/10.1016/J.ARCONTROL.2017.03.005.

5. Lighthill, M.J.; Whitham, G.B. On Kinematic Waves II. A theory of traffic flow on long crowded roads. Proc. R. Soc. London. Ser.

A. Math. Phys. Sci. 1955, 229, 317–345. https://doi.org/10.1098/rspa.1955.0089.

6. Richards, P.I. Shock waves on the highway. Oper. Res. 1956, 4, 42–51.

7. Yuan, Y.; Zhang, Z.; Yang, X.T.; Zhe, S. Macroscopic traffic flow modeling with physics regularized gaussian process: A new

insight into machine learning applications in transportation. Transp. Res. Part B Methodol. 2021, 146, 88–110.

https://doi.org/10.1016/J.TRB.2021.02.007.

8. Raissi, M.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput.

Phys. 2018, 357, 125–141. https://doi.org/10.1016/j.jcp.2017.11.039.

9. Jagtap, A.D.; Karniadakis, G.E. Extended physics-informed Neural Networks (xpinns): A generalized space-time domain de-

composition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. 2020, 28, 2002–

2041. https://doi.org/10.4208/CICP.OA-2020-0164.

10. Flynn, M.R.; Kasimov, A.R.; Nave, J.C.; Rosales, R.R.; Seibold, B. Self-sustained nonlinear waves in traffic flow. Phys. Rev. E

2009, 79, 056113. https://doi.org/10.1103/PHYSREVE.79.056113.

11. Payne, H.J. Models of freeway traffic and control, in Mathematical Models of Public Systems. Simulation Councils: Huntsville, AL,

USA, 1971, 1, 51–61..

12. Aw, A.; Rascle, M. Resurrection of “second order” models of Traffic Flow. SIAM J. Appl. Math. 2000, 60, 916–938.

https://doi.org/10.1137/S0036139997332099.

13. Zhang, H.M. A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. Part B Methodol. 2002, 36, 275–290.

https://doi.org/10.1016/S0191-2615(00)00050-3.

14. Smith, B.L.; Scherer, W.T.; Conklin, J.H. Exploring imputation techniques for missing data in Transportation Management Sys-

tems. Transp. Res. Rec. J. Transp. Res. Board 2003, 1836, 132–142. https://doi.org/10.3141/1836-17.

15. Chen, C.; Kwon, J.; Rice, J.; Skabardonis, A.; Varaiya, P. Detecting errors and imputing missing data for single-loop surveillance

systems. Transp. Res. Rec. J. Transp. Res. Board 2003, 1855, 160–167. https://doi.org/10.3141/1855-20.

16. Zhong, M.; Lingras, P.; Sharma, S. Estimation of missing traffic counts using factor, genetic, neural, and regression techniques.

Transp. Res. Part C Emerg. Technol. 2004, 12, 139–166. https://doi.org/10.1016/J.TRC.2004.07.006.

17. Ni, D.; Leonard, J.D. Markov chain Monte Carlo multiple imputation using Bayesian networks for Incomplete Intelligent Trans-

portation Systems Data. Transp. Res. Rec. J. Transp. Res. Board 2005, 1935, 57–67. https://doi.org/10.1177/0361198105193500107.

18. Tan, H.; Wu, Y.; Cheng, B.; Wang, W.; Ran, B. Robust missing traffic flow imputation considering nonnegativity and road ca-

pacity. Math. Probl. Eng. 2014, 2014, 763469. https://doi.org/10.1155/2014/763469.

19. Tan, H.; Feng, G.; Feng, J.; Wang, W.; Zhang, Y.-J.; Li, F. A tensor-based method for missing traffic data completion. Transp. Res.

Part C Emerg. Technol. 2013, 28, 15–27. https://doi.org/10.1016/J.TRC.2012.12.007.

20. Polson, N.G.; Sokolov, V.O. Deep learning for short-term traffic flow prediction. Transp. Res. Part C Emerg. Technol. 2017, 79, 1–

17. https://doi.org/10.1016/j.trc.2017.02.024.

21. Chen, Y.; Chen, X.M. A novel reinforced dynamic graph convolutional network model with data imputation for network-wide

traffic flow prediction. Transp. Res. Part C Emerg. Technol. 2022, 143, 103820.

22. Xu, D.; Peng, H.; Wei, C.; Shang, X.; Li, H. Traffic State data imputation: An efficient generating method based on the graph

aggregator. IEEE Trans. Intell. Transp. Syst. 2022, 23, 13084–13093.

23. Zhang, T.; Guo, G. Graph attention LSTM: A spatiotemporal approach for traffic flow forecasting. IEEE Intell. Transp. Syst. Mag.

2022, 14, 190–196.

24. Rempe, F.; Franeck, P.; Bogenberger, K. On the estimation of traffic speeds with deep convolutional neural networks given

probe data. Transp. Res. Part C Emerg. Technol. 2022, 134, 103448.

25. Zhang, Z.; Lin, X.; Li, M.; Wang, Y. A customized deep learning approach to integrate network-scale online traffic data impu-

tation and prediction. Transp. Res. Part C Emerg. Technol. 2021, 132, 103372.

26. Ye, Y.; Zhang, S.; Yu, J.J.Q. Traffic data imputation with ensemble convolutional Autoencoder. In Proceedings of the 2021 IEEE

International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021.

27. Duan, Y.; Lv, Y.; Liu, Y.-L.; Wang, F.-Y. An efficient realization of deep learning for traffic data imputation. Transp. Res. Part C

Emerg. Technol. 2016, 72, 168–181.

Algorithms 2022, 15, 447 20 of 21

28. Liang, Y.; Zhao, Z.; Sun, L. Memory-augmented dynamic graph convolution networks for traffic data imputation with diverse

missing patterns. Transp. Res. Part C Emerg. Technol. 2022, 143, 103826.

29. Huang, A.J.; Agarwal, S. Physics informed Deep Learning for traffic state estimation. In Proceedings of the 2020 IEEE 23rd

International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020.

https://doi.org/10.1109/ITSC45102.2020.9294236.

30. Barreau, M.; Aguiar, M.; Liu, J.; Johansson, K.H. Physics-informed learning for identification and state reconstruction of traffic

density. In Proceedings of the 2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, 13–17 December

2021. https://doi.org/10.1109/CDC45484.2021.9683295.

31. Shi, R., Mo, Z., & Di, X. ; Physics-Informed Deep Learning for Traffic State Estimation: A Hybrid Paradigm Informed By Sec-

ond-Order Traffic Models. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021; Volume

35, pp. 540–547.

32. Shi, R.; Mo, Z.; Di, X.; Du, Q. Physics-informed Deep Learning for traffic state estimation: A hybrid paradigm informed by

second-order Traffic Models. Proc. AAAI Conf. Artif. Intell. 2021, 35, 540–547. https://doi.org/10.1109/TITS.2021.3106259.

33. Thodi, B.T.; Khan, Z.S.; Jabari, S.E.; Menendez, M. Incorporating kinematic wave theory into a deep learning method for high-

resolution traffic speed estimation. IEEE Trans. Intell. Transp. Syst. 2022, 23, 17849–17862.

https://doi.org/10.1109/TITS.2022.3157439.

34. Owhadi, H. Bayesian numerical homogenization. Multiscale Modeling Simul. 2015, 13, 812–828.

35. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Inferring solutions of differential equations using noisy multi-fidelity data. J. Com-

put. Phys. 2017, 335, 736–746.

36. Pang, G.; Lu, L.; Karniadakis, G.E. FPINNs: Fractional physics-informed Neural Networks. SIAM J. Sci. Comput. 2019, 41, A2603–

A2626.

37. Zhang, D.; Guo, L.; Karniadakis, G.E. Learning in modal space: Solving time-dependent stochastic pdes using physics-informed

Neural Networks. SIAM J. Sci. Comput. 2020, 42, A639–A665.

38. Kharazmi, E.; Zhang, Z.; Karniadakis, G.E.M. HP-VPINNs: Variational physics-informed neural networks with domain decom-

position. Comput. Methods Appl. Mech. Eng. 2021, 374, 113547.

39. Shukla, K.; Jagtap, A.D.; Blackshire, J.L.; Sparkman, D.; Em Karniadakis, G. A physics-informed neural network for quantifying

the microstructural properties of polycrystalline nickel using ultrasound data: A promising approach for solving inverse prob-

lems. IEEE Signal Processing Mag. 2022, 39, 68–77.

40. Jagtap, A.D.; Mitsotakis, D.; Karniadakis, G.E. Deep learning of inverse water waves problems using multi-fidelity data: Appli-

cation to serre–green–naghdi equations. Ocean Eng. 2022, 248, 110775.

41. McClenny, L.; Braga-Neto, U. Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism. arXiv 2020,

arXiv:2009.04544.

42. Mao, Z.; Jagtap, A.D.; Karniadakis, G.E. Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech.

Eng. 2020, 360, 112789.

43. Jagtap, A.D.; Kharazmi, E.; Karniadakis, G.E. Conservative physics-informed neural networks on discrete domains for conser-

vation laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 2020, 365, 113028.

44. Shukla, K.; Jagtap, A.D.; Karniadakis, G.E. Parallel physics-informed neural networks via domain decomposition. J. Comput.

Phys. 2021, 447, 110683.

45. Jagtap, A.D.; Mao, Z.; Adams, N.; Karniadakis, G.E. Physics-informed neural networks for inverse problems in supersonic

flows. J. Comput. Phys. 2022, 466, 111402.

46. Mishra, S.; Molinaro, R. Estimates on the generalization error of physics-informed neural networks for approximating a class

of inverse problems for pdes. IMA J. Numer. Anal. 2021, 42, 981–1022.

47. Ryck, T.D.; Jagtap, A.D.; Mishra, S. Error estimates for physics informed neural networks approximating the Navier-Stokes

equations. arXiv 2022, arXiv:2203.09346.

48. Hu, Z.; Jagtap, A.D.; Karniadakis, G.E.; Kawaguchi, K. When do extended physics-informed Neural Networks (xpinns) improve

generalization? SIAM J. Sci. Comput. 2022, 44(5), A3158-A3182. https://doi.org/10.1137/21M1447039.

49. Fulari, S.; Vanajakshi, L.; Subramanian, S.C. Artificial Neural Network–based traffic state estimation using Erroneous Auto-

mated Sensor Data. J. Transp. Eng. Part A Syst. 2017, 143, 05017003.

50. He, S.; Zhang, J.; Cheng, Y.; Wan, X.; Ran, B. Freeway multisensor data fusion approach integrating data from cellphone probes

and fixed sensors. J. Sens. 2016, 2016, 7269382.

51. Apicella, A.; Donnarumma, F.; Isgrò, F.; Prevete, R. A survey on modern trainable activation functions. Neural Networks 2021,

138, 14–32.

52. Jagtap, A.D.; Karniadakis, G.E.; How important are activation functions in regression and classification? A survey, performance

comparison, and future directions. arXiv 2022, arXiv:2209.02681.

53. Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Adaptive activation functions accelerate convergence in deep and physics-in-

formed Neural Networks. J. Comput. Phys. 2020, 404, 109136.

Algorithms 2022, 15, 447 21 of 21

54. Jagtap, A.D.; Kawaguchi, K.; Em Karniadakis, G. Locally adaptive activation functions with slope recovery for deep and phys-

ics-informed Neural Networks. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2020, 476, 20200334.

55. Abbasi, J.; Andersen, P.Ø . Physical Activation Functions (PAFs): An Approach for More Efficient Induction of Physics into

Physics-Informed Neural Networks (PINNs). arXiv 2022, arXiv:2205.14630

56. Jagtap, A.D.; Shin, Y.; Kawaguchi, K. Deep Kronecker neural networks: A general framework for neural networks with adaptive

activation functions. Neurocomputing 2022, 468, 165–180

