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Abstract: The conventional dermatology practice of performing noninvasive screening tests to detect
skin diseases is a source of escapable diagnostic inaccuracies. Literature suggests that automated
diagnosis is essential for improving diagnostic accuracies in medical fields such as dermatology,
mammography, and colonography. Classification is an essential component of an assisted automation
process that is rapidly gaining attention in the discipline of artificial intelligence for successful
diagnosis, treatment, and recovery of patients. However, classifying skin lesions into multiple
classes is challenging for most machine learning algorithms, especially for extremely imbalanced
training datasets. This study proposes a novel ensemble deep learning algorithm based on the
residual network with the next dimension and the dual path network with confidence preservation
to improve the classification performance of skin lesions. The distributed computing paradigm
was applied in the proposed algorithm to speed up the inference process by a factor of 0.25 for
a faster classification of skin lesions. The algorithm was experimentally compared with 16 deep
learning and 12 ensemble deep learning algorithms to establish its discriminating prowess. The
experimental comparison was based on dermoscopic images congregated from the publicly available
international skin imaging collaboration databases. We propitiously recorded up to 82.52% average
sensitivity, 99.00% average specificity, 98.54% average balanced accuracy, and 92.84% multiclass
accuracy without prior segmentation of skin lesions to outstrip numerous state-of-the-art deep
learning algorithms investigated.

Keywords: deep learning; ensemble learning; learning algorithm; lesion classification; skin disease;
skin lesion

1. Introduction

Malignant skin lesions such as melanoma manifest a serious health risk with increasing
incidence. The ability of melanoma to rapidly grow and widely proliferate to other parts of
the human body is a unique characteristic that makes it one of the deadliest skin cancer
diseases [1]. It is a fatal malignant skin tumor resulting from the improper synthesis of
melanin because of unpredictable disorders in the melanocytic cell [2]. The good news
though is that fatality of skin lesions can be prevented to a large degree if the disease is
detected early before proliferation. The high mortality rate associated with melanoma
makes it necessary to detect the disease at its early stages to improve health treatment
as quickly as possible [3]. Statistics have indicated that over 9000 deaths are recorded
yearly from melanoma infection, which warrants the necessity to provide a sustainable and
easily reproducible method of early detection [4–7]. It has been judged to be the fifth most
common skin cancer occurring among males, seventh in females, and second among young
adults ranging from 15–29 years of age [8–10]. Moreover, given that melanoma accounts
for 75–79% of skin cancer-related deaths, early detection has been proposed by medical
practitioners as one of the vivacious keys to preventing untimely death associated with the
disease [8,11]. This is one of the important reasons that manifold researchers are interested
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in obtaining accurate automated systems that can assist in the early detection and diagnosis
of the disease [12].

The diagnostic procedure for skin lesions often relies heavily on dermatologists who
use visual pattern recognition with the aid of dermoscopic devices to identify lesions
through rules such as asymmetry, border irregularity, color variation, the diameter of
the lesion, a 7-point checklist, and Menzies score. However, the associated complexity,
high subjectivity, and a great deal of experience in interpreting dermoscopic evaluation
results present a serious concern [8,13,14]. Recent reports have noted the poor progno-
sis from expert dermatologists that can sometimes lead to expensive and unnecessary
excision [15]. These challenges necessitate a reliable automated system to assist with the
second opinion [4]. There are numerous methods in the literature to automatically deter-
mine whether a skin lesion is malignant or not, and most studies have reported promising
results. The application of machine learning methods is widely accepted in recent times
as having the potential capacity to act as a second opinion for the automatic classification
of skin lesions [16]. Machine learning (ML) applies artificial intelligence (AI) methods to
provide computing systems with the capability to learn the experience of performing non-
trivial tasks. The frequently used ML methods include decision trees (DTs), support vector
machines (SVMs), artificial neural networks (ANNs), and multiple regression analysis
(MRA). Specifically, ANN is a widely known ML method that tends to simulate biological
neural networks using collections of connected nodes to model biological neurons in the
human brain.

There are copious applications of ANNs for classifying skin lesions with encouraging
results [17–19]. Deep neural networks (DNNs) have recently evolved as variations of ANNs
with consideration for more dense hidden layers to improve classification performance.
The process of training DNNs for learning to perform a non-trivial assignment is termed
deep learning (DL). Frequently used DNNs include convolution neural networks (CNNs),
recurrent neural networks (RNNs), and deep belief networks (DBNs). The CNN appli-
cations in computer vision have been widely lauded with increasing success, because of
their ability to solve signal translation problems by convolving each input signal with a
kernel detector to train and learn spatial relations among image pixels [20,21]. However,
the classification of skin diseases is a difficult task because of the strong similarities in
common symptoms for which AI methods were recommended to improve the accuracy of
dermatology diagnosis [16]. There are several claims in the literature on the outstanding re-
sults produced by CNN methods on skin lesion images acquired from a clinical procedure,
dermoscopy, mammography, colonography, or histopathology when compared to experi-
enced dermatologists [22–28]. Moreover, the increasing number of publicly available image
datasets has provided a huge opportunity for better computer vision possibilities [29].
The application of DL methods is one possibility to assist in predicting the correlated
relationships among malignant skin tumors and many diseases in patients [30].

The purpose of the present study was to improve the overall performance of a multi-
class skin lesion detection process using an ensemble deep learning that utilizes the strength
of different heterogeneous models with the capability of parallel processing. The rest of the
paper is structured concisely as follows. Section 2 summarizes the related studies. Section 3
describes the materials and methods of the study, including the introduced ensemble deep
learning algorithms. Section 4 explains the experimental results of evaluating the intro-
duced algorithms against 28 state-of-the-art algorithms. The paper is briefly concluded in
Section 5.

2. Related Studies

The improved LeNet method that uses adaptive piecewise linear activation as an alter-
native to the conventional activation function was proposed to improve the classification
of melanoma skin lesions [31]. The CNN framework termed Dermo-Doctor was recently
developed to detect skin lesions [32]. The framework performs lesion segmentation, uses
two encoders, and fuses feature maps from the encoders to obtain the desired classification
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result. This past work was further expanded in a proposal called DermoExpert using a
hybrid of CNNs, class rebalancing, and transfer learning [33]. The classification of skin
lesions network (CSLNet) was suggested based on a specialized deep convolutional neural
network (DCNN) [34]. The backpropagation algorithm was used to train the DCNN model
to evolve the network weights. A leaky rectified linear unit (LeakyReLU) was used as an
activation function in the convolution layers, while SoftMax was leveraged as an activation
function in the output layer. The L2 normalization scheme was used to regularize the
kernel in the dense layer to prevent the possibility of over-fitting, often associated with a
learning method.

Most classification problems can be generally categorized as unary, binary, or multiclass [35].
Multiclass classification is the processing task of assigning a data sample to exactly one
class among three or more classes. The task is particularly challenging for an imbalanced
dataset of medical images that present multiple undesirable artifacts such as vignettes,
ruler markings, specular reflections, shadows, and hair shafts. Moreover, a skewed dataset
distribution can make conventional machine learning algorithms ineffective, especially
when predicting examples of a minority class. A multiclass problem is sometimes resolved
directly or by further reducing the problem into a series of two-class subproblems. Direct
resolution can be achieved with the application of SoftMax or Sigmoid function. The use
of either one-vs-one (OvO) and one-vs-rest/one-vs-all (OvR/OvA) schemes can be used
to further break a multiclass problem into multiple binary subproblems [36–38]. Multiple
sub-datasets are used for training both OvO and OvA and the prediction of input data is
passed through each generated model where a model with the highest probability gives
the final prediction. The OvO is a heuristic algorithm that splits a multiclass problem into
multiple binary subproblems. The source dataset is divided into one sub-dataset per each
class versus every other class to generate n(n− 1)/2 binary classification models where n
is the number of classes. However, this could lead to countless sub-datasets that might be
difficult to scale, especially for large source datasets. The OvA rifts a multiclass problem
into several binary subproblems by dividing the source dataset into one sub-dataset for
each class versus the rest of the classes to generate n binary classification models. The OvA
is less verbose in comparison to the OvO for the required sub-datasets to be created, but it
requires the creation of a model for each class. This requirement might be undesirable for
large source datasets or multiclass problems with a considerable number of classes.

The introduction of deep learning has made a direct resolution of multiclass problems
relatively exciting. The present study has followed the ensemble deep learning approach
of a direct multiclass resolution using SoftMax to avoid the innate concerns associated
with OvO and OvA. Multiclass classification can be a single-label prediction outcome or
multi-label in nature. Single-label classification indicates that the outcome of a prediction
generates exactly one class. A single SoftMax layer is often used as the last layer for neural
networks that require a single-label prediction outcome. However, multi-label classification
indicates that the outcome of a prediction generates two or more classes. Multiple sigmoid
layers are typically used as the last layer for neural networks that require multiple-label
prediction outcomes. The classification problems in the domain of skin lesion diagnosis are
naturally multiclass with a single-label outcome. This is because a skin lesion can seldom
be of two disease types concomitantly, except when dealing with different semantics such
as a skin lesion that is considered both dermatofibroma and benign. Most of the skin
lesion classification methods reported in the literature are mostly limited to binary classes
either between melanoma and melanocytic nevi or between broader malignant and benign
lesions. However, in recent times, some attempts have been made to solve multiclass
skin lesion classifications [19,39–42]. Literature has recorded the use of multiple deep
learning methods in an ensemble framework to mimic how a medical practitioner leverages
a consensus opinion through the pearls of wisdom of other practitioners to corroborate the
outcome of a medical diagnosis [43–46].

Ensemble learning belongs to the state-of-the-art approach that combines the predic-
tions of manifold base learners into a strong algorithm to increase the overall classification
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performance and decrease the peril of obtaining a local minimum [47]. It addresses the
inherent challenges such as the high variance of being sensitive to training data and bias
frequently associated with single learners in a deep learning framework. Several previous
works have achieved improved results, reduced classification errors and obtained better
generalization in skin lesion classification with ensemble learning [29,48–52]. Ensemble
learning can be achieved by aggregating the prediction from each learner to build a meta-
model that produces the final prediction. It includes boosting (AdaBoost, GradientBoost,
and eXtreme GradientBoost), bagging (bootstrap aggregation like the random forest), vot-
ing (simple majority, averaged majority, or weighted majority), and stacking (stacked
generalization for layer-2 meta-model), each with its intrinsic merits and demerits. The
four approaches can use heterogeneous algorithms but bagging and boosting are typically
used on multiple subsets of training data on homogenous learners, whereas voting and
stacking mostly use heterogeneous learners. The aggregation of multiple predictions in
ensemble learning can be done by a voting mechanism either by computing maximum
voting, average voting, or weighted average voting of all the predicted classes.

The authors in [39] proposed an ensemble learning strategy termed the global-part
CNN model with data-transformed ensemble learning (GP-CNN-DTEL). It involves train-
ing a global CNN (G-CNN) with downscaled dermoscopic images to produce a classifica-
tion activation map (CAM) and the training of a network called part CNN (P-CNN) with the
resulting CAM. In [51], an efficient lightweight melanoma classification network based on
MobileNet and DenseNet121 was proposed to improve the ability of feature discrimination,
and recognition accuracy of lightweight networks while utilizing a small number of model
parameters. The study in [52] proposed a multi-scale multi-CNN (MSM-CNN) fusion
based on a three-level ensemble strategy. This was achieved by fusing the results of three
fine-tuned networks of EfficientNetB0, EfficientNetB1, and SeReNeXt-50 with cropped
images at six scales. The authors asserted that image cropping is a better strategy when
compared to image resizing for performing skin lesion classification based on transfer learn-
ing. The study in [53] fused the outputs of the classification layers of four different DNN
architectures of GoogLeNet, AlexNet, residual network (ResNet), and visual geometry
group network (VGGNet) into one output. The final classification was achieved based on
the weighted outputs of the CNN members. In [54], an ensemble learning encompassing
Inception-v4, ResNet-152, and DenseNet-161 was used for malignant classification in a
manner reminiscent of mimicking the real-world approach. In the approach, a specialist
will typically consult other specialists to cross-reference and double-check diagnosis before
engaging with a patient.

Nevertheless, while the above studies have reported the success of ensemble learn-
ing, their methods present varying inefficiencies during model training or inference
aggregation [55]. The overarching purpose of the present study, therefore, was to improve
the overall performance of a multiclass skin lesion detection process using an ensemble
deep learning that utilizes the strength of different heterogeneous models with the capabil-
ity of parallel processing. The current study further strengthens the possibility of using
an automated medical expert decision support system as a valuable device for soliciting a
second opinion from dermatologists with the following cardinal contributions.

1. The introduction of two majority voting ensemble deep learning algorithms to accurately
classify up to ten different skin lesion classes with improved classification performance.

2. The application of distributed computing paradigm to achieve a faster and more
timely multiclass classification of skin lesions into one of three or multiple classes.

3. The comprehensive evaluation of the introduced majority voting ensemble deep
learning algorithms against 28 state-of-the-art deep learning and ensemble learning
algorithms as a way of demonstrating their prowess.

3. Materials and Methods

The materials for this study include the experimental datasets and computing devices
used for classifying skin lesions. The computer has a capacity of 16 GB graphics process-
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ing unit (GPU) memory, 2560 compute unified device architecture (CUDA) Cores, and 9
trillion floating point operations per second (TFLOPS). The study methods were based
on the application of visual geometry group network (VGGNet) [56], residual network
(ResNet) [57], residual network with neXt dimension (ResNeXt) [58], dense convolutional
network (DenseNet) [59], dual path network (DPN) [60], efficient channel attention residual
network (ECA ResNet) [61], instagram dataset-based residual network with neXt dimen-
sion (IG ResNeXt) [62], semi-weakly supervised learning residual network with neXt
dimension (SWSL ResNeXt) [63], inception ResNet v2 [64], and rank expansion networks
(ReXNet) [65]. These standard network models were applied in the present study to de-
velop two new ensemble deep learning algorithms. The study methods also include the
widely used metrics for performance evaluation and the experimentation method was to
test the performance of the developed learning algorithms.

3.1. Dataset

This study uses 71,522 images congregated from 6 publicly available datasets of inter-
national skin imaging collaborations (ISIC) for experimentation. The training and validation
datasets comprise the ISIC 2016 (ISIC_2016_TRN) [66], ISIC 2017 (ISIC_2017_TRN and
ISIC_2017_VAL) [4], ISIC 2018 (ISIC_2018_TRN) [67,68], ISIC 2019 (ISIC_2019_TRN) [4,67,69],
and ISIC 2020 (ISIC_2020_TRN) [70]. The datasets as described in Table 1 reflected 2, 3, 3,
7, 9, and 9 skin lesion classes respectively. It should be noted that images overlap across
different ISIC datasets. Many studies on skin lesion segmentation and classification, for
example, transformed lesion image data from original red, green, and blue (RGB) color
to other color models such as the international commission on illumination perceptually
uniform (CIELab) color model [1,14,39,71] and non-linear hue, saturation, value (HSV)
color model [28,52]. However, the original RGB colors of skin lesion images were preserved
in this study to avoid additional computation costs and possible tinting that can result from
the specification of an inappropriate illuminant.

Table 1. Experimental image datasets.

Datasets Descriptions Sizes Classes

ISIC_2017_TRN [4] Training set for ISIC 2017
Classification Task 2000 3

ISIC_2017_VAL [4] The validation set for ISIC
2017 Classification Task 150 3

ISIC_2016_TRN [66] Training set for ISIC 2016
Classification Task 900 2

ISIC_2019_TRN [4,67,69] Training set for ISIC 2019
Classification Task 25,331 9

ISIC_2018_TRN [67,68] Training set for ISIC 2018
Classification Task 10,015 7

ISIC_2020_TRN [70] Training set for ISIC 2020
Classification Task 33,126 9

Figure 1 shows the inclusion and exclusion protocol for certain skin lesion classes.
The lesion classes like lentigo not otherwise specified (NOS), solar lentigo, lichenoid
keratosis, cafe-au-lait macule, and atypical melanocytic proliferation in ISIC_2020_TRN
were excluded because they present less than 50 lesion images. The number of such images
in the sub-dataset was 90, thereby reducing the ISIC_2020_TRN experimental images from
33,126 to 33,036.
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Figure 1. Inclusion and exclusion protocol for the selected skin lesion images.

Figure 2 displays the sample skin lesion images of ten different classes. The benign
lesion has a total of seven classes which are actinic keratosis and intraepithelial carcinoma
(AKIEC), benign keratosis-like lesions (BKL), dermatofibroma (DF), indeterminate benign
(INDB), melanocytic nevi (NV), seborrheic keratosis (SK), and vascular lesions (VASC). The
malignant lesion accounted for three classes which are melanoma (MEL), basal cell carci-
noma (BCC), and squamous cell carcinoma (SCC). The images used in the dataset contain
several noise attributes such as hair shafts (Figure 2a,c,e,f,g,k,l), vignettes (Figure 2a,d,l),
ruler markings (Figure 2g,k), air bubble (Figure 2h), blood vessel (Figure 2f,h), and specular
reflections (Figure 2e,l). The images equally contain early in-situ skin lesions with difficult
border tracing (Figure 2b,c,g,i,j) and invasive skin lesions having different shades of color
(Figure 2a,d–f,h,k,l). The use of in-situ lesion skin images can enhance the training of a
learner for the early detection of skin diseases. Moreover, the use of invasive skin lesion
images can ensure that the proposed ensemble learning methods can provide a valuable
second opinion to dermatologists when investigating the diagnosis of a specific skin lesion.

It has been earlier mentioned that ISIC datasets contain duplicate images across
different datasets. The duplicates were removed to obtain unique images as highlighted
in Table 2. The number of benign images used was 49,310 out of the 58,367 lesion images
prepared for training and cross-validation, while malignant classes accounted for a total of
9057 images. The 58,367 images selected were used in this study for training and validation
after performing the required data cleansing. The subset of 46,694 skin lesion images that
constituted about 80.00% of the selected images was used for training the base learners.
The 11,673 skin lesion images which accounted for 20.00% of the selected images were used
for cross-validation of each base learner. The validation dataset was equally used to check
the strength of the introduced ensemble deep learning algorithms in comparison with the
solitary deep learning algorithms considered.
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Table 2. Experimental datasets for training and validation.

Database
Benign Malignant

Total
AKIEC BKL DF INDB NV SK VASC BCC MEL SCC

ISIC_2017_TRN [4] 1372 254 374 2000

ISIC_2017_VAL [4] 78 42 30 150

ISIC_2016_TRN [66] 1 29 688 182 900

ISIC_2019_TRN [4,67,69] 867 2624 239 12,875 253 3323 4522 628 25,331

ISIC_2018_TRN [67,68] 327 1099 115 6705 142 514 1113 10,015

ISIC_2020_TRN [70] 27,124 5193 135 584 33,036

Total 1194 3724 354 27,153 26,911 431 395 3837 6805 628

Duplicates 327 1396 115 8843 142 514 1687

Discarded 29 12

Final Selection 867 2328 239 27,124 18,068 431 253 3323 5106 628

3.2. Methods

The application of transfer learning has assisted significantly to resolve the general
problem of insufficient data for the training of machine learning models [72]. The over-
arching goal was to ensure the realization of a learning algorithm that can accurately
discriminate skin lesions in dermoscopic images. The investigated base learners were sub-
jected to a two-stage process to determine the relevance of an image segmentation process.
It was also to examine the discriminating prowess of the base learners for constructing
novel ensemble deep learning algorithms. There are several approaches such as bagging,
boosting, stacking, and voting previously used in the literature to improve the classification
performance of ensemble learning. The approach of voting ensemble learning that follows
the application of heterogeneous learners with multiclass labels was explored in this study
to enhance the generalization of skin lesion classification. The impetus for the exploration
of this approach includes its wide usage, simplicity, and efficiency [73,74].
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The methods of this study were based on the VGGNet with 11, 13, 16, and 19 layers,
ResNet with 18, 34, 50, 101, and 152 layers, ResNeXt having 50, and 101 layers, DenseNet
with 121, 161, 169, and 201 layers, DPN with 68, 92, 98, 107, and 131 layers, ECA ResNet of
101 layers, IG ResNeXt having 101 layers, SWSL ResNeXt of 101 layers, ReXNet with x1.5
and x2.0 repeated layers. The VGGNet uses multiple non-linear rectification layers instead
of a single rectification layer for a more discriminative result. The application of VGG-11,
VGG-13, VGG-16, and VGG-19 networks was examined in this study [56]. ResNet applies
an identity shortcut connection to solve the problem of vanishing gradient resulting from a
deeper network [57]. The network uses a pre-activation residual block so that both forward
and backward signals are directly propagated from one block to any other block with
identity mapping. This mechanism has helped the use of an additive merging of previous
layers into the future layers where the network can learn residuals that are the differences
between the previous and current layers. The application of ResNet-18, ResNet-34, ResNet-
50, ResNet-101 and ResNet-152 with other recent variations of ResNet was examined in
this study. The evaluated variations of the network include residual networks with next
dimension (ResNeXt-50, ResNeXt-101) [58], IG-ResNeXt-101 [62], SWSL-ResNeXt-101 [63],
and efficient channel attention-based residual networks (ECA-ResNet-101) [61].

DenseNet is a logical extension of ResNet that concatenates the outputs from the
previous layers into future layers, instead of using additive merges to sum residuals [58].
In contrast to ResNet, it explicitly differentiates the residual information preserved from
the new information added to the network [58]. The intrinsic merits of the model include
the reduction in the required hyperparameters by ignoring redundant feature maps and
alleviating the vanishing gradient problem. Four types of DenseNet that were examined in
this study are DenseNet-121, DenseNet-161, DenseNet-169, and DenseNet-201 [59]. DPN
reforms the skip connection and inherits the intrinsic merits of feature reuse from a residual
network (ResNet) and feature exploration from a densely connected network (DenseNet).
These attributes make DPNs have good parameter efficiency, low computational cost, and
low memory footprint. Five variations of DPN that were examined in this study are DPN-
68, DPN-92, DPN-98, DPN-107, and DPN-131 [60]. The inception architecture combines
the strength of the network in a network (NiN) with a repeated block paradigm. The basic
convolutional block in the inception architecture is called the inception block. In this study, a
variation of the inception architecture termed inception-ResNet-v2 that utilizes the residual
connections was used to achieve an improved classification performance [64]. The ReXNet
uses a search method for channel parameterization through the piecewise linear functions
of the block index [65]. The two types of ReXNet examined in this study are ReXNet_1.5
and ReXNet_2.0, each corresponding to x1.5 and x2.0 repeated layers, respectively.

Public lesion image datasets were used for the training and validation of base learners
to support a two-staged training process. The individual trainable input image was resized
to 224 x 224, while each batch of data was fed as input to a learner. In the first training
stage, a balanced 2000 data subset of benign and malignant classes consisting of randomly
selected 1000 benign and 1000 malignant images were used. In the training, 800 benign
and 800 malignant images were used, while 200 benign and 200 malignant images were
used for cross-validation. In the second training stage, the entire 58,367 multiclass skin
lesion images were used of which about 80.00% of the entire dataset was for training, while
the remaining 20.00% of images were used to validate the discriminating capability of
each learner.

The purpose of the stage 1 evaluation was to identify the base learners with quality
performance on ground truth segmented images or non-segmented images to improve the
overall classification performance of skin lesions. This is because there is no consensus
reached in the literature on the effect of image segmentation on performance of classifica-
tion algorithms. Some studies have used segmentation as a prerequisite for performing
skin lesion classification [40,75,76], while other have either argued against its necessity or
completely ignored its usage for lesion classification [52,77,78]. Consequently, an experi-
ment was performed at Stage 1 with a control group of unsegmented skin lesion images
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and an experimental group of ground truth segmented skin lesion images. The 26 investi-
gated deep learning algorithms were trained separately with experimental group images
and control group images. The base learners that recorded a minimum dice coefficient
(DSC) of 0.92 were selected to participate in the Stage 2 evaluation. This was to avoid the
potential side effect of imbalanced accuracy and to select deep learners with a consistent
discriminating ability across different images.

In stage 2, each base learner was trained to learn the discriminating attributes of AKIEC,
BCC, DF, MEL, NV, SK, SCC, and VASC skin lesions. In addition, each learner was trained
to classify a skin lesion as either BKL or INDB. A skin lesion is classified as BKL if it has
keratosis-like features but cannot be recognized as belonging to a specific known keratosis
class. Moreover, a lesion is categorized as INDB if it has benign features but cannot be
discriminated from a specific known class. The base learner selection process at stage 2, uses
the selected base learners, excluding those that could not be fitted because of the limited
GPU capacity of 16 GB of the computer system used for the experimentation. Multiclass
accuracy performance was computed for each base learner evaluated at stage 2 to further
determine the discriminating strength of learners. The minimum threshold of 90.50%
multiclass accuracy was used to select the models to be considered as components of an
ensemble deep learning algorithm. In addition, it was used to compute the corresponding
weights for a learner.

3.2.1. Performance Evaluation

The learning algorithms were evaluated using well-established performance evalua-
tion metrics of sensitivity, specificity, accuracy, Jaccard index, dice coefficient, multiclass
accuracy, precision, and Matthew correlation coefficient. Let TP, TN, FN, and FP repre-
sent the true positive classification, true negative classification, false positive classification,
and false negative classification, respectively. In addition, let Dcm represents the diagonal
for the confusion matrix of n total multiple classes. The performance evaluation metrics are
computed as functions of true positive, true negative, false positive, and false negative as
represented in Table 3.

Table 3. Performance Evaluation Metrics.

Metrics Symbols Formulae

Sensitivity Sn Sn = TP
TP+FN

Specificity Sp Sp = TN
TN+FP

Accuracy Acc Acc = TP+TN
TP+TN+FP+FN

Jaccard index Ji Ji = TP
TP+FP+FN

Dice coefficient DSC DSC = 2TP
2TP+FP+FN

Multiclass accuracy MAcc MAcc = ∑i Dcm
n

Precision Pr Pr = TP
TP+FP

Matthew correlation coefficient MCC MCC =
(TP∗TN)−(FP∗FN)√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

3.2.2. Experimental Setup

The application of an appropriate transformation during training can help deep learn-
ing algorithms to generalize better on future inputs. In this study, we applied a maximum
of five rotations and deterministic random dihedral transformation as data augmentation
methods. These transformations were applied to each data item and data batch fed into
the learning algorithms at both stage 1 and stage 2 training because of the imbalance in
a multiclass experimental dataset. Regularization and optimization hyperparameters are
widely used to improve the performance of deep learning algorithms [79]. In this study, we
applied regularization parameters of weight decay and dropout during training to facilitate
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the reduction in the out-of-place fitting. Weight decay is typically used as a regularization
parameter to minimize the loss function, reduce the possibility of the model over-fitting or
under-fitting, and apply an appropriate penalty to large weights. Dropout is generally used
as a regularization parameter that involves the probabilistic removal of network nodes to
reduce over-fitting during the model training. Such a unit is temporarily removed from the
network, including its corresponding connections, by dropping out.

The optimization parameters such as the learning rate and batch size were also applied
to strengthen the generalization ability of the introduced voting ensemble deep learning
algorithms. The learning rate typically outlines the sizes of the corrective steps that a
learning model takes to adjust for errors at each epoch. During training, we used the cycling
learning rate to determine the appropriate step size as the loss function gets minimized.
This important mechanism has effectively assisted in determining the speed at which each
network model can learn discriminating features of skin lesion classes. A high learning rate
will shorten the training time, but ultimately with lower accuracy, while a lower learning
rate might take longer, but with a potential for greater accuracy. The number of data
samples that could be fed into the learning model per epoch differs in size. Batch size
refers to the maximum amount of training data that could fit into a single iteration in batch,
mini-batch, or stochastic modes. It is generally used to determine the error gradient during
model training.

3.3. Proposed Ensemble Deep Learning Algorithm

The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and
DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms.
The ensembles are simple majority voting ensemble (SMVE) and weighted majority voting
ensemble (WMVE). They are among the most popular voting ensembles with no definite
consensus about which is better. Hence, we have decided to experiment with both of the
ensembles to recommend the one that shows more promising results. The Ray distributed
framework [80] was used in this study to resolve the slow convergence speed typically
experienced by most ensemble learning algorithms because of the time taken to compute
the result of an individual base learner [81–84]. The prediction of each handler of a learner
was computed in a distributed fashion and the associated results were aggregated when
available. This is to reduce the wait time as highlighted in both Algorithm 1 and Algorithm
2. It should be noted that preprocessing of the images is not performed during inference
which makes the algorithms robust for practical real-world usage. The
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Algorithm 1: Simple Majority Voting Ensemble Deep Learning

Given an input image į
1. Broadcast į to the respective handlers (
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n) of the learners.
2. Compute the prediction for each handler using distributed processing [80].
3. Compile responses from all handlers of the learners.
4. Aggregate the results of the handlers based on the maximum voting principle.
5. Determine the class prediction P(ҡj) using Equation (2).

End

3.3.2. Weighted Majority Voting Ensemble Deep Learning Algorithm

The WMVE uses a confidence preservation mechanism to increase the accuracy of
classifying skin lesions. The class prediction of the WMVE corresponding to the category
of a skin lesion can be computed using Algorithm 2. The algorithm highlights the essential
steps of classifying a given skin lesion image into one category from AKIEC, BCC, BKL,
DF, MEL, NV, SK, SCC, VASC, and INDB. Due to the number of base learners used, hard
and soft voting schemes were agglutinated to solve for the possibility of an even number of
predicted output
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j. The average weighted confidence probability µ

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 26 
 

hyperparameters are widely used to improve the performance of deep learning algo-
rithms [79]. In this study, we applied regularization parameters of weight decay and drop-
out during training to facilitate the reduction in the out-of-place fitting. Weight decay is 
typically used as a regularization parameter to minimize the loss function, reduce the pos-
sibility of the model over-fitting or under-fitting, and apply an appropriate penalty to 
large weights. Dropout is generally used as a regularization parameter that involves the 
probabilistic removal of network nodes to reduce over-fitting during the model training. 
Such a unit is temporarily removed from the network, including its corresponding con-
nections, by dropping out. 

The optimization parameters such as the learning rate and batch size were also ap-
plied to strengthen the generalization ability of the introduced voting ensemble deep 
learning algorithms. The learning rate typically outlines the sizes of the corrective steps 
that a learning model takes to adjust for errors at each epoch. During training, we used 
the cycling learning rate to determine the appropriate step size as the loss function gets 
minimized. This important mechanism has effectively assisted in determining the speed 
at which each network model can learn discriminating features of skin lesion classes. A 
high learning rate will shorten the training time, but ultimately with lower accuracy, while 
a lower learning rate might take longer, but with a potential for greater accuracy. The 
number of data samples that could be fed into the learning model per epoch differs in size. 
Batch size refers to the maximum amount of training data that could fit into a single iter-
ation in batch, mini-batch, or stochastic modes. It is generally used to determine the error 
gradient during model training. 

3.3. Proposed Ensemble Deep Learning Algorithm 
The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and 

DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms. 
The ensembles are simple majority voting ensemble (SMVE) and weighted majority vot-
ing ensemble (WMVE). They are among the most popular voting ensembles with no def-
inite consensus about which is better. Hence, we have decided to experiment with both of 
the ensembles to recommend the one that shows more promising results. The Ray distrib-
uted framework [80] was used in this study to resolve the slow convergence speed typi-
cally experienced by most ensemble learning algorithms because of the time taken to com-
pute the result of an individual base learner [81–84]. The prediction of each handler of a 
learner was computed in a distributed fashion and the associated results were aggregated 
when available. This is to reduce the wait time as highlighted in both Algorithm 1 and 
Algorithm 2. It should be noted that preprocessing of the images is not performed during 
inference which makes the algorithms robust for practical real-world usage. The ᴟ  rep-
resents the predicted output of each handler (Ϧ ) of a classifier, ѿ  is the weighted confi-
dence for each ᴟ  and ҡ  is the lesion output class to be predicted for a given skin lesion 
image such that ҡ satisfies the following. ҡ ∈ 𝐴𝐾𝐼𝐸𝐶, 𝐵𝐶𝐶, 𝐵𝐾𝐿, 𝐷𝐹, 𝐼𝑁𝐷𝐵, 𝑁𝑉, 𝑀𝐸𝐿, 𝑆𝐾, 𝑆𝐶𝐶, 𝑉𝐴𝑆𝐶  (1) 

3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm 
The SMVE was achieved by simply combining the predictions of the individual 

learners. The class with the highest frequency is thereafter used as the final predicted class 
according to Algorithm 1. The simple majority voting ensemble is computed according to 
the following expression. 𝑃 ҡ = max(ҡ ) (2) 

  

j
of each

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 26 
 

hyperparameters are widely used to improve the performance of deep learning algo-
rithms [79]. In this study, we applied regularization parameters of weight decay and drop-
out during training to facilitate the reduction in the out-of-place fitting. Weight decay is 
typically used as a regularization parameter to minimize the loss function, reduce the pos-
sibility of the model over-fitting or under-fitting, and apply an appropriate penalty to 
large weights. Dropout is generally used as a regularization parameter that involves the 
probabilistic removal of network nodes to reduce over-fitting during the model training. 
Such a unit is temporarily removed from the network, including its corresponding con-
nections, by dropping out. 

The optimization parameters such as the learning rate and batch size were also ap-
plied to strengthen the generalization ability of the introduced voting ensemble deep 
learning algorithms. The learning rate typically outlines the sizes of the corrective steps 
that a learning model takes to adjust for errors at each epoch. During training, we used 
the cycling learning rate to determine the appropriate step size as the loss function gets 
minimized. This important mechanism has effectively assisted in determining the speed 
at which each network model can learn discriminating features of skin lesion classes. A 
high learning rate will shorten the training time, but ultimately with lower accuracy, while 
a lower learning rate might take longer, but with a potential for greater accuracy. The 
number of data samples that could be fed into the learning model per epoch differs in size. 
Batch size refers to the maximum amount of training data that could fit into a single iter-
ation in batch, mini-batch, or stochastic modes. It is generally used to determine the error 
gradient during model training. 

3.3. Proposed Ensemble Deep Learning Algorithm 
The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and 

DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms. 
The ensembles are simple majority voting ensemble (SMVE) and weighted majority vot-
ing ensemble (WMVE). They are among the most popular voting ensembles with no def-
inite consensus about which is better. Hence, we have decided to experiment with both of 
the ensembles to recommend the one that shows more promising results. The Ray distrib-
uted framework [80] was used in this study to resolve the slow convergence speed typi-
cally experienced by most ensemble learning algorithms because of the time taken to com-
pute the result of an individual base learner [81–84]. The prediction of each handler of a 
learner was computed in a distributed fashion and the associated results were aggregated 
when available. This is to reduce the wait time as highlighted in both Algorithm 1 and 
Algorithm 2. It should be noted that preprocessing of the images is not performed during 
inference which makes the algorithms robust for practical real-world usage. The ᴟ  rep-
resents the predicted output of each handler (Ϧ ) of a classifier, ѿ  is the weighted confi-
dence for each ᴟ  and ҡ  is the lesion output class to be predicted for a given skin lesion 
image such that ҡ satisfies the following. ҡ ∈ 𝐴𝐾𝐼𝐸𝐶, 𝐵𝐶𝐶, 𝐵𝐾𝐿, 𝐷𝐹, 𝐼𝑁𝐷𝐵, 𝑁𝑉, 𝑀𝐸𝐿, 𝑆𝐾, 𝑆𝐶𝐶, 𝑉𝐴𝑆𝐶  (1) 

3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm 
The SMVE was achieved by simply combining the predictions of the individual 

learners. The class with the highest frequency is thereafter used as the final predicted class 
according to Algorithm 1. The simple majority voting ensemble is computed according to 
the following expression. 𝑃 ҡ = max(ҡ ) (2) 

  

j is given

according to the following equation.

µ

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 26 
 

hyperparameters are widely used to improve the performance of deep learning algo-
rithms [79]. In this study, we applied regularization parameters of weight decay and drop-
out during training to facilitate the reduction in the out-of-place fitting. Weight decay is 
typically used as a regularization parameter to minimize the loss function, reduce the pos-
sibility of the model over-fitting or under-fitting, and apply an appropriate penalty to 
large weights. Dropout is generally used as a regularization parameter that involves the 
probabilistic removal of network nodes to reduce over-fitting during the model training. 
Such a unit is temporarily removed from the network, including its corresponding con-
nections, by dropping out. 

The optimization parameters such as the learning rate and batch size were also ap-
plied to strengthen the generalization ability of the introduced voting ensemble deep 
learning algorithms. The learning rate typically outlines the sizes of the corrective steps 
that a learning model takes to adjust for errors at each epoch. During training, we used 
the cycling learning rate to determine the appropriate step size as the loss function gets 
minimized. This important mechanism has effectively assisted in determining the speed 
at which each network model can learn discriminating features of skin lesion classes. A 
high learning rate will shorten the training time, but ultimately with lower accuracy, while 
a lower learning rate might take longer, but with a potential for greater accuracy. The 
number of data samples that could be fed into the learning model per epoch differs in size. 
Batch size refers to the maximum amount of training data that could fit into a single iter-
ation in batch, mini-batch, or stochastic modes. It is generally used to determine the error 
gradient during model training. 

3.3. Proposed Ensemble Deep Learning Algorithm 
The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and 

DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms. 
The ensembles are simple majority voting ensemble (SMVE) and weighted majority vot-
ing ensemble (WMVE). They are among the most popular voting ensembles with no def-
inite consensus about which is better. Hence, we have decided to experiment with both of 
the ensembles to recommend the one that shows more promising results. The Ray distrib-
uted framework [80] was used in this study to resolve the slow convergence speed typi-
cally experienced by most ensemble learning algorithms because of the time taken to com-
pute the result of an individual base learner [81–84]. The prediction of each handler of a 
learner was computed in a distributed fashion and the associated results were aggregated 
when available. This is to reduce the wait time as highlighted in both Algorithm 1 and 
Algorithm 2. It should be noted that preprocessing of the images is not performed during 
inference which makes the algorithms robust for practical real-world usage. The ᴟ  rep-
resents the predicted output of each handler (Ϧ ) of a classifier, ѿ  is the weighted confi-
dence for each ᴟ  and ҡ  is the lesion output class to be predicted for a given skin lesion 
image such that ҡ satisfies the following. ҡ ∈ 𝐴𝐾𝐼𝐸𝐶, 𝐵𝐶𝐶, 𝐵𝐾𝐿, 𝐷𝐹, 𝐼𝑁𝐷𝐵, 𝑁𝑉, 𝑀𝐸𝐿, 𝑆𝐾, 𝑆𝐶𝐶, 𝑉𝐴𝑆𝐶  (1) 

3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm 
The SMVE was achieved by simply combining the predictions of the individual 

learners. The class with the highest frequency is thereafter used as the final predicted class 
according to Algorithm 1. The simple majority voting ensemble is computed according to 
the following expression. 𝑃 ҡ = max(ҡ ) (2) 

  

j
=

1
n

n

∑
j

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 26 
 

hyperparameters are widely used to improve the performance of deep learning algo-
rithms [79]. In this study, we applied regularization parameters of weight decay and drop-
out during training to facilitate the reduction in the out-of-place fitting. Weight decay is 
typically used as a regularization parameter to minimize the loss function, reduce the pos-
sibility of the model over-fitting or under-fitting, and apply an appropriate penalty to 
large weights. Dropout is generally used as a regularization parameter that involves the 
probabilistic removal of network nodes to reduce over-fitting during the model training. 
Such a unit is temporarily removed from the network, including its corresponding con-
nections, by dropping out. 

The optimization parameters such as the learning rate and batch size were also ap-
plied to strengthen the generalization ability of the introduced voting ensemble deep 
learning algorithms. The learning rate typically outlines the sizes of the corrective steps 
that a learning model takes to adjust for errors at each epoch. During training, we used 
the cycling learning rate to determine the appropriate step size as the loss function gets 
minimized. This important mechanism has effectively assisted in determining the speed 
at which each network model can learn discriminating features of skin lesion classes. A 
high learning rate will shorten the training time, but ultimately with lower accuracy, while 
a lower learning rate might take longer, but with a potential for greater accuracy. The 
number of data samples that could be fed into the learning model per epoch differs in size. 
Batch size refers to the maximum amount of training data that could fit into a single iter-
ation in batch, mini-batch, or stochastic modes. It is generally used to determine the error 
gradient during model training. 

3.3. Proposed Ensemble Deep Learning Algorithm 
The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and 

DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms. 
The ensembles are simple majority voting ensemble (SMVE) and weighted majority vot-
ing ensemble (WMVE). They are among the most popular voting ensembles with no def-
inite consensus about which is better. Hence, we have decided to experiment with both of 
the ensembles to recommend the one that shows more promising results. The Ray distrib-
uted framework [80] was used in this study to resolve the slow convergence speed typi-
cally experienced by most ensemble learning algorithms because of the time taken to com-
pute the result of an individual base learner [81–84]. The prediction of each handler of a 
learner was computed in a distributed fashion and the associated results were aggregated 
when available. This is to reduce the wait time as highlighted in both Algorithm 1 and 
Algorithm 2. It should be noted that preprocessing of the images is not performed during 
inference which makes the algorithms robust for practical real-world usage. The ᴟ  rep-
resents the predicted output of each handler (Ϧ ) of a classifier, ѿ  is the weighted confi-
dence for each ᴟ  and ҡ  is the lesion output class to be predicted for a given skin lesion 
image such that ҡ satisfies the following. ҡ ∈ 𝐴𝐾𝐼𝐸𝐶, 𝐵𝐶𝐶, 𝐵𝐾𝐿, 𝐷𝐹, 𝐼𝑁𝐷𝐵, 𝑁𝑉, 𝑀𝐸𝐿, 𝑆𝐾, 𝑆𝐶𝐶, 𝑉𝐴𝑆𝐶  (1) 

3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm 
The SMVE was achieved by simply combining the predictions of the individual 

learners. The class with the highest frequency is thereafter used as the final predicted class 
according to Algorithm 1. The simple majority voting ensemble is computed according to 
the following expression. 𝑃 ҡ = max(ҡ ) (2) 

  

j (3)

Algorithm 2: Weighted Majority Voting Ensemble Deep Learning

Given an input image į
1. Broadcast į to the respective handlers (

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 26 
 

hyperparameters are widely used to improve the performance of deep learning algo-
rithms [79]. In this study, we applied regularization parameters of weight decay and drop-
out during training to facilitate the reduction in the out-of-place fitting. Weight decay is 
typically used as a regularization parameter to minimize the loss function, reduce the pos-
sibility of the model over-fitting or under-fitting, and apply an appropriate penalty to 
large weights. Dropout is generally used as a regularization parameter that involves the 
probabilistic removal of network nodes to reduce over-fitting during the model training. 
Such a unit is temporarily removed from the network, including its corresponding con-
nections, by dropping out. 

The optimization parameters such as the learning rate and batch size were also ap-
plied to strengthen the generalization ability of the introduced voting ensemble deep 
learning algorithms. The learning rate typically outlines the sizes of the corrective steps 
that a learning model takes to adjust for errors at each epoch. During training, we used 
the cycling learning rate to determine the appropriate step size as the loss function gets 
minimized. This important mechanism has effectively assisted in determining the speed 
at which each network model can learn discriminating features of skin lesion classes. A 
high learning rate will shorten the training time, but ultimately with lower accuracy, while 
a lower learning rate might take longer, but with a potential for greater accuracy. The 
number of data samples that could be fed into the learning model per epoch differs in size. 
Batch size refers to the maximum amount of training data that could fit into a single iter-
ation in batch, mini-batch, or stochastic modes. It is generally used to determine the error 
gradient during model training. 

3.3. Proposed Ensemble Deep Learning Algorithm 
The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and 

DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms. 
The ensembles are simple majority voting ensemble (SMVE) and weighted majority vot-
ing ensemble (WMVE). They are among the most popular voting ensembles with no def-
inite consensus about which is better. Hence, we have decided to experiment with both of 
the ensembles to recommend the one that shows more promising results. The Ray distrib-
uted framework [80] was used in this study to resolve the slow convergence speed typi-
cally experienced by most ensemble learning algorithms because of the time taken to com-
pute the result of an individual base learner [81–84]. The prediction of each handler of a 
learner was computed in a distributed fashion and the associated results were aggregated 
when available. This is to reduce the wait time as highlighted in both Algorithm 1 and 
Algorithm 2. It should be noted that preprocessing of the images is not performed during 
inference which makes the algorithms robust for practical real-world usage. The ᴟ  rep-
resents the predicted output of each handler (Ϧ ) of a classifier, ѿ  is the weighted confi-
dence for each ᴟ  and ҡ  is the lesion output class to be predicted for a given skin lesion 
image such that ҡ satisfies the following. ҡ ∈ 𝐴𝐾𝐼𝐸𝐶, 𝐵𝐶𝐶, 𝐵𝐾𝐿, 𝐷𝐹, 𝐼𝑁𝐷𝐵, 𝑁𝑉, 𝑀𝐸𝐿, 𝑆𝐾, 𝑆𝐶𝐶, 𝑉𝐴𝑆𝐶  (1) 

3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm 
The SMVE was achieved by simply combining the predictions of the individual 

learners. The class with the highest frequency is thereafter used as the final predicted class 
according to Algorithm 1. The simple majority voting ensemble is computed according to 
the following expression. 𝑃 ҡ = max(ҡ ) (2) 

  

1,

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 26 
 

hyperparameters are widely used to improve the performance of deep learning algo-
rithms [79]. In this study, we applied regularization parameters of weight decay and drop-
out during training to facilitate the reduction in the out-of-place fitting. Weight decay is 
typically used as a regularization parameter to minimize the loss function, reduce the pos-
sibility of the model over-fitting or under-fitting, and apply an appropriate penalty to 
large weights. Dropout is generally used as a regularization parameter that involves the 
probabilistic removal of network nodes to reduce over-fitting during the model training. 
Such a unit is temporarily removed from the network, including its corresponding con-
nections, by dropping out. 

The optimization parameters such as the learning rate and batch size were also ap-
plied to strengthen the generalization ability of the introduced voting ensemble deep 
learning algorithms. The learning rate typically outlines the sizes of the corrective steps 
that a learning model takes to adjust for errors at each epoch. During training, we used 
the cycling learning rate to determine the appropriate step size as the loss function gets 
minimized. This important mechanism has effectively assisted in determining the speed 
at which each network model can learn discriminating features of skin lesion classes. A 
high learning rate will shorten the training time, but ultimately with lower accuracy, while 
a lower learning rate might take longer, but with a potential for greater accuracy. The 
number of data samples that could be fed into the learning model per epoch differs in size. 
Batch size refers to the maximum amount of training data that could fit into a single iter-
ation in batch, mini-batch, or stochastic modes. It is generally used to determine the error 
gradient during model training. 

3.3. Proposed Ensemble Deep Learning Algorithm 
The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and 

DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms. 
The ensembles are simple majority voting ensemble (SMVE) and weighted majority vot-
ing ensemble (WMVE). They are among the most popular voting ensembles with no def-
inite consensus about which is better. Hence, we have decided to experiment with both of 
the ensembles to recommend the one that shows more promising results. The Ray distrib-
uted framework [80] was used in this study to resolve the slow convergence speed typi-
cally experienced by most ensemble learning algorithms because of the time taken to com-
pute the result of an individual base learner [81–84]. The prediction of each handler of a 
learner was computed in a distributed fashion and the associated results were aggregated 
when available. This is to reduce the wait time as highlighted in both Algorithm 1 and 
Algorithm 2. It should be noted that preprocessing of the images is not performed during 
inference which makes the algorithms robust for practical real-world usage. The ᴟ  rep-
resents the predicted output of each handler (Ϧ ) of a classifier, ѿ  is the weighted confi-
dence for each ᴟ  and ҡ  is the lesion output class to be predicted for a given skin lesion 
image such that ҡ satisfies the following. ҡ ∈ 𝐴𝐾𝐼𝐸𝐶, 𝐵𝐶𝐶, 𝐵𝐾𝐿, 𝐷𝐹, 𝐼𝑁𝐷𝐵, 𝑁𝑉, 𝑀𝐸𝐿, 𝑆𝐾, 𝑆𝐶𝐶, 𝑉𝐴𝑆𝐶  (1) 

3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm 
The SMVE was achieved by simply combining the predictions of the individual 

learners. The class with the highest frequency is thereafter used as the final predicted class 
according to Algorithm 1. The simple majority voting ensemble is computed according to 
the following expression. 𝑃 ҡ = max(ҡ ) (2) 

  

2, . . .

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 26 
 

hyperparameters are widely used to improve the performance of deep learning algo-
rithms [79]. In this study, we applied regularization parameters of weight decay and drop-
out during training to facilitate the reduction in the out-of-place fitting. Weight decay is 
typically used as a regularization parameter to minimize the loss function, reduce the pos-
sibility of the model over-fitting or under-fitting, and apply an appropriate penalty to 
large weights. Dropout is generally used as a regularization parameter that involves the 
probabilistic removal of network nodes to reduce over-fitting during the model training. 
Such a unit is temporarily removed from the network, including its corresponding con-
nections, by dropping out. 

The optimization parameters such as the learning rate and batch size were also ap-
plied to strengthen the generalization ability of the introduced voting ensemble deep 
learning algorithms. The learning rate typically outlines the sizes of the corrective steps 
that a learning model takes to adjust for errors at each epoch. During training, we used 
the cycling learning rate to determine the appropriate step size as the loss function gets 
minimized. This important mechanism has effectively assisted in determining the speed 
at which each network model can learn discriminating features of skin lesion classes. A 
high learning rate will shorten the training time, but ultimately with lower accuracy, while 
a lower learning rate might take longer, but with a potential for greater accuracy. The 
number of data samples that could be fed into the learning model per epoch differs in size. 
Batch size refers to the maximum amount of training data that could fit into a single iter-
ation in batch, mini-batch, or stochastic modes. It is generally used to determine the error 
gradient during model training. 

3.3. Proposed Ensemble Deep Learning Algorithm 
The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and 

DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms. 
The ensembles are simple majority voting ensemble (SMVE) and weighted majority vot-
ing ensemble (WMVE). They are among the most popular voting ensembles with no def-
inite consensus about which is better. Hence, we have decided to experiment with both of 
the ensembles to recommend the one that shows more promising results. The Ray distrib-
uted framework [80] was used in this study to resolve the slow convergence speed typi-
cally experienced by most ensemble learning algorithms because of the time taken to com-
pute the result of an individual base learner [81–84]. The prediction of each handler of a 
learner was computed in a distributed fashion and the associated results were aggregated 
when available. This is to reduce the wait time as highlighted in both Algorithm 1 and 
Algorithm 2. It should be noted that preprocessing of the images is not performed during 
inference which makes the algorithms robust for practical real-world usage. The ᴟ  rep-
resents the predicted output of each handler (Ϧ ) of a classifier, ѿ  is the weighted confi-
dence for each ᴟ  and ҡ  is the lesion output class to be predicted for a given skin lesion 
image such that ҡ satisfies the following. ҡ ∈ 𝐴𝐾𝐼𝐸𝐶, 𝐵𝐶𝐶, 𝐵𝐾𝐿, 𝐷𝐹, 𝐼𝑁𝐷𝐵, 𝑁𝑉, 𝑀𝐸𝐿, 𝑆𝐾, 𝑆𝐶𝐶, 𝑉𝐴𝑆𝐶  (1) 

3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm 
The SMVE was achieved by simply combining the predictions of the individual 

learners. The class with the highest frequency is thereafter used as the final predicted class 
according to Algorithm 1. The simple majority voting ensemble is computed according to 
the following expression. 𝑃 ҡ = max(ҡ ) (2) 

  

n) of the learners.
2. Compute the prediction for each handler using distributed processing [80].
3. Compile responses from all handlers of the learners.
4. Compute

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 26 
 

hyperparameters are widely used to improve the performance of deep learning algo-
rithms [79]. In this study, we applied regularization parameters of weight decay and drop-
out during training to facilitate the reduction in the out-of-place fitting. Weight decay is 
typically used as a regularization parameter to minimize the loss function, reduce the pos-
sibility of the model over-fitting or under-fitting, and apply an appropriate penalty to 
large weights. Dropout is generally used as a regularization parameter that involves the 
probabilistic removal of network nodes to reduce over-fitting during the model training. 
Such a unit is temporarily removed from the network, including its corresponding con-
nections, by dropping out. 

The optimization parameters such as the learning rate and batch size were also ap-
plied to strengthen the generalization ability of the introduced voting ensemble deep 
learning algorithms. The learning rate typically outlines the sizes of the corrective steps 
that a learning model takes to adjust for errors at each epoch. During training, we used 
the cycling learning rate to determine the appropriate step size as the loss function gets 
minimized. This important mechanism has effectively assisted in determining the speed 
at which each network model can learn discriminating features of skin lesion classes. A 
high learning rate will shorten the training time, but ultimately with lower accuracy, while 
a lower learning rate might take longer, but with a potential for greater accuracy. The 
number of data samples that could be fed into the learning model per epoch differs in size. 
Batch size refers to the maximum amount of training data that could fit into a single iter-
ation in batch, mini-batch, or stochastic modes. It is generally used to determine the error 
gradient during model training. 

3.3. Proposed Ensemble Deep Learning Algorithm 
The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and 

DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms. 
The ensembles are simple majority voting ensemble (SMVE) and weighted majority vot-
ing ensemble (WMVE). They are among the most popular voting ensembles with no def-
inite consensus about which is better. Hence, we have decided to experiment with both of 
the ensembles to recommend the one that shows more promising results. The Ray distrib-
uted framework [80] was used in this study to resolve the slow convergence speed typi-
cally experienced by most ensemble learning algorithms because of the time taken to com-
pute the result of an individual base learner [81–84]. The prediction of each handler of a 
learner was computed in a distributed fashion and the associated results were aggregated 
when available. This is to reduce the wait time as highlighted in both Algorithm 1 and 
Algorithm 2. It should be noted that preprocessing of the images is not performed during 
inference which makes the algorithms robust for practical real-world usage. The ᴟ  rep-
resents the predicted output of each handler (Ϧ ) of a classifier, ѿ  is the weighted confi-
dence for each ᴟ  and ҡ  is the lesion output class to be predicted for a given skin lesion 
image such that ҡ satisfies the following. ҡ ∈ 𝐴𝐾𝐼𝐸𝐶, 𝐵𝐶𝐶, 𝐵𝐾𝐿, 𝐷𝐹, 𝐼𝑁𝐷𝐵, 𝑁𝑉, 𝑀𝐸𝐿, 𝑆𝐾, 𝑆𝐶𝐶, 𝑉𝐴𝑆𝐶  (1) 

3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm 
The SMVE was achieved by simply combining the predictions of the individual 

learners. The class with the highest frequency is thereafter used as the final predicted class 
according to Algorithm 1. The simple majority voting ensemble is computed according to 
the following expression. 𝑃 ҡ = max(ҡ ) (2) 

  

j for each

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 26 
 

hyperparameters are widely used to improve the performance of deep learning algo-
rithms [79]. In this study, we applied regularization parameters of weight decay and drop-
out during training to facilitate the reduction in the out-of-place fitting. Weight decay is 
typically used as a regularization parameter to minimize the loss function, reduce the pos-
sibility of the model over-fitting or under-fitting, and apply an appropriate penalty to 
large weights. Dropout is generally used as a regularization parameter that involves the 
probabilistic removal of network nodes to reduce over-fitting during the model training. 
Such a unit is temporarily removed from the network, including its corresponding con-
nections, by dropping out. 

The optimization parameters such as the learning rate and batch size were also ap-
plied to strengthen the generalization ability of the introduced voting ensemble deep 
learning algorithms. The learning rate typically outlines the sizes of the corrective steps 
that a learning model takes to adjust for errors at each epoch. During training, we used 
the cycling learning rate to determine the appropriate step size as the loss function gets 
minimized. This important mechanism has effectively assisted in determining the speed 
at which each network model can learn discriminating features of skin lesion classes. A 
high learning rate will shorten the training time, but ultimately with lower accuracy, while 
a lower learning rate might take longer, but with a potential for greater accuracy. The 
number of data samples that could be fed into the learning model per epoch differs in size. 
Batch size refers to the maximum amount of training data that could fit into a single iter-
ation in batch, mini-batch, or stochastic modes. It is generally used to determine the error 
gradient during model training. 

3.3. Proposed Ensemble Deep Learning Algorithm 
The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and 

DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms. 
The ensembles are simple majority voting ensemble (SMVE) and weighted majority vot-
ing ensemble (WMVE). They are among the most popular voting ensembles with no def-
inite consensus about which is better. Hence, we have decided to experiment with both of 
the ensembles to recommend the one that shows more promising results. The Ray distrib-
uted framework [80] was used in this study to resolve the slow convergence speed typi-
cally experienced by most ensemble learning algorithms because of the time taken to com-
pute the result of an individual base learner [81–84]. The prediction of each handler of a 
learner was computed in a distributed fashion and the associated results were aggregated 
when available. This is to reduce the wait time as highlighted in both Algorithm 1 and 
Algorithm 2. It should be noted that preprocessing of the images is not performed during 
inference which makes the algorithms robust for practical real-world usage. The ᴟ  rep-
resents the predicted output of each handler (Ϧ ) of a classifier, ѿ  is the weighted confi-
dence for each ᴟ  and ҡ  is the lesion output class to be predicted for a given skin lesion 
image such that ҡ satisfies the following. ҡ ∈ 𝐴𝐾𝐼𝐸𝐶, 𝐵𝐶𝐶, 𝐵𝐾𝐿, 𝐷𝐹, 𝐼𝑁𝐷𝐵, 𝑁𝑉, 𝑀𝐸𝐿, 𝑆𝐾, 𝑆𝐶𝐶, 𝑉𝐴𝑆𝐶  (1) 

3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm 
The SMVE was achieved by simply combining the predictions of the individual 

learners. The class with the highest frequency is thereafter used as the final predicted class 
according to Algorithm 1. The simple majority voting ensemble is computed according to 
the following expression. 𝑃 ҡ = max(ҡ ) (2) 

  

j.
5. Aggregate the results of the handlers with

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 26 
 

hyperparameters are widely used to improve the performance of deep learning algo-
rithms [79]. In this study, we applied regularization parameters of weight decay and drop-
out during training to facilitate the reduction in the out-of-place fitting. Weight decay is 
typically used as a regularization parameter to minimize the loss function, reduce the pos-
sibility of the model over-fitting or under-fitting, and apply an appropriate penalty to 
large weights. Dropout is generally used as a regularization parameter that involves the 
probabilistic removal of network nodes to reduce over-fitting during the model training. 
Such a unit is temporarily removed from the network, including its corresponding con-
nections, by dropping out. 

The optimization parameters such as the learning rate and batch size were also ap-
plied to strengthen the generalization ability of the introduced voting ensemble deep 
learning algorithms. The learning rate typically outlines the sizes of the corrective steps 
that a learning model takes to adjust for errors at each epoch. During training, we used 
the cycling learning rate to determine the appropriate step size as the loss function gets 
minimized. This important mechanism has effectively assisted in determining the speed 
at which each network model can learn discriminating features of skin lesion classes. A 
high learning rate will shorten the training time, but ultimately with lower accuracy, while 
a lower learning rate might take longer, but with a potential for greater accuracy. The 
number of data samples that could be fed into the learning model per epoch differs in size. 
Batch size refers to the maximum amount of training data that could fit into a single iter-
ation in batch, mini-batch, or stochastic modes. It is generally used to determine the error 
gradient during model training. 

3.3. Proposed Ensemble Deep Learning Algorithm 
The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and 

DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms. 
The ensembles are simple majority voting ensemble (SMVE) and weighted majority vot-
ing ensemble (WMVE). They are among the most popular voting ensembles with no def-
inite consensus about which is better. Hence, we have decided to experiment with both of 
the ensembles to recommend the one that shows more promising results. The Ray distrib-
uted framework [80] was used in this study to resolve the slow convergence speed typi-
cally experienced by most ensemble learning algorithms because of the time taken to com-
pute the result of an individual base learner [81–84]. The prediction of each handler of a 
learner was computed in a distributed fashion and the associated results were aggregated 
when available. This is to reduce the wait time as highlighted in both Algorithm 1 and 
Algorithm 2. It should be noted that preprocessing of the images is not performed during 
inference which makes the algorithms robust for practical real-world usage. The ᴟ  rep-
resents the predicted output of each handler (Ϧ ) of a classifier, ѿ  is the weighted confi-
dence for each ᴟ  and ҡ  is the lesion output class to be predicted for a given skin lesion 
image such that ҡ satisfies the following. ҡ ∈ 𝐴𝐾𝐼𝐸𝐶, 𝐵𝐶𝐶, 𝐵𝐾𝐿, 𝐷𝐹, 𝐼𝑁𝐷𝐵, 𝑁𝑉, 𝑀𝐸𝐿, 𝑆𝐾, 𝑆𝐶𝐶, 𝑉𝐴𝑆𝐶  (1) 

3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm 
The SMVE was achieved by simply combining the predictions of the individual 

learners. The class with the highest frequency is thereafter used as the final predicted class 
according to Algorithm 1. The simple majority voting ensemble is computed according to 
the following expression. 𝑃 ҡ = max(ҡ ) (2) 

  

j >= 0.25.
6. If exactly one class ҡj has the highest predicted output

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 26 
 

hyperparameters are widely used to improve the performance of deep learning algo-
rithms [79]. In this study, we applied regularization parameters of weight decay and drop-
out during training to facilitate the reduction in the out-of-place fitting. Weight decay is 
typically used as a regularization parameter to minimize the loss function, reduce the pos-
sibility of the model over-fitting or under-fitting, and apply an appropriate penalty to 
large weights. Dropout is generally used as a regularization parameter that involves the 
probabilistic removal of network nodes to reduce over-fitting during the model training. 
Such a unit is temporarily removed from the network, including its corresponding con-
nections, by dropping out. 

The optimization parameters such as the learning rate and batch size were also ap-
plied to strengthen the generalization ability of the introduced voting ensemble deep 
learning algorithms. The learning rate typically outlines the sizes of the corrective steps 
that a learning model takes to adjust for errors at each epoch. During training, we used 
the cycling learning rate to determine the appropriate step size as the loss function gets 
minimized. This important mechanism has effectively assisted in determining the speed 
at which each network model can learn discriminating features of skin lesion classes. A 
high learning rate will shorten the training time, but ultimately with lower accuracy, while 
a lower learning rate might take longer, but with a potential for greater accuracy. The 
number of data samples that could be fed into the learning model per epoch differs in size. 
Batch size refers to the maximum amount of training data that could fit into a single iter-
ation in batch, mini-batch, or stochastic modes. It is generally used to determine the error 
gradient during model training. 

3.3. Proposed Ensemble Deep Learning Algorithm 
The learning models of IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and 

DPN-131 were aggregated to build two archetypes of ensemble deep learning algorithms. 
The ensembles are simple majority voting ensemble (SMVE) and weighted majority vot-
ing ensemble (WMVE). They are among the most popular voting ensembles with no def-
inite consensus about which is better. Hence, we have decided to experiment with both of 
the ensembles to recommend the one that shows more promising results. The Ray distrib-
uted framework [80] was used in this study to resolve the slow convergence speed typi-
cally experienced by most ensemble learning algorithms because of the time taken to com-
pute the result of an individual base learner [81–84]. The prediction of each handler of a 
learner was computed in a distributed fashion and the associated results were aggregated 
when available. This is to reduce the wait time as highlighted in both Algorithm 1 and 
Algorithm 2. It should be noted that preprocessing of the images is not performed during 
inference which makes the algorithms robust for practical real-world usage. The ᴟ  rep-
resents the predicted output of each handler (Ϧ ) of a classifier, ѿ  is the weighted confi-
dence for each ᴟ  and ҡ  is the lesion output class to be predicted for a given skin lesion 
image such that ҡ satisfies the following. ҡ ∈ 𝐴𝐾𝐼𝐸𝐶, 𝐵𝐶𝐶, 𝐵𝐾𝐿, 𝐷𝐹, 𝐼𝑁𝐷𝐵, 𝑁𝑉, 𝑀𝐸𝐿, 𝑆𝐾, 𝑆𝐶𝐶, 𝑉𝐴𝑆𝐶  (1) 

3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm 
The SMVE was achieved by simply combining the predictions of the individual 

learners. The class with the highest frequency is thereafter used as the final predicted class 
according to Algorithm 1. The simple majority voting ensemble is computed according to 
the following expression. 𝑃 ҡ = max(ҡ ) (2) 

  

j
P(ҡj) = ҡj

Else
P(ҡj) = ҡj with the maximum average weighted confidence µ
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End

4. Experimental Results

The model training was divided into two stages given the number of deep learn-
ing algorithms evaluated in this study. The evaluation of base learners was initiated at
stage 1 while stage 2 evaluation involved 58,367 images to test 18 base learners that had
a minimum threshold of 0.92 DSC during the stage 1 evaluation. The application of the
ray-distributed framework assisted in reducing the inference process by a factor of 0.25 for
a faster classification of skin lesions. The mean time to completion (MTTC) for the WMVE
algorithm is 7.31 s but the application of distributed processing reduced the MTTC to 5.30 s.
The experimental results of the regularization and optimization, stage 1 evaluation, stage
2 evaluation, and comparison with state-of-the-art algorithms are explicated in this section.

4.1. Regularization and Optimization Outcomes

This study utilizes weight decay, learning rate, batch size, and drop-out as hyperpa-
rameters to improve the quality of each base learner. The optimal hyperparameter values
were determined as shown in Table 4 after several experiments. Multifarious decay weights
within the interval (0.0001, 0.1) were investigated during training to determine the values
that best fit each model. It was discovered after several experiments that values within the
set {0.0001, 0.01} seem to produce the best results for most of the algorithms. The batch
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size within {20, 24, 32} was used for most of the learning algorithms. The learning rate
hyperparameters that range from 0.0004 to 0.020 were used in this study.

Table 4. Regularization and optimization hyperparameters.

Learning Algorithm Weight Decay Learning Rate Batch Size Drop Out a

VGG (11, 16) [56] 0.0100 0.0010 12 0.2500 to 0.5000
VGG-13 [56] 0.0100 0.0006 24 0.1250
VGG-19 [56] 0.0100 0.0007 24 0.1250

ResNet (18, 34, 50) [57] 0.0100 0.0010 12 0.2500 to 0.5000
ResNet (101 and 152) [57] 0.0100 0.0200 24 0.2500 to 0.5000

ResNeXt-50 [58] 0.0010 0.0020 24 0.2500 to 0.5000
ResNeXt-101 [58] 0.0100 0.0010 8 0.2500 to 0.5000

DenseNet (121, 169, 201) [59] 0.0100 0.0020 24 0.250 to 0.5000
DenseNet-161) [59] 0.0100 0.0010 20 0.250 to 0.5000
DPN (68, 92) [60] 0.0100 0.0010 12 0.250 to 0.5000

DPN-98 [60] 0.0100 0.0004 32 0.1250
DPN-107 [60] 0.0100 0.0008 32 0.1250
DPN-131 [60] 0.0100 0.0006 32 0.1250

ECA-ResNet-101 [61] 0.0100 0.0025 b, 0.0017 c 32 0.1250
IG-ResNeXt-101 [62] 0.0100 0.0044 b, 0.0007 c 24 d, 32 e 0.1250

SWSL-ResNeXt-101 [63] 0.0100 0.0001 b, 0.0006 c 32 0.1250
Inception-ResNet-v2 [64] 0.0100 0.0036 32 0.1250

ReXNet_1.5 [65] 0.0100 0.0020 24 0.1250
ReXNet_2.0 [65] 0.0100 0.0010 32 0.1250

a Represents the lower and upper bound. b Represents the most optimal learning rate used at stage 1 of model
training. c Represents the most optimal learning rate used at state 2 of model training. d Represents the batch size
used at stage 1 model training. e Represents the batch size used at stage 2 of model training.

Figure 3a–c, and d, respectively, display the learning rates used for the DPN-131,
ECA-ResNet-101, IG-ResNeXt-101, and SWSL-ResNeXt-101 learners. The dropouts ranging
from 0.125 to 0.500 were applied to reduce the undesirable effect of large weights. The use
of a constant lower limit of 0.125 and an upper limit of 0.500 appeared to have produced
good results for most of the learning algorithms examined in this study.

4.2. Stage 1 Evaluation

Table 5 shows the result of each learning algorithm in classifying malignancy skin
lesions over 2000 balanced datasets. The evaluation of the 26 learning algorithms yielded
a total of 52 different experimental analyses for both the segmented and non-segmented
skin lesion images. A total of 18 learning algorithms selected for further evaluation met
the minimum requirement of a 0.92 dice coefficient. The chosen learning algorithms
include VGG (13 and 19), ResNet (101 and 152), ResNeXt (50 and 101), ECA-ResNet-
101, IG-ResNeXt-101, SWSL-ResNeXt-101, DenseNet (121, 161, 169, and 201), DPN (98,
107, and 131), Inception-ResNet-v2, and ReXNet_1.5. Most of the learning algorithms,
interestingly, performed better without prior image segmentation when compared to the
image segmentation episode. However, the DPN-107 algorithm achieved a dice coefficient
of 0.93 on the segmented skin lesion images and a dice coefficient of 0.91 without prior
image segmentation. This result seems to agree with the observation made in [52] that prior
lesion segmentation did not significantly improve the classification performance for most
of the base learners.
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Table 5. Binary classification of malignant skin lesions.

Learning Algorithm Segmented Sn% Sp% Acc% Ji DSC

VGG-11 [56] X 70.63 99.38 90.63 0.70 0.82
VGG-11 [56] x 75.00 98.75 90.31 0.74 0.85
VGG-13 [56] X 63.75 98.75 92.81 0.63 0.77
VGG-13 [56] x 88.75 98.13 95.31 0.87 0.93
VGG-16 [56] X 71.25 98.13 91.25 0.70 0.82
VGG-16 [56] x 66.25 99.38 93.44 0.66 0.79
VGG-19 [56] X 78.75 98.13 94.06 0.77 0.87
VGG-19 [56] x 89.38 100.00 98.44 0.89 0.94

ResNet-18 [57] X 44.38 99.38 93.12 0.44 0.61
ResNet-18 [57] x 75.63 100.00 89.06 0.76 0.86
ResNet-34 [57] X 78.75 98.75 97.50 0.78 0.88
ResNet-34 [57] x 50.00 100.00 90.94 0.50 0.67
ResNet-50 [57] X 78.75 98.13 90.63 0.77 0.87
ResNet-50 [57] x 65.63 100.00 91.56 0.66 0.79
ResNet-101 [57] X 50.00 99.38 94.69 0.50 0.66
ResNet-101 [57] x 90.00 97.50 93.75 0.88 0.94
ResNet-152 [57] X 68.75 99.38 91.56 0.68 0.81
ResNet-152 [57] x 89.38 99.38 94.38 0.89 0.94
ResNeXt-50 [58] X 35.63 100.00 85.63 0.36 0.53
ResNeXt-50 [58] x 89.38 99.38 94.38 0.89 0.94
ResNeXt-101 [58] X 80.00 99.38 95.00 0.80 0.89
ResNeXt-101 [58] x 85.00 99.38 95.00 0.84 0.92
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Table 5. Cont.

Learning Algorithm Segmented Sn% Sp% Acc% Ji DSC

DenseNet-121 [59] X 80.00 99.38 89.69 0.80 0.89
DenseNet-121 [59] x 88.75 100.00 94.38 0.89 0.94
DenseNet-161 [59] X 85.00 99.38 92.19 0.84 0.92
DenseNet-161 [59] x 91.88 100.00 95.94 0.92 0.96
DenseNet-169 [59] X 70.63 99.38 85.00 0.70 0.82
DenseNet-169 [59] x 88.75 100.00 94.38 00.89 0.94
DenseNet-201 [59] X 79.38 100.00 89.69 0.079 0.89
DenseNet-201 [59] x 90.63 99.38 95.00 0.90 0.95

DPN-68 [60] X 69.38 100.00 84.69 0.69 0.82
DPN-68 [60] x 77.50 99.38 88.44 0.77 0.87
DPN-92 [60] X 66.88 99.38 83.13 0.66 0.80
DPN-92 [60] x 70.72 99.38 84.16 0.70 0.83
DPN-98 [60] X 76.25 98.75 87.50 0.75 0.86
DPN-98 [60] x 91.25 100.00 95.63 0.91 0.95

DPN-107 [60] X 86.88 99.38 93.13 0.86 0.93
DPN-107 [60] x 84.38 99.38 91.88 0.84 0.91
DPN-131 [60] X 72.50 99.38 85.94 0.72 0.84
DPN-131 [60] x 88.13 100.00 94.06 0.88 0.94

ECA-ResNet-101 [61] X 48.75 100.00 74.38 0.49 0.66
ECA-ResNet-101 [61] x 86.88 100.00 93.44 0.87 0.93
IG-ResNeXt-101 [61] X 76.25 98.13 87.19 0.75 0.86
IG-ResNeXt-101 [61] x 89.38 98.75 94.06 0.88 0.94

SWSL-ResNeXt-101 [63] X 80.63 98.75 89.69 0.80 0.89
SWSL-ResNeXt-101 [63] x 85.00 100.00 92.50 0.85 0.92
Inception-ResNet-v2 [64] X 75.63 95.63 85.63 0.72 0.84
Inception-ResNet-v2 [64] x 85.63 99.38 92.50 0.85 0.92

ReXNet_1.5 [65] X 80.63 98.75 89.69 0.80 0.89
ReXNet_1.5 [65] x 88.75 100.00 94.38 0.89 0.94
ReXNet_2.0 [65] X 51.25 98.75 75.00 0.51 0.67
ReXNet_2.0 [65] x 53.13 99.38 76.25 0.53 0.69

4.3. Stage 2 Evaluation

The 18 selected learning algorithms from stage 1 were further evaluated across the
entire datasets for training and validation in stage 2. Each algorithm was trained to classify
skin lesion images into the known classes of AKIEC, BCC, BKL, DF, MEL, NV, SK, SCC,
and VASC. The ResNeXt-101 and DPN-1s07 base learners could not be fitted to the training
datasets because of the limited GPU capacity of 16 GB compared to other high-end computer
vision hardware and were excluded from the stage 2 exercise. The results of a stage 2
evaluation on the entire skin lesion training and validation datasets are highlighted in
Table 6. The IG-ResNeXt-101 and SWSL-ResNeXt-101 were the topmost performing models,
while the three least performing models were DenseNet-121, DenseNet-161, and VGG-13
when compared to the rest of the learning models. Most of the base learners as specified in
Table 6 performed above the average threshold of 0.50 in predicting AKIEC lesions relative
to their DSC except for DenseNet-121 and DenseNet-161. The most precise base learner
for AKIEC was SWSL-ResNeXt-101 with 82.55% precision which is closely followed by
IG-ResNeXt-101 with 82.12% precision. Both IG-ResNeXt-101 and SWSL-ResNeXt-101 were
the top two performing base learners whereas DenseNet-121 and DenseNet-161 accounted
for the least two performing learners for malignant lesions of BCC, SCC, and MEL.
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Table 6. Classification of skin lesions into one of the ten multiple classes.

Learning Algorithm Class Sn% Sp% Acc% MAcc% Pr% Ji DSC MCC Weight

VGG-13 [56]

AKIEC 49.43 99.43 98.67

86.53

56.86 0.36 0.53 0.52

0.87

BCC 70.89 99.26 97.70 84.67 0.63 0.77 0.76
BKL 69.40 97.68 96.50 56.62 0.45 0.62 0.61
DF 59.57 99.92 99.76 75.68 0.50 0.67 0.67

MEL 60.50 97.56 94.39 69.94 0.48 0.65 0.62
NV 88.65 93.81 92.22 86.44 0.78 0.88 0.82
SCC 55.74 99.52 99.06 54.84 0.38 0.55 0.55
SK 47.06 99.55 99.17 43.48 0.29 0.45 0.45

VASC 88.00 99.91 99.86 81.48 0.73 0.85 0.85
INDB 95.96 95.52 95.73 94.97 0.91 0.95 0.91

VGG-19 [56]

AKIEC 51.14 99.69 98.95

88.24

71.43 0.42 0.60 0.60

0.88

BCC 75.43 99.38 98.07 87.64 0.68 0.81 0.80
BKL 70.02 98.36 97.18 65.08 0.51 0.67 0.66
DF 63.83 99.91 99.77 75.00 0.53 0.69 0.69

MEL 63.30 97.65 94.71 71.61 0.51 0.67 0.64
NV 90.46 94.54 93.28 88.06 0.81 0.89 0.84
SCC 65.57 99.33 98.98 50.96 0.40 0.57 0.57
SK 48.24 99.59 99.22 46.59 0.31 0.47 0.47

VASC 84.00 99.96 99.89 89.36 0.76 0.87 0.87
INDB 97.02 95.89 96.42 95.42 0.93 0.96 0.93

ResNet-101 [57]

AKIEC 60.80 99.69 99.10

90.42

74.83 0.50 0.67 0.67

0.90

BCC 85.29 99.42 98.65 89.49 0.78 0.87 0.87
BKL 79.06 98.47 97.66 69.24 0.59 0.74 0.73
DF 76.60 99.97 99.87 90.00 0.71 0.83 0.83

MEL 65.30 98.44 95.61 79.73 0.56 0.72 0.70
NV 92.24 95.32 94.37 89.76 0.83 0.91 0.87
SCC 63.93 99.74 99.37 72.22 0.51 0.68 0.68
SK 41.18 99.84 99.41 64.81 0.34 0.50 0.51

VASC 92.00 99.98 99.95 95.83 0.88 0.94 0.94
INDB 97.84 96.00 96.86 95.57 0.94 0.97 0.94

ResNet-152 [57]

AKIEC 62.50 99.75 99.19

90.29

79.14 0.54 0.70 0.70

0.90

BCC 86.23 99.33 98.61 88.16 0.77 0.87 0.86
BKL 76.18 99.01 98.06 76.97 0.62 0.77 0.76
DF 85.11 99.91 99.85 80.00 0.70 0.82 0.82

MEL 67.10 98.56 95.86 81.33 0.58 0.74 0.72
NV 91.40 95.85 94.48 90.75 0.84 0.91 0.87
SCC 71.31 99.76 99.46 75.65 0.58 0.73 0.73
SK 45.88 99.82 99.43 65.00 0.37 0.54 0.54

VASC 94.00 99.98 99.96 95.92 0.90 0.95 0.95
INDB 97.53 94.03 95.67 93.52 0.91 0.95 0.91

ResNeXt-50 [58]

AKIEC 64.77 99.75 99.22

90.35

79.72 0.56 0.71 0.71

0.90

BCC 85.76 99.43 98.68 89.69 0.78 0.88 0.87
BKL 76.18 98.78 97.83 73.03 0.59 0.75 0.73
DF 85.11 99.90 99.84 76.92 0.68 0.81 0.81

MEL 65.30 98.73 95.86 82.76 0.57 0.73 0.71
NV 92.43 95.19 94.34 89.52 0.83 0.91 0.87
SCC 74.59 99.74 99.48 75.21 0.60 0.75 0.75
SK 40.00 99.82 99.38 61.82 0.32 0.49 0.49

VASC 92.00 99.97 99.93 92.00 0.85 0.92 0.92
INDB 97.72 95.40 96.49 94.94 0.93 0.96 0.93
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Table 6. Cont.

Learning Algorithm Class Sn% Sp% Acc% MAcc% Pr% Ji DSC MCC Weight

DenseNet-121 [59]

AKIEC 28.41 99.62 98.54

86.72

53.19 0.23 0.37 0.38

0.87

BCC 83.41 97.61 96.83 66.88 0.59 0.74 0.73
BKL 59.55 98.06 96.45 57.20 0.41 0.58 0.57
DF 10.64 99.97 99.61 62.50 0.10 0.18 0.26

MEL 58.80 98.07 94.71 74.06 0.49 0.66 0.63
NV 89.84 94.75 93.24 88.39 0.80 0.89 0.84
SCC 12.30 99.85 98.94 46.88 0.11 0.19 0.24
SK 0.00 99.92 99.19 0.00 0.00 0.00 0.00

VASC 52.00 99.73 99.53 45.61 0.32 0.49 0.48
INDB 98.43 94.60 96.39 94.15 0.93 0.96 0.94

DenseNet-161 [59]

AKIEC 13.07 99.70 98.40

80.21

40.35 0.11 0.20 0.22

0.80

BCC 80.13 95.27 94.44 49.52 0.44 0.61 0.60
BKL 30.60 98.52 95.69 47.45 0.23 0.37 0.36
DF 0.00 99.05 98.66 0.00 0.00 0.00 0.00

MEL 35.50 98.22 92.85 65.14 0.30 0.46 0.45
NV 87.65 90.36 89.52 80.17 0.72 0.84 0.76
SCC 0.00 100.00 98.95 0.00 0.00 0.00 0.00
SK 0.00 100.00 99.27 0.00 0.00 0.00 0.00

VASC 12.00 99.43 99.06 8.33 0.05 0.10 0.10
INDB 94.43 92.84 93.58 92.09 0.87 0.93 0.87

DenseNet-169 [59]

AKIEC 51.14 99.65 98.92

89.30

69.23 0.42 0.59 0.59

0.89

BCC 79.34 99.44 98.34 89.10 0.72 0.84 0.83
BKL 75.56 98.19 97.25 64.56 0.53 0.70 0.68
DF 80.85 99.89 99.81 74.51 0.63 0.78 0.78

MEL 66.70 97.80 95.13 73.95 0.54 0.70 0.68
NV 90.46 95.46 93.92 89.86 0.82 0.90 0.86
SCC 52.46 99.75 99.25 68.82 0.42 0.60 0.60
SK 45.88 99.79 99.40 61.90 0.36 0.53 0.53

VASC 94.00 99.93 99.91 85.45 0.81 0.90 0.90
INDB 97.81 95.66 96.67 95.22 0.93 0.96 0.93

DenseNet-201 [59]

AKIEC 66.48 99.70 99.20

90.28

77.48 0.56 0.72 0.71

0.90

BCC 86.23 99.45 98.72 90.03 0.79 0.88 0.87
BKL 77.82 98.69 97.82 72.19 0.60 0.75 0.74
DF 85.11 99.97 99.91 93.02 0.80 0.89 0.89

MEL 69.80 98.14 95.71 77.81 0.58 0.74 0.71
NV 91.40 95.78 94.43 90.60 0.83 0.91 0.87
SCC 72.13 99.85 99.56 83.81 0.63 0.78 0.78
SK 43.53 99.79 99.38 60.66 0.34 0.51 0.51

VASC 88.00 99.98 99.93 95.65 0.85 0.92 0.92
INDB 97.97 96.05 96.95 95.63 0.94 0.97 0.94

DPN-98 [60]

AKIEC 59.09 99.70 99.09

90.36

75.36 0.50 0.66 0.66

0.90

BCC 85.76 99.47 98.71 90.28 0.79 0.88 0.87
BKL 77.21 98.76 97.86 73.01 0.60 0.75 0.74
DF 74.47 99.93 99.83 81.40 0.64 0.78 0.78

MEL 69.60 98.31 95.85 79.45 0.59 0.74 0.72
NV 91.51 95.67 94.39 90.38 0.83 0.91 0.87
SCC 69.67 99.68 99.37 69.67 0.53 0.70 0.69
SK 32.94 99.82 99.33 57.14 0.26 0.42 0.43

VASC 94.00 99.94 99.91 87.04 0.82 0.90 0.90
INDB 97.57 95.32 96.38 94.85 0.93 0.96 0.93
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Table 6. Cont.

Learning Algorithm Class Sn% Sp% Acc% MAcc% Pr% Ji DSC MCC Weight

DPN-131 [60]

AKIEC 59.66 99.74 99.13

90.60

77.78 0.51 0.68 0.68

0.91

BCC 87.17 99.42 98.75 89.69 0.79 0.88 0.88
BKL 78.03 98.91 98.04 75.70 0.62 0.77 0.76
DF 85.11 99.95 99.89 86.96 0.75 0.86 0.86

MEL 69.70 98.33 95.88 79.66 0.59 0.74 0.72
NV 92.46 95.32 94.44 89.79 0.84 0.91 0.87
SCC 75.41 99.72 99.47 74.19 0.60 0.75 0.75
SK 38.82 99.78 99.34 56.90 0.30 0.46 0.47

VASC 90.00 99.95 99.91 88.24 0.80 0.89 0.89
INDB 96.91 95.87 96.36 95.40 0.93 0.96 0.93

ECA-ResNet-101 [61]

AKIEC 64.20 99.68 99.14

90.50

75.33 0.53 0.69 0.69

0.90

BCC 84.19 99.52 98.68 91.03 0.78 0.87 0.87
BKL 78.85 98.74 97.91 73.14 0.61 0.76 0.75
DF 80.85 99.93 99.85 82.61 0.69 0.82 0.82

MEL 72.20 97.88 95.68 76.16 0.59 0.74 0.72
NV 90.82 96.26 94.59 91.53 0.84 0.91 0.87
SCC 67.21 99.77 99.43 75.23 0.55 0.71 0.71
SK 40.00 99.78 99.35 57.63 0.31 0.47 0.48

VASC 96.00 99.96 99.94 90.57 0.87 0.93 0.93
INDB 97.57 95.39 96.41 94.92 0.93 0.96 0.93

IG-ResNeXt-101 [62]

AKIEC 70.45 99.77 99.32

91.80

82.12 0.61 0.76 0.76

0.92

BCC 89.83 99.46 98.93 90.54 0.82 0.90 0.90
BKL 81.72 99.05 98.33 78.97 0.67 0.80 0.79
DF 78.72 99.94 99.85 84.05 0.69 0.81 0.81

MEL 77.00 98.13 96.32 79.38 0.64 0.78 0.76
NV 91.68 96.68 95.14 92.48 0.85 0.92 0.89
SCC 77.05 99.87 99.63 86.24 0.69 0.81 0.81
SK 44.71 99.72 99.31 53.52 0.32 0.49 0.49

VASC 88.00 100.00 99.95 100.00 0.88 0.94 0.49
INDB 97.61 96.11 96.81 95.68 0.93 0.97 0.94

SWSL-ResNeXt-101 [63]

AKIEC 69.89 99.77 99.32

91.46

82.55 0.61 0.76 0.76

0.91

BCC 89.67 99.56 99.01 92.12 0.83 0.91 0.90
BKL 81.11 99.02 98.27 78.22 0.66 0.80 0.79
DF 95.74 99.85 99.83 71.43 0.69 0.82 0.83

MEL 75.30 98.01 96.07 78.03 0.62 0.77 0.75
NV 90.96 96.82 95.01 92.71 0.85 0.92 0.88
SCC 79.51 99.80 99.59 80.83 0.67 0.80 0.80
SK 42.35 99.70 99.28 50.70 0.30 0.46 0.46

VASC 88.00 99.97 99.91 91.67 0.81 0.90 0.90
INDB 97.59 95.76 96.62 95.31 0.93 0.96 0.93

Inception-ResNet-v2 [64]

AKIEC 43.18 99.83 98.97

87.74

79.17 0.39 0.56 0.58

0.88

BCC 71.83 99.49 97.98 89.13 0.66 0.80 0.79
BKL 72.28 98.46 97.37 67.18 0.53 0.70 0.68
DF 80.85 99.91 99.84 79.17 0.67 0.80 0.80

MEL 62.10 98.35 95.25 77.92 0.53 0.69 0.67
NV 91.04 92.83 92.28 84.96 0.78 0.88 0.82
SCC 59.02 99.79 99.37 75.00 0.49 0.66 0.66
SK 30.59 99.78 99.27 50.00 0.23 0.38 0.39

VASC 88.00 99.90 99.85 78.57 0.71 0.83 0.83
INDB 96.51 94.26 95.31 93.69 0.91 0.95 0.91
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Table 6. Cont.

Learning Algorithm Class Sn% Sp% Acc% MAcc% Pr% Ji DSC MCC Weight

ReXNet_1.5 [65]

AKIEC 64.77 99.51 98.99

89.20

67.06 0.49 0.66 0.65

0.89

BCC 79.66 99.40 98.32 88.52 0.72 0.84 0.83
BKL 71.46 98.76 97.62 71.46 0.56 0.71 0.70
DF 68.09 99.97 99.84 88.89 0.63 0.77 0.78

MEL 63.60 98.12 95.16 75.99 0.53 0.69 0.67
NV 91.37 94.23 93.35 87.57 0.81 0.89 0.85
SCC 68.85 99.81 99.49 79.25 0.58 0.74 0.74
SK 34.12 99.89 99.41 60.05 0.30 0.46 0.48

VASC 88.00 99.95 99.90 88.00 0.79 0.88 0.88
INDB 97.42 95.35 96.32 94.88 0.93 0.96 0.93

SMVE (Ours)

AKIEC 70.45 99.83 99.38

92.33

86.11 0.63 0.78 0.78
BCC 90.61 99.56 99.07 92.34 0.84 0.91 0.91
BKL 80.70 99.20 98.43 81.54 0.68 0.81 0.80
DF 89.36 99.96 99.91 89.36 0.81 0.89 0.89

MEL 74.10 98.63 96.53 83.54 0.65 0.79 0.77
NV 93.16 96.47 95.45 92.16 0.86 0.93 0.89
SCC 81.15 99.89 99.69 88.39 0.73 0.85 0.85
SK 42.35 99.79 99.37 60.00 0.33 0.50 0.50

VASC 94.00 100.00 99.97 100.00 0.94 0.97 0.97
INDB 98.10 95.73 96.84 95.30 0.94 0.97 0.94

WMVE (Ours)

AKIEC 73.30 99.83 99.43

92.84

87.16 0.66 0.80 0.80
BCC 91.24 99.57 99.12 92.54 0.85 0.92 0.91
BKL 82.75 99.29 98.60 83.61 0.71 0.83 0.82
DF 93.62 99.96 99.93 89.80 0.85 0.92 0.92

MEL 76.90 98.63 96.77 84.04 0.67 0.80 0.79
NV 93.18 96.88 95.74 93.00 0.87 0.93 0.90
SCC 82.79 99.88 99.70 87.83 0.74 0.85 0.85
SK 41.18 99.78 99.35 57.38 0.32 0.48 0.48

VASC 92.00 99.98 99.95 95.83 0.88 0.94 0.94
INDB 98.26 96.03 97.08 95.63 0.94 0.97 0.94

Most of the base learners recorded low results for SK. ResNet-152 recorded the best
DSC of 0.54 followed by DenseNet-169 with 0.53 DSC. This may be a result of its similar
characteristics to melanoma that could easily confuse the model training [85]. NV lesion
was one of the most correctly classified skin lesions by the base learners with Densenet-161
having the lowest DSC value of 0.84. INDB was correctly classified by averaging 0.95 for
most of the base learners besides the ReXNet_1.5 which recorded a value of 0.84 for the SC.
ECA-ResNet-101 recorded the most sensitivity of 96.00% for VASC. ResNet-152 had the best
discriminating capability for VASC having a 0.95 DSC. However, both DenseNet-121 and
DenseNet-161 performed poorly when compared to other base learners in the prediction
of VASC lesions. The IG-ResNeXt-101 and SWSL-ResNeXt-101 were again the top two
performing base learners in the classification of BKL, while DenseNet-161 recorded the
worst performance of 0.37 DSC. The validation of the base learners against DF lesions
indicated that DenseNet-201 provided the most discriminating power of 0.89 for DSC and
DenseNet-121 had the least discriminating power of 0.18 for DSC. The metrics that provided
the most guided evaluation for the base learners were DSC, Ji, and multiclass accuracy
(MAcc). It can therefore be argued that the solitary application of simple balance accuracy,
sensitivity, specificity, and precision without the compliment of DSC, Ji, and MAcc might
not be a good representation of the discriminating capability of a given learning algorithm.

Both SMVE and WMVE algorithms were observed to outperform each base learner
for most of the skin lesion classes because they recorded the best multiclass accuracies of
92.33% and 92.84%, respectively. The two algorithms shared the best specificity result of
99.83% with the Inception-ResNet-v2 base learner for the prediction of AKIEC. However,
the WMVE algorithm provided the best result for sensitivity (73.30%), balance accuracy
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(99.43%), precision (87.16%), Jaccard index (0.66), and Dice coefficient (0.80), and Matthew
correlation coefficient (0.80) in the discrimination of AKIEC. It recorded the most promising
result of sensitivity (91.24%), specificity (99.57%), balance accuracy (99.12%), precision
(92.54%), and Jaccard index (0.85) with dice-coefficient (0.92) for malignant BCC skin lesions.
The two algorithms had the best Matthew correlation coefficient result of 0.91 for the same
BCC lesion class classification. Similarly, for the classification of the BKL lesion class,
the WMVE algorithm chronicled the best performance based on the sensitivity (82.75%),
specificity (99.29%), balance accuracy (98.60%), precision (83.61%), Jaccard index (0.71), dice-
coefficient (0.83) and Matthew correlation coefficient (0.82). The WMVE algorithm had the
best results for balance accuracy (99.93%), dice coefficient (0.92), and Matthew correlation
coefficient (0.92) for the classification of DF skin lesions. It has equally demonstrated its
prowess for the classification of malignant MEL by recording the best balance accuracy
score of 96.77%, precision score of 84.04%, Jaccard index of 0.67, dice coefficient of 0.80, and
Matthew correlation coefficient of 0.79.

The two ensemble algorithms had the best dice coefficient result of 0.93 for the classi-
fication of the benign NV lesion class. However, the WMVE algorithm recorded the best
results of sensitivity (93.18%), specificity (96.88%), balance accuracy (95.74%), precision
(93.00%), and Jaccard index (0.87) with Matthew correlation coefficient (0.90) for the classifi-
cation of the same NV lesion. The classification of malignant SCC has equally shown the
strength of both algorithms, with the SMVE algorithm recording the best precision value of
88.39%. They had the best dice coefficient (0.85) and Matthew correlation coefficient (0.85)
for the same SCC skin lesion class prediction. But the WMVE algorithm outperformed
the rest of the compared algorithms for SCC classification in terms of sensitivity (82.79%)
and balance accuracy (99.70%). The SMVE algorithm had the same specificity (100.00%)
and precision (100.00%) as the IG-ResNeXt-101 base learner for the classification of VASC
lesions. However, the best results for balance accuracy (99.97%), Jaccard index (0.94), dice
coefficient (0.97), and Matthew correlation coefficient (0.97) were credited to the SMVE algo-
rithm for the discrimination of VASC lesions. The WMVE algorithm has equally recorded
the best balance accuracy of 97.08% for classifying skin lesions categorized as INDB, whose
specific benign properties could not be ascertained. The two algorithms have demonstrated
equal discriminating capability for INDB lesions with the DenseNet-201 base learner con-
sidering the reported Jaccard index (0.94), dice coefficient (0.97), and Matthew correlation
coefficient (0.94). Figure 4 shows the confusion matrix of the base learners used to build the
ensemble deep learning algorithms for the classification of ten classes of skin lesions. The
matrices have revealed that the strength of an ensemble deep learning algorithm is greatly
influenced by how well each of its base learners was trained to generalize.

4.4. Comparison with State-of-the-Art Algorithms

A comparative analysis of the SMVE and WMVE algorithms against the investigated
state-of-the-art learning algorithms was performed in this study (Table 7). The ensemble
algorithms can be seen to outperform most of the comparative algorithms for classifying
skin lesions into multiple classes. Most of the past studies that leverage the use of ensem-
ble learning were observed to focus on a few classes of skin lesions such as melanoma,
melanocytic nevi, and seborrheic keratosis. The study [75] is the result of the applica-
tion of the kernel extreme learning machine (KELM) with ResNet101 and DenseNet201.
However, the WMVE algorithm outstripped the compared ensemble algorithms with a
mean specificity of 99.00%, mean balance accuracy of 98.54%, and multiclass accuracy of
82.84%. The SMVE and WMVE algorithms with the algorithm reported in [86] recorded
the best DSC of 0.84. Most of the studies reported in the literature for classifying skin
lesions generally used evaluation metrics such as sensitivity, specificity, balanced accuracy,
and precision to examine the strength of their methods. While these are good, we have
discovered that metrics such as the Jaccard index, multiclass accuracy, and DSC are more
reliable and consistent in measuring the effectiveness of a learning algorithm for classifying
skin lesion images.
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Table 7. Algorithm comparison with the state-of-the-art ensemble learning algorithms.

Reference Algorithm No of Classes Data Avg Sn (%) Avg Sp (%) Avg Acc (%) MAcc (%) Avg Pr (%) Avg Ji Avg DSC MCC

[40]
Inception-v3,

ResNet-50, Inception-ResNet-v2, and
DenseNet-201

7 ISIC_2018 88.44

[52] EfficientNetB0,
EfficientNetB1 and SeReNeXt-50 7 ISIC_2018 96.30 86.20 91.30

[75] Kernel Extreme Learning Machine,
ResNet101 and DenseNet201 7 HAM_10000 90.20 90.67

[76] EW-FCM and
EfficientNet-B0 8 HAM_10000 87.23 97.87 87.23

[77] GoogleNet and SVM 8 ISIC_2019 79.80 97.00 94.92 80.36

[78] KNN and SVM 8 ISIC_2019 66.45 97.85 97.35 91.61

[86] InceptionResNetV2 and ResNeXt101 7 ISIC_2019 85.00 92.83 83.00 0.84

[87] EfficientNets,
SENet, and ResNeXt WSL 9 ISIC_2019 74.20

[88] DenseNet201 and MobileNetV2 ISIC_2018,
ISIC_2019 94.50

[89]

VGG16, VGG19, ResNet50,
ResNet101,
ResNet152,

Xception, and
MobileNet

7 HAM_10000 83.69

[90]
AlexNet, ResNet18, ResNet50, ResNet101,

ResNet152, SENet154, SqueezeNet1_0,
VGG13BN and VGG16BN

7 ISIC_2018,
ISIC_2019 48.30 97.70 92.40 0.49

[91] MobileNetV2 and GoogLeNet 7 HAM_10000 65.60 95.40 83.50 76.60 0.69 0.66

SMVE
(Ours)

IG-ResNeXt-101, SWSL-ResNeXt-101,
ECA-ResNet-101, and DPN-131 10

ISIC_2016,
ISIC_2017,
ISIC_2018,
ISIC_2019,
ISIC_2020

81.40 98.91 98.46 92.33 86.87 0.74 0.84 0.83

WMVE
(Ours)

IG-ResNeXt-101, SWSL-ResNeXt-101,
ECA-ResNet-101, and DPN-131 10

ISIC_2016,
ISIC_2017,
ISIC_2018,
ISIC_2019,
ISIC_2020

82.52 99.00 98.54 92.84 86.68 0.75 0.84 0.84
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5. Conclusions

The weighted majority voting ensemble deep (WMVE) learning algorithm is suggested
in this paper for classifying each of the ten different lesion classes. Eight of the classes
have divulged known skin lesion diseases without compromising accuracy and speed.
The known skin lesions are actinic keratosis and intraepithelial carcinoma, basal cell
carcinoma, dermatofibroma, melanoma, melanocytic nevi, seborrheic keratosis, squamous
cell carcinoma, and vascular lesions. The WMVE algorithm can classify a skin lesion as
either benign keratosis-like or indeterminate benign. We have found the application of the
WMVE algorithm to yield improved skin lesion classification results when compared to
individual or majority voting algorithms investigated in this study. Moreover, executing the
algorithm in a distributed way indicates a better opportunity for the timely classification
of skin lesions into one of the ten multiple classes examined. It has been determined
experimentally in this study that most of the existing learning algorithms investigated did
well without the prior image segmentation of skin lesion images. The application of transfer
learning and well-tuned hyperparameters such as dropout, weight decay, batch size, and
learning rate has equally contributed to preventing model over-fitting plus increasing
efficiency and generalization of the proposed learning algorithm.

The majority voting ensemble deep-learning algorithms of this study can improve the
early diagnosis of skin lesions before they become invasive. In addition, for skin lesions
that are already at the invasive stage, the proposed ensemble learning algorithms can
act as a good second opinion for dermatologists to achieve effective discrimination of
malignant tumors. It would be prudent as a future improvement to examine whether the
discriminating capability of base learners can be improved with the use of hyperspectral
images. These are images that typically have more spectral and spatial information on the
ground features when compared to regular multispectral images. The spectral information
reflects the unique physical properties of the ground features for a given image.
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