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Abstract: The air quality index (AQI) forecast in big cities is an exciting study area in smart cities
and healthcare on the Internet of Things. In recent years, a large number of empirical, academic, and
review papers using machine learning (ML) for air quality analysis have been published. However,
most of those studies focused on traditional centralized processing on a single machine, and there
had been few surveys of federated learning (FL) in this field. This overview aims to fill this gap and
provide newcomers with a broader perspective to inform future research on this topic, especially
for the multi-model approach. In this survey, we went over the works that previous scholars have
conducted in AQI forecast both in traditional ML approaches and FL mechanisms. Our objective
is to comprehend previous research on AQI prediction including methods, models, data sources,
achievements, challenges, and solutions applied in the past. We also convey a new path of using
multi-model FL, which has piqued the computer science community’s interest recently.

Keywords: multi-model; federated learning; AQI prediction; big data; IoT

1. Traditional Approaches in AQI Prediction

Air is a vital need for all life on Earth’s existence and development . It impacts one’s
health as well as the economy. Air quality heavily depends on natural and anthropo-
morphic resources such as volcanic eruptions, forest fires, climate change, ozone holes,
industrialization, urbanization, and transportation emissions. Many pollutants, such as
SO2, NO2, CO2, NO, CO, NOx, PM2.5, and PM10 can be found in the atmosphere. A vast
number of researches on air pollution forecast and AQI prediction on a global scale focus
on pollutants forecasting. Nevertheless, most of them utilized single ML methods. Table 1
lists some of these works.

In Table 1, the first column labeled “Authors” is the references and authors. The second
column titled “Methods” contains the models and their citations. In the column names
“Model, Accuracy and Data’s features” we list some models that had been implemented
in the references, their metrics and some data that had been used. In the last column, we
collect some conclusions from the review papers.

In general, the methods that have been applied in AQI prediction can be classified
as following:

• Kind of models: statistical, artificial neural network (ANN), deep neural network
(DNN), hybrid, and ensemble.

• Kind of data: temporal, spatial and spatiotemporal
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Table 1. Traditional approaches in AQI prediction.

Authors Methods Model, Accuracy
Data’s Features

Main Conclusions

[1]
Bai, L., et al. (2018).

[2]: SARIMA, ANN, FTS
[3]: FFMLP, MLP-GA, MLP
[4]: MLP
[5]: BPNN
[6]: PCA–ANN
[7]: GFM-NN

[2] ANN
MAE: 2.70
MSE: 12.79
RMSE: 3.58
PM10, O3, CO2, SO2,
NO2

- The most popular statistical method uses (AI)
models.
- The accuracy of ANNs is higher than other
statistical models, but they are usually be local
optima.
- The accuracy of ANNs can be improved by
adding data: meteorology, geographic,
time-scale, emission pattern of sources.
- Some hybrid models can improve the accuracy.

[8]
Masood, A. and

Ahmad, K. (2021).

ANN
FUZZY
SVM
DNN

[9–14] DNN
PM RMSE: 7.27
PM R2: 0.96
[10,14–16]: DNN
O3 RMSE: 3.51
O3 R2: 0.92
[9,10]: DNN
CO RMSE: 0.95
CO R2: 0.69 × 10−5

The above RMSE and R2 are
mean values of the refs

- The most frequently applied input parameter is
API - The best performing AI-based model is the
DNN.
- Fuzzy logic, DNN and SVM are the three
commonly used AI-based techniques
- DNN, SVM, and Fuzzy techniques showed
better accuracy in forecasting PM concentrations
- DNN outperformed the other AI techniques for
this pollutant category. DNN improved spatial
and temporal stability for a multi-step ahead
forecasting of pollutants
- Ability to exploit high-level features from raw
air quality and meteorological data

[17]
Baklanov, A., and
Zhang, Y. (2020).

[18] Multi-models Ensemble
forecasting: A new Ozone
Ensemble Forecast System
(OEFS),
[19] Dynamic Linear Regression
for ensemble (DLR),
[20] MarcoPolo–Panda

[18] OEFS
O3 RMSE: 16.34
[19] DLR
O3 RMSE: 10.57
[20] MarcoPolo – Panda
O3 RMSE: 32.8
NO2 RMSE: 21.8
PM25 RMSE: 30.2

- Ensemble forecasting has shown significant
statistical improvements for both O3 and PM2.5
forecasts over any individual forecast [21].
- Multi-model ensemble air quality forecasting
has been emerging for AQF on global and
regional scales
- Multi-model ensemble results provide a range
and an indication of the robustness of the
forecasts and help to improve the accuracy of
chemical weather and air quality forecasting.

[22]
Masih, A., et al. (2019).

Ensemble learning (EL)
Classical Regression (CR)
NN
SVM
Lazy

R2:
EL:0.79
CR: 0.74
SVM :0.67
NN: 0.6

- The high accuracies achieved with ML
algorithms explains it all why these algorithms
are appropriate and should be preferred over
traditional approaches
- Should use critical pollutants (NOx and SO2)
ensemble learning techniques to improve model
accuracy

[23]
Liao, K., et al. (2021).

Multi-layer neural network
(NN)
Land use regression (LUR)
Multiple linear regression
(MLR)
Hybrid methods

[24] NN
PM2.5 error: 30%–60%
[25] Variety of NN algorithms
PM10 RMSE: 15.700
PM10 MAE: 9.047
PM10 R2: 0.840
[26] DNN
PM2.5 MAPE: 11.93%

- ANN methods were preferred in studies of PM
and O3
- LUR were more widely used in studies of NOx
- Multi-method hybrid techniques gradually
became the most widely used approach between
2010 and 2018
- The most difficult element of research on air
pollution prediction is likely to be the interaction
between pollutants, which will be based on a
mixed technique to forecast numerous
contaminants concurrently in the future.

[27]
Liao, Q., et al. (2020).

Artificial Neural Network
(ANN)
Linear and Logistic Regression

SVR shows better performance
in prediction of AQI while RFR
gives the better performance in
predicting the NOx
concentration

- Linear and Logistic Regression are the choices
of many researchers for the prediction of AQI
and air pollutants concentration
- The future scope may include consideration of
all parameters that is meteorological parameters,
air pollutants while predicting AQI or
forecasting the future concentration level of
different pollutants.

Statistical models have played a massive role in predicting air quality, especially statis-
tical models with the application of AI techniques [1,8,17,22,23,27]. ANNs have been shown
to outperform traditional statistical models that do not use AI. Unfortunately, the biggest
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drawback of this type is that it often falls into local optimal stages. To overcome this draw-
back, many studies have been used, such as DNN [8,23], hybrid and ensemble [17,22,28,29].
The AQI forecast should assess the implications of air pollution on several sectors, such
as health, agriculture, land transportation, aviation, and energy, among others, and issue
warnings and recommendations based on various thresholds, risks, and cost functions [30].
Some works concentrate on RNN [31–33] and the Spatial-Temporal Network can deal with
the complicated non-linear spatial and temporal correlations [34,35]

Some conclusions of previous studies are very significant, such as: Forecasting tasks
often employ neural networks and support vector machine-based algorithms, pollution
estimation is typically carried out using ensemble learning and linear regression-based
methodologies [36]. Between 2010 and 2018, multi-method hybrid strategies significantly
surpassed single-method approaches in terms of usage [37]. Land-use Regression (LUR)
models are an important tool for integrating traffic and geographic information to charac-
terize variability in exposures [38,39]. Some reviews are limited in scope within a country
or province, such as in India [40], and Hebei of China [41]

Among these studies, DNN is the preferred application direction of many current
researchers in the field of AQI prediction. DNNs are considered superior to traditional
AI techniques because they are stable, give lower model errors, and respond well to
data diversity. A collection of algorithms known as the “ensemble learning technique”
trains several models to tackle a single issue by integrating the outcomes that each model
produces. Strong and weak predictors are combined in ensemble learning approaches,
which are more generalizable and less susceptible to overfitting. Overall, these methods
outperform single-base learning methods such as ANNs and SVMs.

2. Federated Learning in AQI Prediction

FL is training a ML model with cooperation between many participants (terminals
or organizations, hereinafter referred to as clients) participating simultaneously without
sharing data. At each training round, clients received global model parameters and perform
local training with their data. Then clients return model parameters to aggregate a global
model according to the Formula (1) [42,43].

min F(w), where F(w) :=
m

∑
k=1

(pkFk(w)) (1)

and Fk(w) =
1
nk

nk

∑
jk=1

(w; xjk , yjk ) (2)

where:

m: number of participants
pk ≥ 0 and ∑k pk = 1
Fk: Local optimization function on participant k in Formula (2)
nk: number of data samples

When the clients are terminal devices (mobiles, computers, Unmanned Aerial Vehicles
or UAVs for short . . . ) we call this relationship cross-devices, and cross-silos when the clients
are organizations (hospitals, banks, schools . . . ) [44]. The communication between clients is
established in the following architecture: centralized, decentralized and hierarchy [45]. In
addition, this architecture can also be classified according to the distributed data design of
the system, including: Vertical FL, Horizontal FL and Transfer FL [46].

Since 2020, a few authors have investigated the use of FL in AQI prediction [47–51] or
data missing prepossessing [52] for this task. Most authors agreed that FL outperformed
the traditional ML methods in their research. Table 2 gives an overview of these works.
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Table 2. Federated learning methods in AQI forecast.

Authors Methods Data Processing Evaluation Metrics Main Conclusions

[47]
P. Chhikara, et al.

Centralized FL (FedAvg)
with LSTM in each UAVs.
Compare with other
traditional training ML:
SVM, KNN, Decision
tree, ANN

- AQI from Dehli Inida
(2015 to 2020) with 2009
timesteps
- Train: 0.75
- Test: 0.25

- RMSE: 56.222
- MAE: 41.219
- MAPE: 24.184

- Traditional ML models miss the
temporal dependencies between
the data
- The proposed model predicts the
future AQI value with a minor error
compared to other ML models.
- The outcomes illustrate the efficacy of
the proposed scheme to predict the
AQI of a given area

[48]
P. Chhikara, et al.

- FedAvg with
CNN-LSTM in each UAVs.
Compare with: RNN,
GRU, Vanilla LSTM,
Stacked LSTM, Bidi LSTM.
- POS to find hazardous
zone

Same as [47]
Link to data a

- RMSE:221.682
- MAE: 200.668
- MAPE: 1217.897

- The proposed model is better than the
others in term of the given erea
- Model compression should be applied
to reduce it’s size
- Need to find communication efficient
FL frameworks for long term UAV
monitoring.

[49]
Yi Liu, et al.

- Air: Light-weight
FL-based UAV (FedAvg)
- Ground: graph
convolution neural
network combines
spatio-temporal model
(LSTM)
- Compare with 2D CNN,
3D CNN, AQNet, SVM

Air: 5298 haze images:
- Train: 0.8
- Test: 0.2
Ground: 6 months 2019
AQI from China
- Train: 5/6
- Test: 1/6
Link to data b

RMSE:
- Real-time: 3.212
- After 2 h: 4.589
- After 4 h: 6.357
- After 6 h: 9.145

- The proposed method not only
realizes high-precision AQI
monitoring, but also reduces UAV
energy consumption.
- Need to design some novel model
compression techniques to deploy
large-scale and complex DNN to UAVs
-Need to solve the expensive
communication cost for UAV to
achieve long term monitoring

[50]
Karisma Trinanda
Putra

Federated Compressed
Learning (FCL): -
Compressed Sensing
- FedAvg with LSTM
Compare with Centralized
Learning (CL)

During 9/2020 by 1000
sensors across Taiwan,
and 4 sensors of the
prototype with 5 features:
PM1.0, PM2.5, PM10,
temperature, and
humidity

RMSE:
- FCL: 5.044
- CL: 4.480

- The data consumption is reduced by
more than 95%, error rate below 5%
- The FCL will generates slightly lower
accuracy compared with
centralized training
- The data could be heavily compacted
and securely transmitted in WSNs

[51]
Do-Van Nguyen,
et al.

- FL CRNN Model,
compare with
Auxiliary CNN
- Proposed spatial
averaging aggregation
function of federated
learning paradigm

Kanto region, Japan, from
2018 to 2021, 15
dimentions Link to datac

See Figures 8–13
in [51]

- FL CRNN models can capture
spatial-temporal local information and
be able to share knowledge among
participating cities
- Can transfer knowledge to newly
added participants
- Epochs should be large enough to
fully capture knowledge from each
local side

[53]
Huang, G., et al.

A new cross-domain
prediction model FL:
SSA-LSTM,
FL-DPLA-SSA-LSTM.

Hourly air pollutants and
meteorological data from
12 cities in the Fenhe River
and Weihe River Plains in
China in 2020

The prediction performance of the
proposed model is significantly better
than all comparison models

[54]
Chen, Y., et al.

Asynchronous Online FL
(ASO-Fed).

Air pollutants collected
from multiple weather
sensor devices distributed
in 9 locations of Beijing
with features such as
thermometer and
barometer

MAE: 36.71
SMAPE: 0.42

ASO-Fed has lower SMAPE errors
than all other models as the dropout
rate increases and the performance of
ASO-Fed is relatively stable. However,
as expected, if one of the nodes never
sends updates to the central server, the
model does not generalize. This
explains the poor performance as the
dropout rate increases.

a https://www.kaggle.com/rohanrao/air-quality-data-in-india (accessed on 6 November 2022); b http://www.
weather.com.cn/air (accessed on 6 November 2022); c http://soramame.taiki.go.jp (accessed on 6 November 2022);

Extending LSTM model in [47] to CNN-LSTM, P. Chhikara, et al. [48] developed a
PSO-based method that uses UAVs swarm intelligence to identify the city’s most dangerous
zone. A plan for using UAV swarms to detect the quality of the air in the sky is put forth.

https://www.kaggle.com/rohanrao/air-quality-data-in-india
http://www.weather.com.cn/air
http://www.weather.com.cn/air
http://soramame.taiki.go.jp
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The suggested solution uses FL to ensure privacy while monitoring and forecasting the
AQI in great detail. Every day, a city calculates and stores the AQI value. They can forecast
the AQI index for that city for the next ’n’ days based on the collected data. The FL idea
is used to install the whole suggested system in a decentralized network. The suggested
CNN-LSTM model predicts future AQI index with relatively low error, which cannot be
conducted by the current single model (aggregated with all UAVs’ combined weights in the
swarm). The suggested CNN-LSTM model is compared against the other five models using
different error measures. The outcome demonstrates that the suggested method, which
combines FL with deep learning, is more accurate and one of the pioneering attempts in
forecasting the air quality of a specific location.

Moreover, using UAVs liked [47,48], but Yi Liu, et al. [49] suggests a novel framework
for fine-grained 3D air quality monitoring and forecasting based on FL for aerial-ground
air quality sensing. This system specifically uses a lightweight Dense-MobileNet model for
airborne data to perform energy-efficient end-to-end learning from haze characteristics of
hazy photos captured by UAVs for forecasting AQI scale distribution. Additionally, the
FL Framework not only enlarges the extent of UAV swarms’ monitoring but also enables
many organizations or institutions to cooperatively build a well-trained global model to
monitor AQI without sacrificing privacy. They suggest a Graph Convolutional Neural
Network-based Long Short-Term Memory (GC-LSTM) model for ground sensing systems
to accomplish precise, immediate, and future AQI inference. The aerial-ground sensing
system can infer the AQI accurately thanks to the GC-LSTM model, which makes use of the
topological structure of the ground monitoring station to capture the spatiotemporal corre-
lation of historical observation data. Numerical findings demonstrate that the suggested
framework may enable accurate and energy-efficient AQI sensing without compromising
the privacy of raw data through comprehensive case studies on a real-world dataset.

In the use of smart city sensing, Karisma Trinanda Putra, et al. [50] introduces a
unique edge computing framework called Federated Compressed Learning (FCL), which
enables fast data creation while protecting data privacy for PM2.5 forecasts. The suggested
method incorporates safe data transmission while inheriting the fundamental concepts
of the compression methodology and regional cooperative learning. As a result, it could
decrease the volume of data while maintaining data privacy. By utilizing the FCL edge
computing architecture, this study seeks to construct a wireless sensor network system
that is powered by green energy. It is also one of the fundamental technologies for the
deployment of reconfigurable and customizable sensing devices. As a result, prototypes are
created to verify the performance of the suggested framework. The outcomes demonstrate
a reduction in data consumption of more than 95% with an error rate of less than 5%.
Finally, compared to centralized training, the prediction results based on the FCL will
produce somewhat lower accuracy. However, the information might be safely sent and
tightly compressed in WSNs.

Meanwhile, Do-Van Nguyen, et al. [51] provide a framework for distributed learning
that supports cross-spatial training among participants from cities and prefectures, for
example. Convolutional Recurrent Neural Networks (CRNN) are trained locally in each
area with the goal of predicting the local Oxidant alert level, while an aggregated global
model improves the distilled information from every part of a region. The study shows
that although adaptive structure at the predictive component of the deep neural network
model may capture various environmental monitoring stations’ configurations in local
regions, planned common elements of the CRNN can be fused worldwide. In order to
enhance the accuracy of the whole FL system, some experiment findings also point to
strategies for maintaining a balance between local deep neural network training epochs
and synchronous training rounds for FL. The findings also demonstrate that by transferring
a shared global model, additional participating locations may train and rapidly achieve
optimal local models.

For the first time, a conditional GAN imputation technique is proposed in this research
inside a FL framework by Zhou, X., et al. [52] to resolve data sets from various data owners
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without sharing them. Additionally, they use the Wasserstein distance and “Hint mask”
method to enhance the performance of the standard conditional GAN. The outcomes of
the experiments demonstrate that our GAN-based imputation techniques may deliver the
best results. Additionally, our federated GAN imputation technique performs better than
the GAN imputation method that was locally trained for each participant, indicating the
viability of our imputation model. By facilitating private multi-institutional partnerships,
our suggested federated GAN technique can enhance access to air quality data, hence
improving model quality. They further explore how the geographic distribution of data
across cooperating participants affects model quality, and, surprisingly, they discover that
the GAN training process using a FL framework performs more consistently.

A review from Neo, E.X., et al. [55] imposes a framework on the basis of data from
environmental, health, and AQI prediction for integrated environmental and health impact
assessment systems, as well as big data learning and prediction abilities of AI and FL. In the
framework of early health care service preparedness prediction and hospital administration,
it is also crucial for efficient medical services.

Finally, Chen, Y., et al. [54] provide an Asynchronous Online FL (ASO-Fed) system, in
which the edge devices carry out online learning with continuous local data streaming and
a centralized server collects model parameters from clients. To address the issues posed by
heterogeneous edge devices with variable computing demands as well as lagging or failing
edge devices, our approach updates the central model in an asynchronous fashion. On three
actual non-IID streaming datasets from the real world and a benchmark picture dataset
created in simulation, they conduct comprehensive tests. The outcomes demonstrate the
value of the model on rapidly convergent and good prediction performance.

Most of the FL architectures usually used in Table 2 are centralized FL with deep
learning models implemented in the clients, which will be discuss in the next section. These
studies also demonstrate the trend of applying UAVs with onboard sensors [47,48] and
cameras [49] or smart sensing [51].

3. Insights into Federated Learning

Many surveys of FL have been conducted worldwide. They often focus on: architectures,
algorithms, optimization, system, benchmarks, challenges..., and future research [43–45,56–61].
Some surveys specialize in each area such as: , Healthcare [45], Internet of Thing [56], Mobile
Edge Network [58], Blockchain [59], Smart-Cities [60], and Securities [61]. The following are
some highlights of them:

3.1. FL Architectures and Algorithms

The architectures of FL are usually divided into three types: centralized, decentralized,
and hierarchical. Figure 1 presents the usual topology FL applied in these studies.

Figure 1. Centralized FL architecture [43,56,57].
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As shown in Figure 1, a centralized FL system consists of a central server connecting
with several clients in a star network. In the training round, some selected clients take part
in the simultaneous training of a model using their local data, batches, epochs, and learning
rate. Then, updated clients are then sent to the central server by the participated clients.
The server aggregates a global model, and the global update is forwarded to the clients for
the next training cycle. The training process is ended after several rounds.

The server is regarded as the essential element of the network for coordinating the dis-
tribution of client updates to global aggregation while maintaining the confidentiality of the
clients’ training data. It aggregates a global model by averaging all the participated model
updates. It is called Federated Averaging or FedAvg for short, which was first introduced
by McMahan, et al. in 2016 [42]. The models used in the works listed in Table 2 are usually
deep learning ones: Long Short-Term Memory (LSTM) [47,50], Convolutional Recurrent
Neural Networks (CRNN) [48,49,51], and Generative Adversarial Nets (GAN) [52]. The
pseudo-code of the whole training process is given in Algorithm 1 [42].

Algorithm 1 FedAvg centralized

ServerSite: . Run on Server
initialize model parameters W0
for each training round t do

random select clients
for each client k in parallel do

Wk
t+1 ← ClientSite(k, Wt) . Client update

end for
Wt+1 ← ∑K

k=1
nk
n Wk

t+1 . Global update

end for

ClientSite(k, Wt): . Run on Clients
Fit local model with it dataset, batch size, epochs, and
learning rate to get new model update Wk

t+1
Return (Wk

t+1) to server

Centralized FL architecture faces the main drawback when the number of clients is
enormous [44]. This drawback is called a bottleneck because the vast communications
link to the server leads to overload. There is another architecture without a server called a
decentralized system, shown in Figure 2.

Figure 2. Decentralized FL [43,56,57].



Algorithms 2022, 15, 434 8 of 20

Decentralized FL is a network architecture with no server to manage the training
process. As seen in Figure 2, all clients participated in a peer-to-peer (P2P) topology to carry
out a training model. The clients also carry out local training in each communication round
using their data set. Then, to reach an agreement on the global update, each client executes
a model aggregation utilizing the model updates received from nearby clients through P2P
communication. Decentralized FL may be made to entirely or partially rely on how it is
used (see FL graph in [62]). The whole training process can be written in pseudocode as in
(Algorithm 2)

Algorithm 2 FedAvg Decentralized

each node initialize model parameters W0
for each training round t do

for each node i in paralleled do
Wi

t+1 ← ClientSite(i, Wt)
end for
for each neighbour k of node i do

Wi
t+1 ← ∑K

k=1
nk
n Wik

t+1 . Exchange update
end for

end for

ClientSite(i, Wt):
Fit local model with it dataset, batch size, epochs, and
learning rate to get new model update Wi

t+1
Return (Wi

t+1)

Another topology is the hybrid of centralized and decentralized design known as
hierarchy [45], which has been developed as shown in Figure 3. This topology’s goal is to
work with many clients, which sometimes is a bottleneck of centralized FL, and to lower
communication expenses in decentralized FL.

Figure 3. Hierarchical FL [63,64].

The server will sometimes become overloaded in a centralized design with just one
server. While in a decentralized network, every participant will communicate with each
other during each training round, which will result in very high communication cost across
the network. These issues are known to be resolved by hierarchical architecture [63,64]. At
each communication round, not all clients send model updates to the global server, but just
a group of clients transfers their model updates to hierarchy servers (group or hierarchy
server). The group servers then aggregate hierarchical updates and send them to the global
server. Thus, this architecture significantly balances the communication load to the global
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server. Additionally, it resembles the hierarchical organizations (silos) in real life, making
applying FL simpler. The pseudocode of this training type can be found in Algorithm 3.

Algorithm 3 FedAvg Hierarchy

ServerSite: . Run on Server
initialize model parameters W0
for each training round t do

for each hierarchy server h do
random select clients
for each client k in parallel do

Wk
t+1 ← ClientSite(k, Wt)

end for
Wh

t+1 ← ∑K
k=1

nk
n Wk

t+1 . Hierarchy update
end for
Wt+1 ← ∑H

h=1
nh
n Wh

t+1 . Global update
end for

ClientSite(k, Wt): . Run on Clients
Fit local model with it dataset, batch size, epochs, and
learning rate to get new model update Wk

t+1
Return (Wk

t+1) to server

3.2. FL Categories

Depending on the data distributions of the clients, we can classify FL into three categories:
horizontal FL (HFL), vertical FL (VFL) and federated transfer learning (FTL) [43,44,46,65].
HFL is sample-based FL where data sets share the same feature but are different in samples.
Otherwise, VFL is a feature-based FL, which applies to the cases where two data sets share the
same sample ID but different features; it is also called heterogeneous FL. FTL is a combination
of HFL and VFL; it applies to the two data sets that are not only in samples but also in features.
Figure 4a–c display diagram of VFL, HFL and FTL, respectively.

Figure 4. FL Categories [65].
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3.3. FL Domains

FL has been applied worldwide. In this subsection, some representative works are
presented.

• FL in IoT: Nguyen, D.C., et al. [56] was inspired by the dearth of a thorough study
on FL’s application in IoT. The authors first discuss current developments in FL and
IoT to close this gap and offer thoughts on how they may be combined. FL is used in
important IoT services, such as IoT data sharing, data offloading and caching, attack
detection, localization, mobile crowdsensing, and IoT privacy and security. They
also share the most recent advancements in integrated FL-IoT applications in several
important use case areas, such as smart healthcare, smart transportation, UAVs, smart
city, and smart industries, which have since caught the public interest.
Jiang, J., et al. [60] made a survey to provide an outline of smart city sensing and its
existing difficulties. They also discussed how FL could help to solve those difficulties.
Both the state-of-the-art methods for FL and their use in smart city sensing are covered
in detail; clear insights on unresolved problems, difficulties, and possibilities in this
area are given as advice for the researchers looking into this topic.

• FL in Mobile: Some discussions on FL in mobile can be found in [43,57–59]. Lim, W.Y.,
et al. [58] provided a tutorial on FL and an in-depth analysis of the problems with FL
implementation. The impetus for mobile edge computing is explained at the outset of
the study, along with how FL may be used as an enabling technology for group model
training at mobile edge networks. The fundamentals of DNN model training, FL, and
system architecture for FL at scale are then discussed. The authors then offer thorough
assessments, analyses, and comparisons of several implementation strategies for
newly developing difficulties in FL. The cost of communication, resource distribution,
data privacy, and data security are among the problems. Additionally, they discuss
obstacles, future research prospects, and the use of FL for privacy-preserving mobile
edge network optimization.

• FL in Healthcare: Rieke, N. et al. [45] foresee a federated for future digital health. The
authors share their opinion with the community to provide context and detail about
the advantages and impacts of FL for medical applications and highlight important
considerations and challenges of implementing FL for future digital healthcare. There
have been some lasted works in this scope, such as: a cloud-edge Network [66], a
survey [67], and a survey in privacy preservation [68].

• Securing FL: Enthoven, D., et al. [61] examine FL’s current weaknesses and then
conduct a literature assessment of potential attack strategies aimed at FL’s privacy
protection features. A fundamental taxonomy is then used to characterize these assault
strategies. They also offer a literature review of the most recent FL defense techniques
and algorithms designed to counter these assaults. By the relevant fundamental
defense concept, these defensive tactics are grouped. The use of a single defensive
approach, according to the authors, is insufficient to offer sufficient defense against all
known assault techniques.

4. Challenges of Federated Learning

• Communication cost: Because federated networks may have a vast number of devices,
the computation time of FL may take longer than local training. Even though there
have been several studies addressing this issue, it is imperative to build communication-
efficient approaches as a result of increasing clients. Some crucial factors to consider
in this situation are reducing the total number of communication rounds, finding fast
convergence algorithms, and making as small model updates as possible at each round.
To address this issue, adding split learning to FL is one of the effective solutions. The
following are the two examples of this direction.
Pathak, R.,et al. [69] first examine various earlier methods for federated optimization
and demonstrate that, even in straightforward convex settings with deterministic
updates, their fixed points do not always have to coincide with the stationary points
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of the original optimization problem. They provide FedSplit, a set of methods for
solving distributed convex minimization with an additive structure that is based
on operator splitting processes, to address these problems. They demonstrate that
these methods have the right fixed points, which correspond to the solutions of the
initial optimization problem, and they describe the speeds at which these methods
converge under various conditions. These techniques are resistant to the inaccurate
calculation of intermediate local quantities, according to their theory. They support
their argument with a few straightforward experiments that show how effective our
plans are in action.
In addition, Thapa, C., et al. proposed SplitFed [70], a novel distributed ML approach
called splitfed learning (SFL) that combines (FL) and split learning (SL), eliminating
the inherent drawbacks of each approach, as well as a refined architectural configura-
tion incorporating differential privacy and PixelDP to improve data privacy and model
robustness. According to our study and actual findings, SFL offers comparable test ac-
curacy and communication effectiveness to SL while having a much shorter calculation
time per global epoch for numerous clients. The effectiveness of its communication
through FL also increases with the number of clients, just like in SL. Additionally,
the effectiveness of SFL with privacy and resilience safeguards is assessed in more
extensive experimental situations.

• Heterogeneity: FL faces a considerable challenge when operating in various devices
and data of the whole system [71–73]. Indeed, increasingly intelligent devices can
connect to train the FL system. These devices have different hardware and software
architectures (e.g., storage capacity, CPU topologies, power consumption level, op-
erating system software, network bandwidth). In addition, each type of device is
also designed to collect or generate different amounts and types of data, thus data
nowadays is usually not independent and identically distributed (non IID data). To
accommodate the heterogeneity of the system, it is necessary to develop clients’ se-
lection solutions during the training process to ensure convergence of the whole
system. Dealing with the diversity in statistical heterogeneity, multi-model FL should
be considered [44].
Yu, F., et al. [74] created a solid structure-information alignment across collaborative
models. The authors offer a unique FL approach to address the heterogeneity of the FL
system. To provide explicit feature information allocation in various neural network
topologies, they specifically construct a feature-oriented regulation mechanism (Net).
Matchable structures with similar feature information may be initialized at the very
early training stage by using this regulating strategy on collaborative models. Dedi-
cated cooperation methods further provide ordered information delivery with clear
structure matching and full model alignment during the FL process in both IID and
non-IID scenarios. In the end, this framework efficiently improves the applicability
of FL to numerous heterogeneous contexts while offering good convergence speed,
accuracy, and computation/communication efficiency.
Moreover, to address the heterogeneity of computational capabilities of edge devices,
Wang, C., et al. [75] suggested a novel heterogeneous FL framework built on multi-
branch deep neural network models. This framework enables the client devices
to choose the best sub-branch model for their computing capabilities. They also
provide MFedAvg, a model training aggregation approach that uses branch-wise
averaging-based aggregation. Extensive experiments on MNIST, FashionMNIST,
MedMNIST, and CIFAR-10 demonstrate that their suggested approaches can achieve
satisfactory performance with guaranteed convergence and efficiently use all the
resources available for training across different devices with lower communication
cost than its homogeneous counterpart.
Abdelmoniem, A.M., and Canini, M. [73] also concentrate on reducing the degree
of device heterogeneity by suggesting AQFL, a straightforward and useful method
that uses adaptive model quantization to homogenize the customers’ computational
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resources. They assess AQFL using five standard FL metrics. The findings demonstrate
that AQFL achieves roughly the same quality and fairness in diverse environments as
the model trained in homogeneous conditions.

• Deep learning model architecture: DNN is proven to outperform other models in
previous research, but its architecture in both traditional ML methods and FL was
often pre-fixed [44,76]. Such a pre-defined setting carries many subjective factors
that lead to the consequence that the models may fall into local optimal states. To
address this challenge, [77] proposed a unified deep learning framework that suits data
in multiple modalities and dimensions; the authors proved that using the proposed
framework yields better performance than traditional ML approaches. In addition, [44]
recommended using neural architecture search (NAS) to find the appropriate deep
learning architecture for each task on each client.

• Securing FL system: Clients can learn a common global model cooperatively using FL
without disclosing their training data to a cloud server. Malicious clients, however, can
tamper with the global model and cause it to forecast inaccurate labels for test cases.
Through ensemble, FL, Cao, X., et al. [78] close this gap. They utilize the technique
to train numerous global models, each of which is learned using a randomly chosen
subset of clients, given any basic FL algorithm. We use the global models’ majority
vote when predicting a testing example’s label. They demonstrate that their ensem-
ble FL is demonstrably safe against malicious clients using any FL base algorithm.
In particular, a testing example’s label predicted by our ensemble global model is
provably unaffected by a finite number of malevolent clients. They also demonstrate
the tightness of their derived limit. On the MNIST and Human Activity Recognition
datasets, they assess their methodology. For instance, when 20 out of 1,000 clients are
malicious, our technique may obtain a verified accuracy of 88% on MNIST.

5. Benchmarks for Federated Learning

Numerous platforms and datasets are created to facilitate the operation of FL, which
is advantageous for newcomers. Those benchmarks can be found in [43,44,58], and here
we describe some popular ones.

• TensorFlow Federated (TFF) [79]: This is an open-source platform for FL and other
decentralized data processing. It is led by Google and has grown in prominence
in recent years. TFF allows developers to experiment with innovative algorithms
by simulating the included FL algorithms on their models and data. Researchers
will discover the beginning points and comprehensive examples for a wide range of
studies.

• Leaf [80]: Leaf is an open-source framework for federated settings. It comprises a
collection of federated datasets, a wide range of statistical and system metrics, and
a collection of model implementations. Researchers and practitioners in fields such
as FL, meta-learning, and multi-task learning will be able to evaluate novel solutions
under more reasonable presumptions thanks to this platform.

• Flower [81]: A more smooth transition from an experimental study in simulation to
system research on a large cohort of actual edge devices is made possible by Flower.
It is a revolutionary end-to-end FL platform. Regarding simulation and real-world
technology, Flower offers individual strength in both areas and allows experimental
implementations to move between the two extremes as needed.

• PySyf: Ryffel, T., et al. [82] describe and explore a novel paradigm for privacy-
preserving deep learning. The system prioritizes data ownership and secure pro-
cessing, and it presents a useful representation based on command chains and tensors.
This abstraction enables the implementation of complicated privacy-preserving struc-
tures such as FL, Secure Multiparty Computation, and Differential Privacy while
providing a familiar deep learning API to the end user. They provide preliminary
findings from the Boston Housing and Pima Indian Diabetes datasets. While pri-
vacy measures other than Differential Privacy do not affect prediction accuracy, the
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current implementation of the framework creates a large performance burden that
will be addressed at a later stage of development. The authors feel that their work is
a significant step toward developing the first dependable, universal framework for
privacy-preserving deep learning.

• FedML: He, C., et al. [83] present FedML, an open research library and benchmark for
FL algorithm development and fair performance comparison, in this paper. FedML
offers three computing paradigms: edge device on-device training, distributed com-
puting, and single-machine simulation. FedML also encourages various algorithmic
research by the design of flexible and generic APIs and detailed reference baseline
implementations (optimizer, models, and datasets). FedML, we think, will provide an
efficient and reproducible method for building and assessing FL algorithms that will
assist the FL research community.

• Sherpa.ai: Barroso, N.R., et al. [84] introduced the Sherpa.ai FL framework, which
is based on a comprehensive understanding of FL and differential privacy. It is
the outcome of research into how to adapt the ML paradigm to FL as well as the
development of methodological recommendations for producing artificial intelligence
services based on FL and differentiated privacy. Using classification and regression
use cases, they also demonstrate how to adhere to the methodological principles with
the Sherpa.ai FL framework.

• EMNIST: A benchmark database is presented by Cohen, G., et al. [85]. It is a derivative
of the entire NIST dataset known as Extended MNIST (EMNIST), which uses the same
conversion paradigm as the MNIST dataset. The end result is a collection of datasets
that represent more difficult classification problems containing letters and digits, but
which share the same picture structure and characteristics as the original MNIST job,
allowing direct interoperability with all current classifiers and systems. Benchmark
results are reported, along with validation of the conversion procedure by comparison
of classification results on converted NIST and MNIST digits.

• FedEval: Di Chai, et al, [86] suggested a thorough approach to FL system evaluation in
their works. Particularly, they first offer the ACTPR model, which identifies five met-
rics—accuracy, communication, time efficiency, privacy, and robustness—that cannot
be disregarded in the FL assessment. Then, using FedEval, a benchmarking system
they developed and put into use, it is possible to compare and evaluate previous works
in a systematic manner while maintaining a constant experimental environment. The
authors next present a thorough benchmarking analysis between FedSGD and FedAvg,
the two most used FL methods. According to the benchmarking results, FedSGD
and FedAvg both have benefits and drawbacks when using the ACTPR model. For
instance, the non-IID data issue has little to no effect on FedSGD, while in their studies,
FedAvg has an accuracy loss of up to 9%. However, when it comes to communication
and time consumption, FedAvg outperforms FedSGD. Finally, they uncover a series of
key findings that will be highly beneficial for researchers working in the FL region.

• OARF: An Open Application Repository for FL (OARF) is presented by Sixu Hu,
et al, [87]. It is a benchmark set for federated ML systems. OARF simulates more
realistic application situations. The benchmark suite is heterogeneous in terms of data
quantity, dispersion, feature distribution, and learning task difficulty, as observed by
our categorization. The thorough analyses with reference implementations highlight
potential areas for future FL system development. The key components of FL, such as
model correctness, communication cost, throughput, and convergence time, have been
constructed as reference implementations and reviewed. We made several intriguing
discoveries as a result of these tests, such as the fact that FL may significantly boost
end-to-end throughput.

From the papers we gathered, there have been some separated AQI datasets, as shown
at the end of Table 1. To the best of our knowledge, there is presently no standard dataset
designed expressly for AQI analysis, even though there are several benchmarks for FL in
general. Future studies in this area must consider this problem.



Algorithms 2022, 15, 434 14 of 20

6. Multi-Models Federated Learning

Forecasting results from a single model are worse and have less integration with
other methods [1]. The outcomes in [17,22] demonstrate the better result when applying
ensemble methods. [44] suggested using multi-models FL to deal with the heterogeneous
statistic. Currently, some studies on the multi-model in AQI prediction are found in [88–90],
but these applications are implemented on a single machine. Several authors have studied
multi-model FL for other fields, as shown in [91–93] and [86,94,95]. In this section, some
of them are presented with the hope that they will help convey new directions for AQI
forecasting in the future.

Bhuyan, N. and Moharir, S., [91] show that several unrelated models can be trained
concurrently in a federated environment. The authors expand the FedAvg method to
accommodate multi-model training. They also suggest two novel approaches for client
selection in multi-model training in federated settings: RanklistMulti-UCB and Pareto-
Multi-UCB. Additionally, they use FedAvg to examine the effectiveness of these three
strategies when trained on a single model. Both synthetic and real-world datasets are used
for this. They conclude that Ranklist-Multi-UCB and Pareto-Multi-UCB perform better
than the single model FedAvg when the number of clients each round is low.

Zhao, Y., et al. [92] utilized the multimodal in cooperated with semi-supervised FL
to IoT devices in their research. Specifically in the client site, they offer a multimodal and
semi-supervised FL framework for training auto-encoders to extract shared or correlated
representations from several local data modalities. Furthermore, they provide a multimodal
FedAvg technique for aggregating local auto-encoders trained on different input modalities.
With the support of auxiliary labeled data on the server, they apply the learned global auto-
encoder for a downstream classification assignment. They experimentally test their system
using several modalities such as sensory data, depth camera films, and RGB camera videos.
The experimental results demonstrate that incorporating input from many modalities into
FL can increase classification performance. Furthermore, they can use labeled data from
only one modality for supervised learning on the server and apply the learned model
to training datasets from other modalities to achieve decent F1 scores (e.g., with the best
performance being more excellent than 60%), especially when combining achievements
from both unimodal and multimodal clients.

Smith, V., et al. provide the MOCHA method to address multi-task FL in [94]. They
first demonstrate that multi-task learning is a logical option for dealing with statistical
difficulties in the federated scenario. Second, they create a brand-new technique called
MOCHA to address a general issue with multi-task learning. They offer MOCHA conver-
gence assurances that properly take into account these particular system problems and
give information on actual performance. Finally, they use a novel benchmarking suite of
federated datasets to show MOCHA’s improved empirical performance. The proposed
method is said to have challenges in FL as: high communication cost, stragglers, and
fault tolerance.

While [94] develops multi-model approach for multi-task, Xie, M., et al. [86] provide
a novel multi-center aggregation technique to achieve a multi-model for a single task. It
generates the best match between users and centers while learning several global models
from the data. Then, the authors define it as a bi-level optimization issue that can be
successfully resolved by the stochastic expectation maximization technique. Experiments
on several benchmark datasets of FL demonstrate that their technique beats several well-
known FL rivals.

Muhammad, A., et al. [95] suggest a FedMD modification called the Robust Multi-
Model FL (RMMFL) framework, which is used with the same set of assumptions and
greatly enhances the output of each individual model. RMMFL modified the FedMD
training procedure in two ways: To soften the output predictions, a high entropy aggre-
gation approach is first introduced. Second, a weighted ensemble approach is utilized to
balance each client model’s predictions according to its performance. The CIFAR/MNIST
benchmark datasets are used extensively in research on heterogeneous models, and the



Algorithms 2022, 15, 434 15 of 20

simulation findings from our work reveal that RMMFL has an accuracy advantage of 5%
over the standard approach.

Bhuyan, N., Moharir, S., and Joshi, G. [96] concentrate on the issue of simultaneously
training many independent models with a common pool of customers using FL. They
suggest two iterations of the well-researched FedAvg algorithm, known as MFA-Rand
and MFA-RR, in the context of multiple models and demonstrate their convergence. They
demonstrate that for MFARR, increasing the data sample size (for client-side SGD rounds)
significantly speeds up convergence. They also suggest performance criteria for determin-
ing multi-model FL’s advantage over single-model FL. They define the circumstances in
which running MFA-Rand for M models concurrently is preferable to running FedAvg for
one model for each model one at a time. To validate the findings of our analytical work,
they conduct experiments in strongly convex and convex environments. They demonstrate
the advantages of the multi-model FL in deep learning with experiments conducted in
a non-convex environment. Additionally, they conduct tests that are unrelated to the
suggested context. These were the tests with partial device participation and real-world
situations. They see a benefit in simultaneously training many models here as well.

Through the reviews in this section, we can see an attractive direction of multi-model
FL that could be applied for the AQI forecast in the future. Thus, later works in AQI
analysis should have great concern for this method. We inferred from [86,92] the topology
and algorithm for multi-model centralized FL as shown in Figure 5 and Algorithm 4,
respectively.

Algorithm 4 Multi-model FedAvg Centralized

ServerSite: . Run on Server
initialize M model parameters Wm

0
for each training round t do

random select clients
for each client k in parallel do

WMk
t+1 ← ClientSite(k, WM

t ) . Client update

for each model m in M do

Wm
t+1 ← ∑K

k=1
nk
n Wmk

t+1 . Global update

end for
end for

ClientSite(k, WM
t ): . Run on Clients

for each model m in M do
Fit local model m with it dataset, batch size, epochs, and
learning rate to get new model update Wmk

t+1
Return (WMk

t+1) to server
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Figure 5. Multi-model centralized FL.

7. Conclusions

We have gathered several AQI prediction studies as well as FL research in this survey.
We discovered through research and synthesis that, prior to 2020, the majority of AQI
forecasting mechanisms relied on single ML techniques such as statistics, ANN, DNN,
hybrid, and ensemble. Although commonly used, ANN and DNN were prone to failure in
local optimum conditions. The anticipated outcomes could be enhanced by using some
hybrid and ensemble approaches.

Since 2000, various works have integrated FL into AQI processing. We have identified
the three different FL architectures: centralized FL, decentralized FL, and hierarchical FL as
well as their corresponding algorithms. The system mostly used centralized FL, and the
typical process model was DNNs. There has been a trend in the use of UAVs in this field.
Additionally, we mentioned several benchmarks, challenges and solutions, and domains
of FL.

Reviews demonstrate that multi-model FL improves the accuracy of other domains,
thus it could be applied to enhance AQI predictions. Multi-model FL is a study area that
needs to be focused on in future works. DNN should be incorporated into client models,
since it is more responsive than conventional ML architectures. Additionally, DNN should
be designed to adopt both partial and temporal data.

More importantly, to have a common baseline to assess new solutions, the scientific
community should also be interested in developing a dedicated open dataset on AQI.
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