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Abstract: The ensemble-based modifications of the well-known SHapley Additive exPlanations
(SHAP) method for the local explanation of a black-box model are proposed. The modifications aim
to simplify the SHAP which is computationally expensive when there is a large number of features.
The main idea behind the proposed modifications is to approximate the SHAP by an ensemble of
SHAPs with a smaller number of features. According to the first modification, called the ER-SHAP,
several features are randomly selected many times from the feature set, and the Shapley values for
the features are computed by means of “small” SHAPs. The explanation results are averaged to
obtain the final Shapley values. According to the second modification, called the ERW-SHAP, several
points are generated around the explained instance for diversity purposes, and the results of their
explanation are combined with weights depending on the distances between the points and the
explained instance. The third modification, called the ER-SHAP-RF, uses the random forest for a
preliminary explanation of the instances and determines a feature probability distribution which
is applied to the selection of the features in the ensemble-based procedure of the ER-SHAP. Many
numerical experiments illustrating the proposed modifications demonstrate their efficiency and
properties for a local explanation.

Keywords: explanation model; XAI; SHAP; random forest; ensemble model

1. Introduction

Machine learning models and algorithms have shown increasing importance and
success in many domains. Despite the success, there are obstacles for applying machine
learning algorithms, especially in areas of risk, for example, in medicine, reliability main-
tenance, autonomous vehicle systems, and security applications. One of the obstacles is
that many machine learning models have sophisticated architectures and, therefore, they
are viewed as black boxes. As a result, models have a limited interpretability, and a user
of the corresponding model cannot understand and explain the predictions and decisions
provided by the model. Another obstacle is that a single testing instance has to be explained
in many cases, i.e., a user needs to understand only a single prediction, for example, a
diagnosis of a patient stated by a model. In order to overcome these obstacles, additional
interpretable models should be developed that could help to answer the question, which
features of an analyzed instance lead to the black-box survival model prediction. In other
words, these models should select the most important features which impact the black-box
model prediction. It should be noted that some models, including linear regression, logistic
regression, and decision trees, are intrinsically explainable due to their peculiarities. At the
same time, most machine learning models, especially deep learning models, are black boxes
and cannot be directly explained. An explanation of these models and their predictions
motivated developing a lot of methods and models which try to explain the predictions
of the deep classification and regression algorithms. There are several detailed survey
papers providing a deep dive into the variety of interpretation methods and models [1–8],
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which show the increasing importance of the interpretation methods and a growing interest
in them.

The interpretation of the black-model local prediction aims to select features which
significantly impact on this prediction, i.e., by using the interpretation model, we try to
determine which features of an analyzed instance lead the obtained black-box model prediction.
There are two groups of interpretation methods. The first one consists of the so-called local
methods. They try to interpret a black-box model locally around a test instance. The second
group contains global methods which derive interpretations on the whole dataset or its
part. The present paper focuses on the first group of local interpretation methods, though
the proposed approach can be simply extended to the global interpretation.

Two very popular post hoc approaches to interpretation can be selected among many
others. The first one is LIME (Local Interpretable Model-Agnostic Explanation) [9], which
is based on building an approximating linear model around the instance to be explained.
This follows from the intuition that the explanation may be derived locally from many
instances generated in the neighborhood of the explained instance with weights defined
by their distances from the explained instance. The coefficients of the linear model are
interpreted as the feature’s importance. The linear regression for solving the regression
problem or the logistic regression for solving the classification problem allow us to construct
the corresponding linear models. LIME has many advantages. It successfully interprets
models dealing with tabular data, text, and images. However, there are some shortcomings
of LIME. The first one is that LIME is not robust. This means that it may provide very
different explanations for two nearby data points. The definition of neighborhoods is also
very vague. Moreover, LIME may provide an incorrect explanation when there is a small
difference between the training and testing data. LIME is also sensitive to the parameters
of the explanation model, for example, to the weights of the generated instances, to the
number of the generated instances, etc.

The second approach consists of the well-known SHAP (SHapley Additive exPlana-
tions) method [10,11] and its modifications. The method is inspired by game-theoretic
Shapley values [12] which can be interpreted as average expected marginal contributions
over all possible subsets (coalitions) of features to the black-box model prediction. The
SHAP has many advantages, for example, it can be used for local and global explanations
in contrast to LIME, but there are also two important shortcomings. The first one is a
question as to how to add or remove features in order to implement their subsets as inputs
for the black-box model. There are many approaches to removing features, exhaustively
described by [13], but the SHAP may be too sensitive to each of them, and there are no
strong justifications for their use. Nevertheless, the SHAP can be regarded as the most
promising and efficient explanation method.

The second shortcoming is that the SHAP is computationally expensive when there is
a large number of features due to considering all possible coalitions whose number is 2m,
where m is the number of features. Therefore, the computational time grows exponentially.
Several simplifications and approximations have been proposed in order to overcome this
difficulty. Some of them are presented by [11,14,15]. One of the simplifications is based
on using the ordered permutations of the feature indices and the probability distributions
of the features [14]. Another approximation is the quasi-random and adaptive sampling
which includes two improvements [15]. The first one is based on exploiting the Monte Carlo
integration. The second improvement is based on the optimal number of the perturbations
of every feature in accordance with its variance to minimize the overall approximation
error. Ref. [15] also proposed to average the local contributions of the values of each
feature across all instances. Another interesting approach to simplify the SHAP is the
Kernel SHAP [10] which can be regarded as a computationally efficient approximation to
the Shapley values in higher dimensions. In order to relax the assumption of the feature
independence accepted in the Kernel SHAP, ref. [16] extended the Kernel SHAP method to
handle dependent features. Ref. [17] proposed the polynomial-time approximation of the
Shapley values, called the Deep Approximate Shapley Propagation method.
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In spite of the many approaches to simplify the SHAP, it is difficult to expect a
significant simplification from the above modifications of the SHAP. Therefore, a new
approach is proposed for simplifying the SHAP method and for reducing the computational
expenses for calculating the Shapley values. A key idea behind the proposed approach is to
apply a modification of the random subspace method [18] and to consider an ensemble of
random SHAPs, called the ensemble of random SHAPs (ER-SHAP). The approach is very
similar to the random forests, when an ensemble of randomly built decision trees is used to
obtain some average classification or regression measures. Random SHAPs are constructed
by a random selection of t features with indices Jk = (i1, . . . , it) from the instance for an
explanation, and the obtained subset of the instance features is analyzed by the SHAP as
a separate instance. Repeating this procedure N times, we obtain a set S = {S1, . . . , SN}
of the Shapley values corresponding to the input subsets of the features, where the k-th
subset is Sk = {φi : i ∈ Jk}. By applying some combination rule for combining subsets Sk
from S , we obtain the final Shapley values.

The above general approach considering an ensemble of random SHAPs has several
extensions which form the corresponding methods and algorithms. First of all, we can
generate points around the analyzed instance and construct Sk for the k-th generated point.
In this case, every point is assigned by a weight, depending on the distance from the
analyzed point. As a result, we can combine the subsets Sk of the Shapley values with
weights which are defined as a function of the distance from the analyzed point. This
modification is called the ensemble of random weighted SHAPs (ERW-SHAP).

Another extension or modification is to select features in accordance with a probability
distribution to obtain instances consisting of features with indices from the set Jk. Let us
define the discrete probability distribution over the set of all indices. It can be produced,
for example, by using the random forest [19] which plays the role of a feature selection
model. At that, the random forest is constructed by using a set of points (instances) locally
generated around the explained point. Every decision tree is built by using a single point
from the set of the generated points. This modification is called the ensemble of random
SHAPs generated by the random forest (ER-SHAP-RF).

In sum, the contribution of this paper can be formulated as follows:

1. A new approach to implementing an ensemble-based SHAP with random subsets of
features of the explained instance is proposed.

2. Several combination schemes are studied for aggregating the subsets of the important
features obtained by using random SHAPs.

3. The approach is extended by generating random points in the local area around a test
instance and computing the subsets of the important features separately for every
point. Some kind of diversity is implemented with this extension.

4. Another extension is to use a probability distribution for the random selection of the
features defined by the means of the random forest constructed by using the generated
points in the local area around a test instance. The preliminary feature selection can
be regarded as a pre-training procedure.

A lot of numerical experiments with an algorithm implementing the proposed method
on synthetic and real datasets demonstrate its efficiency and the properties for the local
and global interpretation.

This paper is organized as follows. The related work is in Section 2. The Shapley
values and the SHAP method as a powerful tool for local and global explanations are
introduced in Section 3. A detailed description of the proposed modifications of the SHAP,
including the ER-SHAP, ERW-SHAP, and ER-SHAP-RF, is provided in Section 4. The
numerical experiments with synthetic data and real data using the local interpretation by
means of the proposed models and their comparison with the standard SHAP method are
given in Section 5. The concluding remarks can be found in Section 6.
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2. Related Work

The increasing importance of machine learning models and algorithms leads to the
development of new explanation methods taking into account the various peculiarities of
applied problems. Among the various approaches, we consider the local interpretation
models which aim to explain a specific decision or a prediction obtained for a single
instance. The local interpretation is especially important in medicine where a diagnosis of a
patient has to be confirmed. As a result, many models of the local interpretation have been
proposed. The success and simplicity of the LIME interpretation method resulted in the
development of several of its modifications, for example, ALIME [20], Anchor LIME [21],
LIME-Aleph [22], GraphLIME [23], SurvLIME [24], etc. A comprehensive analysis of LIME,
including the study of its applicability to different data types, for example, text and image
data, was provided by [25]. The same analysis for tabular data was proposed by the same
authors [26]. An image version of LIME with its deep theoretical study was presented
by [27]. An interesting information-theoretic justification of interpretation methods on the
basis of the concept of the explainable empirical risk minimization was proposed by [28].

In order to relax the linearity condition for the local interpretation models like LIME
and to adequately approximate a black-box model, several interpretation methods based
on using Generalized Additive Models [29] were proposed [30–33]. Another interesting
class of models based on using a linear combination of neural networks, such that a single
feature is fed to each network, was proposed by [34]. The impact of every feature on the
prediction in these models is determined by its corresponding shape function obtained
by each neural network. Following the ideas behind these interpretation models, [35]
proposed a similar model. In contrast to the method proposed by [34], an ensemble of
gradient boosting machines was used in [35] instead of neural networks in order to simplify
the explanation model training process.

Another explanation method was the SHAP [10,11], which takes a game-theoretic
approach for optimizing a regression loss function based on the Shapley values. General
questions of the computational efficiency of the SHAP were investigated by [36]. Ref. [37]
proposed the generalized SHAP method which allows us to compute the feature impor-
tance of any function of a model’s output. Ref. [38] presented an approach to applying
the SHAP to ensemble models. The problem of explaining the predictions of graph neural
networks by using the SHAP was considered by [39]. Ref. [40] introduced the so-called off-
and on-manifold Shapley values for high-dimensional multi-type data. The application of
the SHAP to the explanation of recurrent neural networks was studied in [41]. Ref. [42]
presented a new approach to explaining fairness in machine learning, based on the Shapley
value paradigm. Ref. [43] studied how to explain the anomalies detected by autoencoders
using the SHAP. The problem of explaining the anomalies detected by a PCA was also con-
sidered by [44]. Ref. [45] proposed the X-SHAP which extends one of the approximations
of the SHAP called the Kernel SHAP [10]. The SHAP was also applied to the problems
of explaining individual predictions when features are dependent [16] or when features
are mixed [46]. The SHAP was used in real applications to explain the predictions of the
black-box models, for example, it was used to rank the failure modes of reinforced concrete
columns and to explain why a machine learning model predicts a specific failure mode for
a given sample [47]. It was also used in chemoinformatics and medicinal chemistry [48].
An interesting application of the SHAP in the desirable interpretation of the machine
learning-based model results for identifying m7G sites in the gene expression analysis was
proposed by [49]. The basic problems of the SHAP were also analyzed by [50].

Many other interpretation methods, their analyses, and critical reviews can also be
found in survey papers [1–3,6,51–55].

3. Shapley Values and the Explanation Model

One of the most powerful approaches to explaining predictions of the black-box
machine learning models is the approach based on using the Shapley values [12] as a
key concept in coalitional games. According to the concept, the total gain of a game is
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distributed to players such that desirable properties, including efficiency, symmetry, and
linearity, are fulfilled. In the framework of the machine learning, the gain can be viewed as
the machine learning model prediction or the model output, and a player is a feature of
input data. Hence, contributions of features to the model prediction can be estimated by
Shapley values. The i-th feature importance is defined by the Shapley value

φi( f ) = φi = ∑
S⊆N\{i}

B(S, N)[ f (S ∪ {i})− f (S)], (1)

where f (S) is the characteristic function in terms of coalitional games or the black-box
model prediction under condition that a subset S of features are used as the corresponding
input in terms of machine learning; N is the set of all features; B(S, N) is defined as

B(S, N) =
|S|!(|N| − |S| − 1)!

|N|! . (2)

It can be seen from the above expression that the Shapley value φi can be regarded
as the average contribution of the i-th feature across all possible permutations of the
feature set.

The Shapley value has the following important properties:
Efficiency. The total gain is distributed as ∑m

k=0 φk = f (x).
Symmetry. If two players with numbers i and j make equal contributions, i.e.,

f (S ∪ {i}) = f (S ∪ {j}) for all subsets S which contain neither i nor j, then φi = φj.
Dummy. If a player makes zero contributions, i.e., f (S ∪ {j}) = f (S) for a player j

and all S ⊆ N\{j}, then φj = 0.
Linearity. A linear combination of multiple games f1, . . . , fn, represented as f (S) =

∑n
k=1 ck fk(S), has gains derived from f : φi( f ) = ∑m

k=1 ckφi( fk) for every i.
Let us consider a machine learning problem. Suppose that there is a dataset {(x1, y1),

. . . , (xn, yn)} of n points (xi, yi), where xi ∈ X ⊂ Rm is a feature vector consisting of m
features, yi is the observed output for the feature vector xi such that yi ∈ R in the regression
problem and yi ∈ {1, 2, . . . , T} in the classification problem with T classes. If a task is to
interpret or to explain the prediction from the model f (x∗) at a local feature vector x∗, then
the prediction f (x∗) can be represented by using Shapley values as follows [10,11]:

f (x∗) = φ0 +
m

∑
j=0

φ∗j , (3)

where φ0 = E[ f (x)], φ∗j is the value φj for the prediction x = x∗.
The above implies that the Shapley values explain the difference between the predic-

tion f (x∗) and the global average prediction.
One of the crucial questions for implementing the SHAP method is how to remove

features from subset N\S, i.e., how to fill input features from subset N\S in order to obtain
predictions f (S) of the black-box model. A detailed description of the various ways for
removing features is presented by [13]. One of the ways is simply by setting the removed
features to zero [56,57] or by setting them to user-defined default values [9]. According
to this way, features are often replaced with their mean values. Another way removes a
feature by replacing them with a sample from a conditional generative model [58]. In the
LIME method for tabular data, features are replaced with independent draws from specific
distributions [13] such that each distribution depends on the original feature values. These
are only a part of all the ways of removing features.

4. Modifications of SHAP
4.1. Ensemble of Random SHAPs

In spite of the many approaches to simplify SHAP, it is difficult to expect a signifi-
cant simplification from the above modifications of SHAP. Therefore, a new approach is
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proposed for simplifying the SHAP method and for reducing computational expenses for
calculating the Shapley values. A key idea behind the proposed approach is to apply a
modification of the random subspace method [18] and to consider an ensemble of random
SHAPs. The approach is very similar to the random forests when an ensemble of randomly
built decision trees is used to obtain some average classification or regression measures.

Suppose that instance x ∈ Rm has to be interpreted under condition that the black-box
model has been trained on the dataset D = {(x1, y1), . . . , (xn, yn)}. A general scheme of the
first approach called ensemble of random SHAPs (ER-SHAP) for case N = 3 is illustrated
in Figure 1. ER-SHAP is iteratively constructed by random selection of t different features
N times. Value t is a training parameter. If we refer to random forests, then one of the
heuristics is t ≈

√
m. However, the optimal t is obtained by considering many of its values.

Suppose that indices of selected features at the k-th iteration form the set Jk = (i1, . . . , it).
The corresponding vector of t features is regarded as an instance zk = (xi1 , . . . , xit) ∈ Rt.
Subsets of selected features with indices Jk are shown in Figure 1 as successive features.
However, this is only a schematic illustration. Features are randomly selected in accordance
with the uniform distribution and can be located at arbitrary places of vector x.

Figure 1. A scheme of the ER-SHAP.

As a result, we have a set of N instances z1, . . . , zN . The next step is to use the black-
box model and SHAP to compute Shapley values for every instance such that the subset
Sk = {φ

(k)
i : i ∈ Jk} of the Shapley values φ

(k)
i is produced for instance zk. Repeating this

procedure N times, we obtain a set S = {S1, . . . , SN} of the Shapley values corresponding
to all zk, k = 1, . . . , N, or all input subsets of features. Having set S , we can apply several
combination rules to combining subsets Sk from S . One of the simplest rules is based on
averaging of the Shapley values over all subsets Sk:

φi =
1
Ni

∑
k:i∈Jk

φ
(k)
i , i = 1, . . . , m, (4)

where Ni is the number of the i-th feature selections among all iterations, i.e., Ni = ∑k:i∈Jk
1.

It should be noted that the input of the black-box model has to have m features.
Therefore, for performing SHAPs with every zk, average values of features over all dataset
D are used to fill m− t remaining features, though other methods [13] can also be used to
fill these features.

Algorithm 1 can be viewed as a formal scheme implementing ER-SHAP. It is supposed
that the black-box model has been already trained.
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Algorithm 1 ER-SHAP

Require: Training set D; point of interest x; the number of iterations N; the number of
selected features t; the black-box model for explaining f (x)

Ensure: The Shapley values S = {φ1,. . . ,φm}
1: for k = 1, k ≤ N do
2: Select randomly t features from x and form the set Jk of indices of randomly selected

features xi, i ∈ Jk

3: Use SHAP for computing φ
(k)
i , i ∈ Jk and form the set Sk = {φ

(k)
i : i ∈ Jk}

4: end for
5: Combine sets Sk, k = 1, . . . , N, to compute S, for example, by using a simple averaging:

φi = N−1
i ∑k:i∈Jk

φ
(k)
i , where Ni = ∑k:i∈Jk

1.

If the number of subsets S in the standard SHAP or the number of differences
f (S ∪ {i}) − f (S) which have to be computed is 2m, then the number of the same dif-
ferences in ER-SHAP is N · 2t. For comparison purposes, if we consider a dataset with
m = 25 and t =

√
m = 5, then N can be taken 225/25 = 220 in order to make equal

computational complexity of SHAP and ER-SHAP.

4.2. Ensemble of Random Weighted SHAPs

The next algorithm is called the ensemble of random weighted SHAPs (ERW-SHAP)
algorithm and differs from ER-SHAP in the following parts. A general scheme is shown in
Figure 2. First of all, N points h1, . . . , hN are generated in the neighborhood of explained
instance x. These points do not need to belong to the dataset D. Then, t features are
randomly selected from every hk, and they produce instances z1, . . . , zN . Moreover, the
weight wk of each instance hk is defined as a function of the distance dk between the
explained instance x and the generated neighbor hk. The weights are used to implement
the weighted average of the Shapley values. The final Shapley values are calculated now
as follows:

φi =
1

Wi
∑

k:i∈Jk

wkφ
(k)
i , i = 1, . . . , m, (5)

where Wi = ∑k:i∈Jk
wk.

Figure 2. A scheme of the ERW-SHAP.

On the one hand, using these changes of ER-SHAP, we implement an idea of some kind
of diversity of SHAPs to make the randomly selected feature vectors more independent. On
the other hand, the approach is similar to the LIME method where the analyzed instance
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is perturbed in order to build an approximating linear model around the instance to be
explained. The diversity of SHAPs is a very important peculiarity of the proposed ER-
SHAP. It prevents SHAP from the situation when a rule for filling the removed features
produces features coinciding with the explained instance features. In this case, the Shapley
values are incorrectly computed. The use of generated neighbors allows us to avoid this
case and to obtain more accurate results.

Algorithm implementing ERW-SHAP differs from the similar Algorithm 1 implement-
ing ER-SHAP only in two lines. First, after line 1 or before line 2, the line indicating how to
generate neighbors has to be inserted. Second, line 5 (combination of the Shapley values) is
replaced with expression (5).

4.3. Ensemble of Random SHAPs Generated by the Random Forest

In order to control the process of the random feature selection, it is reasonable to
choose features for producing z1, . . . , zN in accordance with some probability distribution
different from the uniform distribution, which would take into account the preliminary
importance of features. The intuition behind this modification is to reduce the selection of
unimportant features which do not impact on the black-box prediction corresponding to x
a priori.

One of the ways to implement this control is to compute the preliminary feature im-
portance by means of the random forest. Although it is known that the random forest does
not always give acceptable results related to the feature selection problem, the proposed
approach does not have this drawback because we propose to train the random forest
on instances generated in the neighborhood of explained instance x. The next algorithm
is called the ensemble of random SHAPs generated by the random forest (ER-SHAP-RF)
algorithm. The random forest plays a role of the important feature selection model. It can
be also viewed as some kind of pre-training for important features. The idea to train the
random forest on generated neighbors allows us to implement a preliminary explanation
method. It should be noted that the random forest is not a unique model for selecting
important features. There are many methods [59], which could be used for solving this
task. We use the random forest as one of the popular and simple methods having a few
parameters. In the same way, the linear regression model could be used instead of the
random forest. The random forest can be used as an explanation model by applying an
approach proposed by [60] based on a scalable method for transforming a decision forest
into a single decision tree which is interpretable.

The LIME method can be also applied to obtain the probability distribution of features.
In the case of its use, normalized absolute values of linear regression coefficients can be
regarded as the probability distribution of features.

For solving the feature selection task by random forests, we use the well-known simple
method [19]. According to this method, for every tree from the random forest, we compute
how much the impurity is decreased by a feature. The more the feature decreases the
impurity, the more important the feature is. The impurity decreasing is averaged across all
trees in the random forest, and the obtained value corresponds to the final importance of
the feature.

The proposed approach may lead to small probabilities of unimportant features.
However, it does not mean that these features will not selected for using in an explanation
by means of SHAP. They have a smaller chance to be selected under condition that their
probabilities are not equal to zero. This implies that the classification or regression models
for constructing the probability distribution P should not provide some sparse predictions
such as the Lasso because only a small part of features in this case will take part in
explanation.

A general scheme of ER-SHAP-RF is shown in Figure 3 where a number, say M, of
neighbors h1, . . . , hM are generated around the instance x to be explained. Every generated
neighbor hj is fed into the black-box model to obtain its class label y∗j . It should be noted
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that the training instances can be taken as neighbors. However, they should be classified
by using the black-box model in order to take into account this model in an explanation.

Having points (hj, y∗j ), we train the random forest which provides a feature importance
measure in the form of the probability distribution P = (p1, . . . , pm). The distribution P
is used to select features from instance x for constructing the vectors z1, . . . , zN , namely t
features are selected from x with replacement N times in accordance with the distribution
P. SHAPs are used to find the Shapley values of vectors z1, . . . , zN . They are combined
similarly to ERW-SHAP by means of averaging as follows:

φi =
1
Ni

∑
k:i∈Jk

φ
(k)
i , i = 1, . . . , m. (6)

It is important that the number Ni of the i-th feature selections among all iterations N
is used instead of N.

The whole algorithm can be divided into two stages which are separated in time.
According to the first stage, neighbors h1, . . . , hM are generated for obtaining predictions
y∗1 , . . . , y∗M by the black-box model and for training the random forest which provides
probabilities of features. This stage is depicted by dashed lines in Figure 3. The second
stage is to use these probabilities for using SHAPs. This stage is depicted by solid lines in
Figure 3.

Figure 3. A scheme of the ER-SHAP-RF.

The random forest should be built with a large depth of trees and with a small number
of trees in order to avoid a rather sparse probability distribution of features when a large
part of probabilities will be equal to zero or close to zero. Another way for avoiding small
probabilities of features is to apply calibration methods and to recalculate the obtained
probabilities, for example, by using the temperature scaling as the simplest extension of
Platt scaling [61]:

p∗k =
exp(pk/T)

∑m
i=1 exp(pi/T)

, k = 1, . . . , m, (7)

where T is the temperature which controls the smoothness of the probability distribution,
but it does not change the relationship of probabilities pk, i = 1, . . . , m.

Algorithm 2 implementing ER-SHAP-RF can be viewed as an extension of ER-SHAP.
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Algorithm 2 ER-SHAP-RF

Require: Training set D; point of interest x; the number of iterations N; the number of
selected features t; the black-box model for explaining f (x); parameters of the random
forest (the number and depth of trees, number of instances for building trees)

Ensure: The Shapley values S = {φ1,. . . ,φm}
1: Generate M instances h1, . . . , hM which are from the neighborhood of x or from the

whole training set
2: Compute the class label y∗j = f (hj) for every generated instance by using the black-box

model
3: Train the random forest on (hj, y∗j ), j = 1, . . . , M
4: Compute the probability distribution P of features by using the random forest
5: for k = 1, k ≤ N do
6: Select randomly t features from x in accordance with the probability distribution P

and form the index set Jk of features
7: Use SHAP for computing φ

(k)
i , i ∈ Jk and form the set Sk = {φ

(k)
i : i ∈ Jk}

8: end for
9: Combine sets Sk, k = 1, . . . , N, to compute S, for example, by using a simple averaging:

φi = N−1
i ∑k:i∈Jk

φ
(k)
i , where Ni = ∑k:i∈Jk

1.

It is interesting to point out that the fourth algorithm can also be proposed, which
is represented as a combination of ERW-SHAP and ER-SHAP-RF. N points are generated
for implementing diversity in accordance with ERW-SHAP, and M points are generated
for training the random forest in accordance with ER-SHAP-RF and for computing the
prior probability distribution P of features. Then, the random features are selected not from
the vector x, as it is done in ER-SHAP-RF, but from every vector hk with the probability
distribution P, k = 1, . . . , N. However, this algorithm is not studied because it can be
regarded as the combination of ERW-SHAP and ER-SHAP-RF, which are analyzed in detail.

Let us consider complexity of the models. If we assume that the complexity of the
black-box model is B(m, n), the random forest tree depth is d, and the number of trees is T,
then the complexity of the random forest training is O(T ·m ·M · log(M)), the complexity
of the random forest predicting is O(T · d ·M). The complexity of SHAP is O(2m · B(m, n)).
The complexity of ER-SHAP is O(2t · N · B(m, n)). It follows from the above that ER-SHAP
is more effective than SHAP when 2m > 2t · N or m > t + log2(N). The complexity of
ER-SHAP-RF is

O(2t · N · B(m, n) + T ·m ·M · log(M) · B(m, n) + T · d ·M).

It can be seen from the above that the complexity of the random forest training and
predicting does not sufficiently impact on the complexity of ER-SHAP-RF in comparison
with the complexity of ER-SHAP. The same can be said about ERW-SHAP.

5. Numerical Experiments

First, we consider several numerical examples for which training instances are ran-
domly generated. Each generated synthetic instance consists of 5 features. Two features are
generated as shown in Figure 4, and other features are uniformly generated in intervals
[−1, 1]. Each picture in Figure 4 corresponds to a certain location of instances of two
classes such that the instances of classes 0 and 1 are depicted by small triangles and crosses,
respectively. This generation corresponds to the case when the first two features may be
important. These features allow us to analyze the feature importance in accordance with
the data location and with the separating function. Other features are not important, and
they are used to generalize numerical experiments with synthetic data.

Separating functions in Figure 4 are obtained by means of SVM which can be regarded
as the black-box model. It used the RBF kernel whose parameter depends on a dataset
trained. The SVM allows us to obtain different separating functions by changing the kernel
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parameter. Figure 4a illustrates the linearly separating case. The specific class area in the
form of a stripe is shown in Figure 4b. A saw-based separating function is used in Figure 4c.
The class area in the form of a wedge is given in Figure 4d. A checkerboard with an attempt
of SVM to separate the checkerboard cages can be found in Figure 4e. For every generated
dataset from Figure 4, we compare SHAP with the proposed modifications.

Figure 4. Five synthetic datasets and the boundaries between classes provided by SVM in the form
of: (a) the linear separation; (b) a stripe; (c) a saw-based separating function; (d) a wedge; (e) the
checkerboard cages.

Measures for comparison: In order to compare the proposed modifications with the
original SHAP method, we use the concordance index C of pairs, which is defined as
the proportion of concordant pairs of the Shapley values divided by the total number of
possible evaluation pairs. Let φ∗i and φi be the Shapley values obtained by means of the
original SHAP method and one of its modifications (ER-SHAP, ERW-SHAP, ER-SHAP-RF),
respectively. Two pairs of the Shapley values (φi, φj) and (φ∗i , φ∗j ) are concordant if they
hold (φi > φj, φ∗i > φ∗j ) or (φi < φj, φ∗i < φ∗j ). In contrast to the well-known C-index
in survival analysis, the introduced concordance index compares predictions provided
by two methods. If the index is close to 1, then the models provide the same results. A
motivation for the concordance index introduction is that the Shapley values computed by
using original SHAP and the proposed modifications may be different. However, we are
interested in their relationship. If the original SHAP method gives the inequality φ∗i > φ∗j
for some i and j, then we are expecting to have φi > φj for the proposed method, but
not equalities φ∗i = φi and φ∗j = φj. It should be noted that original SHAP may provide
incorrect results. Therefore, the introduced concordance index should be viewed as a
desirable measure under condition of correct SHAP results.

We use the Kernel SHAP [10] in numerical experiments and compare obtained results
with it.

In spite of importance of the concordance index, we also use the normalized Euclidean
distance E between vectors (φ∗1 , . . . , φ∗m) and (φ1, . . . , φm). The distance shows how the
absolute Shapley values of two methods are close to each other. It is important to take into
account that the Shapley values in the original SHAP method satisfy the efficiency property
when φ∗1 + . . . + φ∗m = f (x)− f (∅). This property is not fulfilled for modifications because
they do not enumerate all subsets of features. Therefore, in order to consider the Shapley
values in the same scale, all values φi and φ∗i are normalized to be in interval [0, 1].
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5.1. ER-SHAP

First, we consider the results of the numerical experiments obtained by means of the
ER-SHAP with the SVM as a black-box model trained on the datasets shown in Figure 4.
The explained instance for the experiments has all identical features which are equal to
0.25. The concordance indices of the ER-SHAP as functions of the number of iterations
N for the numbers of the selected features t = 2 (the solid line) and t = 3 (the dashed
line) are illustrated in Figure 5, where pictures (a–e) correspond to pictures (a–e) shown
in Figure 4. It can be seen from Figure 5 that the concordance index increases with N on
average. This implies that the ER-SHAP provides results comparable with the SHAP. It
can be also seen from the pictures that the concordance index is significantly larger for
t = 3 in comparison to the case of t = 2. This observation is obvious because the large
number of selected features in each iteration brings the modification closer to the original
SHAP method. Though, one can see from Figure 5b that the case t = 2 provides better
concordance index by N ≥ 7.

Figure 5. Concordance indices of ER-SHAP as functions of the number of iterations N for t = 2 (the
solid line) and 3 (the dashed line) for trained SVMs and five datasets depicted in corresponding
Figure 4a–e.

Figure 6 illustrates how the Euclidean distances between the ER-SHAP and SHAP as
functions of the number of iterations N for t = 2 (the solid line) and 3 (the dashed line)
decrease with N. We again consider five training sets, shown in Figure 4.

In order to explicitly illustrate how the Shapley values φ∗i and φi obtained by the
SHAP and ER-SHAP, respectively, are close to each other, we show the Shapley values for
all five cases in Figure 7. It can be seen that despite the difference in the absolute values,
the Shapley values indicate to the same important features.
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Figure 6. Euclidean distances between ER-SHAP and SHAP as functions of the number of iterations
N for t = 2 (the solid line) and 3 (the dashed line) for trained SVMs and five datasets depicted in
corresponding Figure 4a–e.

Figure 7. Shapley values obtained by means of SHAP and ER-SHAP for all features of five datasets
depicted in corresponding Figure 4a–e and trained SVMs as black-boxes.
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5.2. ERW-SHAP

To study the ERW-SHAP, the features of the explained instance are noised by using
the normal distribution of noise with the zero expectation and standard deviations 0.01 and
0.1. The weights of the generated instances hi are defined by

wi = exp
(
−‖hi − x‖2

)
. (8)

We consider the similar results of the numerical experiments obtained by means of the
ERW-SHAP with the SVM as a black-box model trained on the datasets shown in Figure 4
with the same explained instance. The concordance indices of the ERW-SHAP as functions
of N for t = 2 (the solid line) and t = 3 (the dashed line) are illustrated in Figure 8, where
pictures (a–e) correspond to pictures (a–e) shown in Figure 4. The standard deviation of
the normal distribution generating noise is 0.01. If we compare the concordance indices
for the ERW-SHAP (Figure 8) and for the ER-SHAP (Figure 5), then it is obvious that
the ERW-SHAP provides better results in comparison to the ERW-SHAP for most of the
datasets.

Figure 8. Concordance indices of ERW-SHAP as functions of N for t = 2 (the solid line) and 3 (the
dashed line) and for five datasets depicted in corresponding Figure 4a–e and trained SVMs.

At the same time, the Euclidean distances between the SHAP and ERW-SHAP slightly
differ from the same distances between the SHAP and ER-SHAP. This follows from Figure 9
where the Euclidean distances between the ERW-SHAP and SHAP as functions of N for
t = 2 (the solid line) and 3 (the dashed line) are presented for the above datasets.

To illustrate how the Shapley values φ∗i and φi obtained by the SHAP and ERW-SHAP,
respectively, are close to each other, we show the Shapley values for the five cases in
Figures 10 and 11. Figures 10 and 11 provide results under the condition that the normal
distribution of the generated noise has the standard deviations 0.1 and 0.01, respectively.
We again observe that the ERW-SHAP can be regarded as a good approximation of the
SHAP because the Shapley values of the ERW-SHAP and SHAP are very close to each other.



Algorithms 2022, 15, 431 15 of 27

Figure 9. Euclidean distances between ERW-SHAP and SHAP as functions of N for t = 2 (the solid
line) and 3 (the dashed line) for five datasets depicted in corresponding Figure 4a–e and trained
SVMs as black-boxes.

Figure 10. Shapley values obtained by means of SHAP and ERW-SHAP for all features of five
datasets depicted in corresponding Figure 4a–e and trained SVMs under condition of using the
normal distribution of feature changes with the standard deviation 0.1
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Figure 11. Shapley values obtained by means of SHAP and ERW-SHAP for all features of five
datasets depicted in corresponding Figure 4a–e and trained SVMs under condition of using the
normal distribution of feature changes with the standard deviation 0.01.

5.3. ER-SHAP-RF

We again study the modification by using the datasets shown in Figure 4. The result
shows that the ER-SHAP-RF outperforms the ER-SHAP as well as the ERW-SHAP for
most of the datasets. Indeed, if we compare the concordance indices for the ER-SHAP-RF
(Figure 12) with the ERW-SHAP (Figure 8) and ER-SHAP (Figure 5), then we see that all
the examples provide better results. In contrast to the concordance indices, the Euclidean
distances shown in Figure 13 demonstrate worse results. At the same time, the Shapley
values given in Figure 14 almost coincide with the corresponding values obtained by means
of the ERW-SHAP (Figure 11). It should be noted that a more accurate tuning of the random
forest might provide outperforming results.

Let us summarize the numerical results obtained on the synthetic data for the models
ER-SHAP, ERW-SHAP, and ER-SHAP-RF. First, we compare the C-indices corresponding
to the models, which are depicted in Figures 5, 8, and 12. It can clearly be seen from the
results that the ER-SHAP-RF outperforms the ER-SHAP as well as the ERW-SHAP for
all five datasets. The ERW-SHAP outperforms the ER-SHAP for the datasets depicted
in Figure 4b,c,e. However, the ERW-SHAP is inferior to the ER-SHAP for the datasets
depicted in Figure 4a,d. Moreover, Figure 8 shows that the C-index of the ERW-SHAP
behaves unstably. However, if we compare the ER-SHAP and ERW-SHAP using the
Euclidean distances between the results provided by these models and the SHAP, then
we can conclude that the ERW-SHAP outperforms the ER-SHAP for all the datasets. It is
interesting to point out that the ER-SHAP-RF outperforms the ERW-SHAP only for the first
dataset (see Figure 4a) if we consider the Euclidean distances. However, we have mentioned
that the Euclidean distance cannot be viewed as the best measure for a comparison of the
explainable models. Therefore, we can conclude that the ER-SHAP-RF provides the best
results, though this model requires generating neighbors and training the random forest.
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Figure 12. Concordance indices of ER-SHAP-RF as functions of N for t = 2 (the solid line) and 3 (the
dashed line) for five datasets depicted in corresponding Figure 4a–e and trained SVMs

Figure 13. Euclidean distances between ER-SHAP-RF and SHAP as functions of N for t = 2 (the solid
line) and 3 (the dashed line) for five datasets depicted in corresponding Figure 4a–e and trained SVMs.
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Figure 14. Shapley values obtained by means of SHAP and ER-SHAP-RF for all features of five
datasets depicted in corresponding Figure 4a–e and trained SVMs.

5.4. Boston Housing Dataset

Let us consider the real data called the Boston Housing dataset. It can be obtained from
the StatLib archive (http://lib.stat.cmu.edu/datasets/boston, accessed on 2 November
2022). The Boston Housing dataset consists of 506 instances such that each instance is
described by 13 features.

The heatmap reflecting the concordance index of the ER-SHAP for the Boston Housing
dataset is shown in Figure 15. Each element at position (i, j), where i and j are the numbers
of the row and column, respectively, indicates the value of the concordance index. Each row
corresponds to the number of iterations N, and each column corresponds to the number
of selected features t. It can be seen from Figure 15 that the concordance index increases
with N and t. This implies that the ER-SHAP provides results coinciding with the SHAP
by rather large numbers of iterations N. Figure 16 illustrates how the computation time
τSHAP of the SHAP exceeds the computation time τER-SHAP of the ER-SHAP. The heatmap
shows the ratio τER-SHAP/τSHAP. One can see, from Figure 16, a clear advantage of using
the ER-SHAP from the computational point of view.

Figure 17 shows the heatmap of the concordance index of the ERW-SHAP for the
Boston Housing dataset. It is clearly seen from Figure 17 that the introduction of weights
and generated instances significantly improves the approximation.

The Shapley values obtained by means of the ER-SHAP and SHAP as well as the
ERW-SHAP and SHAP are shown in Figures 18 and 19, respectively. One can see from
Figures 18 and 19 that the ERW-SHAP can be viewed as a better approximation of the
SHAP because the corresponding bars almost coincide, as shown in Figure 19. It should
be noted that the Shapley values provided by the ER-SHAP also behave like values of the
SHAP (see Figure 18), but they do not coincide for the most important features.

http://lib.stat.cmu.edu/datasets/boston
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Figure 15. The heatmap reflecting the concordance index C obtained by ER-SHAP for the Boston
Housing dataset.

Figure 16. The heatmap illustrating the relationship between computation times of SHAP and
ER-SHAP for the Boston Housing dataset.

Figure 17. The heatmap reflecting the concordance index C obtained by ERW-SHAP for the Boston
Housing dataset.
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Figure 18. Shapley values obtained by means of SHAP and ER-SHAP for the Boston Housing dataset.

Figure 19. Shapley values obtained by means of SHAP and ERW-SHAP for features of the Boston
Housing dataset under condition of using the normal distribution of feature changes with the
standard deviation 0.1.

Figures 20 and 21 illustrate the heatmaps of the concordance index of the ER-SHAP-RF
for the Boston Housing dataset. They are obtained without using the temperature scaling
in accordance with (7) and with this calibration method, respectively. It is interesting to
observe from Figures 20 and 21 that the use of the calibration leads to a more contrasting
heatmap and to an obvious improvement in the approximation quality.

Figure 20. The heatmap reflecting the concordance index C obtained by ER-SHAP-RF for the Boston
Housing dataset without using the temperature scaling.
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Figure 21. The heatmap reflecting the concordance index C obtained by ER-SHAP-RF for the Boston
Housing dataset using the temperature scaling.

5.5. Breast Cancer Dataset

The next real dataset is the Breast Cancer Wisconsin (Diagnostic) dataset. It can be
found in the well-known UCI Machine Learning Repository (https://archive.ics.uci.edu,
accessed on 2 November 2022). The Breast Cancer dataset contains 569 instances such
that each instance is described by 30 features. For the classes of the breast cancer diagnosis,
the malignant and the benign are assigned by classes 0 and 1, respectively. We consider
the corresponding model in the framework of the regression with outcomes in the form of
probabilities from 0 (malignant) to 1 (benign).

The heatmaps given in Figures 22 and 23 are similar to the same heatmaps obtained for
the Boston Housing dataset (Figures 15 and 16). It is interesting to observe from Figure 23
that there are N and t such that the ratio τER-SHAP/τSHAP is larger 1. This implies that the
SHAP is computationally simpler in comparison to the ER-SHAP. However, these cases
take place only for large values N and t.

Figure 22. The heatmap reflecting the concordance index C obtained by ER-SHAP for the Breast
Cancer dataset.

https://archive.ics.uci.edu
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Figure 23. The heatmap illustrating the relationship between computation times of SHAP and
ER-SHAP for the Breast Cancer Housing dataset.

At first glance, it is difficult to evaluate from Figure 24 whether the ERW-SHAP
provides better results than the ER-SHAP. Figure 24 shows the heatmap of the concordance
index of the ERW-SHAP for the Breast Cancer dataset. However, we can see that the legend
in Figure 24 is changed in the interval [0.4, 0.95], whereas the legend in Figure 22 is changed
in the interval [0.4, 0.9]. This implies that the ERW-SHAP outperforms the ER-SHAP in this
numerical example.

Figure 24. The heatmap reflecting the concordance index C obtained by ERW-SHAP for the Breast
Cancer dataset.

The Shapley values for all the features of the Breast Cancer dataset, which are ob-
tained by means of the ER-SHAP and SHAP, are shown in Figure 25. The similar values
obtained by means of the ERW-SHAP and SHAP are shown in Figure 26. One can see
from Figures 25 and 26 that the Shapley values obtained by means of the ERW-SHAP better
approximate the SHAP Shapley values. For example, if we look at the feature “worst
radius”, which is important due to the original SHAP method, then the ER-SHAP provides
the incorrect result, whereas the ERW-SHAP is totally consistent with the SHAP.
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Figure 25. Shapley values obtained by means of SHAP and ER-SHAP for features of the Breast Cancer
dataset.

Figure 26. Shapley values obtained by means of SHAP and ERW-SHAP for features of the Breast
Cancer dataset under condition of using the normal distribution of feature changes with the standard
deviation 0.1.

Figures 27 and 28 illustrate the heatmaps of the concordance index of the ER-SHAP-RF
for the Breast Cancer dataset. They show results similar to the results obtained for the
Boston Housing dataset demonstrated in Figures 20 and 21, respectively. This implies that
the use of “pre-training” in the form of the random forest combined with the calibration
method leads to a better approximation.

Figure 27. The heatmap reflecting the concordance index C obtained by ER-SHAP-RF for the Breast
Cancer dataset without using the temperature scaling.

We also compare the proposed models with the SHAP and Kernel SHAP by using the
following datasets. The California Housing dataset obtained from the StatLib repository
consists of 20,640 instances such that each instance is described by eight features. It can
be found in https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing, accessed on 2
November 2022. The KDD Coil 7 dataset consists of 282 instances such that each instance is
described by 11 features. The PBC dataset has 276 instances with 18 features. The Plasma
Retinol dataset has 315 instances with 13 features. The Cholesterol dataset consists of

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing
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297 instances such that each instance is described by 13 features. The datasets KDD Coil 7,
PBC, Plasma Retinol, and Cholesterol can be found at https://www.openml.org/search?
type=data, accessed on 2 November 2022. We compare the proposed models with the
Kernel SHAP and with the SHAP on these datasets by using the C-index. The number of
the iteration N and the number of the selected features t are taken as 20 and 3, respectively,
for all the datasets. The corresponding results are shown in Tables 1 and 2. It follows from
Tables 1 and 2 that the ER-SHAP, ERW-SHAP, and ER-SHAP-RF provide almost the same
results as the Kernel SHAP and SHAP because the values of the C-index are close to 1.

Figure 28. The heatmap reflecting the concordance index C obtained by ER-SHAP-RF for the Breast
Cancer dataset with using the temperature scaling.

Table 1. Comparison of the proposed models with Kernel SHAP for several datasets.

Dataset C-Index with Kernel SHAP

ER-SHAP ERW-SHAP ER-SHAP-RF

California Housing 0.990 0.996 1.000

KDD Coil 7 0.876 0.980 0.982

PBC 0.926 0.908 0.948

Plasma Retinol 0.954 0.954 0.948

Cholesterol 0.926 0.944 0.974

Table 2. Comparison of the proposed models with SHAP for several datasets.

Dataset C-Index with SHAP

ER-SHAP ERW-SHAP ER-SHAP-RF

California Housing 0.974 0.984 0.994

KDD Coil 7 0.872 0.978 0.978

PBC 0.908 0.886 0.934

Plasma Retinol 0.927 0.932 0.944

Cholesterol 0.922 0.938 0.970

6. Conclusions

It is important to note that only three modifications of the ensemble-based SHAP have
been presented. At the same time, many additional modifications of the general approach

https://www.openml.org/search?type=data
https://www.openml.org/search?type=data
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based on constructing the ensemble of SHAPs can be developed following the proposed
modifications and the idea of the ensemble-based approximation.

First of all, the model of the feature selection used in the ER-SHAP-RF for “pre-
training” can be changed. There are many methods solving the feature selection problem.
Moreover, simple explanation methods can also be applied to the preliminary selection of
the important features and to computing their probability distribution.

Second, various rules different from averaging can be applied to combining the results
of the SHAPs, for example, the largest (smallest) Shapley values can be computed for
providing pessimistic (optimistic) decisions.

The ensemble-based approach can be applied to an explanation of the classification
as well as regression black-box models. It gives many opportunities for developing new
methods which can be viewed as directions for further research. The proposed approach
can be applied to local and global explanations. However, its main advantage is that it
significantly reduces the computation time for solving the explanation problem.

Author Contributions: Conceptualization, L.U. and A.K.; methodology, L.U.; software, A.K.; valida-
tion, L.U. and A.K.; formal analysis, L.U.; investigation, A.K.; resources, L.U.; data curation, A.K.;
writing—original draft preparation, L.U.; writing—review and editing, A.K.; visualization, A.K.;
supervision, L.U.; project administration, L.U.; funding acquisition, L.U. All authors have read and
agreed to the published version of the manuscript.

Funding: The research is partially funded by the Ministry of Science and Higher Education of
the Russian Federation as part of the World-class Research Center program: Advanced Digital
Technologies (contract No. 075-15-2020-934 dated 17 November 2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their appreciation to the anonymous referees
whose very valuable comments have improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LIME Local Interpretable Model-Agnostic Explanation
SHAP SHapley Additive exPlanations
ER-SHAP Ensemble of Random SHAPs
ERW-SHAP Ensemble of Random Weighted SHAPs
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