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Abstract: This study presents a new variant of the hybrid block methods (HBMs) for solving initial
value problems (IVPs). The overlapping hybrid block technique is developed by changing each
integrating block of the HBM to incorporate the penultimate intra-step point of the previous block.
In this paper, we present preliminary results obtained by applying the overlapping HBM to IVPs
of the first order, utilizing equally spaced grid points and optimal points that maximize the local
truncation errors of the main formulas at the intersection of each integration block. It is proven that
the novel method reduces the local truncation error by at least one order of the integration step size,
O(h). In order to demonstrate the superiority of the suggested method, numerical experimentation
results were compared to the corresponding HBM based on the standard non-overlapping grid. It is
established that the proposed method is more accurate than HBM versions of the same order that
have been published in the literature.

Keywords: overlapping grid; optimized hybrid block method; nonlinear initial value problems

1. Introduction

This study presents a variation of the hybrid block methods (HBMs) for integrating
systems of initial value problems of the first order (IVPs). It is now well established that
HBMs are effective at solving IVPs that may or may not be stiff. Researchers are now
concentrating on enhancing these approaches to increase their efficacy and extend them to
other forms of differential equations, such as boundary value problems. Several authors
have developed optimised hybrid block methods in recent years by selecting intra-step
points that minimise the local truncation error of one or more of the formulas in the set of
hybrid block methods (see, for instance, [1–5]). The hybrid block methods were applied
with an adaptive strategy in [6,7] in an effort to increase their efficiency and circumvent the
difficulties associated with short step sizes. Other researchers (see [8,9]) have implemented
the optimised hybrid block methods in nonlinear partial differential equations using cubic
spline basis functions. In this study, the hybrid block method is modified by overlapping
adjacent integration blocks at the last intra-step point. This adjustment produces a A-
stable version with a truncation error at least O(h) greater than the comparable HBM
without overlap.

The performance of the proposed overlapping HBM is tested utilising an error analysis
of numerically challenging solutions to different nonlinear IVPs. In order to determine the
approach’s robustness, it is also evaluated on IVPs with extreme stiffness.

The remainder of this paper is organised into four sections. The derivation of the
overlapping hybrid block methods is covered in Section 2. Section 3 examines the error
and stability properties of the proposed method. Section 4 presents the experimental and
numerical results, and Section 5 provides a summary and conclusion.
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2. Derivation of the Method

Consider the initial value problem defined on t ∈ [0, T] by

y′(t) = f (t, y(t)), y(t0) = y0 (1)

where f (t, y) is a general, continuous nonlinear function.
Let h be a prescribed step size on a mesh I defined by

I = {tn : t0 < t1 < . . . < tN = T}.

We choose m + 1 collocation points, defined by

tn+pi = t0 + hpi, i = 0, 1, 2, . . . , m

in the first interval [t0, t1]. For the intervals, [tn, tn+1], where 1 ≤ n ≤ N − 1, we choose
m + 2 collocation points:

{tn−p1 = tn − hp1}
⋃{

tn+pi = tn + hpi : i = 0, 1, 2, . . . , m
}

.

The parameters pi are called collocation parameters, and they satisfy the condition

0 = p0 < p1 < p2 < · · · < pm−2 < pm−1 < pm = 1.

An illustrative representation of the grid is shown in Figure 1, for the special case
when m = 3 and N = 4. It is worth noting that, for n > 0, the grid In overlaps with one
grid point (tn−1+pm−1 = tn−p1) from the previous grid In−1. For this reason, the method
will be referred to as the overlapping hybrid block method.

h h h h

I1 = [t0, t1]

I3 = [t2−p1 , t3]

I2 = [t1−p1 , t2]

I4 = [t3−p1 , t4]

t0 tp1 tp2 t1

t2t1+p1 t1+p2

t3

t4t3+p2t3+p1

t2+p1 t2+p2

Figure 1. Illustration of the overlapping grid when N = 4 and m = 3.

In the non-overlapping block I1, we suppose that the solution can be approximated by
the polynomial:

y(t0 + sh), 0 ≤ s ≤ 1, (2)

that satisfies the collocation conditions:

y′(tpi ) = fpi . (3)

By the Lagrange interpolation formula, the function y′(t0 + sh) can be approximated as

y′(t0 + sh) =
m

∑
j=0

y′(tpj)`j(s) (4)
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where

`j(s) =
m

∏
i=0,i 6=j

s− pi
pj − pi

.

Using the collocation Equation (3), we obtain

y′(t0 + sh) =
m

∑
j=0

fpj`j(s) (5)

which is integrated from 0 to pi to give

ypi = y0 + h
m

∑
j=0

βi,j fpj (6)

where
βi,j =

∫ pi

0
`j(τ)dτ, j = 0, 1, . . . , m.

The matrix form of (6) is

A1Y1 = A0Y0 + h(B0F0 + B1F1) (7)

where

A1 =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
0 0 0 · · · 1

, A0 =


1 0 0 · · · 0
1 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
1 0 0 · · · 0



B0 =


β1,0 0 0 · · · 0
β2,0 0 0 · · · 0
β3,0 0 0 · · · 0

...
...

...
. . .

βm,0 0 0 · · · 0

, B1 =


β1,1 β1,2 β1,3 · · · β1,m
β2,1 β2,2 β2,3 · · · β2,m
β3,1 β3,2 β3,3 · · · β3,m

...
...

...
. . .

βm,1 βm,2 βm,3 · · · βm,m


and

F0 =
[

f0, f−p1 , . . . , f−pm−1

]
, F1 =

[
fp1 , fp2 , . . . , fpm

]
,

Y0 =
[
y0, y−p1 , . . . , y−pm−1

]
, Y1 =

[
yp1 , yp2 , . . . , ypm

]
.

In the block In = [tn, tn+1] (n > 0), we consider the collocation parameters

−p1 < 0 < p1 < p2 < · · · < pm−1 < pm

and assume the following collocation conditions:

y′(tn+pi ) = fn+pi , y′(tn−p1) = fn−p1 (8)

for i = 0, 1, . . . , m. By the Lagrange interpolation formula, the function y′(tn + sh) can be
approximated as

y′(tn + sh) =
m

∑
j=−1

y′(tn+pj)`j(s). (9)

Integrating from 0 to pi gives

yn+pi = yn + h
m

∑
j=−1

β̂i,j fn+pj (10)
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where
β̂i,j =

∫ pi

0
`j(τ)dτ, j = −1, 0, 1, . . . , m.

Equation (10) can be written in matrix form as

A1Yn+1 = A0Yn + h(B̂0Fn + B̂1Fn+1) (11)

where

Yn+1 =


yn+p1

yn+p2
...

yn+pm

, Yn =


yn

yn−p1
...

yn−pm−1

, Fn+1 =


fn+p1

fn+p2
...

fn+pm

, Fn =


fn

fn−p1
...

fn−pm−1



B̂0 =


β̂1,0 β̂1,−1 · · · 0
β̂2,0 β̂2,−1 · · · 0

...
...

. . .
...

β̂m,0 β̂m,−1 · · · 0

 B̂1 =


β̂1,1 β̂1,2 · · · β̂1,m
β̂2,1 β̂2,2 · · · β̂2,m

...
...

. . .
...

β̂m,1 β̂m,2 · · · β̂m,m


3. Analysis of the Method

In this section, we present the truncation error and stability properties of the proposed
overlapping hybrid block method.

3.1. Local Truncation Error

Theorem 1. The local truncation error, in the integration block [tn, tn+1], for the hybrid block
method defined as

yn+pi = yn + h
m

∑
j=0

βi,j fn+pj , βi,j =
∫ pi

0
`j(τ)dτ (12)

is given by

Li[z(tn); h] =
hm+2

(m + 2)!

[
pm+2

i − (m + 2)
m

∑
j=0

βi,j pm+1
j

]
z(m+2)(tn) +O(hm+3) (13)

for i = 1, 2, . . . , m, when considering the grid points:

tn < tn+p1 < tn+p1 < · · · < tn+pm .

Proof. Given a sufficiently differentiable function z(t), the truncation error of the hybrid
block method can be written in terms of a linear operator Li as

Li[z(tn); h] = z(tn + hpi)− z(tn)− h
m

∑
j=0

βi,jz′(tn + hpj), i = 1, 2, . . . , m. (14)

Using Taylor series to expand (14) gives

Li[z(tn); h] =
K

∑
k=1

pk
i

k!
hkz(k)(tn)−

K

∑
k=1

hkk
k!

m

∑
j=0

βi,j pk−1
j z(k)(tn) + O(hK+1)

=
m+1

∑
k=2

hk

k!

[
pk

i − k
m

∑
j=0

βi,j pk−1
j

]
z(k)(tn)

+
K

∑
k=m+2

hk

k!

[
pk

i − k
m

∑
j=0

βi,j pk−1
j

]
z(k)(tn) +O(hK+1)

(15)
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where K ≥ m + 2 is a positive integer.
Using the identity:

m

∑
j=0

`j(x) = 1

we note that
m

∑
j=0

βi,j =
m

∑
j=0

∫ pi

0
`j(x)dx = pi

and
m

∑
j=0

βi,j pk−1
j =

m

∑
j=0

(∫ pi

0
`j(x)dx

)
pk−1

j =
pk

i
k

, for k = 2, . . . , m + 1. (16)

In a related study on implicit Runge–Kutta processes, the identity (16) was also
reported by [10]. Substituting the identities in (15) gives the result in (13).

As an immediate consequence, we obtain the following result, for the truncation error
in the integration blocks [tn, tn+1] (n > 0):

Corollary 1. The local truncation error, in the integration block [tn, tn+1], for the one-point
overlapping hybrid block method:

yn+pi = yn + h
m

∑
j=−1

β̂i,j fn+pj , β̂i,j =
∫ pi

0
`j(τ)dτ (17)

is

Li[z(tn); h] =
hm+3

(m + 3)!

[
pm+3

i − (m + 3)
m+1

∑
j=0

β̂i,j−1 pm+2
j−1

]
z(m+3)(tn) +O(hm+4). (18)

Proof. The proof is similar to the one for Theorem 1, given above, and uses the identity:

m+1

∑
j=0

β̂i,j−1 pk−1
j−1 =

m+1

∑
j=0

(∫ pi

0
`j−1(x)dx

)
pk−1

j−1 =
pk

i
k

, for k = 2, . . . , m + 2

after considering the m + 2 grid points:

tn−p1 < tn < tn+p1 < tn+p1 < · · · < tn+pm .

By minimizing the local truncation error of the main method at tn+1 (i.e., pm = 1), it
was shown in [11] that the optimal intra-step points are the roots of the polynomial:

Qi(p) =
1

i(i + 1)

i

∑
k=1

k(−1)i+k pk−1(i + k)!
(k!)2(i− k)!

(19)

which is proportional to the first derivative of the shifted Legendre polynomials of degree
m given by

P∗i (t) =
i

∑
k=0

(−1)i+ktk(i + k)!
(k!)2(i− k)!

. (20)

The shifted Legendre polynomials are defined in [0, 1] and have the property:

P∗i (1− t) = (−1)iP∗i (t), i = 0, 1, 2, . . . . (21)



Algorithms 2022, 15, 427 6 of 16

Furthermore, P∗i (t) has i distinct roots in (0, 1). By expanding (19), we obtain the
polynomials that give optimal intra-step points with m = 2, 3, 4, 5 as follows:

Q2(p) = 2p− 1,

Q3(p) = 5p2 − 5p + 1,

Q4(p) = 14p3 − 21p2 + 9p− 1,

Q5(p) = 42p4 − 84p3 + 56p2 − 14p + 1,

Q6(p) = 132p5 − 330p4 + 300p3 − 120p2 + 20p− 1.

As a consequence of Equation (21), the optimal roots (intra-step points) have the form{
p1, p2, . . . , . . . , p m

2 −
1
2
, 1− p m

2 −
1
2
, . . . , 1− p2, 1− p1

}
when m is odd and{

p1, p2, . . . , . . . , p m
2 −1,

1
2

, 1− p m
2 −1, . . . , 1− p2, 1− p1

}
when m is even.

The truncation errors for overlapping and non-overlapping HBM algorithms with
equally spaced and optimally spaced intra-step points are compared in Table 1 for m = 3, 4, 5.
The table reveals that the truncation errors of the overlapping HBM are at least h orders
of magnitude smaller than those of the non-overlapping HBM. This is consistent with the
observations made in the preceding theorems regarding the explicit formulas for local
truncation errors.

Table 1. Truncation errors for the overlapping and non-overlapping HBM with equally spaced and
optimal intra-step points.

Equally Spaced Optimal Points

Li Non-Overlapping Overlapping Non-Overlapping Overlapping

p1 − 19y(5)(tn)h5

174960 − 11y(6)(tn)h6

1049760 − y(5)(tn)h5

6000
√

5
(4−3

√
5)y(6)(tn)h6

450000

m
=

3

p2 − y(5)(tn)h5

21870
y(7)(tn)h7

1653372
y(5)(tn)h5

6000
√

5
(1+ 3

√
5)y(6)(tn)h6

450000

p3 − y(5)(tn)h5

6480 − y(6)(tn)h6

38880 − y(7)(tn)h7

1512000 − y(7)(tn)h7

1512000

p1
3y(6)(tn)h6

655360
271y(7)(tn)h7

990904320
y(6)(tn)h6

493920
(49−8

√
21)y(7)(tn)h7

145212480

m
=

4 p2
y(6)(tn)h6

368640
y(7)(tn)h7

12386304 − y(6)(tn)h6

322560
(−14+

√
21)y(7)(tn)h7

27095040

p3
3y(6)(tn)h6

655360
13y(7)(tn)h7

36700160
y(6)(tn)h6

493920
(49+

√
21)y(7)(tn)h7

145212480

p4 − y(7)(tn)h7

1935360 − y(7)(tn)h7

1935360 − y(9)(tn)h9

1422489600 − y(9)(tn)h9

1422489600

p1 − 863y(7)(tn)h7

4725000000 − 13y(8)(tn)h8

1750000000 −
(√

147−30
√

7y(7)(tn)
)

h7

160030080

(
−12
√

147−30
√

7+ 26
√

7+ 13
)

y(8)(tn)h8

13442526720

p2 − 37y(7)(tn)h7

295312500 − y(8)(tn)h8

295312500

√
147+ 30

√
7y(7)(tn)h7

160030080 6.05861× 10−9y(8)(tn)h8

m
=

5

p3 − 29y(7)(tn)h7

175000000 − 13y(8)(tn)h8

1750000000 −
(√

147+ 30
√

7y(7)(tn)
)

h7

160030080 −1.05281× 10−8y(8))h8

p4 − 8y(7)(tn)h7

73828125
13y(9)(tn)h9

27685546875

√
147−30

√
7y(7)(tn)h7

160030080

(
12
√

147−30
√

7+ 2
√

7+ 1
)

y(8)(tn)h8

13442526720

p5 − 11y(7)(tn)h7

37800000 − 11y(8)(tn)h8

378000000 − y(11)h11

2112397056000 − y(11)(tn)h11

2112397056000
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3.2. Zero Stability

In the limit when h → 0, the zero stability of the hybrid methods for all blocks
(n = 0, 1, . . . , N− 1) can be analysed from the zeros of the polynomial that is computed from

ρ(λ) = det[A1λ− A0]. (22)

Zero stability is confirmed if the roots of ρ(λ) satisfy |λj| ≤ 1 and all the roots with
|λj| = 1 have a multiplicity of 1. The characteristic polynomial for the hybrid block methods
considered in this study is

ρ(λ) = λm(λ− 1).

Thus, the proposed overlapping hybrid block methods are zero stable for any selection
of intra-step points. In a related investigation, Reference [1] also validated the zero stability
of the HBMs.

3.3. Absolute Stability

If errors introduced in one time step do not accumulate in successive time steps,
the general stability of a numerical approach is confirmed. A region of absolute stability
is defined as the set of points z ∈ C such that the roots of the characteristic equation
associated with the test equation y′ = λy (λ < 0) lie within a unit circle. For hybrid block
methods, the absolute stability in the first non-overlapping interval is well established (see,
for example, [5]). When this test problem is applied to the overlapping grid methods (11),
the following matrix equation is obtained:

Yn+1 = R(z)Yn (23)

where z = λh and R(z) is a matrix equation given by

R(z) = (A1 − zB̂1)
−1(A0 + zB̂0). (24)

By finding the eigenvalues of the matrix R(z), one can derive the stability function
H(z). Figure 2 depicts, for illustrative purposes, the absolute stability region of the pro-
posed overlapping grid hybrid block method created from optimally spaced and equally
spaced intra-step points for m = 3. Given that the shaded area encompasses the entirety
of the left half-plane, the absolute stability of the overlapping HBM is confirmed for both
equally spaced and optimal intra-step points.

-100 -50 0 50 100
-100

-50

0

50

100

(a)

-100 -50 0 50 100
-100

-50

0

50

100

(b)

Figure 2. Stability regions for the overlapping hybrid block method. (a) Equally spaced intra-
step points. (b) Optimal intra-step points.
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4. Numerical Experimentation and Results

In this section, we implement the proposed overlapping hybrid block method to
generate numerical solutions for problems that are typically difficult to solve numerically
using standard methods. Before employing the hybrid block approach to integrate the
nonlinear IVPs, they are first linearized. For a general nonlinear system of first-order IVPs,
the linearisation method is detailed below.

Consider the system of s nonlinear first-order IVPs of the form

y′k = fk(t, y1, . . . , ys) = Lk(t, y1, . . . , yk−1, yk+1, . . . , ys)yk

+Nk(t, y1, . . . , yk−1, yk, yk+1 . . . , ys)
(25)

where Lk(· · · ) is the coefficient of the state variable yk, and Nk(· · · ) is the component of
the k-th equation that is not linear in yk, for k = 1, 2, . . . , s. The hybrid block method is
sequentially applied iteratively to each equation in the system (25), with the solution of
the k-th equation used immediately when solving the (k + 1)th equation. Consequently,
the iterative scheme is developed as

y′k,r+1 = Lk(t, y1,r+1, . . . , yk−1,r+1, yk+1,r, . . . , ys,r)yk,r+1

+Nk(t, y1,r+1, . . . , yk−1,r+1, yk,r, . . . , ys,r).
(26)

This linearization method employs the Gauss–Seidel method for decoupling and solv-
ing large systems of nonlinear equations. The method has been adapted from the waveform
relaxation method that has been reported in the literature (see, for example, [12,13]).

Noting that (26) is linear, it can be applied to the HBM method after setting

f (t, y) = φ(t)y + ψ(t)

where φ = L(· · · ) and ψ = N (· · · ) are known functions of t. As a result, the matrix form
of the HBM, (11), becomes

A1Yn+1 = A0Yn + hB̂0(φn
(d)Yn + ψn) + hB̂1(φn+1

(d)Yn+1 + ψn+1) (27)

or
PnYn+1 = Qn (28)

where

Pn = A1 − hB̂1φn+1
(d),

Qn =
(

A0 + hB̂0φn
(d)
)

Yn + h
(

B̂0ψn + B̂1ψn+1
)

ψn =
[
ψn, ψn−p1 , . . . , ψn−pm−1

]T , ψn+1 =
[
ψn+p1 , ψn+p2 , . . . , ψn+pm

]T ,

φ
(d)
n =


φn

φn−p1

φn−pm−1

, φ
(d)
n+1 =


φn+p1

φn+p2

φn+pm


All numerical examples in this study were solved using (28) applied iteratively over

20 iterations for each integration block [tn, tn+1]. Through numerical experimentation,
it was determined that sufficient convergence would have occurred prior to the 20th
iteration level. All numerical results presented in this study were generated by iterating
the scheme (28) up to r = 20 for all n values. In light of the linearisation of nonlinear
IVPs via partitioning, the hybrid block method defined by (28) is referred to as the linear
partitioning overlapping hybrid block method. The method is computationally efficient
and easy to implement. Due to the lack of derivatives and Jacobian matrices, it circumvents
the challenges of Newton-based iterative techniques that rely on derivatives.
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In the examples, given below, the linear partitioning overlapping hybrid block method
was applied using equally spaced and the shifted Legendre-based optimal intra-step points.
In both cases, m = 3 and m = 5 were used for illustrative purposes. The intra-step points
corresponding to these values of m are given in Table 2 below.

Table 2. Intra-step points used in numerical experimentation.

m Equidistant Optimal Points

3 1
3

,
2
3

1
10

(5±
√

5)

5 1
5

,
2
5

,
3
5

,
4
5

1
2

(
1±

√
1
21

(
7± 2

√
7
))

Using m = 3 as an example, the matrix parameters for the optimal overlapping hybrid
block approach are as follows:

B0 =


√

5+ 11
120 0 0

11−
√

5
120 0 0

1
12 0 0

, B1 =


25−
√

5
120

25−13
√

5
120

√
5−1

120

13
√

5+ 25
120

√
5+ 25
120

−
√

5−1
120

5
12

5
12

1
12


which is applied on the scheme:

A1Y1 = A0Y0 + h(B0F0 + B1F1) (29)

in the first interval [t0, t1] and

B̂0 =


11
√

5+ 61
600

−5
√

5−9
2200 0

49−11
√

5
600

5
√

5+ 9
2200 0

1
12 0 0

, B̂1 =


55−4

√
5

300
137−65

√
5

600
37
√

5−61
6600

17
√

5+ 35
150

5
√

5+ 113
600

−37
√

5−49
6600

5
12

5
12

1
12


which is applied in [tn, tn+ 1], for the overlapping hybrid block scheme:

A1Y1 = A0Y0 + h(B̂0F0 + B̂1F1) (30)

for n = 1, 2, . . . , N − 1. The proposed overlapping grid approach is referred to as the over-
lapping optimal hybrid block method (OOHBM) for the purposes of this paper. The origi-
nal optimal hybrid block method (OHBM), without overlap, is constructed by applying
Equation (29) to all the integration blocks [tn, tn+1] for n = 0, 1, 2, . . . , N − 1. It is important
to note that the size of the matrices in both the original HBM scheme and the overlapping
HBM scheme is the same. This indicates that the computational effort necessary to solve
the IVPs will be roughly equivalent for both methods.

4.1. Example 1

Consider the following example that belongs to the class of problems with the so-called
Runge phenomenon:

y′ = 144(1− 2t)y2, y(0) =
1
37

. (31)

The exact solution of Example (31) is y(t) =
1

36(2t− 1)2 + 1
. In this example, the linear

partitioning iterative method with

φ(t, yr) = 144(1− 2t)y2
r , ψ(t, yr) = 0
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was used with the HBM schemes to solve (31) using h = 0.01 and up to 20 iterations,
within the integration domain [0,1]. The convergence plot, computed as the maximum
error per iteration in the last block [tN−1, tN ], is shown in Figure 3. The convergence of the
optimal overlapping (OOHBM) and the original optimal hybrid block technique (OHBM)
with no overlapping grid for m = 3 and m = 5 are compared. The graph demonstrates that
the overlapping HBM plateaus at a higher degree of accuracy than the non-overlapping
HBM. This is one indicator of the overlapping HBM’s higher precision. It is also apparent
from Figure 3 that the linear partitioning HBM converges swiftly, with full convergence
reached within 10 iterations for all HBM variants evaluated in this scenario.

OHBM-3

OOHBM-3

OHBM-5

OOHBM-5

5 10 15 20
10-19

10-16

10-13

10-10

10-7

10-4

Error

Ite
ra
tio
ns

Figure 3. Comparison of the convergence plots for Example 1 when h = 0.01.

A comparison of the maximum absolute errors, computed from the exact solution, is
displayed in Table 3. It can be seen from the table that the maximum error improves when
the overlapping grid is applied. In this example, the improvement in the maximum error
when comparing equally spaced and optimal hybrid block methods is not as significant as
the difference between the original and proposed overlapping HBM. It can also be observed
that the maximum error obtained using the overlapping HBM with equally spaced points
is greater than the error of the original optimal HBM, for both m = 3 and m = 5. This
appears to indicate that introducing grid overlap into HBM systems reduces the maximum
error more than adjusting the type of intra-step points.

Table 3. Maximum errors for Example 1 using different choices of intra-step points.

m = 3 m = 5

Original HBM Proposed HBM Original HBM Proposed HBM

Equally spaced
points 9.9970× 10−7 6.7542× 10−8 6.0825× 10−10 4.2735× 10−11

Optimal points 1.8106× 10−7 3.2112× 10−8 1.4701× 10−10 1.5855× 10−11

The maximum error in each block [tn, tn+1] is defined as

En = max
1≤i≤m

|y(xn+pi )− yn+pi |. (32)

Plotting the profile of the maximum error in each block for n = 0, 1, . . . , N − 1 reveals
the distribution of the error as it traverses the complete domain of integration. Figure 4
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depicts the maximum error profile En for 100 intervals (blocks) used during the deployment
of the overlapping optimal HBM and original optimal HBM to Example 31. The graph illus-
trates the significant reduction in the maximum error when the overlapping grid method is
implemented. The maximum error begins in the same location when n = 0. This is expected
given that the initial interval is identical for both optimal overlapping (OOHBMs) and
standard optimal non-overlapping HBMs (OHBMs). After n = 0, the maximum errors of
the OOHBM are less than those of the OHBM when m = 3 and when m = 5. The reduction
in the computed error is consistent with the theorems for local truncation errors derived
in the preceding section, which demonstrates that the truncation error of the overlapping
HBM is O(h) more than that of the corresponding non-overlapping HBM.

OHBM-3

OOHBM-3

OHBM-5

OOHBM-5

0 20 40 60 80 100

10-17

10-15

10-13

10-11

10-9

10-7

n

E
n

Figure 4. Maximum error profile for Example 1.

4.2. Example 2

Consider the logistic equation:

y′ = κy(1− y), y(0) = y0 (33)

with the exact solution y(t) =
y0

(1− y0)e−κt + y0
. The problem was integrated on [0, 10]

using a step size of h = 0.1 for the case when κ = 2.
Table 4 compares the maximum errors produced by the OOHBM versus the OHBM.

Included also are the maximum errors of the corresponding hybrid block methods con-
structed using intra-step points equally spaced apart. The table clearly illustrates the
increase in accuracy brought about by the introduction of overlapping in grids that use
both equally spaced and optimal intra-step points.

Figure 5 provides a comparison of the convergence plots for the standard OHBM
and the proposed OOHBM. The illustration demonstrates the speedy convergence of the
linear partitioning iterative approach and the superior accuracy of the proposed OOHBM
schemes in comparison to the OHBM schemes.

Table 4. Maximum errors for Example 2 using different choices of intra-step points.

m = 3 m = 5

Original HBM Proposed HBM Original HBM Proposed HBM

Equally spaced
points 1.3918× 10−7 1.5292× 10−8 7.2577× 10−12 8.5256× 10−13

Optimal points 6.3022× 10−9 4.4041× 10−10 1.2751× 10−12 6.2343× 10−14
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OHBM-3

OOHBM-3

OHBM-5

OOHBM-5

5 10 15 20

10-18

10-15

10-12

10-9

iterations

E
rr
or

Figure 5. Comparison of the convergence plots for Example 2 when h = 0.1.

Figure 6 illustrates the maximum error profile En across all blocks as a function of the
block index n. The decrease in error shown in Figure 6 when switching from the OHBM
to the OOHBM is consistent with the pattern observed in Figure 4 of the preceding case.
This is additional proof that the concept of overlapping grids improves the accuracy of
hybrid methods.

OHBM-3

OOHBM-3

OHBM-5

OOHBM-5

0 20 40 60 80 100

10-19

10-17

10-15

10-13

10-11

10-9

n

E
n

Figure 6. Maximum error profile for Example 2.

Next, we discuss the implementation of the overlapping HBM on systems of nonlinear
equations that are notoriously difficult to numerically solve due to their stiff characteristics
or their propensity to change rapidly over short time intervals.

4.3. Example 3

Consider the the van der Pol oscillator with nonlinear damping:

y′1 = y2, y1(0) = 0.1,

y′2 = µ(1− y2
1)y2 − y1, y2(0) = 0

where µ is a constant parameter. In this example, we set

ψ1(t, yr, ẏr) = y2,r, φ1(t, yr, ẏr) = 0, ψ2(t, yr, ẏr) = −y1,r+1, φ2(t, yr, ẏr) = µ(1− y2
1,r+1).
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This problem was solved using the OOHBM-3 with h = 0.01 in the domain of in-
tegration [0, 50]. Since there is no analytic solution to the problem, we compared the
results of the solution profiles to those that have been previously reported in the literature.
In Figure 7, the solution profiles and phase portrait for the van der Pol oscillator when
µ = 5 are depicted. Similar results have been reported in the literature using different
numerical solution techniques (see, for example, [14]).

0 10 20 30 40 50

-2

-1

0

1

2

t

y 1
(t
)

(a)

0 10 20 30 40 50

-5

0

5

t

y 2
(t
)

(b)

-2 -1 0 1 2

-5

0

5

y1(t)

y 2
(t
)

(c)

Figure 7. Solution profile of the van der Pol oscillator example when h = 0.01. (a) y1(t) vs. t. (b) y2(t)
vs. t. (c) Phase portrait.

4.4. Example 4

Consider the highly stiff system of IVPs below, which has applications in chemical
kinetics [15].

y′1 = −k1y1 + k2y2y3, y1(0) = 1,
y′2 = k1y1 − k2y2y3 − k3y2

2, y2(0) = 0,
y′3 = k3y2

2, y3(0) = 0,

For specific values of the reaction constants, this problem becomes highly stiff and unsolv-
able using ordinary numerical approaches. In this study, we employed the values that were
also used to assess the robustness of the extended backward difference methods described
in [16] and the implicit Runge–Kutta method as summarized in [17]. Consequently, we set

k1 = 0.04, k2 = 104, k3 = 3× 107.

Figure 8 depicts the solution profiles generated by OOHBM-3 with h = 0.001. The
nature of the solution profile for y2 provides insight into the numerical difficulties of
solving this problem. Over a brief period of time, the concentration of y2 rises abruptly to a
maximum and then falls sharply. Compared to the concentrations of y1 and y3 represented
in Figure 8a, the size of the concentration for y2 is less. Due to the widely different
concentration amounts, the log plot on the x-axis is used to compare all the concentration
profiles over a longer period of time, as depicted in Figure 8c. These profiles are comparable
to those published in [17].
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Figure 8. Solution profiles of Example 4 with m = 3 and h = 0.001. (a) concentrations of y1 and y3
(b) concentrations of y2 (c) concentration y1, y2 and y3.

4.5. Example 5

Consider the Lorenz system [18] given by

y′1 = a(y2 − y1), y1(0) = 1
y′2 = −y1y3 + by1 − y2, y2(0) = 5
y′3 = y1y2 − cy3, y3(0) = 10

The constants are a = 10, b = 28, c = 8/3. With these selected constants, the Lorenz
system exhibits chaotic behaviour, with the solution profiles fluctuating rapidly over
extremely brief time intervals. To precisely and efficiently capture the solution, robust
numerical approaches are necessary. The proposed overlapping HBM with the fewest
intra-step points was employed to tackle this problem.

The parameters of the iteration scheme are given below.

φ1(t, y1, y2, y3) = −a, ψ1(t, y1, y2, y3) = ay2,

φ2(t, y1, y2, y3) = −1, ψ2(t, y1, y2, y3) = by1 − y1y3,

φ3(t, y1, y2, y3) = −c, ψ3(t, y1, y2, y3) = y1y2

In Figures 9 and 10, respectively, the time series solutions and phase portraits for
the Lorenz equation are displayed. These results were produced using OOHBM-3 with
h = 0.01 across the integrating domain [0,50]. The results are identical to those reported in
numerous publications on the Lorenz system’s solutions (see, for example, [19]).
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Figure 9. Time series profiles of the Lorenz system. (a) y1; (b) y2; (c) y3.
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Figure 10. Phase portraits of the Lorenz system. (a) y1 and y2; (b) y1 and y3; (c) y2 and y3.
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5. Conclusions

In this study, an enhancement to the conventional hybrid block methods for solving
first-order equations was developed. This was accomplished by overlapping successive
integration blocks after the first block. When executed on a variety of initial value prob-
lems, the resulting method, called the overlapping hybrid block method, demonstrated
a significant gain in accuracy. In addition, theorems were established that demonstrate
an improvement in local truncation error by an order of the step size, O(h). It was also
demonstrated that the proposed method is A-stable. These findings show that the concept
of inserting overlapping blocks in hybrid block methods may be a profitable field of study.
Further research is required to extend the applicability of the overlapping technique to
other types of differential equations, such as boundary value problems, fractional-order
differential equations, and differential-algebraic systems of equations (DAEs).
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