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Abstract: Deterioration of the searchability of Pareto dominance-based, many-objective evolutionary
optimization algorithms is a well-known problem. Alternative solutions, such as scalarization-
based and indicator-based approaches, have been proposed in the literature. However, Pareto
dominance-based algorithms are still widely used. In this paper, we propose to redefine the cal-
culation of Pareto-dominance. Instead of assigning solutions to non-dominated fronts, they are
ranked according to the measure of dominating solutions referred to as k-Pareto optimality. In
the case of probability measures, such re-definition results in an elegant and fast approximate proce-
dure. Through experimental results on the many-objective 0/1 knapsack problem, we demonstrate
the advantages of the proposed approach: (1) the approximate calculation procedure is much faster
than the standard sorting by Pareto dominance; (2) it allows for achieving higher hypervolume
values for both multi-objective (two objectives) and many-objective (25 objectives) optimization;
(3) in the case of many-objective optimization, the increased ability to differentiate between solutions
results in a better compared to NSGA-II and NSGA-III. Apart from the numerical improvements,
the probabilistic procedure can be considered as a linear extension of multidimentional topologi-
cal sorting. It produces almost no ties and, as opposed to other popular linear extensions, has an
intuitive interpretation.

Keywords: genetic algorithms; multi-objective optimization; topological sorting; linear extension
of multidimensional sorting

1. Introduction

Genetic algorithms are a group of biologically-inspired search optimization techniques.
Due to the flexible definition of basic elements, such as the population of individuals, fitness,
cross-over, mutation, and selection, these algorithms can solve optimization problems
of different natures. Genetic optimization was successfully used for task scheduling
in cloud computing [1], for performance improvements in recommendation algorithms [2],
and in the production industry [3], to name a few. If the number of objectives is larger than
one, a solution of such an optimization problem consists of a set of non-dominated points,
called a Pareto set, which defines a Pareto-frontier in the space of objectives. In this case,
the goal of the optimization algorithm is to generate a set of solutions situated as close
as possible to the true Pareto-frontier, maintaining a high diversity at the same time.

Optimization problems with two or three objectives are known asmulti-objective prob-
lems; in the case of higher dimensionality, they are referred to as many-objective problems [4].
Several algorithms exist to effectively solve multi-objective optimization problems, among
them PESA-II [5], NSGA-II [6], and SPEA2 [7]. It was shown that the non-dominated
sorting procedure based on the Pareto dominance relationship is very effective in this
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case [8]. However, it is also known that Pareto dominance-based many-objective opti-
mization evolutionary algorithms face various difficulties. Among them, the deterioration
in the searchability of Pareto dominance-based sorting [4,9]. As stated in [10], this happens
due to the lack of selection pressure. Indeed, when the number of objectives increases,
the number of incomparable or equally preferable solutions grows exponentially.

To overcome this problem, a number of alternative approaches were proposed.
Among them, there are relaxed dominance-based approaches [11], the reduction in the num-
ber of objectives via scalarization [12], and the introduction of additional indicators to guide
the selection process [13], such as hypervolume. These approaches provide some advantages;
however, they also have disadvantages. In particular, the indicator-based approaches require
calculating the value of the the relative indicator function; scalarization-based methods require
either running several single-objective optimizations during one run or running individual
single-objective optimizations over many runs [12]; finally, as stated in [9,11], the diversity
maintenance can become more difficult in relaxed dominance-based approaches.

In this paper, we study in detail the application of the recently introduced k-Pareto
optimality-based sorting [14] to the problem of many-objective genetic optimization. Here,
k stands for the value of the Pareto optimality. In the rest of the text, we use the terms
k-Pareto optimality and Pareto optimality, as well as the corresponding abbreviations k-PO
and PO, interchangeably.

It was shown theoretically that this sorting procedure maximizes the choice, or di-
versity, of a subset of the best elements selected with respect to a dominance relation.
This characteristic can be valuable for genetic optimization, as a diverse gene pool allows
exploring the search space more efficiently. In [14], we suggested to sort solutions by
k-Pareto optimality instead of the traditional Pareto dominance and presented preliminary
results demonstrating the high potential of this approach. This paper is an extension
of the above-mentioned study with respect to genetic optimization. It presents more
detailed experimental results through the following contributions:

1. Based on the proposed ranking metric Pareto-optimality, we study three genetic al-
gorithms in detail: PO-count, PO-prob, and PO-prob*; see Section 4 for the detailed
description. All three algorithms are based on NSGA-II and differ from the latter
in the selection procedure by:

• PO-count: counting PO, which consists of counting the number of dominating
solutions (counting PO);

• PO-prob: approximating PO via a probabilistic procedure (probabilistic PO);
• PO-prob*: sequentially combining probabilistic calculation of PO and Pareto

dominance sorting from NSGA-II.

2. We compare the proposed methods with NSGA-II and NSGA-III using the 0/1 knap-
sack problem with the number of objectives varying from 2 to 25. Our experimental
results with random and tournament selection show the following:

• Ranking by counting PO provides almost identical results as ranking by Pareto
dominance;

• Using probabilistic PO ranking allows us to increase the hypervolume of the re-
sulting solutions for many-objective and most multi-objective optimization prob-
lems;

• With the increase in the number of the objectives, probabilistic PO yields a set
of solutions that are almost never dominated by the solutions of other algorithms;

• In general, PO-prob and NSGA-III algorithms yield fewer extreme solutions when
the number of objectives increases;

• We demonstrate that probabilistic PO ranking is computationally much more efficient.
It allows for reducing the time complexity of the sorting procedure from O(N2M)
to O(NMlog(N)), where N is the population size and M is the number of objectives.

3. Our algorithms are implemented as an extension of the Python library for evolu-
tionary computation DEAP (https://deap.readthedocs.io/en/master/, accessed on

https://deap.readthedocs.io/en/master/
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28 January 2022). They are available as open source (https://github.com/marharyta-
aleksandrova/kPO, accessed on 28 January 2022).

4. We also discuss how Pareto optimality can contribute to the problem of interpretability,
see Section 6.

The rest of the paper is organized as follows. In Section 2, we discuss the related state-of-the-
art research work. Section 3 presents the proposed PO-based sorting and the related algorithms.
In Section 4, we describe experimental setup, and in Section 5, we analyze the characteristics
and the performance of the proposed algorithms via experiments. Finally, Sections 6 and 7
contain concluding remarks and a discussion of possible future work.

2. Related Work

In this section, we review the relevant state-of-the-art research works. We discuss
the approaches that aim to solve the deterioration of the searchability problem, see Section 2.1,
and the computational complexity of genetic algorithms, see Section 2.2.

2.1. Searchability Deterioration of Pareto Dominance-Based Sorting

As it was stated in the previous section, the Pareto dominance-based selection criterion
does not provide enough selection pressure to guide the evolution process in the case
of many-objective optimization [4,9,10]. Numerous attempts have been made to overcome
this problem. We classify and schematically represent them in Figure 1.

Figure 1. Solutions for the searchability deterioration problem.

To the first group of approaches, we classify those that require specific points to guide
the selection process. These can be knee-points [9,15] and reference points either provided
by a user or identified automatically, for example, the reference points in NSGA-III [16].
Apart from directing the selection process towards the true Pareto-frontier, these reference
points also contribute to the diversity of the solution set as they are often widely distributed
in the search space.

https://github.com/marharyta-aleksandrova/kPO
https://github.com/marharyta-aleksandrova/kPO
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The next group of methods employs indicators to select the best solutions.
Among recent works in this area, we can mention [10,17], which incorporate several ranking
methods simultaneously, and [18] which used a novel convergence indicator. Computing
the values of these indicators increases the execution time of the optimization process.

Another group of approaches aims to solve the root of the problem by reducing
the dimensionality. This can be achieved, for example, by using a transfer matrix [19]
or by considering single-objective optimization problems via scalarization [12]. Such meth-
ods simplify complex relationships between objectives. This can lead to under-coverage
of the search space.

There was also a suggestion to ensemble several methods. In the approach from [20],
one population is evolved using conventional non-dominated sorting, and another is
evolved using an approximate non-dominated sorting procedure. This combination is
supposed to improve both diversity and convergence at the same time.

An alternative approach proposed in [21] performs sorting not with the aim to select
the best individuals but to remove the most unfitted ones (problem redefinition). It was
implemented within the the framework of NSGA-III and is based on the idea of the niche-
preservation operation of this algorithm.

The methods from the last group attempt to re-define the way the dominance is calcu-
lated. According to [11], we can define two main subgroups here: value-based dominance
and number-based dominance. Value-based dominance methods modify the Pareto domi-
nance by changing the objective values of the solutions when comparing them, for example,
ε-dominance [22]. Number-based methods try to compare a solution to another one by
counting the number of objectives where it is better than, the same as, or worse than
another; (1− k)-dominance [23] and L-optimality [24] are prominent examples. Alternative
methods also include the fuzzification of Pareto-dominance, see [25,26], and the definition
of dominance within a subgroup of a population, for example, θ-dominance, which was
used to improve the convergence of NSGA-III in [27].

The method studied in this work, k-Pareto optimality, falls within the subgroup
of number-based approaches. As other methods from this group, it is straightforward and
easy to implement. It does not require additional constructions such as reference points
or indicators. In addition, to the best of our knowledge, it is the only procedure with
theoretical guarantees of diversity, see [14]. As the current paper is a proof of concept, we
perform empirical comparison of the newly proposed method with the well-established
approaches, NSGA-II and NSGA-III. In future work, we will aim to compare its performance
with that of other value- and number-based approaches.

2.2. Computational Complexity

In the case of high-dimensional problems, non-dominated sorting not only suffers
from the deterioration in the searchability, but it is also slow. A number of attempts were
made to improve its time complexity. Some methods are based on algorithmic improve-
ments. For example, efficient non-dominated sorting (ENS) [8] reduces the time complexity
by comparing solutions only with those that have already been assigned to a front. Sim-
ilarly, authors of [28] proposed assigning solutions to the fronts in the ascending order
of the sum of objectives. There are also approaches that are based on usage of alternative
data structures, such as trees [29]. The last group of methods performs approximate non-
dominated sorting. The first algorithm from this group, ANS, was proposed in 2016 [30].
In this algorithm, the dominance relationship between two solutions is determined by
a maximum of three objective comparisons on top of a population sorted according to one
of the objectives. It was shown by the authors of [30] and further confirmed in other
research works [31] that this approach is not only more computationally efficient, but it also
leads to better search performance. This idea was further developed in [32], where no more
than two objectives were compared.

In this paper, we demonstrate that k-Pareto optimality based on probabilistic calcula-
tion, the PO-prob algorithm, allows for substantially improving the computational efficiency
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of genetic optimization, see the results in Section 5.3. The usage of probability theory makes
this approach somewhat similar to approximate methods. However, PO-prob utilizes
the values of all objectives to compare solutions.

3. k-Pareto Optimality-Based Sorting for Genetic Optimization

In this section, we describe the general framework of genetic optimization, see
Section 3.1, and introduce sorting by k-Pareto Optimality, see Section 3.2. We also discuss
the characteristics of this novel sorting approach that can be useful for genetic optimization
and illustrate its differences from the traditional non-dominated sorting, see Section 3.3.

3.1. Genetic Optimization Overview

Let us consider n objectives fi, i ∈ {1, . . . , n}, and a maximization task which consists
of the simultaneous maximization of all n objectives over a set X of solutions, that is,

maximize {~f (a) ≡( f1(a), f2(a), . . . , fn(a))}.
over a ∈ X

(1)

The binary concept of Pareto-dominance is defined as follows.

Definition 1. An individual a Pareto-dominates an individual b if:
∀i ∈ {1, . . . , n} : fi(a) ≥ fi(b) ∧ ∃i ∈ {1, . . . , n} : fi(a) > fi(b).

An individual is said to be Pareto-optimal if it is not Pareto-dominated by any other
element. The goal of multi-objective optimization is to find a set of Pareto-optimal solutions
spread over the whole Pareto-frontier. Genetic optimization algorithms aim to solve this
problem based on a biologically inspired heuristic: the evolution of a set of randomly
initialized solutions.

In Figure 2, we present the general flowchart of the genetic optimization procedure.
The main steps of the procedure are explained below.

1. First, we create an initial population of solutions (or individuals) of a predefined size,
pop_size, and evaluate the fitness of every individual with respect to a predefined
fitness function, step 1. In the case of multi- or many-objective optimization, this is
a function with multi-dimensional output.

2. Second, we select a subset of individuals for “procreation” based on a chosen parent
selection criterion, step 2. Two popular criteria are random and tournament selec-
tion. In random selection, the parents are chosen randomly; in tournament selection,
the choice is made based on fitness among a set of randomly selected individuals
of a predefined size.

3. Next, on the step 3, the chosen parents are “mated” to create a required number
of children or offspring. This operation is also known as crossover. Often, the number
of children is equal to the size of the original population. The generated offspring can
also be mutated. The latter process is controlled by the value of the mutation proba-
bility, mut_prob. After evaluating the fitness values for the newly created offspring,
the two sets of solutions are joined.

4. Finally, on the selection step, step 4, the combined population is sorted according to a
specific criterion, and the best pop_size individuals are advanced to the next genera-
tion. The evolution continues until a certain criterion is fulfilled. Often, the process is
controlled by the maximum number of generations, n_gen.
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Figure 2. Flowchart of the genetic optimization procedure.

When the number of objectives is larger than 1, various methods can be used to sort
the combined population of solutions in step 4 of the flowchart. The popular NSGA-II
algorithm performs the following: First, all solutions are assigned to fronts using the
Pareto dominance (PD) relation. Next, the crowding distance is calculated for all indi-
viduals within the same front. As reflected in the name, the crowding distance measures
the distance to the nearest individual within a front. Finally, the population is sorted with
respect to fronts and the crowding distance as the primary and the secondary criteria.
This procedure ensures that the most fitted solutions advance to the next generation.
The usage of crowding distance allows one to choose the solutions that are spread all
along the non-dominated front and helps avoid concentration. See [6] for a more detailed
presentation of NSGA-II.

3.2. Formal Definition of k-Pareto Optimality

As we can see, the selection step of a genetic optimization procedure requires sorting
the population of solutions according to a predefined dominance relation. In [14], we
introduced sorting by k-Pareto optimality and demonstrated its utility in many-objective
genetic optimization.

Let us consider a set X with a binary relation R. In the context of n objectives in-
troduced in the previous section, R corresponds to the relation aRb iff ∀i ∈ {1, . . . , n} :
fi(a) ≥ fi(b). Thus, Pareto dominance corresponds to the relation R∗ defined by aR∗b
iff aRb ∧ ¬(bRa). We also consider a positive and σ-finite measure µ defined on X. The
measure µ can be defined in different ways. Important examples are the counting measure
and probability measures. Depending on the definition of µ, it can indicate the following
characteristics of the elements in X: how many?, how likely?, how important?, etc. Thus, we
have a measure space (X, Σ, µ), where Σ is a set of subsets of X and µ intuitively indicates
the size of these subsets.

The k-Pareto optimality of an individual a is the measure of the set of points that Pareto
dominate a and is written as po(a). Formally, po(a) = µ({x : xR∗a}). If µ is a probability
measure, the k-Pareto optimality of an element a, po(a), is the likelihood an element drawn
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at random from X is strictly preferable to a. In the case of the counting measure, po(a) is
the number of elements from X that are strictly preferable to x.

Choice between a and b means that neither a Pareto dominates b nor b Pareto dom-
inates a. That is, a and b are equally preferable and belong to the same Pareto front.
The notion of choice is closely related to the notion of diversity. This concept is more
practically interesting and can be formally defined as the likelihood that two elements
drawn at random from A offer choice. Thus, it is the choice offered by A divided by µ(A)2.

In [14], we formally proved that among all topological sorting methods, sorting by
k-Pareto optimality maximizes the diversity of the subset of the best individuals of a pre-
defined measure (size in the case of counting measure). This property holds for any type
of element (points on a plane, graphs, functions, etc.), dominance or preference rela-
tions (smaller/larger than, parent/child, etc.), and measures defined on the set under
investigation (counting measure, probability measure, etc.). The property of diversity maxi-
mization suggests that this sorting procedure can be useful in the selection step of genetic
optimization. Indeed, the maximization of diversity of the generated solutions allows
for investigating the search space more efficiently. Thereby, we suggest changing the non-
dominated sorting to the sorting by k-Pareto optimality in the step 4.1 of the flowchart presented
in Section 2. We also experiment with two types of measures µ: a probability measure and
the counting measure.

3.3. Illustrative Example

We illustrate the proposed approach and its difference from the traditional non-
dominated sorting with the help of an example shown in Figure 3, see [14] for more
details and derivations. In this example, the search space consists of 6 points defined
on a 2D plane, and the goal is to maximize both objective functions defined by the relative
coordinates of the points.

0 2 4 6 8
0

2

4

6 A
B

C
D

E

F

max( f1, f2)

Objective 1, f1

O
bj

ec
ti

ve
2,
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Figure 3. Illustration of sorting for a maximization problem.

Let us first consider the traditional non-dominated sorting by Pareto dominance.
This sorting procedure distributes the available solutions between Pareto-fronts in the fol-
lowing way: First, all non-dominated points are identified. In the example shown in Figure 3,
there are three non-dominated points: A, B and C. These three points make up the first front.
Next, the points of the newly identified front are removed from consideration, and the process is
repeated. Continuing this process, we obtain the second front made up of two points, D and E,
and the third front containing only one point, F. The relative distribution of points between
Pareto fronts is summarized in the second column of Table 1.
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Table 1. Distribution of points between fronts for different sorting procedures: PD—Pareto dom-
inance; PO-count—counting Pareto optimality; PO-prob—probabilistic Pareto optimality; PO-prob,
ε—probabilistic Pareto optimality with an adjustment for 0 probability.

Front PD
PO-count PO-prob PO-prob, ε = 0.1

Points Val. Points Val. Points Val.

1 A, B, C A, B, C 0 A, C 0.00 C 0.05
2 D, E E 1 B 0.08 A 0.07
3 F D, F 2 E 0.11 B 0.08
4 D, F 0.28 E 0.11
5 D, F 0.28

Instead of sorting by Pareto dominance, we propose to sort the points by the measure
of the dominating solutions, which we refer to as Pareto optimality (PO). Let us consider
the counting measure. The sorting is thus conducted by the number of dominating solutions.
In the text, we refer to this procedure of calculating PO values as counting PO, or PO-count,
as it implies counting the number of dominating solutions. Similarly to the previous
case, no other point dominates the points A, B, or C in Figure 3. Thereby, the value
of the counting Pareto optimality for these points is 0. Point E is dominated by one point
C, resulting in the corresponding PO value of 1. Finally, points D and F are dominated
by two other points: A, B and C, E respectively, meaning that their Pareto optimality is 2.
The front of the point is determined by its PO-count value, see the third and the fourth
columns of Table 1.

Comparing sorting by PD and PO-count, we can observe that the number of identi-
fied fronts is the same: three fronts in total. However, the point D moved from the sec-
ond to the third front when transitioning from Pareto dominance to the counting Pareto
optimality-based sorting. Also note that the first front is always the same for both proce-
dures. Indeed, a non-dominated point will always have the value of PO-count equal to 0
and vice versa.

Instead of the counting measure, we can also consider a probability measure. We refer
to the relevant procedure as probabilistic PO, or PO-prob. In this case, instead of calculating
the number of points that dominate the current one, we can estimate the probability of this
point to be dominated. In our calculations, we assume that there are no duplicates. This is
also enforced in our experiments. If we have no a priori knowledge on how the objectives
are correlated, we assume them to be independent. Thus, the probability of any point to be
dominated can be estimated by multiplying the probabilities of being dominated with respect
to the individual objectives.

Let us calculate the values of PO-prob for the example presented in Section 3 as-
suming the independence of objectives f1 and f2. Point A is never dominated with re-
spect to f2; thereby, the probability of being dominated with respect to this objective is 0,
P_dom f2(A) = 0. Considering the first objective f1, 4 points out of total number of 6 points
dominate the point A, P_dom f1(A) = 4/6 ≈ 0.667. By multiplying these two values, we
can estimate the value of PO-prob as P_dom f1(A)P_dom f2(A) = 0.667 ∗ 0 = 0. Let us now
analyze in a similar way the point B. It is dominated by three points with respect to f1
(points C, E and F), resulting in P_dom f1(B) = 3/6 = 0.5. Considering the second objective,
only point A dominates B. This gives us P_dom f2(B) = 1/6 ≈ 0.167. Thus, the value of PO-
prob for point B is P_dom f1(B)P_dom f2(B) ≈ 0.5 ∗ 0.167 ≈ 0.083. The corresponding values
for the rest of the points and the distribution of the points between fronts are presented
in the sixth and the fifth columns of Table 1 respectively. As we can see, now the 6 points
are distributed among 4 fronts, with B singled out into a separate front.

A possible drawback of calculating PO-prob as explained above can be multiplication
by 0 when a point is non-dominated with respect to at least one objective. In this case,
the value of PO-prob is always equal to 0 no matter what the domination probability with
respect to other objectives is. An easy solution to this problem is to replace the value 0 with
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a small number ε in the calculations. The last two columns of Table 1 show the respective
values of PO-prob for ε = 0.1. As we can see, now point C is more preferable to A, as its
domination probability with respect to f2 is less then the domination probability of A
with respect to f1. Indeed, P_dom f2(C) = 3/6 = 0.5 and P_dom f1(A) = 4/6 ≈ 0.667.
At the same time, P_dom f2(C) < P_dom f1(A) and P_dom f1(C) = P_dom f2(A) = 0.
In the rest of the text and in our implementation, we use this version of calculating PO-prob
with ε = 1

pop_size , where pop_size is the population size or the number of analyzed solutions.
We refer to it simply as PO-prob. If we assume that there are no identical solutions, then
PO-prob is an estimation of the probability a randomly chosen point non-strictly dominates
the analyzed one, see [14].

In the case of counting measure, sorting by PO is equivalent to sorting by dominance
rank relationship [33]. In addition, it was shown in previous works that sorting a random
sample of independent continuously distributed points by PD and PO-count has the same
limiting behaviour when the number of points becomes infinitely large [34]. Although
PO-count was already studied in the literature, PO-prob was not. In addition, PO-prob is
not the only possible algorithm based on Pareto optimality, as similar approaches can be
developed for different measures and relations expressing preference. That is why we
present evaluation results for both PO-prob and PO-count for comparison and more detailed
analysis.

In the following sections, we evaluate how PO-based ranking affects the convergence
properties of genetic optimization algorithms.

4. Experimental Setup

Our experimental setup is summarized in Table 2. To perform the experimental evalu-
ations, we chose the 0/1 multi-objective knapsack problem with independent objectives
as defined in [35]. The mathematical formulation of this problem is presented in Ap-
pendix A. As stated in [35], this optimization problem is easy to formulate, but at the same
time, it is rather general. It is also representative of a certain class of real-world problems.
This problem was used in numerous research papers to compare evolutionary algorithms
and to study different aspects of their performance, see [4,36], for example. Finally, it scales
easily to higher dimensions, preserving its properties.

Table 2. Experimental setup.

Problem 0/1 knapsack, nk ∈ {2− 8, 10, 15, 25}, 250
items

Baseline NSGA-II, NSGA-III
Algorithms PO-count, PO-prob, PO-prob*

Implementation python package DEAP
Parent selection random, binary tournament

Crossover uniform
Parameters n_gen = 500, pop_size = 250, mut_prob = 0.01

Runs 30

We use 10 different test problems with the number of objectives n_k ∈ {2− 8, 10, 15, 25}
and 250 items. We adopt two selection schemes: random selection and binary tournament
selection with replacement. For all algorithms and all settings, we execute genetic optimiza-
tion for 500 generations. We also use uniform crossover with mutation probability 0.01 and
population size 250.

We implement our approach within the framework of the NSGA-II algorithm by
redefining the sorting procedure using PO-count and PO-prob as an alternative to PD, see
step 4.1 in Figure 2. We refer to these algorithms by the name of the chosen sorting method.
Additionally, we experiment with a combination of PO-prob and the classical NSGA-II.
In this approach, we run PO-prob during the first 350 generations and then switch to NSGA-
II during the last 150 generations. We refer to the latter approach as PO-prob*.
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As it was shown in Section 3, sorting based on Pareto optimality results in less incomparable
solutions (ties). In addition, theoretical results from [14] guarantee maximization of diversity
when sorting by PO. Thereby, we hypothesize that PO-based ranking can produce better results
for many-objective problems. To demonstrate this, we compare our approaches with the basic
NSGA-II algorithm and its modification designed for many-objective optimization, NSGA-III.
The NSGA-III algorithm additionally takes reference points as an input parameter. We use
deap.tools.uniform_reference_points function to generate uniformly distributed reference points.
As suggested by the authors of NSGA-III, the number of reference points is chosen to be close
the value of population size, see [16]. We limit the number of baseline approaches to these two
classical algorithms because, as stated in [36,37], many new algorithms are overspecialized and
can perform poorly in general settings.

We implement the proposed algorithms as an extension to the DEAP python library.
Unless stated otherwise, the values reported in this paper are averages of 30 independent runs.

5. Experimental Results

In this section, we present the results of the experimental evaluation. We discuss the charac-
teristics of the analyzed algorithms in Section 5.1. Next, we proceed to the performance analysis
in Section 5.2. Finally, Section 5.3 is dedicated to the time complexity analysis.

5.1. Characteristics of the Proposed Approach

In this subsection, we describe the characteristics of the proposed approaches.
In particular, we analyze the distribution of objective function values and the fraction
of solutions belonging to the first front. To better understand the behavior of the studied
algorithms, we start with a visualization of the evolution.

5.1.1. Evolution of Solutions for nk = 2

For a random initialization, we plot the evolution of solutions and the first front
of the last generation for nk = 2 in Figure 4 (random selection) and Figure 5 (tournament
selection). We choose to use the same initialization for all algorithms to show the difference
in the resulting solutions. NSGA-II and NSGA-III are well-studied, so we concentrate more
on the behavior of the algorithms based on PO.
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Figure 4. Visualization of solutions for nk = 2 and random selection. y-axis is shared among
plots. (a) First front for gen = 500, counting algorithms; (b) First front for gen = 500, probabilistic
algorithms; (c) Evolution of solutions for PO-count; (d) Evolution of solutions for PO-prob.
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Figure 5. Visualization of solutions for nk = 2 and tournament selection. y-axis is shared among plots.
(a) First front for gen = 500, counting algorithms; (b) First front for gen = 500, probabilistic algorithms;
(c) Evolution of solutions for PO-count; (d) Evolution of solutions for PO-prob.

We start with the analysis of the results for random selection. Figure 4c,d show three
generations of solutions for PO-count and PO-prob: gen = 30, gen = 150, and gen = 300. As
PO-prob* performs identically to PO-prob until gen reaches 350, its intermediate solutions are not
plotted. Figure 4a,b show the first front of the final generation gen = 500 for all algorithms.

We can notice interesting behavior of the PO-prob algorithm: after a certain number
of generations, the produced solutions tend to move to extreme values with very few
solutions concentrated in the middle part of the Pareto-frontier, see Figure 4d for gen = 300.
This pattern was observed in all 30 independent runs. It can be explained by the nature
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of the probabilistic sorting used in PO-prob and by the fact that probabilities are multiplied.
Indeed, a solution will be ranked high if its probability to be dominated by any other
solution is low. In this case, the extreme solutions have little probability to be dominated
with respect to one of the objectives. This contributes to their higher rankings in com-
parison to the solutions from the middle of the Pareto-frontier. Thereby, such solutions
are advanced to the next generations and have higher probability to pass their character-
istics to offspring. At the same time, in the case of NSGA-II, all solutions from the first
non-dominated front with similar values of crowding distance are equally preferable.
This observation is consistent with the computational example presented in Section 3. As
we can see from Table 1, the extreme solutions A and B are more preferable than the solution
from the center, C, for PO− prob-based sorting.

This tendency is, however, “repaired” by PO-prob*. The solutions of the latter first reach
the extreme values using sorting by PO-prob and then cover the whole length of the Pareto-
frontier using PD sorting from NSGA-II. We can also see that continuing evolution with PO-prob
allows it to reach even more extreme solutions during the last 150 generations.

The solutions in the middle of the Pareto frontier produced by PO-prob are clearly
dominated by the solutions of other algorithms. At the same time, only PO-prob* can reach
extreme solutions almost as well as PO-prob. Overall, NSGA-II covers the middle part
of the Pareto frontier better than all other algorithms. NSGA-III and PO-count demonstrate
behavior similar to NSGA-II.

In the case of tournament selection, PO-prob behaves similarly to other algorithms
and produces non-fragmented fronts, see Figure 5. At the same time, tournament se-
lection results in worse coverage of the Pareto-frontier than random selection, compare
Figures 4 and 5. The maximum achieved values of objective 2 with tournament selection
are around 0.92× 104. From Figure 4d, we can see that the corresponding values for ran-
dom selection were achieved for gen = 100. At this point, the front is not yet fragmented.
This might indicate that extreme and middle solutions are advanced further during differ-
ent periods in the evolution process, and an adaptive selection procedure might be required
for PO-prob. We aim to investigate this question further in our future work.

As in the previous case, PO-prob covers the extreme solutions better, see Figure 5b.
However, a large portion of its solutions is dominated by the solutions produced by
other algorithms. The difference between PO-prob and PO-prob* in this case is less visible.
At the same time, using NSGA-II during the last 150 generations in PO-prob* does push
the resulting Pareto-frontier a bit further. From Figure 5a, we can again see that NSGA-III
and PO-count behave very similar to NSGA-II. Overall, tournament selection usually favors
one objective more than another. These observations were confirmed in a large fraction
of our 30 independent runs.

5.1.2. Visualization of the First Front for nk > 2

To analyze the solutions for larger numbers of knapsacks, when nk > 2, we opt for a dif-
ferent type of visualization. Among all 30 independent runs of each algorithm, we choose
a single run with the median hypervolume value, following the methodology from [36].
In Figures 6 and 7, we show the solutions from the first front of the last generation for 7
and 25 knapsacks, respectively. The similar visualization for nk = 2 is shown in Appendix B.
The latter supports the results presented in Figures 4 and 5 and serves for comparison purposes.
The solutions are shown using parallel coordinates with the horizontal axis representing the in-
dex of the objective and the vertical axis showing the corresponding objective value. Starting
from nk = 6, the distributions of solutions for random selection and tournament selection have
similar characteristics. This is why we show results only for random selection.
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Figure 6. Final Pareto frontier for nk = 7 and random selection.
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Figure 7. Final Pareto frontier for nk = 25 and random selection.

We can notice some differences as compared to the results for nk = 2. In particular,
the tendency of tournament selection to prefer one objective more than another disappears
for nk ≥ 6. This is reflected in the absence of disproportionate values for one of the ob-
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jectives in Figures 6 and 7 (compare with the corresponding results for nk = 2 shown
in Figures A1 and A2 from Appendix B). Furthermore, we can notice the absence of gaps
between the solutions for PO-prob. This means that the related fronts are not fragmented,
as it was in the case of two knapsacks and random selection, see Figure 4b,d. After examin-
ing the results for different numbers of knapsacks, we noticed that this pattern holds true
for any number of knapsacks larger than 2, nk > 2.

Finally, we can see that the range of solutions for NSGA-III and PO-prob is tighter than
that for other algorithms. This pattern becomes visible for nk = 5 and holds true for larger
values. In addition, the solutions for these algorithms tend to be situated in the middle
and the top part of the objective values range: from 6000 to 9000 for nk = 7 and from 5000
to 8000 for nk = 25. This means that, when nk becomes larger, PO-prob produces less
extreme solutions than NSGA-II. This demonstrates the advantage of the former algorithm
in the case of many-objective optimization. NSGA-II and PO-count produce more extreme
solutions than other algorithms. The characteristics of PO-prob* are in between those
for PO-prob and NSGA-II. This results naturally from the fact that PO-prob* is a combination
of these two algorithms.

The results presented in Appendix C compliment the above study of the relative position
of solutions in the space by analyzing the average distance to the diagonal of the corresponding
hypercube. It supports the findings presented in Section 5.1.1 and the current one.

5.1.3. Fraction of Non-Dominated Solutions

The fraction of the population that belongs to the first front shows how difficult it is
for an algorithm to differentiate between the solutions and select the most fitted ones. If all
solutions belong to the first front, then they are all incomparable for the given algorithm,
in the sense that none of them is preferred over another. The inability of an algorithm
to differentiate between solutions indicates that it cannot direct the evolution process.

For the small example in Section 3, we show that sorting by PO-prob with ε > 0
results in a first front with only one element, and in the lowest number of ties (incom-
parable solutions) in general. This observation is also supported by our experimental
results. Apart from some rare cases, PO-prob with ε = 1/pop_size assigns every solution
to a separate front. However, when the population size increases, the probability of having
more than one solution per front quickly tends to zero. This is also supported by the results
presented in Table 1, PO-prob with ε = 0.1 also assigns one point per front, with the last front
being an exception. PO-prob with ε = 0 has the same properties with one exception: the number
of solutions in the first front is equal to the number of objectives nk. Indeed, in this case, all
solutions that are the best according to one of the objectives will have the value of Pareto
optimality equal to 0, see the discussion for PO-prob in Section 3. This observation holds true
for all setups and for every generation. It also demonstrates the ability of PO-prob to differentiate
between solutions in both multi- and many-objective optimization.

As opposed to PO-prob, sorting the given population by PO-count and by PD always
results in the same first front. Indeed, all nondominated solutions have Pareto optimality
values equal to 0 and are assigned to the first front, see Section 3. The remaining fronts,
however, are typically different. This results in different solutions generated over the evo-
lution process. To illustrate this difference, we show in Figure 8 the fraction of solutions
belonging to the first non-dominated front for all studied algorithms. Note, that the first
non-dominated front here is identified with sorting by Pareto dominance and is referred
to as first ND-front. However, every algorithm uses its own sorting procedure to evolve
the population. We present results for the following number of knapsacks: nk = 2, nk = 6,
and nk = 10. The relative distributions for random and tournament selection have different
trends only in the case of two knapsacks. That is why, for nk = 6 and nk = 10, we report
the results only for random selection.
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Figure 8. Percentage of solutions in the first non-dominated front (sorting by Pareto dominance, PD)
as a function of number of generations. The legend and y-axis are shared among plots.

Figure 8a,b show that for two knapsacks, the size of the first non-dominated front is rel-
atively low for all algorithms. In the case of random selection, see Figure 8a, the maximum
value of 30% is reached by PO-prob* for gen_num close to 500. The fraction of solutions
in the fist ND-front is approximately 10% for PO-prob and does not exceed 25% for NSGA-II,
NSGA-III, and PO-count. The large size of the first non-dominated front produced by
PO-prob* is due to the combination of extreme solutions constructed by PO-prob during
the first 350 iterations and solutions spread out in the middle, which are constructed by
NSGA-II during the last 150 generations, see Figure 4b.

For tournament selection, all algorithms produce the first non-dominated front of al-
most the same size, see Figure 8b. The maximum value in this case does not exceed 20%.
It is visible, however, that the size of the first ND-front is slightly less for PO-prob and is
slightly larger for PO-prob*. This agrees with the results presented in Figure 5b. As before,
PO-prob identifies more extreme solutions than NSGA-II, but this difference is not as large
as in the case of random selection, see Figure 4b for comparison.

Analyzing the results for six knapsacks in Figure 8c, we can see that, very quickly,
all solutions generated by NSGA-II, NSGA-III, and PO-count start belonging to the first
non-dominated front. After approximately 50 generations, all solutions belong to the single
first ND-front. At the same time, PO-prob produces more than one non-dominated front
up to the last generation gen = 500. However, the percentage of solutions belonging
to the first ND-front is still high: it reaches 90% for gen = 100 and reaches its maximum
of 97% for gen = 500. As expected, PO-prob* follows PO-prob until gen = 350 and joins
NSGA-II after that.

Figure 8d shows the corresponding results for nk = 10. The fraction of solutions
belonging to the first non-dominated front becomes close to 100% very quickly for all algo-
rithms. This happens at gen = 20 for NSGA-II, NSGA-III, and PO-count. The corresponding
value for PO-prob and PO-prob* is gen = 60. For larger numbers of knapsacks, the value
of 100% is reached even faster.

These results demonstrate that compared to the other algorithms, PO-prob generates
the lowest number of incomparable solutions. Additionally, the fact that PO-prob assigns every
solution to a separate front indicates its ability to find a clear direction for the evolutionary
process. In the next section, we show that this direction also leads to better solutions.
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5.1.4. Characteristics: Main Findings

The main findings of this section are the following:

• For two knapsakcs, nk = 2:

– PO-prob performs better in identifying extreme solutions. In the case of ran-
dom selection, it also results in fragmented coverage of the Pareto-frontier.
This tendency can, however, be repaired by using traditional non-dominated
sorting during later generations, as in PO-prob*.

– NSGA-II performs the best in covering the middle part of the Pareto-frontier. The
behavior and performance of NSGA-III and PO-count are similar to that of NSGA-II.

• When n_k > 2, the tendency changes:

– PO-prob does not result in fragmented sets of solutions; this is observed for nk ≥ 3
in our experiments.

– PO-prob and NSGA-III result in fewer extreme solutions than other algorithms;
this is observed for nk ≥ 4 in our experiments.

• Ranking based on probabilistic PO results in a very low number of incomparable
solutions, which is not the case for PO-count and PD sorting. This demonstrates
the ability of the probabilistic PO sorting to distinguish between the solutions and
find the direction for further evolution.

5.2. Performance

To measure the performance of the proposed approaches, we use two metrics: hyper-
volume and the fraction of solutions dominated by other algorithms.

5.2.1. Hypervolume

Hypervolume is the metric that indicates the volume of the hyperspace dominated by
a set of solutions. This metric is widely adopted in practice both for evaluation of genetic
optimization algorithms and for guiding the evolutionary process in indicator-based meth-
ods [38]. The value of hypervolume depends on the chosen reference point. To simplify
the computational process and due to the fact that we solve a maximization problem, we
adopt the origin of coordinates as a reference point for hypervolume calculation. In our
case, this point also corresponds to the worst possible solution. Larger hypervolume values
indicate better performance.

The values of the hypervolume indicator obtained for different numbers of knapsacks
for NSGA-II are presented in the second column of Table 3. The first part of the table
corresponds to random selection and the second to tournament selection. We can see that
the hypervolume values obtained with random selection are of the same scale as those
obtained with tournament selection. In addition, when nk < 10, random selection results
in higher values of hypervolume. However, when the number of knapsacks reaches 10,
tournament selection becomes more effective in terms of hypervolume maximization.

Columns 3–6 show the relative increase (positive number, bold font) or decrease
(negative number) in the hypervolume indicator for other algorithms. For a more intuitive
representation, the values of these columns are also graphically presented in Figure 9.
The first observation that we can make is that NSGA-III, while developed for many-objective
optimization, almost always results in lower hypervolume values, even for larger numbers
of objectives. This supports similar observation from [39]. NSGA-III reaches its minimum
in relative increase in hypervolume of approximately−10% for nk = 7 for random selection
and for nk = 8 for tournament selection. After that, it starts increasing if random selection
is used, and it does not change much for tournament selection.



Algorithms 2022, 15, 420 18 of 30

Table 3. Increase in hypervolume relative to NSGA-II, %.

nk
NSGA-II,

h-Vol. NSGA-III PO-Count PO-Prob PO-Prob*

Random selection

2 9.35× 107 –0.40 –0.19 4.36 4.48
3 7.98× 1011 –0.73 –0.80 3.18 1.97
4 6.50× 1015 –1.95 –0.13 2.15 1.14
5 5.06× 1019 –7.11 –0.15 –1.36 –0.90
6 3.99× 1023 –10.67 0.33 –1.63 –0.74
7 3.08× 1027 –12.15 –0.56 –1.14 0.55
8 2.26× 1031 –11.45 0.23 0.76 2.53

10 1.21× 1039 –10.78 –0.31 6.07 7.88
15 2.18× 1058 –4.23 –0.14 24.13 25.02
25 5.73× 1096 –0.04 0.07 61.23 51.88

Tournament selection

2 9.01× 1007 –0.09 –0.33 1.14 0.67
3 7.55× 1011 0.12 –0.29 3.11 2.66
4 6.12× 1015 –0.79 –0.33 1.16 0.48
5 4.73× 1019 –3.49 0.22 –1.42 –0.77
6 3.74× 1023 –7.18 0.24 –2.13 –0.54
7 2.88× 1027 –9.07 0.39 –2.02 –0.31
8 2.16× 1031 –10.54 –0.51 –2.01 0.25

10 1.17× 1039 –10.02 0.20 0.90 4.35
15 2.21× 1058 –7.90 –0.76 11.67 14.14
25 6.49× 1096 -11.12 –1.86 30.35 28.59
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Figure 9. Relative increase in hypervolume compared to NSGA-II as a function of the number
of knapsacks nk. The legend is shared among plots.
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The values of relative hypervolume increase for PO-count are very close to 0. This
means that PO-count results in a population covering the same hypervolume as NSGA-II.
The largest difference between NSGA-II and PO-count is observed for nk = 25 with tourna-
ment selection. In this case, the hypervolume of PO-count is 1.86% less than that of NSGA-II.
Contrarily, both PO-prob and PO-prob* improve hypervolume significantly as compared
to NSGA-II. This difference is visible for small nk and is especially prominent for large
numbers of knapsacks. When nk < 5, PO-prob and PO-prob* increase the hypervolume
by up to 4%. After that, we observe an inverse pattern. However, the relative decrease
in this case does not exceed −2.13%. Finally, starting from nk = 8 for random selection and
nk = 10 for tournament selection, PO-prob again results in larger hypervolume values. For
PO-prob*, this happens even faster: nk = 7 for random selection and nk = 8 for tournament
selection. From this point on, we see a rapid growth with a maximum relative increase
observed for nk = 25: +61.23% and +51.88% for random selection, and +30.35% and
+28.59% for tournament selection. The fact that PO-prob* is closer to NSGA-II than PO-prob
is due to PO-prob* turning into NSGA-II during the last 150 generations. We can also notice
that the effect of the PO-prob algorithm is less visible in the case of tournament selection.

5.2.2. Fraction of Dominated Solutions

We calculate the percentage of dominated solutions as follows. For a given pair of algo-
rithms, algorithm1 and algorithm2, we calculate how many solutions of algorithm2 (dominated
algorithm) are dominated by solutions of algorithm1 (dominating algorithm). After that, we
average the obtained results among all 30 independent runs. The detailed results for nk = 2,
nk = 7, and nk = 25 are shown in Tables 4 and 5 for random and tournament selection
respectively. For example, for random selection and nk = 2, on average, the solutions
of NSGA-II dominate 47.38% of the solutions produced by PO-prob*, see the third row and
sixth column in Table 4. At the same time, on average, only 6.24% of solutions produced
by NSGA-II are dominated by the solutions of PO-prob*, see the seventh row and second
column of the same table. Naturally, a better algorithm has a lower number of dominated
solutions and a larger number of dominating solutions. This means that we want to achieve
minimum per column and maximum per row.

The rows in bold show the average number of dominated solutions for all dominating
algorithms, denoted by θ. The value of θ is calculated as a mean per column, and better
algorithms have lower values of θ. For example, for the same setup, on average, 21.77%
of solutions produced by NSGA-II are dominated by other algorithms. The corresponding
value for PO-prob* is 36.86%. This means that for this configuration, NSGA-II performs
better than PO-prob*.

Table 4. Percentage of dominated solutions for random selection, %.

Dominated algorithm, nk = 2
NSGA-II NSGA-III PO-count PO-prob PO-prob*

NSGA-II 44.24 39.21 13.52 47.38
NSGA-III 37.50 34.51 13.52 44.76
PO-count 43.34 45.01 13.52 46.94
PO-prob 0.00 0.00 0.00 8.37
PO-prob* 6.24 6.64 5.02 23.46
mean, θ 21.77 23.97 19.60 16.01 36.86

Dominated algorithm, nk = 7
NSGA-II NSGA-III PO-count PO-prob PO-prob*

NSGA-II 0.00 8.57 0.00 0.04
NSGA-III 39.72 40.51 0.08 19.00
PO-count 9.99 0.00 0.00 0.05
PO-prob 66.73 27.51 66.72 48.65
PO-prob* 61.52 1.41 63.31 0.07
mean, θ 44.49 7.23 44.78 0.04 16.94
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Table 4. Cont.

Dominated algorithm, nk = 25
NSGA-II NSGA-III PO-count PO-prob PO-prob*

NSGA-II 0.00 8.28 0.00 0.15
NSGA-III 18.97 18.83 0.00 8.48
PO-count 6.40 0.00 0.00 0.20
PO-prob 36.55 9.59 36.52 18.76
PO-prob* 30.13 0.80 31.89 0.00
mean, θ 23.01 2.60 23.88 0.00 6.90

Table 5. Percentage of dominated solutions for tournament selection, %.

Dominated algorithm, nk = 2
NSGA-II NSGA-III PO-count PO-prob PO-prob*

NSGA-II 43.93 46.67 47.81 61.20
NSGA-III 35.99 43.17 45.71 59.33
PO-count 35.83 36.70 42.32 57.43
PO-prob 6.61 7.75 7.53 31.29
PO-prob* 7.78 9.95 10.41 42.26
mean, θ 21.55 24.58 26.95 44.52 52.31

Dominated algorithm, nk = 7
NSGA-II NSGA-III PO-count PO-prob PO-prob*

NSGA-II 0.00 11.21 0.00 0.09
NSGA-III 42.92 44.00 0.53 15.69
PO-count 12.16 0.00 0.01 0.03
PO-prob 63.32 14.72 63.73 39.24
PO-prob* 62.91 1.71 61.52 0.11
mean, θ 45.33 4.11 45.12 0.16 13.76

Dominated algorithm, nk = 25
NSGA-II NSGA-III PO-count PO-prob PO-prob*

NSGA-II 0.00 6.69 0.03 0.32
NSGA-III 17.35 20.83 0.03 10.60
PO-count 5.57 0.00 0.01 0.12
PO-prob 29.77 3.60 30.92 20.40
PO-prob* 25.71 0.44 27.97 0.23
mean, θ 19.60 1.01 21.60 0.07 7.86

Results for nk = 2 with random selection. Analyzing the results from Table 4, we
can see that for two knapsacks and random selection, PO-prob is dominated the least
number of times. NSGA-II, NSGA-III, and PO-count, on average, dominate no more than
13.52% of the solutions of PO-prob. PO-prob*, however, dominates on average 23.46%
of the solutions of PO-prob. At the same time, PO-prob almost never dominates other
algorithms. The only corresponding non-zero value is 8.37%, which represents the fraction
of solutions of PO-prob* dominated by PO-prob. This means that solution spaces of PO-prob
and other algorithms are distinct and do not intersect much. This supports our previous
observation, see Figure 4.

PO-prob* is dominated the most often by others, with more than 40% of solutions
being dominated by NSGA-II, NSGA-III, and PO-count.

NSGA-II, NSGA-III, and PO-count form a group of algorithms that are not usually
dominated by the probability-based algorithms, PO-prob and PO-prob*, but have high domi-
nation values among themselves. Among these three algorithms, PO-count seems to provide
the best configuration: it is dominated the least number of times by NSGA-II and NSGA-III;
the corresponding values are 39.21% and 34.51%, respectively. At the same time, PO-count
dominates 43.34% of the solutions of NSGA-II and 45.01% of the solutions of NSGA-III.
This corresponds to +5% and +10% compared to the inverse domination relationship.

Results for nk = 2 with tournament selection. For the same number of knapsacks,
nk = 2, and tournament selection, we can see that the probability-based algorithms are
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dominated more often than the counting-based algorithms, see Table 5. The average
number of dominated solutions through all algorithms, θ, is 44.52% for PO-prob and 52.31%
for PO-prob*. At the same time, the values of θ for NSGA-II, NSGA-III, and PO-count stay
relatively close to the corresponding values for random selection.

The results for this configuration, also confirm that NSGA-II performs the best: it is
dominated the least often and on average dominates more solutions that other algorithms.
This difference becomes especially prominent when comparing it with probability based
algorithms. NSGA-II dominates 47.81% of the solutions of PO-prob and 61.20% of solutions
of PO-prob*. The latter algorithms, however, dominate only 6.61% and 7.78% of the solutions
of NSGA-II, respectively.

Results for nk = 7. However, this pattern changes when the number of objectives
increases. Already for nk = 7, NSGA-II and PO-count are substantially outperformed by
other algorithms, both for random and tournament selection. More than 60% of solutions
of these two algorithms are dominated by the probability-based algorithms PO-prob and
PO-prob*. The level of domination in the inverse direction is less than 1%.

It is interesting to note that NSGA-III also results in a set of solutions that are rarely
dominated. The only algorithm capable of dominating a significant fraction of solutions
of NSGA-III is PO-prob. The corresponding values are 27.51% for random selection and
14.72% for tournament selection. This shows the superiority of NSGA-III for many-objective
optimization as compared to NSGA-II. As it was shown in Section 5.2.1, the solutions
of NSGA-III cover less hypervolume than the solutions of NSGA-II. However, as we can
see now, approximately 40% of the solutions of NSGA-II are dominated by the solutions
of NSGA-III. Thereby, despite covering less hypervolume, NSGA-III should be preferable
in practice.

A considerable fraction of solutions of PO-prob* is dominated by NSGA-II (19.00%
and 15.69%) and by PO-prob (48.65% and 39.24%). At the same time, only a tiny fraction
of solutions of PO-prob is dominated by solutions produced by other algorithms. The largest
fraction of solutions of PO-prob are dominated by NSGA-III: 0.08% for random selection
and 0.53% for tournament selection.

Results for nk = 25. When the number of knapsacks increases even further, we can
notice that all algorithms tend to produce more distinct sets of solutions, as the domination
fractions reduce. However, the general pattern stays the same. The solutions of NSGA-II
and PO-count are more often dominated by the solutions of other algorithms. The solutions
of PO-prob are almost never dominated. The next best performance is demonstrated
by NSGA-III, with 9.59% and 3.60% of solutions dominated by PO-prob for random and
tournament selection, respectively. PO-prob* has approximately 20% of solutions dominated
by PO-prob and 10% of solutions dominated by NSGA-III.

Distribution of θ. To further analyze how the domination fraction changes for dif-
ferent numbers of knapsacks, we demonstrate the distribution of θ for different values
of nk in Figure 10. Recall that θ shows the fraction of dominated solutions averaged over
different dominating algorithms, and its values are present in bold in Tables 4 and 5.

We can notice similar tendencies for both random and tournament selection. NSGA-II
and PO-count behave very similarly. For nk = 2, the value of θ for these algorithms is
around 23%. After that, it starts increasing and reaches its peak of approximately 45%
for nk = 7. Finally, it gradually decreases to 20% for nk = 25.

NSGA-III starts at a similar level. It reaches its peak of approximately 30% for nk = 5
for random selection and nk = 3 for tournament selection. After, it decreases below 10%
for nk = 8 and stays below this value for random selection, and relatively close to zero
in the case of tournament selection. These results once again demonstrate the superiority
of NSGA-III over NSGA-II for large numbers of objectives.

PO-prob starts at around 15% for random selection and 45% for tournament selection.
However, the value of θ drops to 0 very fast. This shows that the solutions produced by this
algorithm are almost never dominated by any other algorithm for large numbers of knapsacks.
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PO-prob* behaves similarly to PO-prob until nk = 5. Next, θ starts going up and
reaches its maximum at nk = 7 for random selection and at nk = 8 for tournament selection.
For larger values of nk, θ gradually decreases, but it is always larger than the corresponding
value for NSGA-III.
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Figure 10. Average percentage of solutions dominated by other algorithms. The legend is shared
among plots.

5.2.3. Performance: Main Findings

In general, the results presented in this subsection demonstrate the following:

• The performance of PO-count is very close to that of NSGA-II, both in terms of hyper-
volume and the fraction of dominated solutions.

• Our results support the finding from [39]. We show that, contrary to expectations,
NSGA-III results in lower values of hypervolume than NSGA-II for large numbers
of objectives. However, we also show that for large values of nk, the solutions pro-
duced by NSGA-III are rarely dominated by those produced by NSGA-II. At the same
time, NSGA-III does dominate some fraction of solutions produced by NSGA-II.
This shows that NSGA-III can be beneficial for many-objective optimization prob-
lems. This observation was not reported in [39].

• Finally, our experiments clearly demonstrate the advantages of probability-based
algorithms for many-objective optimization problems. Both PO-prob and PO-prob*
result in solutions that cover larger hypervolumes and are less often dominated by
the solutions of other algorithms.

5.3. Time Complexity

In this section, we analyze the time complexity of the studied algorithms. The proposed
algorithms differ from NSGA-II only in the sorting method used when selecting the best ele-
ments for the next generation. In addition, this is the most computationally expensive part.
The execution times of the other parts of the algorithm are proportional to the population
size. That is why we report the duration of the sorting procedure for the studied algo-
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rithms in Figure 11. This figure shows the results for 10 knapsacks and random selection.
The general trends and relations are similar for all other configurations.
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Figure 11. Time complexity for random selection and 10 knapsacks, nk = 10. (a) Cumulative sorting
duration as a function of number of generations; (b) Sorting duration as a function of population
size, pop_size.

Cumulative sorting duration. Figure 11a shows cumulative sorting duration as a func-
tion of the number of generations. As the size of the population remains the same for every
generation, cumulative sorting duration increases linearly for all algorithms except PO-
prob*. This algorithm is a combination of PO-prob for generations 0–350 and NSGA-II
afterwards. That is why for PO-prob* we observe a curve with two linear pieces with
corresponding inclinations.

We can also observe that NSGA-II and PO-count require similar time for sorting,
and NSGA-III performs the sorting procedure slightly faster. Contrarily, time complexity
of PO-prob and PO-prob* is significantly less. Indeed, PO-prob does not perform pair-
wise comparison of elements in the current population. Instead the values are compared
separately for every objective and are afterwards multiplied to obtain approximate ranking.

These experimental results confirm theoretical expectations based on the definition
of the proposed algorithm.

Sorting duration as a function of pop_size. In Figure 11b, we report the dependency
of sorting time on the population size for values of pop_size ranging from 50 to 500.
The reported values are averages of 100 independent executions of one iteration of the cor-
responding genetic algorithm. We do not show the results for PO-prob* here, as it is
an aggregation of two other algorithms.

From the figure, we can see that PO-prob requires much less time than all other
algorithms. The results for NSGA-II and PO-count tend to be very close, as in other
experiments. Finally, NSGA-III is in between.

This observation also has a theoretical explanation. Indeed, choosing the next gener-
ation for NSGA-III and NSGA-II has time complexity of max{O(N2M), O(N2logM−2N)}
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and O(N2M) respectively, where M stands for the number of objectives and N is the popu-
lation size, see [6,16]. At the same time, sorting in PO-prob comes down to independent
sorting procedures with respect to every objective. The time complexity of this procedure
is O(NMlog(N)).

All these results prove the computational efficiency of the approximate ranking calcu-
lation procedure used in PO-prob both theoretically and via the experiments.

6. Conclusions

In this paper, we study the application of a novel sorting technique based on Pareto
optimatily to genetic optimization. The proposed approach is very flexible and can be defined
for various sets of elements, relations, and measures. In the case of genetic optimization, the set
of elements is represented by a discrete set of points on a plane with the traditional numerical
relationship ≥. However, we consider two different measures: counting and probability, which
result in two versions of the algorithm: PO-count and PO-prob. The proposed ranking method
was implemented in the framework of the NSGA-II algorithm and was tested on the 0/1
knapsack problem with the number of objectives nk ranging from 2 to 25.

Our experimental results demonstrated that counting PO performs very similar
to the traditional non-dominated sorting. At the same time, probabilistic PO ranking
has multiple advantages. It allows the genetic algorithm to distinguish better between
the solutions, which is particularly useful in the case of many-objective optimization.
It also results in higher values of hypervolume both for large and small number of knap-
sacks as compared to NSGA-II and NSGA-III. In the case of random selection, hypervolume
is increased by 4% for 2 knapsacks and by 61% for 25 knapsacks. The respective values
for tournament selection are 1% and 30%. For medium numbers of knapsacks, we observe
a decrease in hypervolume, but it stays within −2%. Apart from increasing the hypervol-
ume when the number of objectives becomes larger, PO-prob also results in a set of solutions
that are very rarely dominated by other algorithms. For example, for 10 knapsacks, none
of the solutions of PO-prob are dominated by NSGA-II. At the same time, PO-prob dominates
approximately 60% of the solutions produced by NSGA-II. Finally, we demonstrated both
theoretically and practically the efficiency of PO-prob in terms of execution time. Sort-
ing based on probabilistic PO allows decreasing the computational time from O(N2M)
to O(NMlog(N)), where N and M stand for populations size and number of objectives,
respectively. The fact that PO-prob performs better than PO-count indicates that the practical
problem formalization might be crucial. In this case, the choice of the probability measure
over the counting one improves the performance drastically.

Although PO-prob-based sorting demonstrated good performance, this approach has
some limitations. It was demonstrated that it introduces front fragmentation for nk = 2 and
slightly decreases hypervolume when the number of objectives is between five and eight.
These problems can be partially solved by the PO-prob* algorithm, which is a combination
of PO-prob and the traditional PD ranking used in the original version of NSGA-II. However,
when the number of objectives is large, PO-prob provides the best performance.

As it was experimentally demonstrated in Section 5.1.3, sorting by PO-prob results
in almost no ties. In this sense, it can be considered as a linear extension of non-dominated
sorting. However, compared to other popular linear extensions, such as sum, average,
minimum, or maximum of objectives, PO-prob has a clear interpretation. It represents
the probability that a randomly chosen point will dominate the point under investigation,
see Section 3. Thereby, the resulting algorithms are easier to manage and understand.

7. Future Work

There are several experimental evaluations that we would like to perform as fu-
ture work. First, we would like to study the effect of correlated objectives. It is known
from the literature that NSGA-II performs better in the case of correlated objectives [40].
We want to study the behavior of PO-based algorithms in this case. Next, we would like
to test the performance of our algorithms in the framework of other optimization problems,
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including those extracted from real-world optimization applications, for example, those
from [41]. It might be also interesting to compare our algorithms with the following ap-
proaches and frameworks: other number-based methods of dominance re-definitions, see
Section 2.1; approximate non-dominate sorting [30,32]; extreme non-dominated sorting,
which utilizes extreme solutions in the population generation in order to enhance the qual-
ity of solutions [42,43]; approaches based on a subset of Pareto optimal solutions for which
an improvement in one objective will result in a severe degradation in at least another
one [9]; and Dominance Resistant Solutions [44], which have very good values for some
objectives and very bad values for other objectives.

We also envision several directions for further theoretical analysis of the proposed ap-
proach. We would like to study the problem of front splitting that was observed for n_k = 2.
As suggested in Section 5.1.1, employing an adaptive parents selection strategy can provide
a solution. Additionally, we want to analyze the effect of constraints violation and the ap-
plication of the proposed methods to constrained genetic optimization. Indeed, constraints
can be formulated as additional objectives resulting in the increase in the problem’s dimen-
sionality. However, as it was demonstrated in this paper, PO-prob can effectively cope with
such problems.

Moreover the framework proposed in [14] offers a lot of flexibility. Using appropri-
ate relations and measures, k-Pareto optimality might be adapted to select the simplest
solutions, for example using a sub-tree or a sub-graph relation; the best solutions of mixed-
integer objectives; or to express trade-offs using cone-based relations.
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Abbreviations
The following abbreviations are used in this manuscript:

NSGA-II Non-dominated Sorting Genetic Algorithm II [6]
NSGA-III Non-dominated Sorting Genetic Algorithm III [16]
PD Pareto dominance-based sorting, as used in NSGA-II
PESA-II Pareto Envelope-based Selection Algorithm II [5]
(k-)PO (k-)Pareto Optimality [14]
PO-count Pareto Optimality computed via counting
PO-prob Pareto Optimality computed using probabilistic approximation
PO-prob* PO-prob sequentially combined with Pareto dominance sorting
SPEA2 Strength Pareto Evolutionary Algorithm 2 [7]

Appendix A. 0/1 Multi-objective Knapsack Problem Formulation

The 0/1 multi-objective knapsack problem from [35] is formulated in the following
way. Let n be the number of knapsacks and m the number of items. Let pi,j be the profit
of item j according to knapsack i, wi,j the weight of item j according to knapsack i, and ci
the capacity of knapsack i. The problem is to find a vector ~x = (x1, x2, . . . , xm) ∈ {0, 1}m

such that

∀i ∈ {1, 2, . . . , n} :
m

∑
j=1

wi,jxj ≤ ci (A1)
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and for which ~f (~x) = ( f1(~x), f2(~x), . . . , fn(~x)) is maximum, where

fi(~x) =
m

∑
j=1

pi,jxj (A2)

and xj = 1 iff item j is selected.
We choose uncorrelated profits pi,j and weights wi,j as random integers in the interval

[10, 100]. The knapsack capacities are set to half of the total of the corresponding item weights:

ci = 0.5
m

∑
j=1

wi,j. (A3)

A particular vector ~x generated randomly or via a genetic procedure can violate
the capacity restriction of Equation (A1) for a knapsack. In this case, following [35], we
adopt a greedy repair method. This method removes items from a particular solution
until all capacity constraints are fulfilled. The items are removed in the ascending order
of maximum profit/weight ratio qi, which is given by the following equation:

qj =
n

max
i=1

{
pi,j

wi,j

}
. (A4)

In this way, the items with lower profit per weight unit qj are removed first. The aim
of this procedure is to fulfill all capacity constraints while reducing the overall profit as little
as possible.

Appendix B. Visualization of the First front with Parallel Coordinates for n_k = 2

Figures A1 and A2 show the visualization of solutions using parallel coordinates
for n_k = 2. The horizontal axis of each plot represents the index of the objective, and
the vertical axis shows the corresponding objective value. The visualization strategy
corresponds to the one described in Section 5.1.2.

The fragmentation of the first front for PO-prob with random selection is depicted
in Figure A1d. The absence of similar behavior in Figures 6d and 7d is an additional
indicator of the fact that in larger dimensions, the solutions of PO-prob are not fragmented.
In the case of two knapsacks, this tendency is repaired by PO-prob*, see Figure A1e. The
latter approach also covers a larger range of objective values than NSGA-II, see Figure A1a.

The fragmentation is not observed in the case of tournament selection, see Figure A2d.
Additionally, we see that, in this case, one objective is preferred over another. This is clearly
depicted in the absence of symmetry in Figure A2a,d,e.

All these observations support the findings from Section 5.1.1.

1 2
0.8

0.9

1.0

Pr
ofi

t,
×

10
4

(a) NSGA-II

1 2

(b) NSGA-III

1 2

(c) PO-count

1 2

(d) PO-prob

1 2

(e) PO-prob*

Figure A1. Profit of the knapsacks from the final front for nk = 2 with random selection. Different
knapsacks are encoded by numbers on the x-axis. y-axis is shared.



Algorithms 2022, 15, 420 27 of 30

1 2
0.8

0.9

1.0

Pr
ofi

t,
×

10
4

(a) NSGA-II

1 2

(b) NSGA-III

1 2

(c) PO-count

1 2

(d) PO-prob

1 2

(e) PO-prob*

Figure A2. Profit of the knapsacks from the final front for nk = 2 with tournament selection, ∗104.
Different knapsacks are encoded by numbers on the x-axis. y-axis is shared.

Appendix C. Average Distance to Diagonal

A diagonal in the n-dimensional hyperspace is defined with the following equation:
x1 = x2 = · · · = xn. In the case of n = 2 and x and y being two axes, the conventional
definition of the diagonal is the following: y = x. The optimization problem considered
in this paper is symmetric. This means that all objectives have the same scale, or ,for
all objectives, the values are distributed similarly. In such a case, the Euclidean distance
between a solution and the diagonal shows how close (for large distances) or how far
(for small distances) the solution is to the extremes. The values of the average distance
to the diagonal for four different numbers of knapsacks, nk ∈ {2, 4, 6, 8}, are shown
in Figure A3.
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Figure A3. Average distance to diagonal for different number of knapsacks as a function number
of generations. The legend and y-axis are shared among plots.

As we can see, on all figures, the values for PO-prob and PO-prob* are very close to each
other up to generation 350. After that, we can observe different behaviors of plots for these
two algorithms. This observation, similarly to previous ones, is explained by the definition
of PO-prob* as a combination of PO-prob and NSGA-II.

Let us analyze the results for random selection. In Figure A3a, we can see that for two
knapsacks, nk = 2, the curves for NSGA-II, NSGA-III, and PO-count are very close to each
other, and the associated solutions are relatively close to the diagonal. On the other hand,
for gen ≥ 200, the solutions produced by PO-prob and PO-prob* are more than two times
farther away from the diagonal. It means that these algorithms produce solutions that
are much closer to extreme values and cover less the central part of the Pareto-frontier.
This observation also agrees with the results presented in Section 5.1.1, see Figure 4b.
As expected, after the number of generations reaches 350, the solutions of PO-prob* tend
to be closer to the diagonal, as the NSGA-II selection procedure is used.

We can notice, however, that this general trend changes when the number of knapsacks
increases. For nk = 4, all algorithms have similar values for the average distance to the di-
agonal, see Figure A3c. For six knapsacks, the relation is already inverted: the solutions
produced by NSGA-II and PO-count tend to extremes more than those for other algorithms,
see Figure A3e. For nk = 8, starting from gen = 200, the solutions produced by PO-prob
are at least 25% closer to the diagonal than those produced by NSGA-II and PO-count, see
Figure 4g. Also note that the solutions produced by NSGA-III always have a relatively low
distance to the diagonal, regardless of the number of knapsacks. This can be explained
by the fact that all chosen solutions in NSGA-III are attached to reference points that do
not change during the whole evolutionary process. All this supports the relative findings
from Section 5.1.2.

In the case of tournament selection, we observe a similar dependency between the av-
erage distance to the diagonal and the number of knapsacks. The average distance to the di-
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agonal for PO-prob and PO-prob* decreases when n_k increases. This effect becomes visible
faster than for random selection; compare Figure A3d,c. Moreover, we can notice that
for all algorithms, tournament selection tends to produce solutions that are farther away
from the diagonal for larger numbers of knapsacks. In the case of nk = 2, however,
PO-prob with random selection produces more extreme solutions than with tournament
selection, see Figure A3a,b. This observation also corresponds to the results presented
in Figures 4b and 5f of Section 5.1.1.
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