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Abstract: In this paper, an integrated design of a supermarket refrigeration system has been used to 
obtain a process with better operability. It is formulated as a multi-objective optimization problem 
where control performance is evaluated by six indices and the design variables are the number and 
discrete power of each compressor to be installed. The functional dependence between design and 
performance is unknown, and therefore the optimal configuration must be obtained through a com-
putational experimentation. This work has a double objective: to adapt the surface response meth-
odology (SRM) to optimize problems without experimental variability as are the computational 
ones and show the advantage of considering the integrated design. In the SRM framework, the 
problem is stated as a mixture design with constraints and a synergistic cubic model where a D-
optimal design is applied to perform the experiments. Finally, the multi-objective problem is re-
duced to a single objective one by means of a desirability function. The optimal configuration of the 
power distribution of the three compressors, in percentage, is (50,20,20). This solution has an excel-
lent behaviour with respect to the six indices proposed, with a significant reduction in time oscilla-
tions of controlled variables and power consumption compared with other possible power distri-
butions. 

Keywords: computational experiment; D-optimal; Integrated design and control; surrogate model; 
desirability; experimental design; Hybrid Model Predictive Control; mixture 
 

1. Introduction 
A supermarket refrigeration system [1] consists of a central compressor bank that, 

along with other process units, maintains the required flow of refrigerant (by suction pres-
sure) to several refrigerated display cases located in the supermarket sales area. Each dis-
play case operates with an inlet on/off refrigerant valve to keep the air temperature in the 
display case within a range that will maintain the quality of the goods. This is a hybrid 
process that entails non-linear switched dynamics and discrete events, discrete manipu-
lated variables (open/close valve and turn compressor on/off), continuous controlled var-
iables (i.e., temperature of goods), and finally, several operational constraints. 

Many processes are all-too-often designed without taking dynamic considerations 
into account. The design step only computes the physical parameters, size, and economic 
cost of the units and other system component conditions that, in the best possible way, 
meet the requirements of the chosen steady state operating point. This can lead to loss of 
performance when the process has to interact dynamically with its control system. Inte-
grated design, however, is a technique that considers the control system of the plant and 
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its controllability issues in the selection of plant parameters. Therefore, isolated decision-
making for process and control design would result in, if not infeasible, a sub-optimal 
solution. A good revision and challenges in this topic can be found in references [2–5]. 

The goods in the display case should be kept within the specified temperature 
bounds in order to preserve them for consumption, and suction pressure of the compres-
sor should not be increase above a value for security issues. In addition, it is recommended 
to decrease the number of compressors and valves switches to increase the lifetime of 
these equipment and finally it is important to reduce the energy consumption of the com-
pressors in order save money in the daily operation of the refrigeration system. According 
to the above objectives, the performance of a refrigeration supermarket system is evalu-
ated by three measures, initially proposed in 38[5]: (i) γcon, violation of the constraints on 
the air temperatures inside the display cases and at the upper level of the suction pressure. 
(ii) γswitch, the number of start/stop commands sent to the compressors and the number of 
inlet valve switches, and (iii) γpow, the average power consumption of the compressors. In 
addition, it is also necessary to consider a day/night operation of the process. So, there are 
six measures or responses to be minimized. 

In [7], the authors developed a predictive hybrid controller (HMPC) to control a sim-
ulation of a refrigeration supermarket system, improving the behaviour of the process 
compared to when traditional decentralized PI controllers are used [5]. In this approach, 
certain on/off actions were considered in terms of time instants of the events, instead of 
using binary values in each sampling time such as, for example, mixed logical dynamical 
(MLD) framework presented in [8] and used in [8] to develop a mixed-integer model pre-
dictive Controller based in linear models to control a simulation of a refrigeration super-
market system. The approach in [7] and more recently in [10] circumvents the computa-
tional difficulties of solving a mixed-integer optimization problem each sampling time, 
reformulating the switching dynamics. On the other hand, linear models provide an in-
adequate representation of the non-linear dynamics that take place within refrigeration 
systems, which results in a mixed-integer non-linear optimization problem which is un-
suitable for real-time control. 

The above procedure proposed by the authors was previously applied to other pro-
cess, i.e., [11], an industrial process where continuous and batch units operate jointly: the 
crystallization section of a sugar factory. The process includes both continuous objectives 
and continuous manipulated variables, as well as those objectives related to the discrete 
operation of the batch units and discrete manipulated variables. This approach leads to a 
predictive controller formulation where discrete variables are avoided and a non-linear 
optimization problem (NLP) is solved online every sampling time, instead of solving a 
mixed-integer non-linear optimization problem (MINLP), the solution for which is much 
more computationally expensive. 

The relation between these six indices and the configuration of the refrigeration sys-
tem (number and capacity of compressors) is neither explicit nor modelled by the equa-
tions in the controller. It is, however, a consequence of system dynamics and control. 
Therefore, any optimal integrated design of a supermarket refrigeration system has to be 
performed by estimating this unknown functional relation through calculation of the in-
dices for certain configurations. The selection of these configurations should be done in 
such a way that the functional models provide the most precise possible estimation of the 
indices. Response surface methodology (RSM) is the solution to the problem of selecting 
the most suitable experiments when seeking to estimate models on the basis of experi-
mental data from a given system, [12,13]. RSM has been extensively used in process opti-
mization [14] to study and optimize critical aspects in processes that are already in oper-
ation. The variability estimation is needed, in standard RSM, as a reference to establish 
the model validity (lack of fit hypothesis test), the effect of the experimental factors (anal-
ysis of variance, ANOVA), the precision of the model coefficients, and the precision of the 
estimated response with the fitted model. 
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The design and modelling of computer experiments have become popular topics 
over recent years. Several comprehensive works, i.e., [15], have emphasized the challenges 
and importance in this relatively new area. Usually, so-called space-filling designs are 
used to generate the necessary computational experiments. In addition, various modelling 
techniques have been proposed: Kriging models, (orthogonal) polynomial regression 
models, local polynomial regression, multivariate spline and wavelets, Bayesian methods, 
and machine learning methods as neural networks. Some recent examples of the applica-
tion of machine learning-based computational techniques in different engineering areas 
are showed next. The incorporation of the solvents into process design occurs by means 
of a serial clustering [16]. A neural network is used to model surface tension [17] for the 
design of heat exchangers and mass transfer equipment. In [18], the effect of temperature, 
pressure, and amount of graphene oxide on CO2 capture by an aqueous solution of methyl 
diethanolamine is analyzed using different artificial intelligent models. The effect of foul-
ing caused by formation of scales in the pipelines of oil and gas is modeled by a neural 
network in [19]. Finally, reference [20] is a recent review about current state and the future 
directions of computer experimentation in process engineering. 

The design of the experiment and the surrogate model are the two key issues in com-
putational experiments and their interaction restrict the achievable results, but, in general, 
both are defined in an independent manner. In fact, the theory that describes the relation-
ship between both to develop optimal procedures for computational experimentation is 
scarce. 

Unlike what happens in computational experiments, in RSM a link is made between 
the model and the design to obtain those experiments that are required to fit the model 
with the best quality. For this task, it is necessary to define the criteria that allows one to 
compare the quality of the designs proposed for an experiment before carrying it out. In 
RSM, it is considered that there is an experimental variability, that is to say, that if the 
experiment is repeated under the same conditions, a different result will be obtained; this 
does not happen in a computational experiment. This variability is transmitted to the co-
efficients of the fitted model and to the values calculated with it. Thus, once the number 
of experiments to be used is fixed, a design is D-optimal if the variance of the coefficients 
of the model is the lowest possible and is said to be G-optimal if the variance of the re-
sponse is minimax in the experimental domain [12,13]. 

In a computational experiment, there is no experimental variability, but in this paper, 
it is shown that criterion D introduces a metric in the Euclidean space of the coefficients 
and criterion G in that of the response values, therefore they can continue to be used to 
obtain an optimal experimental design.  

Extending the use of RSM methods to computational experiments has the advantage 
that it leads to solutions where the Euclidean distance between the response values (the 
six quality indices) obtained computationally and those predicted by the proposed subro-
gate model is minimal. This is because the response surface is calculated by least squares. 
In addition, RMS provides the optimal design with the minimum number of points where 
the computational experiments must be made.  

This approach is explored and applied, for the first time, in the integrated design of 
a process which is a computational experiment, without experimental variability, to ob-
tain the best configuration of the process to be installed in terms of the number of neces-
sary compressors and their corresponding discrete capacities, considering the aforemen-
tioned control objectives and the behaviour of the process with the overall control system. 
Formally, the distribution of total capacity into three compressors is a mixture problem 
with constraints. 

The paper is organized as follows. Following this introduction, the elements of the 
problem are described in the next two sections. Section 2 describes the model of the pro-
cess, its control by means of Hybrid Model Predictive Control, the implementation of the 
controller, and the indices that are to be controlled. Section 3 describes the polynomial 
models for the design of response surfaces, in order to understand mixture problems, 
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criterion D in terms of a metric in the space of the possible linear models, and criterion G 
as a function of quadratic loss; the section ends with a description of the procedure, in 
order to obtain a D-optimal experimental design. The results and discussion are shown in 
Section 4, where the analysis of the six responses is performed through the desirability 
function. Finally, a number of conclusions and references bring the paper to an end. 

2. Supermarket Refrigeration Systems 
Commercial food outlets in the UK are responsible for 3% of the UK total energy 

consumption, while refrigeration systems represent 29% of this total [21], so, improving 
the performance of the refrigeration system has a huge potential in reducing electrical 
usage and costs. In that paper, a model which is tuned and validated with the real opera-
tional data collected from the Refrigeration Centre is developed in MATLAB/SIMULINK 
and used to simulate the operation of a commercial refrigeration system in order to exam-
ine and investigate the impact of various operational parameters in this kind of systems. 

It is important to consider the difficulty to control this process due to high thermal 
inertia, dead times, high coupling between variables, and strong nonlinearities, so many 
authors have developed benchmarks to design and test adequate control system, includ-
ing [1] and [22]. 

This section lists the elements of the model that will be optimized. A detailed descrip-
tion of their contents may be consulted in [7,23]. 

2.1. Plant Process Description 
Many foodstuffs have to be kept in refrigerators to ensure that they remain fit for 

human consumption. In supermarkets, these are usually held in open display cases that 
facilitate self-service. A simplified supermarket refrigeration circuit with three display 
cases is shown in Figure 1. Refrigeration of the open display cases maintains the quality 
of the goods that are on offer to the public. They contain an evaporator that receives the 
flow of refrigerant and maintains the required temperature for the goods. The other ele-
ment of the system is the compressor rack, which consists of a number of compressors 
connected in parallel. They supply the flow of refrigerant to the system by compressing 
the low-pressure refrigerant from the suction manifold, which receives the vapours re-
turning from the display cases. The compressors maintain a constant pressure in the suc-
tion manifold, thus ensuring the desired evaporation temperature. The dynamic in the 
suction manifold is modelled by only one state: suction pressure (Psuc).  

 
Figure 1. A schematic supermarket refrigeration system with three display cases and controlled 
variables. 
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The refrigerant flows from the compressors to the condenser and further on to the 
liquid manifold. The evaporators inside the display cases are fed in parallel from the liq-
uid manifold through an expansion valve. The outlets of the evaporators lead to the suc-
tion manifold and back to the compressors, thereby closing the circuit.  

A temperature sensor is located inside the display cases, which measures the air tem-
perature Tair close to the goods. This temperature measurement is used in the control loop 
as an indirect measure of the temperature of the goods. Furthermore, an on/off inlet valve 
is located at the refrigerant inlet of the evaporator, which is used to control the tempera-
ture in the display case. Finally, in Figure 1, the arrows indicate the circulation of the re-
frigerant in the refrigeration system. 

2.2. Typical Decentralized Control Structure 
The Tair in the display cases is controlled by a hysteresis controller (1) that opens and 

closes the inlet valve.  

𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖(𝑘𝑘) = �
0 𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 > 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚

1 𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖(𝑘𝑘 − 1) 𝑖𝑖𝑖𝑖  𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 .

𝑚𝑚𝑚𝑚𝑚𝑚
  (1)  

The suction pressure controller is normally a Proportional Integral controller (PI-con-
troller) with a dead band (±DB) around the reference of the suction pressure (2) where e(t) 
is the control error and uPI is output from the PI-controller. If the compressor capacity is a 
discrete value, then the applied control signal ucomp,i (i = 1, 2, ..., nc) is obtained as follows: 

𝑢𝑢𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒(𝑡𝑡) + �
𝑒𝑒(𝑡𝑡)
𝐾𝐾𝑖𝑖

𝑑𝑑𝑑𝑑 𝑒𝑒(𝑡𝑡) = �𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠
𝑟𝑟𝑟𝑟𝑟𝑟  if |𝑒𝑒(𝑡𝑡)| > 𝐷𝐷𝐷𝐷

0 otherwise,
 

�𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,1,𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,2, … ,𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑛𝑛𝑛𝑛� =

⎩
⎪
⎨

⎪
⎧

(0,0, … ,0) 𝑖𝑖𝑖𝑖 𝑢𝑢𝑃𝑃𝑃𝑃 < 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,1/2

(1,0, … ,0) 𝑖𝑖𝑖𝑖 �
𝑢𝑢𝑃𝑃𝑃𝑃 ≥ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,1/2

𝑢𝑢𝑃𝑃𝑃𝑃 < 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,1 + 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,2/2
⋮ ⋮

(1,1, … ,1) 𝑖𝑖𝑓𝑓 𝑢𝑢𝑃𝑃𝑃𝑃 ≥ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑛𝑛𝑛𝑛/2,

  
(2)  

where Ccomp,i is the i′th compressor capacity (∑ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖
𝑛𝑛𝑛𝑛
𝑖𝑖=1 = 100) and nc is the total number 

of compressors installed. The dead band ensures that the integration is stopped as long as 
the suction pressure is within the dead band. When the pressure exceeds the upper bound, 
the integration is started and one or more additional compressors are turned on to even-
tually reduce the pressure, and vice-versa when the pressure falls below the lower bound. 
Hence, moderate changes in the suction pressure and small biases from the reference do 
not initiate a compressor switching.  

In the supermarket, many of the display cases are similar in design and work under 
uniform conditions. As a result, the inlet valves of the display cases are switched with 
very similar switching frequencies. The valves therefore tend to synchronize, leading to 
wide oscillations of suction pressure and temperatures, with the consequence that many 
of the controlled variables are out of control, and the compressors wear out due to fre-
quent starts/stops and synchronization. 

2.3. Hybrid Model Predictive Control, Advanced Process Control 
In response to the aforementioned problems that are inherent to decentralized con-

trol, a centralized Hybrid Model Predictive Control, HMPC, has been proposed in [7] but 
maintaining in the low level only the PI controller for suction pressure (2). HMPC uses a 
rigorous non-linear continuous-time model to describe the dynamic of the refrigeration 
system. The main emphasis in the modeling is on the suction manifold and the display 
cases, which contain the most relevant dynamics for controlling them. The model consid-
ers the features of the refrigerant and the compressor. The compressor’s capacity in most 
refrigeration systems is a discrete value, as compressors can either be switched on or off. 
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In addition, the system dynamics based on first principles are considered as well as the 
manipulated variables that correspond to the opening/closing of the valves in each display 
case. A new parameterization converts these integer decision variables into real decisions 
𝑇𝑇𝑜𝑜𝑜𝑜,𝑖𝑖
𝑘𝑘  and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖

𝑘𝑘 , that is, the time instants when the integer variable I changes its value. This 
approach allows us to use conventional non-linear optimization techniques (in terms of 
real variables) instead of mixed-integer non-linear programming, decreasing the complex-
ity of the optimization procedure and saving computation time. 

The following variables are considered from the standpoint of system control, where 
i refers to a specific display case, and n is the total number of display cases: 
• The controlled variables are, respectively, the suction pressure (Psuc) and the air tem-

perature (Tair,i) in each display case (i = 1, ..., n). They are measured, as indicated in 
Figure 1, for each display case.  

• The on/off manipulated variables are the opening/closing of the inlet valves of the dis-
play cases.  

• The non-measured disturbances are the heat load on the display cases (Qairload) and the 
variation in mass of goods (Mgoods,i) inside them.  

• The temperature of the goods (Tgoods,i) in each display case are non-measured variables 
that are controlled indirectly using air temperature. 

• Several constraints apply to suction pressure (Psuc) and to air temperatures (Tair,i). 
In the structure of Figure 1, composed of 3 display cases, a non-linear model has to 

be solved that has 888 variables and 67 equations in the case of two compressors (16 of 
which are differential equations). In the case of three compressors, there are 889 variables 
and 69 equations of which 16 are also differential equations. 

The model describes the behaviour of the system at each future point, based on the 
present situation, t = 0. The future action of the valves (open/close or no change) is based 
on the mean expected behaviour of the controlled variables up until a temporal horizon 
Tp. The objective is to maintain the controlled variables “close” to the reference value, 
minimizing a cost function J, defined by:  

𝐽𝐽 = � �𝛼𝛼1�𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠
𝑟𝑟𝑟𝑟𝑟𝑟�

2
+ �𝛼𝛼1+𝑖𝑖 ��𝑇𝑇�𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�

2
+ �𝑇𝑇�𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�

2
�

𝑛𝑛

𝑖𝑖=1

�
𝑇𝑇𝑝𝑝

0
𝑑𝑑𝑑𝑑, (3)  

where, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠
𝑟𝑟𝑟𝑟𝑟𝑟 is the reference value of the suction pressure in the controller PI, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 
and 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum acceptable values for the temperature in 
each display case, and αi (i = 1,…, 1 + n) is the weight of each addend in Equation (3).  

Although HMPC does not manipulate the compressors, the first term of Equation (3) 
penalizes the difference between the suction pressure and its reference. Each of the terms 
that constitute the second part seeks to maintain a stable periodical pattern of air temper-
ature in the display cases. Due to the oscillatory nature of air temperature, the idea is to 
obtain waves with a certain constant amplitude fixed by the maximum and minimum 
values allowed 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (desired amplitude = 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚-𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚), see Figure 

2. The permitted level of oscillation is between 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚, while 𝑇𝑇�𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 and 

𝑇𝑇�𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 are the maximum and minimum values reached by Tair,i throughout the prediction 

interval. 
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Figure 2. How to calculate the term of the cost function associated with air temperatures when these 
variables have a periodical oscillation. 

2.4. Controller Implementation 
The aim of the HMPC is to minimize J, Equation (3), considering the system dynam-

ics, with respect to the decision variables related with the opening/closing position of the 
valves in each display case and with those the starting/stopping of each compressor.  

The resulting non-linear optimization problem is solved each sampling time using 
an SQP algorithm [24] implemented in a commercial library NAG for C [25] following the 
schematic of Figure 3, which corresponds to a sequential approach where the cost func-
tion, J, is computed by the integration of the dynamic internal model. The simulation pack-
age integrates the equations of the internal model equations along the prediction horizon, 
Np, taking as initial conditions the current process state and evaluating the formulated cost 
function, J, at the end of the integration.  

Both dynamical models, supermarket process plus PI controller and the internal 
model were coded in the modelling environment EcosimPro [26]. This is a modern simu-
lation software which allows combining DAE equations with events performing a correct 
integration in spite of the model discontinuities. In addition, it can generate C++ code cor-
responding to the simulation. Taking the advantage of this capability, the code of the in-
ternal model was embedded with the nonlinear optimizer in the HMPC controller which 
has been programmed in C++. 

 
Figure 3. Non-linear MPC controller implementation. 
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From a technical point of view, it is necessary to add a real/discrete converter be-
tween the controller and the process, see Figure 3. HMPC calculates the exact time in-
stants, 𝑇𝑇𝑜𝑜𝑛𝑛,𝑖𝑖

𝑘𝑘  and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖
𝑘𝑘 , of changes for each on/off manipulated variable, and the converter 

transforms these times into a discrete manipulated signal when the events will occur. In 
other words, the application of the on/off signals is decoupled from the sampling time. 

2.5. Control Performance Objectives 
The general control objectives are: meet the constraints on refrigerator temperature 

and on suction pressure, minimize the number of times the compressors are turned on/off, 
and minimize the consumed power. Accordingly, various indices are defined in accord-
ance with each control objective, in order to evaluate the behaviour of the controller. Ac-
cording to reference [1], the three initially proposed indices are, γcon, γswitch, and γpow.  

2.5.1. Constraints 
The index γcon may be interpreted as the mean of the square of violations per second 

of the constraint, both with respect to suction pressure, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚, and maximum, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚, and 
minimum, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚, temperatures, in each case.  

𝛾𝛾𝑐𝑐𝑐𝑐𝑐𝑐 = � �𝜀𝜀𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)2 +
𝑙𝑙
𝑛𝑛
�𝜀𝜀𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖(𝑡𝑡)

2
𝑛𝑛

𝑖𝑖=1

�
𝑇𝑇𝑝𝑝

0
𝑑𝑑𝑑𝑑 𝑇𝑇𝑝𝑝   � , (4)  

where, 𝜀𝜀𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) is the function that expresses the violation of constraints in suction pres-
sure in time t and 𝜀𝜀𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖

(𝑡𝑡) corresponds to the violation of the constraint in the i-th display 
case in time t. 

𝜀𝜀𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = �𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 > 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑎𝑎𝑎𝑎
0 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (5)  

𝜀𝜀𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖(𝑡𝑡) = �
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 > 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.
 (6)  

2.5.2. Switches 
One of the main objectives is to reduce the number of starts and stops of the com-

pressors. In general, the useful life of a compressor is approximately  100,000 starts/stops, 
therefore by reducing that number in daily operation, the life of the compressors may be 
extended. On the one hand, the cost of opening and closing the valves is 100 times less 
than the cost associated with the compressors. In other words, the operation of the valves 
is less critical than the operation of the compressors. The following index, γswitch, is intro-
duced to measure the behaviour of the controller with regard to these stops and starts: 

𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = � �𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) + 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) 100⁄ �
𝑇𝑇𝑝𝑝

0
𝑑𝑑𝑑𝑑 𝑇𝑇𝑝𝑝� , (7)  

where Ncomp(t) indicates the number of compressors that have been stopped and started 
within time t, and Ndisp(t) also refers to the number of valves that have been opened and 
closed within the same time t. Therefore, γswitch is the number of compressors started up 
and stopped per second, where 100 changes in the valves count as a change of compressor. 

2.5.3. Power Consumption 
The compressors consume the largest portion of energy in a refrigeration system, 

which is why it is important to reduce this consumption. Average consumed power, γpow, 
is the most appropriate index to measure this consumption. 

𝛾𝛾𝑝𝑝𝑝𝑝𝑝𝑝 = ∫ �𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) 100⁄ �𝑇𝑇𝑝𝑝
0 𝑑𝑑𝑑𝑑 𝑇𝑇𝑝𝑝� , (8)  
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where Powcomp(t) is calculated, as detailed in [27], from volumetric flow and the enthalpies 
of the refrigerant considering isoenthropic efficiency.  

In supermarkets, during the night-time, refrigerators are covered with “night co-
vers”, which considerably reduce the heat load, Qairload, and the constant mass flow to the 
suction collector. The model can include the change from day to night, modifying the new 
values of Qairload and fref,const within a set time, which are considered measurable perturba-
tions that do not have to be estimated. As from that moment, it is necessary to introduce 
new indices because 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 increases as well as its reference and its lower limit. 

There are therefore three indices with which to evaluate daytime behaviour: γcon-d, 
γswitch-d, and γpow-d and another three for night-time behaviour γcon-n, γswitch-n, and γpow-n. 
It is clear that the smaller the value of each one, the better the refrigeration system per-
forms. 

The relation between the minimum of these indices and the structure of the refriger-
ation system (number and capacity of the rack of compressors) is neither explicit, nor is it 
modelled by the equations of the controller, although it is the consequence of the system 
dynamic and of its control. Therefore, optimization of the structure of the refrigeration 
system must be done through the estimation of the functional relation derived from the 
calculation of the indices for some configurations. Figure 3 shows a schematic diagram of 
the computational experiment: the number and capacity of compressors is fixed, the pro-
cess and its control are simulated over a given period of time that includes day/night 
changes, and the six indices are evaluated. 

3. Experimental Design for Mixture Studies 
If q is the number of compressors and xi is the fraction of the total power of each one, 

the configuration of the compressor rack will be defined by the variables xi that satisfy: 

0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1, 𝑖𝑖 = 1,2, … , 𝑞𝑞    𝑎𝑎𝑎𝑎𝑎𝑎    𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑞𝑞 = 1. (9)  

The six responses or indices of interest, γl, are, for optimization purposes, function-
ally related to the proportions of power: 

𝛾𝛾𝑙𝑙 = 𝑓𝑓𝑙𝑙�𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑞𝑞�, 𝑙𝑙 = 1,2, … ,6. (10)  

In an attempt to study the relationship in Equation (10) for each index, different com-
binations of the components will be tested to analyse the variation of each γl by changing 
the rack configuration (x1, x2, …., xq). These are the individual experiments on the basis of 
which the function proposed in Equation (10) is estimated. After verifying the validity of 
the estimated function, which substitutes the unknown functional relation, the researcher 
may be interested in identifying whether a configuration exists that will yield optimum 
responses, or simply in gaining a better understanding of the whole system, through the 
joint analysis of the behaviour of every possible configuration. 

Functions fl(.) in Equation (10) are the surrogate model of all equations used to de-
scribe the process and its HMPC controller shown in Section 2 (corresponding to the blue 
box in Figure 3). The surrogate model is a regression model which is trained with results 
obtained with the computational model evaluated in certain points of the experimental 
domain (ED). According to Gramacy [28], a good surrogate model has to provide an esti-
mation of the response in other points of the experimental domain where the computa-
tional model has not been evaluated. In this way, the surrogate model should be much 
simpler and faster than the original one but can be used for the same purposes, i.e., finding 
an optimum.  

The response surface methodology allows us to select the number and the character-
istics of the experiments needed to obtain the most accurate estimation. However, as it 
cannot be used directly for mixture experiments, because of the equality constraint in 
Equation (9), most of the research into mixture problems has been focused on developing 
models and designs to explore the whole or part of the mixture space.  
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3.1. Experimental Domain 
The experimental domain is formed by the set of possible configurations. Theoreti-

cally, all points (x1, x2, …., xq) under the constraints of Equation (9) are a simplex in the q-
dimensional space. As already indicated, compressor capacity is a discrete-value and sev-
eral practical constraints are imposed, therefore the experimental domain is a discrete sub-
set, ED, which does not cover the entire simplex.  

3.2. The Model 
A surrogate model is chosen to model the response, along with the ED candidate 

design points that are selected in the design and analysis of a mixture experiment, in an 
irregular experimental domain. From this list of candidate design points, a computer al-
gorithm selects the design points according to the chosen optimality criteria. 

Scheffé canonical polynomial models are usually used to represent the response [29]. 
The surrogate models are the result of incorporating the mixture constraints into polyno-
mials. The simplex–centroid design presented is a widely used model that has p = 2r − 1 
terms (all the different crossed products) where r is the degree of the polynomial. For 
example, the canonical polynomial up to grade four is given by the following expression: 

𝑦𝑦 = �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖

+ ��𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
𝑗𝑗𝑖𝑖

+ ���𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘
𝑘𝑘𝑗𝑗𝑖𝑖

+ ����𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘𝑥𝑥𝑙𝑙
𝑙𝑙𝑘𝑘𝑗𝑗𝑖𝑖

 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 < 𝑙𝑙. (11)  

3.3. Optimality Criteria 
This model has p parameters to be estimated by taking observations in the con-

strained ED space. An appropriate rack configuration must be chosen to calculate the six 
indices, so as to ensure that the data will contain the desired information. In other words, 
the experimental results must enable the coefficient estimation of a model that can be used 
for accurate prediction at any point of the domain of interest, having established its suit-
ability to represent the evolution of each index γl (l = 1, 2, …, 6). 

The simplest strategy might be to conduct the experiments on all the candidate points 
of ED. However, reducing the number of experiments may be a relevant requirement 
worth further consideration. Should this be so, then the objective is to select a subset of 
points from ED which will provide precise estimates of the parameters in the model, given 
in Equation (11). Some quantitative criteria are needed to be able to compare various ex-
perimental designs before selecting an optimum design. 

After selecting N ≥  p experiments from ED, the values of each index are calculated 
for use in the system of linear equations: 

𝛎𝛎 = 𝚾𝚾𝚾𝚾 + 𝛆𝛆, (12)  

where ν is the calculated vector of N values of each response, Χ is the N × p matrix of 
mixture component proportions and their respective interactions (design matrix), β is the 
vector of p coefficients to be estimated, and ε is the vector of N errors that arise because 
the supposed model reflects an estimated and not a true relation between the index and 
the rack configuration.  

The least squares solution of system (12) is the set of coefficients (13) that provide the 
minimum quadratic error between the true values ν and those calculated by the model. 
In our problem, the experiment is computational, so ε does not have the habitual random 
meaning, but is a measure of the error caused by using the Equation (11) instead of the 
true, unknown, functional model. Therefore, the procedures that have been developed for 
random errors also have a geometrical sense and, as shown in the next section, maintain 
their usefulness. 

𝐛𝐛 = (𝚾𝚾T𝚾𝚾)−1𝚾𝚾T𝛎𝛎 (13)  
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where T stands for transpose matrix and s2 in Equation (14) is the normalized mean of the 
quadratic loss function: 

𝑠𝑠2 =
∑ 𝑒𝑒𝑖𝑖2𝑁𝑁
𝑖𝑖=1

𝑁𝑁 − 𝑝𝑝
=
∑ (𝛾𝛾𝑖𝑖 − 𝛾𝛾�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁 − 𝑝𝑝
 . (14)  

Choosing a design is always associated with choosing particular settings in each row 
of Χ that, in some way, thus reduce the determinant of matrix (ΧTΧ)−1. 

3.3.1. D-Criterion 
The least squares fit also provides the following distance in the space of possible vec-

tors, β, of solutions for Equation (10): 

d𝐗𝐗(𝛃𝛃,𝐛𝐛) = (𝛃𝛃 − 𝐛𝐛)T𝚾𝚾𝐓𝐓𝚾𝚾(𝛃𝛃 − 𝐛𝐛). (15)  

Therefore, any neighbour of radius k, for b, is 𝑛𝑛(𝒃𝒃, 𝑘𝑘) = {𝜷𝜷 𝐝𝐝𝑿𝑿(𝜷𝜷,𝒃𝒃)⁄ < 𝑘𝑘}. The deter-
minant of XTX is inversely proportional to the square of the volume of 𝑛𝑛(𝒃𝒃, 𝑘𝑘). A small 
|XTX| implies a poorly estimated model, because there are many other models in the cor-
responding neighbour with the same k. The moment matrix M is considered in order to 
be able to compare designs of different size N, the determinant of which is 

|𝐌𝐌| =
|𝚾𝚾𝐓𝐓𝚾𝚾|
𝑁𝑁𝑝𝑝 

. (16)  

So, a D-optimal design is one in which the determinant of the moment matrix is at a 
maximum. 

3.3.2. G-Criterion 
The normalized mean of quadratic error, Equation (14), is translated to the estimated 

response, 𝛾𝛾�, by means of the model fitted at any point, x, of the experimental domain. So, 
this loss function d(x)s2, may be computed, where: 

𝑑𝑑(𝐱𝐱) = (𝐱𝐱)T(𝚾𝚾T𝚾𝚾)−1𝐱𝐱, (17)  

and its maximum value, dmax, may therefore be known. 
A design is called G-optimal when dmax reaches the minimum value. On the other 

hand, appropriate and efficient designs in terms of D-optimality have been proposed in 
the literature for the whole q-simplex. The simplex lattice designs are D-optimal for first 
and second-order Scheffé canonical polynomials [30,31]; the simplex centroid design [32] 
is D-optimal for the special cubic model of Equation (11). If the region of interest is a con-
vex, irregular hyperpolyhedron, as in our case, the optimal design differs considerably for 
each specific situation. In situations like these, optimal design theory becomes an indis-
pensable tool to guarantee design efficiency that is as high as possible in terms of a well-
defined optimality criterion, such as D-optimality for parameter estimation or G-optimal-
ity for predicted response estimation. 

3.3.3. Obtaining a D-Optimal Design 
The two aforementioned criteria allow us to design a strategy to select the ED exper-

iments that will be used to estimate the proposed model. 
Step1. Establish whether a subset of experiments, N < card(ED), exists that will pro-

vide an accurate estimation of the proposed model. 
Set the minimal value, NI, such that N ≥  NI ≥  p (since the number of coefficients 

in the model is p) and the maximal value, NF, such that N ≤  NF ≤  card(ED). 
Select an optimum experimental design for fitting the assumed p-term model from 

all the possible designs of size N based on the D-criterion, by means of a specific algorithm. 
The number of different experimental #ED designs is given by: 
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#𝐸𝐸𝐸𝐸 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸𝐸𝐸)!

(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸𝐸𝐸) − 𝑁𝑁)!𝑁𝑁!
 , (18)  

such that a direct search is computationally unfeasible. 
Repeat this selection for different values of N (NI ≤  N ≤  NF) to obtain the D-opti-

mal solution set. 
Step 2. After D-optimal experimental designs have been generated the question of 

what design or designs would be the best choice must be answered. For this purpose, the 
G-criterion should be considered, which is the value of dmax over the region of interest. A 
rule of thumb is to consider only designs with dmax ≤ 1, because in this case the loss function 
for the response is not inflated by the effect of the design (17). 

In this work, the D-optimal design was obtained with the software NemrodW [33], 
which uses a row-exchange algorithm designed by [34] and modified by [35,36]. Nem-
rodW was also used for fitting the surrogate models and data analysis. 

A description of the response surface methodology that treats optimality criteria and 
mixture designs can be seen in [13,37], respectively. Text books with more of a technical 
content on the response surface may be found in [12] and on mixtures design, in [29]. 
However, the analytical justification of the validity of the D and G-criteria is shown for 
the first time in this work, as well as their use together with mixture design in problems 
of computational experiments, in which there is no experimental variability. This ap-
proach differs from the standard “space filling” method for computer experiments with 
compositional data (see, for example, [15,38]), because the model that will be used to make 
the fitting is not taken into account in space filling methodology. 

4. Results 
The experimental domain is a discrete space in a mixture space with three compo-

nents xi (i = 1, 2, 3), which are their relative capacities. The constraints are: (i) The number 
of compressors: two or three. (ii) The maximum power of each compressor is limited to 
0.8. (iii) The increases in power can only be 0.1 for the compressor. These constraints are 
formally stated in the system of Equation (19). 

𝑥𝑥𝑖𝑖 ∈ {0.0, 0.1, 0.2, … ,1.0} ∀𝑖𝑖 = 1,2,3
𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 = 1
0.1 ≤ 𝑥𝑥𝑖𝑖 ≤ 0.8 ∀𝑖𝑖 = 1,2
0.0 ≤ 𝑥𝑥3 ≤ 0.8,

 (19)  

in such a way that the experimental domain consists of 43 configurations (see Figure 4). 

 
Figure 4. Experimental domain ED. 

The proposed model for each of the indices γl (l = 1, 2, …, 6) is the special cubic model 
of Equation (11) with q = 3.  
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𝑦𝑦 = 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 + 𝛽𝛽12𝑥𝑥1𝑥𝑥2 + 𝛽𝛽13𝑥𝑥1𝑥𝑥3 + 𝛽𝛽23𝑥𝑥2𝑥𝑥3 + 𝛽𝛽123𝑥𝑥1𝑥𝑥2𝑥𝑥3, (20)  

which only has seven coefficients, such that it is necessary to know the value of the re-
sponses for seven configurations other than the compressor rack.  

The validity of this model would have to be evaluated, comparing the results with 
those obtained from the polynomial model. 

Applying the procedure described in Section 3.3.3 yields the D-optimal design of Fig-
ure 5, formed by ten experimental points. The level curves of the variance function d(x1, 
x2, x3) = d(x) (17) are also shown in the figure. These values are in the order of 0.5 in the 
centre of the experimental domain, less than 0.4 in large zones close to the vertices and 
less than 1.0 across all of the experimental domain. 

As these are computer experiments, the habitual procedure of making experimental 
replicates and verifying the statistical significance of the model and the lack of fit through 
variance analysis cannot be applied. Thus, the validity of the proposed model will be con-
firmed through the six-point test shown in Figure 6. 

The four experiments furthest from the centre (experiments 11, 12, 13, and 14 in Fig-
ure 6) were selected from among those needed to enlarge the D-optimal design in Figure 
5 to a D-optimal design for a four-order model, Equation (11). The distribution of power 
(0.33, 0.33, 0.34) in experiment 15, despite not forming part of the experimental domain, 
was also considered, because it had been used in previous theoretical studies, and finally 
the distribution (0.4, 0.4, 0.2) in experiment 16 fulfils the purpose of completing the central 
zone of the design together with experiments 5 and 6. 

 
Figure 5. D-optimal design and level curves of the d function, Equation (15), for the three-order 
synergic model of Equation (20). 

 
Figure 6. D-optimal design points 1 to 10 in green and numbered test points from 11 to 16 in pink. 
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Table 1 shows the experimental points and the result for each of the six variables in 
the 10 points of the design (1–10) and in the 6-point test (11–16). 

Table 1. Experimental results. 

# x1 x2 x3 γcon-d γswitch-d γpow-d γcon-n γswitch-n γpow-n 
1 0.1 0.8 0.1 0.143 0.170 1,4228.000 0.050 0.032 1306.140 
2 0.1 0.5 0.4 0.051 0.109 1,4225.230 0.024 0.029 1305.019 
3 0.1 0.1 0.8 0.123 0.138 1,4244.390 0.003 0.065 1257.118 
4 0.2 0.8 0.0 0.167 0.128 1,4257.124 0.032 0.032 1256.934 
5 0.3 0.4 0.3 0.070 0.107 1,3967.502 0.089 0.040 1469.659 
6 0.4 0.3 0.3 0.086 0.129 1,4060.852 0.001 0.038 1285.878 
7 0.5 0.5 0.0 0.042 0.008 1,4458.619 0.008 0.028 1298.914 
8 0.5 0.1 0.4 0.007 0.006 1,4516.160 0.008 0.028 1300.101 
9 0.8 0.2 0.0 0.121 0.140 1,4193.009 0.024 0.023 1389.661 

10 0.8 0.1 0.1 0.109 0.188 1,4089.616 0.010 0.021 1399.799 
11 0.2 0.6 0.2 0.213 0.156 1,4097.817 0.077 0.035 1422.178 
12 0.3 0.2 0.5 0.025 0.017 1,4447.276 0.023 0.043 1394.593 
13 0.5 0.4 0.1 0.047 0.012 1,4502.783 0.024 0.029 1430.230 
14 0.6 0.2 0.2 0.050 0.126 1,4232.581 0.003 0.025 1262.003 
15 0.33 0.33 0.34 0.040 0.118 1,4032.360 0.037 0.040 1410.136 
16 0.4 0.4 0.2 0.039 0.103 1,4102.014 0.002 0.031 1353.014 
17 0.4 0.2 0.4 0.027 0.053 1,4032.665 0.001 0.032 1351.701 
18 0.5 0.2 0.3 0.039 0.012 1,4481.562 0.008 0.028 1296.222 

4.1. First Model 
The model of Equation (20) was fitted with the data on the first 10 experiments from 

Table 1, to each of the indices γl (l = 1, 2, …, 6). Moreover, the coefficient of determination 
R2 was calculated, which is the percentage variability of each index explained by the 
model; in other words, it is a measure of the adherence of the fitted model to the true 
values. R2 is respectively equal to 46.6 and 60.0% for the variables γcon-n and γpow-n, such 
that the synergic model is not sufficient to reproduce those two indices. R2 varied between 
95.0 and 99.6% in the fitted models for the four remaining variables that are shown in 
Table 2. The value s is also noted, which is the square root of the value of the Equation 
(14) for each model. It expresses the minimum value of the normalized quadratic loss 
function reached for each index. 

Table 2. Synergic model of third order fitted for each response. 

 γcon-d γswitch-d γpow-d γswitch-n 
R2(%) 96.6 95.4 95.0 99.6 

s 0.016 0.023 65.05 0.001 
b1 0.261 0.411 1,3663.22 0.022 
b2 0.319 0.353 1,3927.23 0.039 
b3 0.318 0.330 1,3773.61 0.104 
b12 −0.963 −1.514 2665.42 −0.013 
b13 −1.404 −1.872 5189.75 −0.178 
b23 −1.334 −1.192 2951.28 −0.209 
b123 5.075 7.084 −2,6367.23 0.791 

When these models are applied to the six-point test, it is possible to decide whether 
the predictions of the model are compatible with the experimental results. Each value 
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calculated with the model 𝛾𝛾�(𝒙𝒙) has a mean uncertainty, as a consequence of not using the 
true model derived from Equation (12) by the following expression: 

𝑠𝑠�𝛾𝛾�(x)� = �1 + 𝑑𝑑(x) 𝑠𝑠. (21)  

Thus, the difference 𝛾𝛾�(x) − 𝛾𝛾(x) in each test point x may be expressed as 𝑑𝑑𝑑𝑑𝑓𝑓𝑛𝑛 =
𝛾𝛾�(x)−𝛾𝛾(x)
𝑠𝑠�𝛾𝛾�(𝐱𝐱)�

, a normalized difference to take into account the position of the point in the ex-

perimental domain and the uncertainty caused by using a model that does not exactly 
reproduce the physical phenomenon. 

Table 3 shows the 24 values of difn (six-point test by four models). Only three of these 
exceed the value of 3.8 such that 𝛾𝛾�(𝒙𝒙) and 𝛾𝛾(𝒙𝒙) may be considered different. They cor-
respond to experiment 11 for variable γcon-d, experiment 13 for γpow-d, and experiment 16 
for γswitch-n. On the basis of these results, it may be accepted that the models are valid and 
a second model will be fitted. 

Table 3. Results of applying the model to the test-points 11–16 in Table 1. The values of 𝑑𝑑𝑑𝑑𝑓𝑓𝑛𝑛(𝐱𝐱) in 
italics are those which exceed the critical value 3.8 (in absolute value). 

  γcon-d γswitch-d γpow-d γswitch-n 
# d(x) 𝒔𝒔�𝜸𝜸�(x)�  𝜸𝜸�(x) 𝒅𝒅𝒅𝒅𝒇𝒇𝒏𝒏(x) 𝒔𝒔�𝜸𝜸�(x)�  𝜸𝜸�(x) 𝒅𝒅𝒅𝒅𝒇𝒇𝒏𝒏(x) 𝒔𝒔�𝜸𝜸�(x)�  𝜸𝜸�(x) 𝒅𝒅𝒅𝒅𝒇𝒇𝒏𝒏(x) 𝒔𝒔�𝜸𝜸�(x)�  𝜸𝜸�(x) 𝒅𝒅𝒅𝒅𝒇𝒇𝒏𝒏(x) 

11 0.306 0.0183 0.097 −6.36 0.0258 0.130 0.99 74.331 1,4092.48 0.07 0.0016 0.034 0.57 
12 0.345 0.0185 0.052 1.44 0.0262 0.081 −2.42 75.441 1,4213.72 3.10 0.0017 0.042 0.68 
13 0.430 0.0191 0.075 1.49 0.0270 0.077 −2.42 77.794 1,4163.14 4.37 0.0017 0.033 −2.13 
14 0.306 0.0183 0.068 1.01 0.0258 0.099 1.02 74.331 1,4165.96 0.90 0.0016 0.030 −2.73 
15 0.503 0.0196 0.075 1.78 0.0277 0.118 0.01 79.736 1,4015.29 0.21 0.0018 0.040 0.12 
16 0.542 0.0198 0.085 2.33 0.0280 0.111 −0.28 80.767 1,4024.90 0.95 0.0018 0.038 −3.98 

4.2. Second Model 
In this case the model of Equation (20) was made with all the available points (1 to 16 

of Table 3) to explore the response surfaces of the four fitted responses. Once again, the 
models corresponding to γcon-n and γpow-n have a lower value of R2 (52.8% and 41.6%, re-
spectively) whereas the other four are acceptable. 

Figure 7 shows the level curves in the experimental domain for the two fitted re-
sponses γswitch-d, Figure 7a and γswitch -n in Figure 7b.  

A value equal to or less than 0.03 is considered optimal for these variables (γswitch-d 
and γswitch-n) and any value over 0.10 is absolutely rejected. The acceptable region is 
marked in the figure with vertical stripes and the non-acceptable ones with horizontal 
stripes. It may be observed that the distribution of compressor power has to be completely 
different according to whether we consider system behaviour in the daytime or in the 
night-time. It is sufficient to install two compressors of similar power (50, 50, 0) or three 
compressors with a different distribution (40, 10, 50), to achieve the optimal response dur-
ing the day, Figure 7a. Alternatively, any configuration in which the first compressor con-
tributes 60% or more of the power, regardless of how the remaining power is distributed 
between the other two compressors is sufficient for the night-time. In addition, γswitch-n is 
always maintained below 0.10 whatever the power distribution. 

The other two daytime variables γcon-d and γpow-d follow a very similar behaviour in 
the form of γswitch-d. 

It is therefore necessary to look for a “compromise” configuration in the distribution 
of power between the three compressors. 
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Figure 7. Vertical stripes highlight the acceptable region (values lower than 0.03, in green) and the 
non-acceptable regions in horizontal stripes (values greater than 0.10, in red). (a) Level curves for 
the response γswitch-d. (b) Level curves for the response γswitch-n. 

4.3. Individual Desirability and Global Functions 
The controllability of the process is considered sufficient if the six responses—γcon-d, 

γswitch-d, γpow-d, γcon-n, γswitch-n, y γpow-n—stay below certain values and insufficient if one or 
various values exceed certain preset limits. In particular, the two responses γcon are con-
sidered valid (desirability 1) if they are less than 0.03 and non-acceptable (desirability 0) 
if they exceed the value of 0.07. The desirability function has a linear variability between 
both values (γcon is for γcon-d and γcon-n).  Thus, the function of individual desirability is: 

𝑑𝑑𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾�𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾� =

⎩
⎪
⎨

⎪
⎧1 𝑖𝑖𝑖𝑖  𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾 < 0.03

�
0.07− 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾
0.07 − 0.03

� 𝑖𝑖𝑖𝑖  0.03 < 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾 < 0.07

0 𝑖𝑖𝑖𝑖  0.07 < 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾.

 (22)  

The desirability function is considered for both γswitch (γswitch is for γswitch-d and γswitch-n) 
:  

𝑑𝑑𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾ℎ�𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾ℎ� =

⎩
⎪
⎨

⎪
⎧1 𝑖𝑖𝑖𝑖  𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾ℎ < 0.03

�
0.10− 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾ℎ

0.10 − 0.03
� 𝑖𝑖𝑖𝑖  0.03 < 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾ℎ < 0.10

0 𝑖𝑖𝑖𝑖  0.10 < 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾ℎ.

 (23)  

In the case of γpow-d, it yields: 

𝑑𝑑𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-𝑑𝑑�𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-d� =

⎩
⎪
⎨

⎪
⎧1 𝑖𝑖𝑖𝑖  𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-d < 1,4150

�
1,4333 − 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-d
1,4333 − 1,4150

� 𝑖𝑖𝑖𝑖  1,4150 < 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-d < 1,4333

0 𝑖𝑖𝑖𝑖  1,4333 < 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-d,

 (24)  

whereas for γpow-n, we have: 

𝑑𝑑𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-n�𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-n� =

⎩
⎪
⎨

⎪
⎧1 𝑖𝑖𝑖𝑖  𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-n < 1327

�
1398 − 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-n

1398 − 1327
� 𝑖𝑖𝑖𝑖  1327 < 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-n < 1398

0 𝑖𝑖𝑖𝑖  1398 < 𝑦𝑦�𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-n.

 (25)  

The search for configurations that maximize desirability is performed in two stages:  
1. Joint desirability, D(x), is constructed for the four empirically modelled variables as 

the geometric mean of the four individual desirabilities described above: 

(a) (b) 
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𝐷𝐷(x) = �𝑑𝑑𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-d × 𝑑𝑑𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾ℎ-d × 𝑑𝑑𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾-d × 𝑑𝑑𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾ℎ-n�1/4
. (26)  

2. Having identified the region of maximum joint desirability, the individual desirabil-
ities of the other two responses, γcon-n and γpow-n, are calculated by applying Equa-
tions (22) and (25) to the experimental values of the points belonging to the area of 
maximum desirability. 
The result of stage (1) is shown in Figure 8. The horizontally striped zone (in red) has 

a joint desirability of 0; in other words, it fails to comply with one or more of the four 
acceptable threshold values for the responses: γcon-d, γswitch-d, γpow-d, and γswitch-n. The ver-
tically striped zone (in green) has a global desirability of between 0.6 and 0.7.  

Only three points of the experimental domain are within it: the aforementioned ex-
periment 12 from Table 1, 17, and 18. Simulation results for these two new points are also 
shown in Table 1.  

Joint desirability has been calculated for these three points, taking the experimental 
value transformed into desirability for the two non-modelled functions: taking dγpow-n (x12) 
= 0.06, dγpow-n (x17) = 0.66 and dγpow-n (x18) = 1.0, and, in addition, dγcon-n (x12) = dγcon-n (x17) 
= dγcon-n (x18) = 1.0 Combining these results with those of desirability obtained through 
Equation (26), gives us a global desirability equal to 0.41, 0.67, and 0.70 for experiments 
12, 17, and 18 of Table 1, respectively. In consequence, the most suitable option is the dis-
tribution of power in the three compressors (50, 20, 30) shown in experiment 18. 

 
Figure 8. Global desirability function for variables: γcon-d, γswitch-d, γpow-d, and γswitch-n. The vertically 
striped region, in green, has a desirability of 0.6 or more, whereas the horizontally striped region, 
in red, has a desirability of zero. The number of experiences corresponds to Table 1. 

4.4. Analysis of the Solution 
The optimal distribution of power, in other words, when the power of the compres-

sors is (50, 20, 30), is shown in experiment 18 of Table 1. The changes in air temperature 
in each display over four hours of simulation with HMPC controller acting on the process 
are shown in Figure 9a. As from around thirty minutes, the three temperatures are stabi-
lized and stayed at the desired interval between 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 2 ℃ and 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 5℃ over the 
first two hours of daytime operation. Then, a night-time mode starts (resumed with the 
use of the night covers). This ambient change introduces some small fluctuations and af-
terwards, the temperatures are also maintained within the desired range. In addition, it is 
important to point out that no synchronization of the temperatures in the display oc-
curred, which is otherwise notable with the traditional control.  

Figure 9b shows that the evolution of Psuc, after the initial period, is maintained be-
tween a minimum of bar 1.1 and a maximum of bar 1.7 with minimal fluctuations. 
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Following the change to the night-time mode of operation, after a few minutes during 
which it is below the minimum value, it stays within the new specifications but with 
broader fluctuations. Finally, Figure 9c shows the on/off states of the compressors. The 
first compressor is stopped over the first two hours on only one occasion, and when 
turned on again the second compressor also starts up again. It is never necessary to con-
tribute more than 70% of the installed power. Most notable of all is the night-time opera-
tion, with long periods of the first compressor turned off, which is the only one needed to 
maintain the controlled parameters (air temperatures in the three displays and suction 
pressure) within the desired range. 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Evolution over 4 h (two daytime and two night-time) of the controlled parameters when 
the optimal distribution of the power of the three compressors (50%, 20%, 30%) is used. (a) Evolution 
of air temperature Tair,i (i = 1, 2, 3) in the three displays. (b) Evolution of suction pressure Psucc. In 
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both cases, the horizontal lines signal the control interval and the reference value. (c) Rack capacity 
of compressors used at each point in time. The compressors always start up in the same order. 

Figure 10 shows similar graphs to those in Figure 9, but with a non-acceptable distri-
bution of power, according to the global desirability function, in order to compare the 
evolution of the system and its dependence on the rack structure of the compressors (Fig-
ure 8). One case (20, 80, 0), in particular, was considered: experiment 4, Table 1. There 
were many constraint violations of the air temperature in the three displays, shown in 
Figure 10a, and also of suction pressure, as in Figure 10b. In addition, the two compressors 
very frequently start up and stop, particularly over the two first hours of daytime opera-
tion. Behaviour was acceptable over the following two hours. Globally, when Figure 9 is 
compared, the poor performance of the rack configuration is evident in relation to system 
controllability. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Evolution over 4 h (two daytime and two night-time) of the controlled parameters when 
an unacceptable distribution of the power of the three compressors (20%, 80%, 0%) is used. (a) Evo-
lution of air temperature Tair,i (i = 1, 2, 3) of the three displays. (b) Evolution of suction pressure Psucc. 
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In both cases, the horizontal lines signal the control interval and the reference value. (c) is used. 
Capacity of compressor rack used at each point in time. The compressors always start up in the 
same order. 

Experiment 15, the results of which are in Table 1, has a configuration of three com-
pressors of equal power, which could be considered “a priori” as a choice based on sym-
metry that reveals poor knowledge of a configuration based on system controllability. Its 
performance is shown in Figure 11. It is clear that the optimal configuration, Figure 9, has 
fewer constraint violations above all in the first two hours, both in the display tempera-
tures, Figure 11a, and in suction pressure, Figure 11b. The effect is less in the two hours of 
night-time operation. The three compressors start and stop very frequently during the 
day, without achieving greater control over the system, as may be seen in Figure 11c. Be-
haviour is more similar to the optimal configuration in Figure 9c during the last two hours 
before the night-time period, but with 14 starts, as opposed to 9 in the optimum case. 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Evolution over 4 h (two daytime and two night-time) of the controlled parameters when 
an equal distribution of the power of the three compressors (33.3%, 33.3%, 33.3%) is used. (a) 
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Evolution of air temperature Tair,i (i = 1, 2, 3) of the three displays. (b) Evolution of suction pressure 
Psucc. In both cases, the horizontal lines signal the control interval and the reference value. (c) Rack 
capacity of compressors used at each point in time. The compressors always start up in the same 
order. 

5. Discussion 
The discussion of the results shown in this work can be summarized in two points. 

First, a piece of new evidence about the increase of controllability and energy reduction 
when the process configuration and its control system are considered at the same time 
during the design phase is provided. Second, the use of surrogate linear models in the 
coefficients is feasible in computational experiments with complex models. Although 
there are not experimental errors, the least squares fit minimizes the distance between the 
surrogate model and the computational (complex or rigorous) model.  

The advantages of the procedure are derived of the information provided by this 
distance. For a fixed number, N, of experiments to be performed, this distance allows one 
to explore the experimental domain to obtain a D-optimal design for the surrogate model. 
That is, the set of compressor configurations that leads to the most accurate estimation of 
the coefficients of the surrogate model. Increasing N provides a sequence of D-optimal 
designs. With each of them, the maximum loss function used in the fitting is evaluated 
throughout the experimental domain (criterion G). Thus, before starting the computa-
tional experiment, the researcher decides how many configurations and the structure of 
each of them will be used to obtain the surrogate model that best describes the perfor-
mance control indices in the experimental domain. Then, the configuration in which the 
optimum is reached will be searched. This is a very flexible approach which, in addition, 
allows one to detect non-adequate surrogate models and increase its complexity sequen-
tially. 

Comparatively, if the optimal configuration of the compressors is sought through a 
computational experiment and a surrogate model based on machine learning, there is no 
formal relationship between the training set of experiments to be done and the loss func-
tion used in the fitting. As a result, it is not possible to estimate the number of experiments 
needed or their distribution in the experimental domain. This can lead to experimental 
overexertion and/or a higher probability of obtaining suboptimal solutions. 

6. Conclusions 
The research described in the paper shows that the Response Surface Methodology 

can be applied in computational experiments even though there is no random variability 
in the modelled response. This absence of variability is the fundamental and distinctive 
feature of computational experiments.  

It is shown that it is sufficient to consider the metric character of the fit by means of 
least squares of the surrogate function. As consequence, an experimental design coupled 
with the desirability function has given us the tools to solve the problem of how to calcu-
late the most efficient integrated design of a supermarket refrigeration system.  

A mixture D-optimal design is a suitable option capable of modelling constraints that 
relate to the number of compressors and their capacity with the controllability indices.  

With this approach, it was only necessary to make 16 computational experiments of 
the experimental domain consisting of 43 points to find the optimal number and capacity 
of the compressors. 

Moreover, the controllability indices (day/night) have been improved: (1) the oscilla-
tions of suction pressure and air temperatures have decreased substantially; (2) all con-
trolled variables are within their ranges; (3) during the day, only one compressor is 
enough (it is always on) (4) during the night, one compressor is sufficient with only 20 % 
of capacity, thus decreasing the power consumption. 

In this work, a polynomial expansion of the design variables has been used to linearly 
model the integrated design. Its future development will be to extend this methodology 
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to cases in which the nonlinearity of integrated design requires a surrogate model with 
more complex dependence on design variables. The core idea is to augment/replace the 
vector design variables with additional variables, which are transformations of them, for 
example: piecewise polynomials, multidimensional splines, gaussian radial basis func-
tions, wavelet basis, or local regression. 
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