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Abstract: Psychiatric disorders are among the top leading causes of the global health-related burden.
Comorbidity with cardiometabolic and sleep disorders contribute substantially to this burden. While
both genetic and environmental factors have been suggested to underlie these comorbidities, the
specific molecular underpinnings are not well understood. In this study, we leveraged large datasets
from genome-wide association studies (GWAS) on psychiatric disorders, cardiometabolic and sleep-
related traits. We computed genetic correlations between pairs of traits using cross-trait linkage
disequilibrium (LD) score regression and identified clusters of genetically correlated traits using
k-means clustering. We further investigated the identified associations using two-sample mendelian
randomization (MR) and tested the local genetic correlation at the identified loci. In the 7-cluster
optimal solution, we identified a cluster including insomnia and the psychiatric disorders major de-
pressive disorder (MDD), post-traumatic stress disorder (PTSD), and attention-deficit/hyperactivity
disorder (ADHD). MR analysis supported the existence of a bidirectional association between MDD
and insomnia and the genetic variants driving this association were found to affect gene expression in
different brain regions. Some of the identified loci were further supported by results of local genetic
correlation analysis, with body mass index (BMI) and C-reactive protein (CRP) levels suggested to
explain part of the observed effects. We discuss how the investigation of the genetic relationships
between psychiatric disorders and comorbid conditions might help us to improve our understanding
of their pathogenesis and develop improved treatment strategies.

Keywords: GWAS; k-means clustering; mendelian randomization; genetic correlation; pleiotropy;
major depressive disorder; depression; insomnia; mental disorders; sleep disorders

1. Introduction

Psychiatric disorders are among the top leading causes of burden worldwide, and
around 450 million people in the world are estimated to suffer from these disorders accord-
ing to the World Health Organization (WHO) [1]. Among severe mental disorders, major
depressive disorder (MDD) is the most prevalent, affecting more than 250 million people
worldwide [2], and represents the second-leading cause of disability globally [3]. Further-
more, during the COVID-19 pandemic many determinants of poor mental health were
exacerbated, leading to a stark rise in depressive and anxiety disorders globally in 2020 [4].
While the molecular underpinnings of psychiatric disorders are still largely elusive, their
development has been shown to be the result of a complex interplay between genetic and
environmental factors. Indeed, psychiatric disorders show different degrees of heritability
and genome-wide association studies (GWAS) have started to identify a number of genetic
determinants associated with predisposition to these disorders [5-7]. Severe psychiatric
disorders such as MDD, schizophrenia (SCZ) and bipolar disorder (BD) are associated
with significant excess mortality as well as decreased life expectancy [8,9]. A large body of
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evidence suggests that this excess mortality is largely accounted for by a higher prevalence
of comorbid chronic disorders compared to individuals without mental illness [10,11]. In
particular, cardiometabolic disorders with an inflammatory component, such as cardio-
vascular and metabolic disorders, present significantly higher incidence in patients with
psychiatric disorders than in the general population [12]. Physical comorbidities in patients
with psychiatric disorders have been found to double the risk of premature mortality com-
pared to the general population [9,13]. Different determinants such as lifestyle factors (e.g.,
diet, physical activity, alcohol intake) as well as adverse effects of psychotropic medications,
have been suggested to contribute to the observed comorbidity between psychiatric and
cardiometabolic disorders [14]. However, since both groups of disorders show significant
heritability, shared genetic determinants might also play a role [15]. This hypothesis is
corroborated by the fact that comorbidities have also been reported in adolescents and
drug naive patients [16,17], thus suggesting the existence of common pathophysiological
processes, as well as potential genetic links between these conditions.

Psychiatric disorders also show relevant comorbidity with sleep disorders and dis-
turbances of the circadian rhythms, which are 24-h rhythms autonomously driven by
the internal biological clock and synchronized daily by environmental signals [18]. Psy-
chiatric disorders have been associated with insomnia, hypersomnia, circadian rhythm
disruption [19] as well as the evening circadian chronotype [20] (with the latter defined as
an individual variation in the preferred timing of the sleep-wake cycle, associated with
variations of physiological functions, such as body temperature and hormone secretion).
As in the case of comorbidity with cardiometabolic disorders, genetic factors have been
suggested to play a role in the molecular mechanisms driving the association between sleep
and severe mental disorders such as MDD, BD and SCZ [21], post-traumatic stress disorder
(PTSD) or neurodevelopmental disorders such as attention-deficit/hyperactivity disorder
(ADHD) [22]. However, there is scarce information regarding other psychiatric disorders
for which genetic data are available such as anorexia nervosa (AN) or Tourette syndrome
(TS). In addition, no study has conducted a comprehensive analysis of psychiatric, car-
diometabolic and sleep traits in order to assess whether it is possible to identify clusters of
genetically correlated traits. In this study, we used different analytical approaches to investi-
gate the correlation between genetic determinants of psychiatric disorders, cardiometabolic
and sleep-related traits, aiming to identify clusters of genetically correlated traits. We used
two-sample mendelian randomization (MR) to investigate the direction of effect of the
observed relationships and different in-silico tools to characterize the potential functional
relevance of the identified loci. Finally, we ran local genetic correlation analysis on loci
suggested to drive the observed association between MDD and insomnia, also testing the
potential effect of cardiometabolic traits.

2. Materials and Methods
2.1. GWAS Datasets

Analyses were conducted using the largest publicly available GWAS summary statis-
tics for psychiatric disorders and cardiometabolic or sleep traits (Table S1). For psychiatric
disorders, we used the latest release of datasets from the Psychiatric Genomics Consortium
(PGC) for BD [5], SCZ [6], MDD [7], ADHD [23], autism spectrum disorders (ASD) [24],
PTSD [25], obsessive-compulsive disorder (OCD) [26], TS [27], and AN [28]. For car-
diometabolic traits, we included the largest publicly available GWAS summary statis-
tics for body mass index (BMI) [29], type 2 diabetes (T2D) [30], coronary artery disease
(CAD) [31] and the inflammatory marker C-reactive protein (CRP), based on the fact that
cardiometabolic disorders are characterized by a substantial inflammatory component [32].
Finally, as regards to sleep traits, we used the largest publicly available GWAS summary
statistics for insomnia [33], chronotype [34] and sleep duration [35]. In the case of studies
including data from 23andMe, we used the publicly available version of genome-wide
summary statistics that exclude data for 23andMe participants (as 23andMe policies only
allow the publication of summary statistics including up to 10,000 variants). For all GWAS
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datasets, quality control procedures were performed by the original studies. In the case of
datasets for which the number of participants for each genetic variant was not available,
the effective sample size (Neff) was computed as [Neff =4/(1/N controls + 1/N cases)],
with N controls being the number of controls and N cases being the number of cases, as
recommended for studies with unequal number of cases and controls [36].

2.2. Linkage Disequilibrium Score Regression (LDSC) and K-Means Clustering

We used LDSC to estimate genetic correlations between psychiatric, cardiometabolic
and sleep traits [37,38]. The cross-trait LDSC method represents an extension of single-trait
LDSC to estimate heritability and genetic correlation from GWAS summary statistics. This
method allows studying the genetic correlation globally, considering the average of the
shared signals across the genome (including the contribution of single nucleotide polymor-
phisms (SNP) that do not reach genome-wide significance [37], considering possible sample
overlap and population stratification. Genetic correlation is computed by normalizing
genetic covariance by SNP heritability as in Equation (1):

¢
Ig = —F——
\/ h3h3

where ¢g indicates the genetic covariance and h? indicates the SNP heritability from study
i. For case-control studies, genetic covariance is on the observed scale [37]. There is no
distinction between observed and liability scale genetic correlation for case-control traits,
so genetic correlation can be estimated between a case-control trait and a quantitative trait
or between pairs of case-control traits, without the need to specify a scale [37]. For each
study, summary statistics were converted into the LDSC format. Quality control procedures
included removal of strand-ambiguous variants, duplicated variants or variants that are
not SNPs. Alleles were merged with the HapMap3 SNPs, as recommended. LD scores were
based on 1000 genomes European data. Results were adjusted for multiple testing using
the Bonferroni correction based on the number of tests (n = 120).

In order to identify clusters of genetically correlated traits, a pair-wise genetic correla-
tion matrix including all traits was used to compute a distance matrix based on Euclidean
distance, which was used as input for k-means clustering. K-means clustering is an unsu-
pervised machine learning algorithm that aims to partition n observations into k clusters.
The basic form of the k-means algorithm, in some cases also known as “naive k-means”,
uses an iterative procedure. Basically, there are two steps: the assignment and the update.
The problem this algorithm tries to solve is to assign each data point to a cluster, which
should be as close as possible. The number of clusters must be provided. Each cluster will
be represented by a centroid, a point that represents the mean position of all points in the
cluster. The procedure can be summarized in the following two steps:

Step 1: Assignment

In the first iteration, k points (m;, ..., my) are randomly generated. These will be
considered the initial centroids, one for each of the k clusters. The clusters will be defined
by assigning each data point to the closest centroid, as in Equation (2).

@

SEt) = {xp : ‘xp - m,(t)f < ‘xp *m;@‘z Vj,1<j< k} 2)

where each point (xp) is assigned to one and only one cluster (S (t)).
Step 2: Update
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In the second step the means computed in Step 1 can be discarded since we have
already formed clusters based on those means, and we can compute the new means of
those clusters as in Equation (3).

mtD = 1 Y x 3)

! (t)
Si x]-ESEt)

Since the centroid might have changed, we need to reassign data points to a cluster.
This procedure will continue until convergence; that is, until points are permanently
assigned to one cluster, and new iterations would not affect this assignment. K-means
clustering was conducted using the cluster package (v. 2.1.4) [39] and the factoextra package
in R [40]. The optimal number of clusters was estimated based on the silhouette coefficient,
which allows to assess how close a data point in one cluster is to points in the neighboring
clusters [41]. We resolved to use k-means clustering because it is a suitable method when
working with Euclidean distances (in this case the genetic correlation matrix), it’s one of the
most popular clustering methods in general [42] as well as in the genetic literature [43], and
clustering results may be more easily interpreted. Moreover, unlike hierarchical clustering
algorithms, observations are allowed to change cluster in every iteration. For this reason,
hierarchical clustering due to its greedy approach, could provide locally optimized clusters,
whereas k-means can produce globally optimized clusters.

2.3. Mendelian Randomization

Pair-wise associations found to be significant using cross-trait LDSC, and suggested
to be part of the same clusters based on k-means clustering, were tested with two-sample
MR using the TwoSampleMR R package [44,45]. MR uses genetic variants as instrumental
variables (IV) to estimate the causal effects of an exposure on an outcome [46]. To infer
the causal influence of the exposure, the ratio between the SNP effect on the outcome
over the SNP effect on the exposure is computed [45]. The method relies on the fact that,
based on Mendel’s laws of inheritance and the fixed nature of germline genotypes, the
alleles at a SNP are expected to be random with respect to potential confounders [45]. The
results obtained from multiple SNPs associated with the exposure allow us to obtain an
overall estimate of the causal effect of a potential exposure on an outcome. Two-sample
MR can be performed even if the SNP-exposure effects and the SNP-outcome effects are
obtained from separate studies, thus allowing to leverage pre-existing large GWAS. In
order to assess the direction of the association between the selected pairs of traits, we
repeated the analyses twice for each pair, considering each trait to be the exposure or the
outcome, alternatively. IVs were selected based on significant association with the exposure
at a genome-wide threshold (p <5 x 1078). Since it is important to ensure that Vs are
independent, significant genetic variants were clumped using European data from the
IEU GWAS database as recommended [44]. Default parameters in the TwoSampleMR
package were used for clumping (r? > 0.001 in the range of 10,000 Mb) and the SNP with
the lowest p-value was retained. After clumping, exposure and outcome genetic data were
harmonized to obtain effects and standard errors for each instrument SNP available for
the exposure and outcome traits, using the Two-SampleMR package. During this step,
palindromic SNPs with intermediate allele frequencies are removed by the package.

One important assumption of MR is that genetic variants used as IVs should exert
an effect on the outcome only through their effect on the exposure. A violation of this
assumption is called horizontal pleiotropy (i.e., a condition in which a genetic variant
exerts an effect on the outcome through different pathways) and can cause bias in the MR
analysis. We checked the intercept term in MR Egger regression [47], as well as the global
and the distortion tests implemented in the MR-PRESSO package [48], in order to assess
whether directional horizontal pleiotropy was driving the results of the MR analysis. MR
analyses were conducted with four widely used different methods implemented in the Two-
sSampleMR package: MR-Egger regression, weighted median estimator, inverse-variance
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weighted (IVW) and simple mode. In addition, the MR analyses were conducted using the
raw and outlier corrected estimates of the mendelian randomization pleiotropy residual
sum and outlier (MR-PRESSO) test, implemented in the MR-PRESSO R package [48]. Based
on the observation of a significant bidirectional association between MDD and insomnia,
for these traits the analyses were also repeated using the different versions of the MDD and
insomnia datasets which are publicly available. Specifically, we used as exposure SNPs
extracted from the versions of the datasets limited to 10,000 variants selected by the authors
of the two GWAS for which data for participants from 23andMe are also included, as well as
the list of significant and independent genetic variants reported by the two GWAS (n = 102
for MDD [7] and n = 554 for insomnia [33]). Aim of these analyses was to verify whether a
significant bidirectional association between the two traits could still be observed when
using IVs extracted from datasets including a limited number of variants genotyped in a
larger number of participants.

2.4. Functional Effect of SNPs Identified with MR

In order to obtain information on which SNPs contributed to the results observed
with MR analysis, we used the mr_singlesnp function implemented in the TwoSampleMR
package. The function obtains the MR estimates using each of the SNPs singly as it performs
the analysis multiple times for each exposure-outcome combination, each time using a
different single SNP. We used the default method to perform the single SNP MR (Wald
ratio). Results from these analyses were shown with a forest plot in which we compared the
MR estimates using different MR methods against single SNP tests (i.e., the MR estimates
obtained using a single IV). SNPs showing a significant effect for a casual effect of the
exposure on the outcome in single SNP tests were further investigated in order to obtain
information on their potential functional effect. We searched variants in RegulomeDB to
obtain the probability score. The RegulomeDB probability score is computed integrating
functional genomics features along with continuous values such as ChIP-seq signal, DNase-
seq signal, information content change, and DeepSEA scores. The score ranges from 0 to 1,
with 1 being most likely to be a regulatory variant [49]. Furthermore, we searched whether
SNPs acted as expression quantitative trait loci (eQTL) based on genotyping and gene
expression data from Genotype-Tissue Expression (GTEx) v.8 in brain regions [50]. In the
GTEXx project, gene expression was measured in a range of 114-209 participants (based on
the selected tissue) with Illumina TrueSeq RNA sequencing or Affymetrix Human Gene 1.1
ST Expression Array, while genotyping data were obtained with whole genome sequencing,
whole exome sequencing, [llumina OMNI 5M, 2.5M or Exome SNP arrays. We reported cis
eQTLs significant based on false discovery rate (FDR). In addition, we investigated whether
proteins encoded by the genes for which significant eQTLs were identified showed a
protein-protein interaction (PPI) enrichment using STRING [51]. A significant PPI indicates
that the identified proteins have more interactions among themselves than would be
expected for a random set of proteins of the same size and degree distribution drawn from
the genome, suggesting they are at least partly biologically connected.

2.5. Local Genetic Correlation Analysis

Based on the previously described analyses suggesting a bidirectional association
between MDD and insomnia, we further investigated the association between these two
traits using local genetic correlation analysis, with Local Analysis of [co] Variant Association
(LAVA) [52]. In addition, we investigated whether the cardiometabolic and inflammatory
phenotypes (BMI, T2D, CRP and CAD) might moderate the association between MDD and
insomnia at the identified loci.

MR analyses with MDD as the exposure and insomnia as the outcome conducted
using single SNP tests as described in the previous section showed a significant causal effect
of MDD on insomnia for 10 SNPs among the 39 selected as IVs. Similarly, MR analyses
with insomnia as the exposure and MDD as the outcome conducted using single SNP tests
were significant for 8 SNPs among the 12 selected as IVs. These 10 + 8 SNPs were located
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in 15 genetic loci based on the genome partition file developed by the authors of LAVA [52].
These 15 loci were used as input for the local genetic correlation analysis made with LAVA.
The 1000 Genomes phase 3 European data were used as reference. For each locus, we
converted the marginal SNP effects within the locus to their corresponding joint effects (in
order to account for the linkage disequilibrium between SNPs). To give a brief overview,
for any locus and for each quantitative phenotype p, we assume a linear model

Y = Xap + € @)

where Y, is the standardized phenotype vector, X the standardized genotype matrix, a, the
vector of standardized joint SNP effects and €, the vector of normally distributed residuals
with mean of 0 and variance np We denote the SNP LD matrix as S = cor(X) and the Vector

of estimated marginal SNP effects B and obtain the estimated joint effects as ocp =571 Bp,
using the genotype reference to compute S. A more detailed explanation, as well as the
procedure to obtain the joint SNP effects for binary phenotypes, are reported in the LAVA
reference article [52].

For each locus, the genetic covariance matrix 2 was computed as in Equation (5).

t(8)'s

0= -—"—
K — o2

®)
where K represents the number of SNPs/principal components (PC) within the locus, J the
estimated PC projected joint SNP effects and o the sampling covariance.

To correct for sample overlap, we computed a sampling correlation matrix (i.e., a
matrix reporting the phenotypic correlation that is due to sample overlap) using the
intercept from cross-trait LDSC [38]. We used the univariate test implemented in LAVA to
test the local heritability within each locus for MDD and insomnia, in order to determine the
amount of local genetic signal for both phenotypes and filter out non-associated loci. Local
heritability can be defined as the proportion of the variance of a trait that can be explained
by the SNPs in that locus. Computation of local heritability has been detailed in [52]. For
these analyses, p-values were adjusted according to Bonferroni based on 60 univariate
tests (i.e., 15 loci x 6 investigated phenotypes). For loci for which we identified a significant
heritability for both MDD and insomnia based on the univariate test, we computed the
bivariate local genetic correlation between the two traits, resulting in 30 bivariate tests. For
bivariate local genetic correlations, p-values were adjusted based on the 30 conducted tests.
In case of significant bivariate local genetic correlations between either MDD or insomnia
and a cardiometabolic trait, and in order to assess whether the latter explained the observed
association between MDD and insomnia, a partial correlation analysis conditioned on the
cardiometabolic trait(s) was also conducted.

3. Results
3.1. Linkage Disequilibrium Score Regression (LDSC) and K-Means Clustering

Figure 1 shows the genetic correlation matrix between psychiatric disorders, car-
diometabolic and sleep traits. A total of 20 genetic correlations between psychiatric disor-
ders and cardiometabolic traits (Table 1) and 11 between psychiatric disorders and sleep
traits (Table 2) were significant after multiple testing correction. Significant correlations
between cardiometabolic and sleep traits, or between psychiatric disorders, are reported
in Table S2. We observed significant positive correlations between BMI or CRP levels and
MDD, ADHD or PTSD. Conversely, BMI and CRP levels were negatively correlated with
increased predisposition to SCZ, OCD and AN (Table 1). T2D was positively associated
with increased predisposition to MDD, PTSD and ADHD, and negatively associated with
predisposition to AN and OCD. Finally, CAD was positively associated with MDD, PTSD
and ADHD (Table 1).
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Table 1. Significant genetic correlations between psychiatric and cardiometabolic traits.

Psychiatric Trait Cardiometabolic Trait g se V4 4 adjp
SCZ BMI —0.10 0.01 —7.07 1.6 x 10712 1.9 x 10710
sSCZ CRP —0.06 0.02 —3.75 0.0002 0.02
MDD BMI 0.11 0.02 6.55 5.6 x 1071 6.8 x 107
MDD CAD 0.21 0.02 10.33 5.1 x 1072 6.1 x 10723
MDD CRP 0.11 0.02 5.50 38 x 1078 46 x 1076
MDD 12D 0.14 0.02 6.58 48 x 10711 5.8 x 107
PTSD BMI 0.32 0.04 7.77 81x10°1° 9.7 x 10713
PTSD CAD 0.30 0.05 6.06 6.5 x 1077 7.7 x 107>
PTSD CRP 0.21 0.04 498 1.4 x 107 1.7 x 107
PTSD T2D 0.25 0.05 5.21 1.9 x 1077 22 %1075
AN BMI —0.31 0.02 —13.52 1.3 x 10~4 1.5 x 10739
AN CRP —0.28 0.03 —9.28 1.7 x 10720 2.1 x 10718
AN T2D —0.20 0.03 —7.37 1.8 x 10713 21 x 1071

ADHD BMI 0.35 0.02 14.65 1.4 x 10748 1.7 x 10746
ADHD CAD 0.27 0.03 9.86 1.4 x 10716 1.6 x 10714
ADHD CRP 0.30 0.04 8.27 59 x 1072 7.1 x 10724
ADHD T2D 0.32 0.03 12.16 5.0 x 10734 6.0 x 10732
OCD BMI —0.29 0.04 —6.97 32 x 10712 3.8 x 10710
OCD CRP —022 0.04 —5.39 6.9 x 1078 83 x 1070
OCD T2D —0.17 0.04 —3.81 0.0001 0.02

Abbreviations: ADHD, attention deficit/hyperactivity disorder; AN, anorexia nervosa; ASD, autism spectrum
disorders; BD, bipolar disorder; BMI, body mass index; CAD, coronary artery disease; CRP, C-reactive protein;
MDD, major depressive disorder; OCD, obsessive-compulsive disorder; SCZ, schizophrenia; se, standard error;
PTSD, post-traumatic stress disorder; T2D, type 2 diabetes. The adj p column reports p-values adjusted according
to Bonferroni based on the number of conducted tests (n = 120).

O
@5‘10 SPC) o &*Q:ﬁ
EFTEEFENP o Fe @ &6 1
insomnia
ADHD ] 08
MDD o
PTSD © @ @ 08
CAD 04
CRP 2
BMI [ ] o 0.2
T2D o
ocDb 0
TS 0.2
ASD
AN -0.4
BD ® 06
scz o
chronotype -0.8

sleepduration

Figure 1. Genetic correlation matrix of psychiatric disorders, cardiometabolic and sleep traits. The
size of each circle corresponds to the strength of the relationship between pairs of traits based on
the computed rg. The color of the circle indicates a positive (blue) or negative (red) correlation.
Abbreviations: ADHD, attention deficit/hyperactivity disorder; AN, anorexia nervosa; ASD, autism
spectrum disorders; BD, bipolar disorder; BMI, body mass index; CAD, coronary artery disease; CRP,
C-reactive protein; MDD, major depressive disorder; OCD, obsessive-compulsive disorder; SCZ,
schizophrenia; PTSD, post-traumatic stress disorder; T2D, type 2 diabetes; TS, Tourette syndrome.

As regards to sleep traits, BD, MDD, ADHD, and PTSD showed positive genetic
correlation with insomnia with r; ranging from 0.11 to 0.48 (Table 2). Several psychiatric
disorders were associated with sleep duration, though in different directions: BD and SCZ
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showed a positive, while MDD, PTSD, and AN a negative correlation. Finally, SCZ and
ASD showed a negative correlation with the morning person chronotype.

Next, we conducted k-means clustering using 7 clusters, which was suggested to be
the optimal number by the silhouette coefficient (Figure 2). A visualization of the clusters
in two dimensions is shown in Figure 3.

We observed a cluster including three psychiatric disorders (MDD, PTSD and ADHD)
and insomnia. The three disorders were the ones showing largest effect size as regards
to the cross-trait genetic correlation with insomnia (Table 2). Two other clusters only
included psychiatric disorders (BD-SCZ, and OCD-TS-AN), while one cluster included all
the cardiometabolic/inflammatory traits. Finally, three clusters included a single trait (ASD,
sleep duration and chronotype). Results from k-means clustering support the relationship
between insomnia and the three psychiatric disorders MDD, PTSD and ADHD. We further
explored the relationship between these traits using MR.

0.2

0.1

Average silhouette width

0.0

it 2 3 4 5 6 1 8 9 10
Number of clusters k

Figure 2. Assessment of the optimal number of clusters based on the silhouette coefficient.

Table 2. Significant genetic correlations between psychiatric and sleep traits.

Psychiatric Trait Sleep Trait rg se V4 p adjp
BD Insomnia 0.11 0.03 4.23 24 %1075 0.0028
Sleep 7
BD doretion 0.11 0.02 491 9.0 x 10 0.0011
scz Chronotype -0.10 0.02 -5.38 7.6 x 1078 9.1 x 107°
scz oeep 0.15 0.02 7.37 17x1083  21x 101
uration
MDD Insomnia 0.44 0.03 17.60 2.3 x 1079 2.8 x 1077
Sleep . _ 6
MDD duration 0.11 0.02 4.43 9.4 x 10 0.0011
ADHD Insomnia 0.37 0.03 10.67 14x1072% 1.7 x107%#
PTSD Insomnia 0.48 0.07 7.33 23x10718 27 x 1071
PTSD dSI‘?eP ~0.23 0.06 ~3.86 0.0001 0.013
uration
ASD Chronotype —0.18 0.03 —5.45 51x 1078 6.1 x 107
AN Sleep —0.12 0.03 —3.83 0.0001 0.015
duration

Abbreviations: ADHD, attention deficit/hyperactivity disorder; AN, anorexia nervosa; ASD, autism spectrum
disorders; BD, bipolar disorder; MDD, major depressive disorder; SCZ, schizophrenia; se, standard error; PTSD,
post-traumatic stress disorder. The adj p column reports p-values adjusted according to Bonferroni based on the
number of conducted tests (n = 120).



Algorithms 2022, 15, 409

9 of 20

cluster

Dim2 (25.7%)

[& ]
~N o o s w N =

sleepduration
X

X 3 ; ;
Dim1 (37.6%)
Figure 3. Cluster plot. Abbreviations: ADHD, attention deficit/hyperactivity disorder; AN, anorexia
nervosa; ASD, autism spectrum disorders; BD, bipolar disorder; BMI, body mass index; CAD,
coronary artery disease; CRP, C-reactive protein; MDD, major depressive disorder; OCD, obsessive-
compulsive disorder; SCZ, schizophrenia; PTSD, post-traumatic stress disorder; T2D, type 2 diabetes;
TS, Tourette syndrome.

3.2. Mendelian Randomization

In the association between MDD (exposure) and insomnia (outcome), no signifi-
cant evidence of horizonal pleiotropy was detected based on MR Egger intercept (egger
intercept = 0.00, p = 0.67). Four of the tested methods (weighted median, inverse variance
weighted, MR-PRESSO raw and MR-PRESSO outlier corrected) suggested the existence
of a causal association between MDD and insomnia (Table 3). Conversely, only a trend
was detected based on the simple mode and no significant association based on MR
Egger (Table 3).

In the association between insomnia (exposure) and MDD (outcome), no signifi-
cant evidence of horizonal pleiotropy was detected based on MR Egger intercept (egger
intercept = 0.02, p = 0.07). All methods except MR Egger suggested the existence of a causal
association between MDD and insomnia (Table 3). As regards to other psychiatric traits part
of the same cluster, no significant horizontal pleiotropy was detected between insomnia
(exposure) and either ADHD (Egger intercept = 0.04, p = 0.16), ASD (Egger intercept = 0.00,
p = 0.89) or PTSD (Egger intercept = 0.03, p = 0.07). We observed no significant causal
effect of insomnia on ADHD and ASD (Table S3) and very limited evidence for a potential
effect of insomnia on PTSD, with only the inverse variance weighted method suggesting
a significant association (Table S4). In addition, we observed no evidence of horizontal
pleiotropy (Egger intercept = 0.02, p = 0.41) and no significant causal effect of ADHD on
insomnia (Table S3), while the causal effect of PTSD and ASD on insomnia could not be
tested due to the limited number of significant and independent SNPs associated with the
two psychiatric disorders in the original datasets. The significant bidirectional association
observed between MDD and insomnia was further confirmed with additional analyses con-
ducted using the top 10,000 genetic variants of the datasets (including data from 23andMe
participants) or the independent significant loci reported by the MDD (Tables S5-S8) or the
insomnia GWAS (Tables S9-512).
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Table 3. Mendelian randomization analyses between insomnia and MDD.

Outcome Exposure Method beta se p
Insomnia MDD MR Egger 0.40 0.34 0.27
Insomnia MDD Weighted median 0.22 0.05 2.1 x107°
Insomnia MDD Inverse variance weighted 0.24 0.06 41 x107°
Insomnia MDD Simple mode 0.19 0.10 0.06
Insomnia MDD MR-PRESSO raw 0.26 0.05 6.6 x 107°
Insomnia MDD MR-PRESSO outlier corrected 0.24 0.04 2.7 x 1077
MDD Insomnia MR Egger —0.16 0.27 0.56
MDD Insomnia Weighted median 0.23 0.08 0.0027
MDD Insomnia Inverse variance weighted 0.35 0.10 0.0003
MDD Insomnia Simple mode 0.53 0.13 0.0018
MDD Insomnia MR-PRESSO raw 0.38 0.10 0.0020
MDD Insomnia MR-PRESSO outlier corrected 0.38 0.07 0.0004

Abbreviations: MDD, major depressive disorder; se, standard error. Significant results are reported in bold.

Since the most convincing results were obtained in the MR analysis investigating the
association between MDD and insomnia, we chose these traits for further analyses. The
forest plots in which we compared the MR estimates using different MR methods against
single SNP tests are shown in Figures 4 and 5. Ten and eight SNPs were significant using
MR single-SNP tests when evaluating the effect of MDD on insomnia (Figure 4) or the
effect of insomnia on MDD (Figure 5), respectively. These SNPs were further investigated
to obtain information on their potential functional effect.
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rs30266 — ¥ —_—
rs3099439 - *
rs10235664 -
rs1950829 - T —T
rs9831648 - : _—————————
rs2111592 - : —T 7
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rs72948506 — 3
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rs9529218 - —_—
rs4799949 - — [
152418449 - —C————
rs3807865 - —
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rs1931388 - —
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-1 0 1
MR effect size for
‘MDD’ on ‘insomnia’
Figure 4. Forest plot of SNP specific estimates of the MR analysis with MDD as the exposure and
insomnia as the outcome. For each SNP selected as an IV (n = 39), the upper part of the figure shows
results of MR analyses conducted using the single SNP test implemented in the TwoSampleMR
package, while the lower part of the figure shows results for analyses including all SNPs selected as
IVs (these results are reported in red). Single SNP tests showed a significant causal effect of MDD on
insomnia for 10 of the 39 IVs.
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Figure 5. Forest plot of SNP specific estimates of the MR analysis with insomnia as the exposure and
MDD as the outcome. For each SNP selected as an IV (n = 12), the upper part of the figure shows
results of MR analyses conducted using the single SNP test implemented in the TwoSampleMR
package, while the lower part of the figure shows results for analyses including all SNPs selected as
IVs (these results are reported in red). Single SNP tests showed a significant causal effect of insomnia
on MDD for 8 of the 12 IVs.

3.3. Functional Effect of SNPs Identified with MR in the Analysis with MDD and Insomnia

The forest plots in which we compared the MR estimates using different MR methods
against single SNP tests are shown in Figures 4 and 5. Ten and eight SNPs showed a
significant effect when evaluating the effect of MDD on insomnia (Figure 4) or the effect of
insomnia on MDD (Figure 5), respectively. These SNPs were further investigated to obtain
information on their potential functional effect.

RegulomeDB scores for the ten SNPs driving the effect of MDD on insomnia ranged
from 0.03 to 0.92 (Table 4). Six SNPs were found to act as eQTLs for a total of 20 genes in
different brain regions (Table 4). We found that proteins encoded by these genes show more
interactions among themselves compared to what would be expected for a random set of
proteins of the same size and degree distribution drawn from the genome (PPI enrichment
value = 0.001, Figure 6).

RegulomeDB scores for the eight SNPs driving the effect of insomnia on MDD ranged
from 0.18 to 0.99 (Table 5). Four SNPs were found to act as eQTLs for a total of 5 genes in
different brain regions (Table 5). Proteins encoded by these genes did not show a significant
enrichment as regards to their interactions (PPI enrichment = 1).
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Table 4. SNPs driving the association between MDD (exposure) and insomnia (outcome).

SNP Chr

Gene

EA

OA Dbexp

b out

eQTL for Gene (Tissue)

RDB
Score

rs2111592 2

rs66511648 3

rs9831648 3

rs30266 5

rs3099439 5

rs150186873 6
rs10235664 7

rs61914045 12
rs9536381 13
rs1950829 14

AC007879.1 A

RP11-

384F7.2

Intergenic T

RP11-
6N13.1

TMEMI161B T

Intergenic
MADI1L1

ACVRIB
Intergenic

LRFNb5

A
T
A
T

A

anon 0 n

0.03

0.03

—0.03

0.04

—0.02

—0.07
0.03

0.03
0.03
0.03

0.02

0.02

—0.02

0.03

—0.02

—0.04
0.02

0.02
0.03
0.02

GMPPB (Amygdala, anterior
cingulate, caudate, cerebellum,
cortex, frontal cortex,
hippocampus, hypothalamus,
nucleus accumbens, putamen,
spinal cord, substantia nigra);
GPX1 (Caudate, cerebellum,
cortex, frontal cortex, accumbens,
putamen); NCKIPSD (Amygdala,
anterior cingulate, caudate,
cerebellum, cortex, frontal cortex,
hippocampus, hypothalamus,
nucleus accumbens, putamen,
spinal cord); NICN1 (Nucleus
accumbens); P4HTM (Cerebellum,
cortex, frontal cortex, nucleus
accumbens, putamen, spinal
cord); QRICH1 (Caudate,
cerebellum, nucleus accumbens);
RP11-3B7.1 (Anterior cingulate);
RP11-694115.7 (Cerebellum);
WDR6 (Cerebellum, nucleus
accumbens, putamen)

AMT (Anterior cingulate, caudate,
cerebellum, cortex, frontal cortex,
hippocampus, hypothalamus,
nucleus accumbens, putamen,
spinal cord, substantia nigra);
BSN (Cerebellum); BSN-AS2
(Putamen); CCDC71 (Amygdala,
caudate, cerebellum, frontal
cortex, putamen); DALRD3
(Cerebellum, cortex)

CTC-467M3.3 (Anterior
cingulate); CTC-498M16.4
(Amygdala, anterior cingulate,
caudate, cerebellum, cortex,
frontal cortex, hippocampus,
hypothalamus, nucleus
accumbens, putamen);
TMEM161B-AS1 (Anterior
cingulate, caudate, cerebellum,
cortex, frontal cortex,
hippocampus, hypothalamus,
nucleus accumbens, putamen,
spinal cord, substantia nigra)
BTN2A3P (Cortex)
FTS]2 (Cerebellum, caudate);
AC110781.3 (Nucleus accumbens)

LRFNS5 (Cerebellum)

0.03

0.65

0.92

0.13

0.18

0.48
0.13

0.18
0.08
0.18

Abbreviations: b exp, beta exposure; b out, beta outcome; Chr, chromosome; EA, effect allele; eQTL, expression

quantitative trait loci; OA, other allele; RDB, regulome DB; SNP, single nucleotide polymorphism.
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Figure 6. Network of interactions among proteins encoded by genes for which SNPs driving the
association between MDD (exposure) and insomnia (outcome) act as eQTLs.

Table 5. SNPs driving the association between insomnia (exposure) and MDD (outcome).

SNP Chr Gene EA OA b exp b out eQTL for Gene RDB Score
1577960 5 Intergenic A G 0.03 0.04 - 0.99
159563152 13 Intergenic T C 0.04 0.02 RP.I I_Zé.lHZ'S 0.18
(Anterior cingulate)
rs6984111 8 MSRA C T 0.04 0.02 - 0.14
RP11-
rs1456193 3 384F7 2 T C —0.04 —0.02 - 0.18
LIN28B-AS1
rs370771 6 LIN28B G T —0.04 —0.02 (Caudate, putamen) 0.59
HACET (Cortex)
ALGS
rs9576155 13 SUPT20H A G 0.03 0.02 0.18
(Caudate, cortex)
CUL9 (Caudate, cortex,

frontal cortex,
nucleus accumbens,
spinal cord)
1577217059 2 LINC01122 A T 0.03 0.03 - 0.73

Abbreviations: b exp, beta exposure; b out, beta outcome; Chr, chromosome; EA, effect allele; eQTL, expression
quantitative trait locus; OA, other allele; RDB, regulome DB; SNP, single nucleotide polymorphism.

156938026 6 CuUL9 G A 0.04 0.02 0.61

3.4. Local Genetic Correlation Analysis

We used the univariate test implemented in LAVA to assess the local heritability of
15 loci in which the SNPs found to be significant in the MR analysis were located. Local
heritability was small from all loci, ranging from 0.0001 to 0.0004 for MDD and from 0.0001
to 0.0005 for insomnia. After multiple testing adjustment, four loci showed significant
heritability for both phenotypes, while six and two other loci showed significant heritability
exclusively for MDD and insomnia, respectively (Table 6).
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Table 6. Results of the univariate tests to assess local heritability of selected loci for MDD and

insomnia.
MDD Insomnia

SNP(s) Chr Start Locus Stop Locus P adjp P adjp
rs77217059 2 57952946 59251996 3.6 x 1077 22 x107° 6.8 x 10711 41 x 107?
rs2111592 2 207726595 208674588 47 x 10712 2.8 x 10710 0.046 1
rs9831648 3 47588462 50387742 41 x 1073 0.002 7.3 x 10710 44 x 1078
rffff;;f;;' 3 117241645 118086929 0.068 1 2.7 x 1075 0.002
rs3099439 5 87943483 89584466 23 x 1077 1.4 x 1075 1.2 x 1071 7.2 x 10710

2?%2% 5 103788461 104850490 4.0 x 1076 0.0002 0.01 0.600
rs150186873 6 26396201 27261035 6.8 x 10712 41 x 10710 0.09 1
rs$6938026 6 42103739 43770626 0.006 0.360 1.1 x 10710 6.6 x 1072
rs370771 6 104951345 106053915 0.017 1 0.003 0.180
rs10235664 7 1366973 2473749 0.0001 0.006 0.005 0.300
rs6984111 8 9835864 10478851 0.003 0.180 0.057 3.420
rs61914045 12 51769420 53039987 1.6 x 1077 9.6 x 107° 0.007 0.420
rs$9576155 13 37499811 38290689 0.0084 0.504 0.0022 0.132
isszgzgﬁé' 13 53336572 54684856 0.0001 0.008 6.6 x 105 0.004
rs1950829 14 41614834 42562550 7.5 x 1077 45 % 107> 0.0021 0.126

The table reports significance of univariate tests to assess local heritability for the investigated loci for MDD and
insomnia. The adj p columns report p-values adjusted according to Bonferroni based on the number of conducted
tests (n = 60). Significant results are reported in bold. Abbreviations: Chr, chromosome; MDD, major depressive
disorder; SNP, single nucleotide polymorphism.

Of the four loci showing significant heritability for both MDD and insomnia, three
showed a significant bivariate local genetic correlation (Table 7). For the locus on chr2,
including the rs77217059 SNP, we observed a significant local positive genetic correlation
between MDD and insomnia (rho = 0.64, r? = 0.41, adj p = 0.002) and no significant
correlation between these two phenotypes and any cardiometabolic trait (Table 7).

For the locus on chr 3 including the rs9831648 SNP, we observed a significant lo-
cal positive genetic correlation between MDD and insomnia (rho = 0.60, r*> = 0.36, adj
p = 0.045), as well as significant local bivariate genetic correlation between MDD and BMI
(rho = 0.48, r2 =0.23, adj p = 0.006) or between insomnia and BMI (rho = 0.69, 2 =047,
adjp=1.7 x 1077), CRP (rtho = 0.66, > = 0.44, adj p = 4.2 x 10~°) and CAD (rho = 0.54,
1? = 0.29, adj p = 0.033). Partial correlation analysis between MDD and insomnia, adjusted
for BMI, CRP or both variables, suggested that these variables account for a notable propor-
tion of the local r;, between MDD and insomnia. In fact, we observed that BMI and CRP
levels explained a substantial proportion of the genetic variance for MDD and insomnia
at this locus (e.g., BMI explained 23% and 47% of the proportion of genetic variance for
MDD and insomnia, respectively, Table 8). Consistently, the correlation between MDD and
insomnia was no longer significant when adjusting for these variables (Table 8). Results
for partial correlation analysis between MDD and insomnia adjusting for CAD are not
reported, as LAVA deemed estimates to be unreliable (estimate out of bounds).

Finally, we observed a significant positive genetic correlation between MDD and
insomnia at the locus on chr 13 including the two SNPs rs9536381 and rs9563152 (rho = 1,
r? =1, adjp =9.9 x 107°%). At this locus, we also observed a significant positive genetic
correlation between MDD and BMI (rho = 0.48, r> = 0.23, adj p = 0.012), as well as between
insomnia and BMI (rho = 0.55, r* = 0.31, adj p = 0.001) or CRP (tho = 1, r? = 1, adj p = 0.0002).
When adjusting for BMI, the partial correlation analysis between MDD and insomnia was
still significant (r>_MDD_BMI = 0.23, ¥>_MDD_BMI = 0.31, rho partial correlation = 1,
p partial correlation = 0.0003). Results for partial correlation analysis between MDD and
insomnia adjusting for CRP are not reported as LAVA deemed estimates to be unreliable
(estimate out of bounds).
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Table 7. Bivariate local genetic correlation between MDD, insomnia and cardiometabolic traits.

Trait 1 Trait 2 rho r p adj p
Locus chr2:57952946-59251996 (SNP: rs77217059)
MDD Insomnia 0.64 0.41 8.0 x 105 0.002
MDD BMI 0.09 0.01 0.43 1
MDD CRP 0.20 0.04 0.31 1
MDD 2D 0.02 0.00 0.87 1
Insomnia BMI —0.28 0.08 0.009 1
Insomnia CRP 0.07 0.00 0.70 1
Insomnia 2D —0.20 0.04 0.19 1
Locus chr3:47588462-50387742 (SNP: rs9831648)
MDD Insomnia 0.60 0.36 0.0015 0.045
MDD BMI 0.48 0.23 0.0002 0.006
MDD CRP 0.40 0.16 0.015 0.44
MDD CAD 0.36 0.12 0.08 1
Insomnia BMI 0.69 0.47 5.6 x 10~ 11 1.7 x 10~°
Insomnia CRP 0.66 0.44 1.4 x 10~ 42 x 1075
Insomnia CAD 0.54 0.29 0.001 0.033
Locus chr5:87943483-89584466 (SNP: rs3099439)
MDD Insomnia —0.05 0.00 0.77 1
MDD BMI 0.23 0.05 0.048 1
MDD CRP —-0.07 0.01 0.71 1
MDD 2D —0.16 0.02 0.46 1
MDD CAD 0.35 0.12 0.03 0.9
Insomnia BMI —0.14 0.02 0.17 1
insomnia CAD —-0.13 0.02 0.35 1
Insomnia CRP 0.02 0.00 0.91 1
Insomnia 2D —0.25 0.06 0.19 1
Locus chr13:53336572-54684856 (SNPs: rs9536381, rs9563152)
MDD Insomnia 1.00 1.00 3.3 x107° 9.9 x 1073
MDD BMI 0.48 0.23 0.0004 0.012
MDD CAD 0.28 0.07 0.208 1
MDD CRP 0.54 0.30 0.016 0.47
Insomnia BMI 0.55 0.31 3.9 x 107 0.001
Insomnia CAD 0.43 0.18 0.042 1
Insomnia CRP 1.00 1.00 7.3 X 10~ 0.0002

Abbreviations: BMI, body mass index; CAD, coronary artery disease; CRP, C-reactive protein; MDD, major
depressive disorder; SNP, single nucleotide polymorphism; T2D, type 2 diabetes. The adj p column reports
p-values adjusted according to Bonferroni based on the number of conducted tests (n = 30). Significant results are
reported in bold.

Table 8. Partial correlation analysis between MDD and insomnia adjusted for BMI and CRP levels.

Trait 1 Trait 2 Z % Traitl Z r? Trait2 Z rho Partial Correlation p Partial Correlation
Locus chr3:47588462-50387742 (SNP: rs9831648)

MDD Insomnia BMI 0.23 0.47 0.41 0.11

MDD Insomnia CRP 0.16 0.44 0.48 0.08

MDD Insomnia BMI, CRP 0.25 0.57 0.39 0.19

4. Discussion

In this study, we investigated the association between predisposition to psychiatric
disorders and different cardiometabolic and sleep traits. Using k-means clustering on the
global genetic correlation matrix computed between psychiatric, cardiometabolic and sleep-
related traits, we identified a cluster including insomnia and the three psychiatric disorders
MDD, ADHD and PTSD. While no cluster including both psychiatric and cardiometabolic
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traits was identified, several significant genetic correlations between psychiatric disorders
and cardiometabolic traits were observed (Table 1). When we further investigated the
relationships between disorders included in the identified cluster, MR analysis supported
the existence of a bidirectional association between MDD and insomnia (Table 3). The
majority of SNPs found to drive this association were observed to affect the expression of
a number of genes in different brain regions (Tables 4 and 5). Our results are in line with
the study from Cai and colleagues, who observed a significant bidirectional association
between MDD and insomnia using another MR method compared to the ones we used
in the present analysis [53]. Some of these loci, such as the ones having as the nearest
genes TMEM161B, LRENS or the RP11-6N13.1 non-coding RNA, were also found to be
associated with both MDD and insomnia in a recent study conducted by O’Connell and
colleagues, using the conjunctional FDR method to identify genetic loci associated with
pairs of traits [21]. When we investigated the loci in which SNPs driving the MR association
were located using local genetic correlation analysis, we observed a significant positive local
genetic correlation between MDD and insomnia for three loci (Table 7). For two of these loci,
cardiometabolic traits were not found to exert a significant effect on the association between
MDD and insomnia. At the first locus, the SNP driving the MR results was rs77217059.
This SNP is located in the LINC01122 long non-coding RNA, the biological role of which is
still unknown. The other locus that showed a significant correlation between MDD and
insomnia, also when adjusting for BMI, was at chromosome 13 and included the two SNPs
rs9536381 and rs9563152 among those driving the MR results. Both SNPs are intergenic and
the second was found to drive the expression of the RP11-24H2.3 long non-coding RNA in
the anterior cingulate brain region in GTEx. Specifically, the T-allele of the rs9563152 SNP,
which was associated with increased predisposition to both MDD and insomnia (Table 4),
is also associated with reduced expression of RP11-24H2.3 in the anterior cingulate. While
the biological relevance of this and of several long non-coding RNAs is not known, this
class of transcripts has been increasingly investigated in relation to their potential role in
the pathogenesis of psychiatric and neurological disorders [54,55].

For the locus on chr3:47588462-50387742 (SNP: rs9831648), genetically-predicted BMI
and CRP levels were found to account for a notable proportion of the local r; between
MDD and insomnia, and the association was no longer significant when adjusting for
these variables (Table 8). In particular, BMI and CRP levels were able to explain a large
part of the genetic variance for insomnia at this locus (47% and 44%, respectively) and
the observed association between MDD and insomnia was probably due to a significant
correlation between both MDD and insomnia with higher BMI (Table 7). Our results suggest
that cardiometabolic traits such as increased BMI or inflammation might mediate the
association between MDD and insomnia at some but not all loci associated with increased
predisposition to both traits. Interestingly, a recent study including 1894 participants
from the English Longitudinal Study of Ageing showed that sleep disturbances at baseline
predicted depressive symptoms at eight-year follow-up [56], even when baseline depression
was considered, in accordance with previous studies. In addition, high levels of the CRP
inflammatory marker mediated the association between sleep disturbance and depressive
symptoms in women [56], supporting the existence of a relationship between depression,
cardiometabolic and sleep-related traits.

While PTSD and ADHD were included in the same cluster using the k-means al-
gorithm, we found limited evidence or no significant association in the MR analyses in
which we tested the bidirectional association between insomnia and these traits (Table S3).
However, this result might be due to the relatively low number of patients included in these
GWAS compared with the MDD study and the small number of genome-wide significant
variants reported in the original datasets.

The identification of the molecular mechanisms underlying the association between
psychiatric disorders and known comorbidities such as cardiometabolic and sleep disorders
can improve our still limited understanding of the pathogenesis of psychiatric disorders.
Moreover, it can also be of help to design treatment strategies aimed at reducing the impact
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that comorbidities exert on the clinical course of psychiatric disorders. Indeed, persistent
insomnia has been shown to predict depression relapse and may contribute to poor clinical
outcome [57]. The bidirectional causal association observed between MDD and insomnia
using MR underlines the need of a more integrated assessment of sleep-related symptoms
in patients with MDD as well as of mood symptoms in patients with sleep disorders.
Indeed, based on the observed interplay between MDD, insomnia and metabolic traits,
personalized treatment strategies addressing cardiometabolic and sleep disorders might
benefit subgroups of patients with increased genetic predisposition to these phenotypes.

Our results should be interpreted in light of some limitations. Firstly, all identified
genetic variants have small effect sizes and only explain a small part of the observed
variability of the investigated traits. Secondly, we used publicly available datasets from
different GWAS studies, some of which have included participants from the UK Biobank,
and are thus characterized by sample overlap. While some of the methods we used are
robust to sample overlap (e.g., the local genetic correlation analysis conducted with LAVA,
in which all analyses were adjusted based on the computed sample overlap matrix), it
cannot be excluded that this factor might have at least partly affected our results.

In conclusion, using the k-means clustering machine learning algorithm based on
cross-trait genetic correlation, we identified a cluster including insomnia and the psychiatric
disorders MDD, PTSD and ADHD. We confirmed the existence of a bidirectional association
between MDD and insomnia using MR and outlined loci characterized by a significant
local genetic correlation which was either found to be specific for MDD and insomnia
or mediated by increased genetically predicted BMI and CRP levels. The identified loci,
some of which were found to affect the brain expression of different RNAs in brain regions,
might be further investigated as regards to their potential role as drug targets or to develop
improved treatment approaches.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/a15110409/s1, Table S1: GWAS datasets included in the analyses;
Table S2: Complete table of genetic correlations between psychiatric and metabolic or sleep traits, sig-
nificant after multiple testing adjustment based on the number of tests (n = 120); Table S3: Mendelian
randomization analysis between insomnia and ADHD, ASD and PTSD; Table S4: Mendelian random-
ization analysis between insomnia and ADHD, ASD and PTSD; Table S5: Mendelian randomization
analyses between MDD (exposure) and insomnia (outcome) using 70 IVs; Table S6: Results of
mendelian randomization single-SNP tests between MDD (exposure) and insomnia (outcome) us-
ing 70 IVs; Table S7: Mendelian randomization analyses between MDD (exposure) and insomnia
(outcome) using 69 IVs; Table S8: Results of mendelian randomization single-SNP tests between
MDD (exposure) and insomnia (outcome) using 69 IVs; Table S9: Mendelian randomization analyses
between insomnia (exposure) and MDD (outcome) using 81 IVs; Table S10: Results of MR single-SNP
tests between insomnia (exposure) and MDD (outcome) using 81 IVs; Table S11: Mendelian random-
ization analyses between insomnia (exposure) and MDD (outcome) using 223 IVs; Table S512: Results
of MR single-SNP tests between insomnia (exposure) and MDD (outcome) using 223 IVs.
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