
Citation: Houdayer, J.; Koehl, P.

Stable Evaluation of 3D Zernike

Moments for Surface Meshes.

Algorithms 2022, 15, 406. https://

doi.org/10.3390/a15110406

Academic Editors: Dunhui Xiao and

Shuai Li

Received: 23 September 2022

Accepted: 27 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Stable Evaluation of 3D Zernike Moments for Surface Meshes
Jérôme Houdayer 1,* and Patrice Koehl 2

1 CEA, Université Paris-Saclay, CNRS, Institut de Physique Théorique, 91191 Gif-sur-Yvette, France
2 Department of Computer Science, University of California, Davis, CA 95616, USA
* Correspondence: jerome.houdayer@ipht.fr

Abstract: The 3D Zernike polynomials form an orthonormal basis of the unit ball. The associated
3D Zernike moments have been successfully applied for 3D shape recognition; they are popular
in structural biology for comparing protein structures and properties. Many algorithms have been
proposed for computing those moments, starting from a voxel-based representation or from a
surface based geometric mesh of the shape. As the order of the 3D Zernike moments increases,
however, those algorithms suffer from decrease in computational efficiency and more importantly
from numerical accuracy. In this paper, new algorithms are proposed to compute the 3D Zernike
moments of a homogeneous shape defined by an unstructured triangulation of its surface that remove
those numerical inaccuracies. These algorithms rely on the analytical integration of the moments
on tetrahedra defined by the surface triangles and a central point and on a set of novel recurrent
relationships between the corresponding integrals. The mathematical basis and implementation
details of the algorithms are presented and their numerical stability is evaluated.

Keywords: shape signatures; Zernike polynomials; Zernike moments

1. Introduction

Finding efficient algorithms to describe, measure and compare shapes is a central
problem in image processing. This problem arises in numerous disciplines that generate
extensive quantitative and visual information. Among these, biology occupies a central
place [1]. In cellular biology for example, the measurements of cell morphology and dy-
namics by imaging techniques such as light or fluorescent microscopy yield large amounts
of 2D and 3D images that need to be segmented and quantified [2–5]. Measuring shapes,
computing the contribution of a shape to a potential, and more generally quantifying the
effect of a vector field on a shape are also common problems for geodesists and physicists.

In a chapter titled “The Comparison of Related Forms”, Thompson explored how
differences in the forms of related animals can be described by means of simple mathe-
matical transformations [6]. This inspired the development of several shape comparison
techniques, whose aim is to define a map between two shapes that can be used to measure
their similarity. An alternate and popular method is to derive features (also called shape
descriptors or signatures) for each shape separately that can then be compared using stan-
dard distance functions, and those that directly attempt to map one surface onto the other,
thereby providing both local and non-local elements for comparison.

One particular powerful technique for generating shape signatures is based on moment-
based representations of a shape. Those representation form a class of shape recognition
techniques that have been used widely for pattern recognition [7–9]. These moments not
only provide measures of the shapes, such as volume and surface areas, they also allow
for the encoding of a shape with descriptors that are amenable to fast analysis. The most
common of these moments are geometric:

Gijk =
∫

V
f (x, y, z)xiyjzkdxdydz, (1)

Algorithms 2022, 15, 406. https://doi.org/10.3390/a15110406 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15110406
https://doi.org/10.3390/a15110406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-3849-593X
https://orcid.org/0000-0002-0908-068X
https://doi.org/10.3390/a15110406
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15110406?type=check_update&version=2

Algorithms 2022, 15, 406 2 of 31

where the integration is performed over the volume V of the shape S considered, N =
i+ j+ k is the order of the moment, and f (x, y, z) is a vector field over S that may represent a
potential, a grey scale for image processing, or an indicator function such that f (x, y, z) = 1
inside the shape and 0 otherwise. These geometric moments and their invariant extensions
have been used extensively in pattern recognition (for review, see for example [10]). They
are usually easy to compute, though at a high computational costs.

Spherical harmonics [11,12] and their rotational invariants [13] form another class of
moment-based descriptors for analyzing star-shaped objects that are topologically equiv-
alent to a sphere. They are becoming increasingly popular in cellular bio-imaging for
example, as it is usually safe to assume that cells observed through a microscope are topo-
logically closed and equivalent to a sphere; this prior makes it possible to 0 their shape
mathematically, thereby simplifying the definition of their surface and provide a shape
description (see for example [3] for representing cell organelles and more recently [14] for
studies of cell dynamics).

In many cases however, the hypothesis that the object is star-shaped does not hold.
The Zernike moments, first introduced in two dimensions by Dutch Nobel price Frederic
Zernike in 1934 [15], circumvent this problem through the introduction of a radial term.
2D Zernike moments have been used in cellular biology as an alternative to Quantitative
Phase Imaging [16] for classifying breast cancer tumors based on mammograms [17],
for characterizing subcellular structures [18], and for measuring changes in cancer cell
shapes [19]. They have proved to be superior to geometric moments in 2D image retrieval
(see for example [20]). After they were generalized to 3D by Canterakis [21], they have been
applied in many domains, such as tools for shape retrieval in computer graphics [22,23],
terrain matching and building reconstruction [24,25], as well as in astronomy [26]. Most
current applications, however, are related to biology, coincident with the applications of
geometric moments. In biochemistry, for example, they have been proposed as a tool
for protein shape comparisons [27,28] and alignments [29], to the point that they have
become a standard tool [30,31] associated with the Protein Structure Database (PDB) [32].
Zernike moments are also used to analyze and search the protein models [33] generated
by AlphaFold, the deep learning method that is currently used to predict the structure
of proteins with high accuracy [34,35]. The formalism for characterizing shapes using
Zernike polynomials and Zernike moments is also being used for understanding the
spatial organization of nonpolar and polar residues within protein structures [36], protein
docking [37,38], for the analyses of protein interfaces [39–42], as well as for the identification
and prediction of protein binding sites [43]. It is noteworthy that 3D Zernike moments can
capture the geometry of a shape with minimal loss. They has been used in this context to
encode single-cell phase-contrast tomograms [44]. In this paper, we are concerned with the
computation of these 3D Zernike moments.

Many algorithms have been proposed for computing the 3D Zernike moments of a
shape. Most of these methods, especially those used for image analysis, rely on a rep-
resentation of the shape as a volumetric grid. These algorithms usually proceed in two
steps, namely computing the geometric moments of the shape first, and then expressing
the Zernike moments as linear combinations of those moments (see Refs. [22,45], and back-
ground section below). They do suffer from three major drawbacks. First, the computation
of each moment has a cubic computational complexity (N3

V , where NV is the number of
voxels in each dimension of the grid). Second, the volume integral in Equation (1) is ap-
proximated by a discrete sum over the voxels, where each voxel contributes as a point-like
object, usually located at its center. It is easy to see that this discretization error increases as
the order of the moment increases. Finally, the relationships between geometric moments
and Zernike moments lead to numerical instabilities, limiting the order N of the moments
that can be computed accurately, usually with N < 50 (see [22,46]).

Given a volumetric grid representation of a shape, it is possible to extract a discrete
version of the surface of this shape by triangulation of an isosurface embedded in the grid
(for a survey on this process, see for example Ref. [47]). Popular methods for generat-

Algorithms 2022, 15, 406 3 of 31

ing such isosurface include the marching cube algorithm [48], the marching tetrahedra
algorithm [49] and its regularized version [50]. Representing a shape using a discrete
approximation of its surface, usually a polygonal mesh, and assuming that this shape is ho-
mogeneous (where homogeneity refers to the fact that the function f (x, y, z) in Equation (1)
can be considered constant) is often efficient as there are exact algorithms for computing
homogeneous 3D moments over such representation. An exact formula for computing
geometric moments on 3D polyhedra was originally proposed by Lien and Kajiya [51];
it has been reformulated and extended to general dimensional polyhedra several times
since then (for a complete discussion of the state of the art in this field, see [52]). Pozo et
al. used those ideas and derived efficient recursive algorithms for computing geometric
moments for shapes defined by a triangulation of their surfaces [52]; those algorithms were
further refined to be optimal with respect to the order of the moments [53]. Pozo et al.
then used those geometric moments to derive the 3D Zernike moments of such shapes. As
mentioned above, however, the numerical instabilities associated with the relationships
between geometric and Zernike moments limit the order with which those can be derived.

Recently Deng and Gwo proposed a new, stable algorithm to accurately compute
Zernike moments for shapes represented as 3D grid [54]. Their algorithm proceeds by
computing these moments directly, without using the geometric moments, using recurrence
relations that provide stability and efficiency. Our work presented in this paper is a
counterpart to the work of Deng and Gwo. We propose a new exact algorithm for the
computation of Zernike moments for shapes represented by surface meshes. Similar to
Deng and Gwo, we do not use the conversion from geometric moments to Zernike moments
to avoid numerical instabilities.

The paper is organized as follows. In the next section, we give some background
on moments of 3D shapes, especially geometric moments and Zernike moments. We
show how the former can be used to compute the latter, but explain why this may lead to
numerical instabilities, especially for high order moments. The following section introduce
our new, stable algorithms for computing Zernike moments of 3D shapes represented
by surface-based triangular meshes. The results section introduce some experiments to
validate those algorithms on synthetic data.

2. Moments from 3D Shapes

In this section, we briefly introduce the concept of moments of a shape, with three
examples, the geometric moments (GM), the spherical harmonics moments (SPHM), and
the Zernike moments (ZM). We show that ZM are extensions of the SPHM, and that they
can be computed from the GM, but with potential problems that we describe.

We start with notations. Any point p within a domain D ⊂ R3 can be 0 either in terms
of its vector of Cartesian coordinates x = (x, y, z) with respect to an origin, or in terms of
its spherical coordinates (r, θ, φ) where r is the distance from p to the sphere center, and
θ and φ are the inclination and azimuthal angles, respectively. A shape S in the domain
D is represented through its density f (x) at all points in the domain. We assume that f is
square integrable over the domain D, i.e., f ∈ L2(D). In the special case that the shape is
homogeneous, it is represented with an indicator function f (x) with value 1 if x is inside
the shape, and 0 otherwise.

2.1. Moments of a Shape

The moments µi of a shape are the projections of the function f over a set of basis
functions Ψ = {ψi}:

µi = 〈 f , ψi〉 =
∫

D
f (x)ψi(x)dx,

where ψ is the complex conjugate of ψ. The properties of a particular moment based
representation are therefore determined by the set of functions Ψ. There are two properties
of this set that are desirable, namely:

Algorithms 2022, 15, 406 4 of 31

(i) Orthonormality. The set of functions Ψ is orthonormal if

〈ψi, ψj〉 = δij,

for all ψi and ψj in Ψ (δ is the Kronecker symbol, i.e., δij = 1 if i = j, and 0 otherwise).
(ii) Completeness. The set of functions Ψ is complete if for all functions f ∈ L2(D):

f =
∞

∑
i=0

µiψi.

The orthonormality property is important as it guarantees the mutual independence of
the computed moments. The completeness property implies that we are able to reconstruct
approximations of the original shape from its moments. Directly associated with these two
properties is Parseval’s theorem. This theorem is an important property for example in
Fourier analysis that states that the sum (or integral) of the square of a function is equal
to the sum (or integral) of the square of its transform. It is true in fact for all complete
orthonormal basis. Indeed,∫

D
| f (x)|2dx = 〈 f , f 〉 = 〈

∞

∑
i=0

µiψi,
∞

∑
j=0

µjψj〉

=
∞

∑
i=0

∞

∑
j=0

µiµj〈ψi, ψj〉 =
∞

∑
i=0

∞

∑
j=0

µiµjδij

=
∞

∑
i=0
|µi|2.

(2)

2.2. Basis Function: Monomials

A very popular set of functions Ψ are the monomials xiyjzk, where i, j, k are non
negative integers. The corresponding moments are referred to as geometric moments, Gijk,
and defined by

Gijk =
∫

D
f (x)xiyjzkdx, (3)

The geometric moments are easy to compute, both for grid-based and surface-based
representations of shapes. The geometric monomials, however, are neither orthonormal,
nor complete.

2.3. Basis Function: Laplace Spherical Harmonics

If the domain is the sphere S2 ⊂ R3, a point p is characterized by its inclination angle
θ and azimuthal angle φ only. A function f on S2 can then be represented through its
spherical harmonics. They form a Fourier basis on a sphere much like the familiar sines
and cosines do on a line. The spherical harmonic Ym

l is defined by

Ym
l (θ, φ) = Nm

l Pm
l (cos θ)eimφ, (4)

where Nm
l is a normalization factor:

Nm
l =

√
2l + 1

4π

(l −m)!
(l + m)!

,

and Pm
l are the associated Legendre polynomial. Ym

l is defined for l non negative integer
and m integer, such that −l ≤ m ≤ l. It is enough, however, to compute the spherical
harmonics for m ≥ 0, as we have the relationship,

Ym
l (θ, φ) = (−1)mY−m

l (θ, φ).

Algorithms 2022, 15, 406 5 of 31

We note the definition of the harmonic polynomial,

em
l (x) = rlYm

l (θ, φ), (5)

where x is the point with spherical coordinates (r, θ, ψ). The spherical harmonics are
orthonormal: ∫ π

0
sin θdθ

∫ 2π

0
dφYm

l (θ, φ)Ym′
l′ (θ, φ) = δmm′δll′ . (6)

The spherical harmonics moments gm
l are defined as:

gm
l =

∫ π

0
sin θdθ

∫ 2π

0
dφ f (θ, φ)Ym

l (θ, φ). (7)

Note that these moments are complex, as the spherical harmonics are complex.
Just like Fourier series are complete, the spherical harmonics are complete on the

sphere. It is important to notice, however, that they cannot be computed on a volumetric
shape without some modifications, such as the use of solid harmonics [55], or with the
introduction of Zernike polynomials, which are presented in the following subsection.

2.4. Basis Function: The Zernike Polynomials

The spherical harmonics are defined on the sphere. Zernike [15] in 2D and later
Canterakis [21] in 3D have shown that they can be expanded to account for the whole ball
by using the Zernike polynomials. Let x be a point inside the unit ball B with spherical
coordinates (r, θ, φ). The value of Zernike polynomial Zm

nl at x is given by:

Zm
nl(x) =

√
2n + 3Rnl(r)Ym

l (θ, φ), (8)

where Ym
l are the spherical harmonics define above, and Rnl are polynomials in the radial

coordinate r:

Rnl(r) =
k

∑
ν=0

Qnlνr2ν+l , (9)

where

Qnlν = (−1)k+ν (
2k
k)(

k
ν)(

2(k+l+ν)+1
2k)

4k(k+l+ν
k)

. (10)

The non negative integer n is the order the of Zernike polynomial, l is an integer
that is restricted so that 0 ≤ l ≤ n and (n − l) be an even number, k = (n − l)/2, and
−l ≤ m ≤ l. The coefficients in Rnl were chosen to guarantee that the Zernike polynomials
are orthonormal, a property expressed in the following equation:∫

B
Zm

nl(x)Zm′
n′ l′(x)dx = δnn′δll′δmm′ . (11)

The Zernike moments cm
nl of a shape S whose density inside the unit ball is defined by

the square integrable function f are then defined as

cm
nl =

∫
B

f (x)Zm
nl(x)dx. (12)

Note that m can be positive or negative, as it belongs to [−l, l]. It is enough, however,
to compute the moments for m non negative as we have (see for example [22]):

c−m
nl = (−1)mcm

nl . (13)

Algorithms 2022, 15, 406 6 of 31

Reconstruction. The Zernike polynomial form a complete basis of L2(B), we hence have

f (x) =
∞

∑
n

∑
l

l

∑
m=−l

cm
nlZ

m
nl(x), (14)

where l is an integer that is restricted so that 0 ≤ l ≤ n and (n− l) be an even number. In
practice, we can use a finite number of terms to approximate f .

2.5. Computing the Zernike Polynomials from the Geometric Moments

Although the Zernike polynomials are usually defined with respect to spherical coor-
dinates, they are actually polynomial functions on Cartesian coordinates (x, y, z). To show
this, let us first rewrite the Zernike polynomials

Zm
nl(x) =

√
2n + 3Rnl(r)Ym

l (θ, φ)

=
√

2n + 3
k

∑
ν=0

Qnlν(x2 + y2 + z2)νrlYm
l (θ, φ)

=
k

∑
ν=0

Qnlν
√

2n + 3(x2 + y2 + z2)νem
l (x),

(15)

where k = (n − l)/2 and em
l is the harmonic polynomial (see Equation (5)) and x =

(x, y, z) = (r, θ, φ). The harmonic polynomial can be expressed in Cartesian coordinates [22],
but it is enough to know that it is a polynomial of total degree l. We can thus write

√
2n + 3(x2 + y2 + z2)νem

l (x) = ∑
r+s+t≤l+2ν

ζrst
nlνxryszt, (16)

with r, s and t non negative integers and ζrst
nlν some known complex numbers. We now have

Zm
nl(x) =

k

∑
ν=0

Qnlν ∑
r+s+t≤l+2ν

ζrst
nlνxryszt = ∑

r+s+t≤n
χrst

nlmxryszt, (17)

with

χrst
nlm =

k

∑
ν=0

Qnlνζrst
nlν. (18)

Finally, after replacing the Cartesian expression for Zm
nl (Equation (17)) into

Equation (12), we get an expression of the Zernike moments cm
nl as a function of the

geometric moments G:
cm

nl = ∑
r+s+t≤n

χrst
nlmGrst.

This allow for a simple algorithm for computing the Zernike moments of a shape from
its geometric moments. Similar algorithms have been proposed [22,52] for the same task.
Such an algorithm is theoretically very efficient, once the geometric moments have been
computed, as it is independent of the size of the mesh representing the shape or the number
of grid point in a voxel representation of the shape. There are, however, numerical issues
with this formula that we discuss below.

2.6. Numerical Instabilities Associated with the Zernike Polynomials

Let us first look at the radial polynomials. Rnl is a polynomial of degree n. For large
values of n, special care is needed for computing them, and direct application of Equation (9)
is bound to numerical instabilities, as described in Figure 1.

Algorithms 2022, 15, 406 7 of 31

0 5 10 15 20 25 30 35 40
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Q
8
0
,0
,

10
29

x

A)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

-2

-1

0

1

2

3

4

5

6

7

8

R
8
0
,0
(r

)

B)

Figure 1. Instabilities in evaluating the Rnl radial polynomials. In panel (A), we show the values of
R80,0(r) as a function of r, based on a stable evaluation of the polynomial function (see text for details).
In panel (B), we show the values of the coefficients Q80,0,ν, the monomial expansion of R80,0(r).

The values of R80,0(r) as a function of r, based on a stable evaluation of the polynomial
function vary in the interval [−1.57, 7.20], where the largest value is reached for r =
0. Numerical application of Equation (9) wrongly indicates that R80,l(r) varies in the
interval [−4149, 4× 1013] (results not shown). This is due to the fact that the coefficients
Q80,0,ν are large (up to 1029), as illustrated in panel B of Figure 1. Those coefficients
alternate from positive to negative due to the presence of the term (−1)ν, leading to large
cancellations and ultimately to a small value for the polynomial. Computing correctly
those cancellations requires very high precision usually not available with standard double
precision in programming languages. It is possible to use arbitrary precision libraries
to solve this issue, but it is in fact not necessary. As was noticed multiple times for the
3D Zernike radial polynomials (see for example [56,57]) the radial polynomial Rnl can be
expressed as a Jacobi polynomial:

Rnl(r) = rl P(0,l+3/2)
n−l

2
(2r2 − 1). (19)

Equation (19) allows the results available in the literature for the Jacobi polynomials
to be translated for the 3D radial functions. In particular, we have the following recurrence
relation (it was also derived in [54])

Rnl(r) = (K1(n, l)r2 + K2(n, l))Rn−2,l(r) + K3(n, l)Rn−4,l(r), (20)

where the coefficients Ki are defined as:

k0 = (n− l)(n + l + 1)(2n− 3),

k1 = (2n− 1)(2n + 1)(2n− 3),

k2 =
1
2
(−2n + 1)(2l + 1)2 − k1

2
,

k3 = −(n− l − 2)(n + l − 1)(2n + 1),

K1(n, l) =
k1

k0
, K2(n, l) =

k2

k0
, K3(n, l) =

k3

k0
. (21)

This recursive formula is only valid for l ≤ n− 4. This can be addressed by notic-
ing that

Rnn(r) = rn,

Rn,n−2(r) = (n +
1
2
)rn − (n− 1

2
)rn−2. (22)

This recurrence allows for a stable computation of all Rnl(r), even for large orders.

Algorithms 2022, 15, 406 8 of 31

The geometric moments of a shape can be computed accurately even for large orders,
see for example [52,53]. Those moments can then be used to evaluate the 3D Zernike
moments, as described in the section above. Converting the geometric moments to Zernike
moments require, however, that the factor χrst

nlm be computed (where nlm refers to the
indices for the Zernike moments, while rst refers to the indices for the geometric moments).
As defined in (18), the factors χrst

nlm depend on the coefficients Qnlν and therefore they are
bound to suffer from the same numerical instabilities. We illustrate this in Figure 2.

20 25 30 35
n (Zernike order)

-1.5

-1

-0.5

0

0.5

1

1.5

E
x
tr

e
m

a
 o

f
m

n
l

rs
t

10
17

x

Figure 2. Instabilities in evaluating the χrst
nlm factors. We show the maxima (in blue) and minima (in red)

for the χrst
nlm for a given n, as a function of n.

As expected, the χrst
nlm vary significantly over a large range of values. This was already

observed by Berjón and colleagues in their attempts to parallelize the computation of
Zernike moments [46] and is the main reason that the computation of Zernike moments
is usually limited to order below N = 50. One solution to solve this problem would be
to derive recurrence relationships for the χrst

nlm. Pozo et al. provided such a recurrence.
However, their relationships still involve the computations of the factors Qnlν (see their
Equation (13e)) and as such do not solve the numerical instabilities.

Deng and Gwo [54] proposed a different approach in their attempt to compute Zernike
moments for a shape described on a grid, which is to bypass the computation of the
geometric moments. In the following, we propose a similar approach for computing
Zernike moments for a shape described by a surface-based triangular mesh.

3. Algorithms for Computing the 3D Zernike Moments for a Surface Triangular Mesh
3.1. Zernike Moments over a Shape Defined by a Triangular Surface Mesh

Let us consider a shape S, covering a volume V. The shape is assumed to be repre-
sented by a triangle mesh that defines its boundary. Each facet (triangle) T is defined by
three vertices A, B and C that are oriented consistently counter-clockwise when seen from
the exterior of the shape. As the Zernike polynomials are complete and orthonormal over
the unit ball B, the shape is assumed to fit within this ball. This is obtained by centering the
mesh to the origin O, and scaling the mesh such that the longest distance between a vertex
of the mesh and O is set to one.

Assuming that this shape is homogeneous (i.e., represented by a constant scalar field,
with the constant set to one), its Zernike moments cm

nl are given by:

cm
nl =

∫
V

Zm
nl(x)dx, (23)

where n is the order of the moment, l is a non negative integer smaller or equal to n, with
the same parity as n, and m an integer with −l ≤ m ≤ l.

Algorithms 2022, 15, 406 9 of 31

Using the origin O of the coordinate frame as a reference point, each facet T defines
a tetrahedron, σT = (O, A, B, C). We set A =

−→
OA, with similar notations for B and C. As

these tetrahedra are oriented, the integral over the whole shape is simply the sum of the
integrals over them. Therefore

cm
nl = ∑

σT

sign(V(σT))
∫

σT

Zm
nl(x)dx. (24)

The volume of the oriented tetrahedron is given by

V(σT) =
1
6

det(A, B, C) =
1
6

∣∣∣∣∣∣
xA xB xC
yA yB yC
zA zB zC

∣∣∣∣∣∣.
3.2. Basic Idea

Our task is then to evaluate the integrals of the Zernike polynomials over a tetrahedron
σT = (0, A, B, C). The first step is to perform a change of basis, parameterizing any point
inside the tetrahedron with respect to its position with respect to the triangle (A, B, C) (see
Figure 3).

0

A

B

C

T

P(r
0
,θ,ϕ)

M(r,θ,ϕ)

Figure 3. Parameterization of a tetrahedron. Let T = (A, B, C) be a triangle in the surface mesh, and
σT = (0, A, B, C) be the associated tetrahedron where 0 is the origin. Any point M within σT with
spherical coordinates (r, θ, φ) is projected onto the triangle T to a new point P(r0, θ, φ). Note that r0

is a function of θ and φ.

A point M with spherical coordinates (r, θ, φ) inside the tetrahedron can be character-
ized by its projection from the origin to the triangle T. Let P be this point. The spherical
coordinates of this point are (r0, θ, φ). Note that r0 is a function of θ and φ. The integration
over the tetrahedron proceeds in two steps, first a radial integration over r from 0 to r0, and
then an integration over the triangle only.

cm
nl(T) = sign(V(σT))

∫
σT

Zm
nl(x)dx

=
3V(σT)

S(T)

∫
T

1
r3

0

(∫ r0

0
r2Rnl(r)dr

)
Ym

l (θ, φ)dP.

This expression defines a basic 2-step process for evaluating those integrals and
therefore the Zernike moments:

(i) For a given P inside the triangle T with distance r0 to the origin O, compute the radial
integral

Qnl(r0) =
∫ r0

0
r2Rnl(r)dr.

Algorithms 2022, 15, 406 10 of 31

(ii) Integrate over all points P in the triangle T to get:

cm
nl(T) =

3V(σT)

S(T)

∫
T

Qnl(r0)

r3
0

Ym
l (θ, φ)dP.

In the following, we provide recurrence relationships to evaluate the Qnl and describe
a numerical way to evaluate exactly the integral in cm

nl(T), using quadrature.

3.3. Computing the Integrals Qnl

We consider the different integrals Sk
nl(r) of the radial functions Rnl(r):

Sk
nl(r0) =

∫ r0

0
rkRnl(r)dr

Prata and Rusch have derived relationships for similar integrals for the 2D Zernike
radial polynomials [58]. We expand their results here. In Appendix A, we show the
following proposition that allows us to compute S0

nl(r0):

Proposition 1. For non negative integers n and l with l ≤ n− 2 and n− l ≡ 0 (mod 2), the
following relationship hold:

S0
nl(r0) =

2l + 3
(2n + 3)(l + 1)

(
Rn+1,l+1(r0)− Rn−1,l+1(r0)

)
− l + 2

l + 1
S0

n,l+2(r0), (25)

and for l = n:

S0
nn(r0) =

rn+1
0

n + 1
.

In Appendix B, we then establish a recurrence on the Sk
nl(r0), in steps of 2 in k:

Proposition 2. For non negative integers n and l with l ≤ n− 2 and n− l ≡ 0 (mod 2), and for
non negative integer k, the following relationship hold:

K1(n + 2, l)Sk+2
nl (r0) = −Sk

n+2,l(r0) + K2(n + 2, l)Sk
nl(r0) + K3(n + 2, l)Sk

n−2,l(r0), (26)

where K1, K2, and K3 are defined in Equation (21).

The special case k = 0 leads to the following recurrence for the integral Qnl(r0) =
S2

nl(r0):

Qnl(r0) =
(n + 2− l)(n + l + 3)

(2n + 3)(2n + 5)
S0

n+2,l(r0)

+
1
2

(
(2l + 1)2

(2n + 5)(2n + 1)
+ 1
)

S0
nl(r0) +

(n− l)(n + l + 1)
(2n + 3)(2n + 1)

S0
n−2,l(r0), (27)

for l = n, we additionally need:

Qnn(r0) =
rn+3

0
n + 3

.

Finally, we show that for all non negative integer n, and all integer l with 0 ≤ l ≤ n
and n and l of the same parity, there exists a polynomial function Unl of degree n − l
such that

Qnl(r0) = rl+3
0 Unl(r0). (28)

The proof is simple. First, we notice that Rnl is written as:

Rnl(r0) = rlVnl(r0), (29)

Algorithms 2022, 15, 406 11 of 31

where V is a Jacobi polynomial (see Equation (19)) of degree n− l. Then

Qnl(r0) =
∫ r0

0
rl+2Vnl(r)dr. (30)

Using the polynomial expansion of Vnl , it is easy to show that Qnl(r0) is a polynomial
function of degree n + 3, with rl+3

0 as a factor.

3.4. Computing the Integrals cm
nl(T)

Recall that the triangle is defined as T = (A, B, C) and that we need to compute over
this triangle the integral

cm
nl(T) =

3V(σT)

S(T)

∫
T

1
r3

0
Qnl(r0)Ym

l (θ, φ)dP.

Let us define
gm

nl(P) =
1
r3

0
Qnl(r0)Ym

l (θ, φ). (31)

Note that there is a function g for all triplets (n, l, m). We need to compute as exactly
as possible,

1
S(T)

∫
T

gm
nl(P)dP.

This integral can be approximated with a 2D quadrature [59]

1
S(T)

∫
T

gm
nl(P)dP ≈

L

∑
i=1

wigm
nl(αi A + βiB + γiC), (32)

The sum is computed over Np points on the triangle, with each point Pi defined by its
barycentric coordinates (αi, βi, γi) with respect to (A, B, C), and wi is a weight. The points
and weights are said to define a quadrature rule. A rule is said to be of strength N if it is
capable of exactly integrating any polynomial of maximal degree N over the domain (here
the triangle). To apply such a scheme for our application, we need to consider two elements:

(a) Exactness. As mentioned above, a 2D quadrature may be exact if it is applied on a
polynomial. This is our case. Indeed, recall that Qnl(r0) is a polynomial function of
degree n + 3, with rl+3

0 as a factor. The function g can then be rewritten as

gm
nl(x) =

1
r3 Qnl(r)Ym

l (θ, φ)

= rlUnlYm
l (θ, φ)

= Unlem
l (x),

where em
l (x) are the harmonic polynomials (see Equation (5)). As Unl is of degree

n− l and em
l is of degree l, the function g is a 2D polynomial function of degree n. A

quadrature rule of strength n will therefore integrate g exactly.
(b) Number of points for the quadrature, while it is well known that an n-point Gaussian rule

is exact for all polynomials of degree up to 2n− 1 in one dimension, the situation is
more complex in higher dimensions. Xiao and Gimbutas [60] proposed an empirical
rule for the minimal number of points Nmin

p to integrate exactly a polynomial of
order n:

Nmin
p =

⌈
(n + 1)(n + 2)

6

⌉
.

Algorithms 2022, 15, 406 12 of 31

3.5. Two Algorithms for Computing Zernike Moments

The previous subsections provide the elements for computing the contribution of one
triangle of a surface mesh to the 3D Zernike moments of the shape enclosed with this mesh.
We summarize those elements in Algorithm 1.

Algorithm 1 Zernike moments associated with one triangle of a surface mesh

procedure TRIANGLE(N, A, B, C, R)
Input: N: The maximum order for the 3D Zernike moments. A, B, C: The three

vertices defining the triangle. R: The 2D quadrature rule
Initialize: N(R) number of points in R. Initialize cm

nl(T) = 0. Compute V, the signed
volume of the tetrahedron (O, A, B, C)

for i = 1, . . . , N(R) do
(1) Define (ri, θi, φi) for point Pi in the quadrature rule.
(2) Evaluate Qnl(ri) over all n ∈ [0, N], l with 0 ≤ l ≤ n and n and l of same parity
(3) Evaluate Ym

l (θi, φi) for all l with 0 ≤ l ≤ N and all m with 0 ≤ m ≤ l
(4) Compute all gm

nl(Pi) based on Equation (31)
(5) Update cm

nl(T) = cm
nl(T) + 3Vwigm

nl(Pi)
end for
Output: The Zernike moments cm

nl(T) associated with triangle (A, B, C).
end procedure

Briefly, given a quadrature rule R defined by a set of weighted points Pi, the algorithm
proceeds by computing the functions gm

nl(Pi) over all those weighted points, and then
accumulating the results based on the quadrature rule given by Equation (32). The functions
gm

nl(Pi) are computed from the Qm
nl(ri) at ri, the radial distance of Pi, and from the Ym

l (θi, φi),
at the inclination angle θi and azimuthal angle φi of Pi. The corresponding procedure is
defined as TRIANGLE. Details on its implementation are provided in the section below.

Given the procedure TRIANGLE, there are two possible algorithms that can then be
used to compute the Zernike moments of a shape defined by a surface triangle mesh, one
for an exact computation, and one for finite precision. We summarize them in Algorithm 2
and Algorithm 3, respectively.

Algorithm 2 Exact Zernike moments for surface triangular meshes

Input: The triangular mesh with M facets supposed to fit inside the unit ball. The
maximum order N for the 3D Zernike moments.
Initialize: Given N, choose the 2D quadrature rule R to be applied on all triangles.
Initialize cm

nl = 0
for k = 1, . . . , M do

(1) Define (A, B, C) the three vertices of triangle k.
(2) Compute cm

nl(T) = TRIANGLE(N, A, B, C, R)
(3) Update cm

nl = cm
nl + cm

nl(T).
end for
Output: The exact Zernike moments cm

ln of the shape.

3.5.1. Exact Zernike Moments for Shapes Described by Surface Triangular Meshes

As described on the previous subsection, the 2D quadrature rule of strength N will
define exact Zernike moments of order up to N on any triangle of the surface mesh. For
a given N, if a quadrature rule R with this strength exists, it is then sufficient to use the
procedure TRIANGLE defined in Algorithm 1 on all triangles of the surface mesh and
then accumulate the results. As described below, we were able to generate quadrature
rules for N up to 101. The corresponding algorithm has a complexity of order O(M× N5),
where M is the number of triangles in the mesh and N the Zernike order. This can be
derived as follows. The computation is performed independently on all triangles of the
mesh, hence the factor M. For each facet, we need a quadrature rule R of strength N, which

Algorithms 2022, 15, 406 13 of 31

itself requires a number of points NR that is empirically of order N2 (see for example [60]).
As N3 functions gm

nl need to be evaluated for each point in the quadrature rule, we get the
overall time complexity O(M× N5).

Algorithm 3 Finite precision Zernike moments for surface triangular meshes

Input: The triangular mesh with M facets supposed to fit inside the unit ball. The
maximum order N for the 3D Zernike moments. The tolerance TOL for finite precision
computation.
Initialize: Set cm

nl = 0
for k = 1, . . . , M do

(1) Define (A, B, C) the three vertices of triangle k.
(2) Compute cm

nl(T) = TRIANGLEREC(N, A, B, C, TOL)
(3) Update cm

nl = cm
nl + cm

nl(T).
end for
Output: The finite precision Zernike moments cm

ln of the shape.

3.5.2. Finite Precision Zernike Moments for Shapes Described by Surface
Triangular Meshes

While Algorithm 2 is deemed exact, it suffers from two major limitations. First,
it requires quadrature rules with large strengths. Such rules include large number of
sampling points, leading to an overall time complexity O(M × N5). Quadrature rules,
however, are known to converge fast. As such, it is often not necessary to go to the
maximum strength that is required for an exact computation. If we are willing to accept
a finite precision, a more efficient procedure can be derived, as described in Algorithm 4.
Briefly, the Zernike moments cm

nl over a triangle T are evaluated over quadrature rules of
increasing strengths. When the difference between those Zernike moments computed over
two successive rules falls below a tolerance, the quadrature is deemed to have converged
and the computation stops.

Algorithm 4 Adaptive computation of Zernike moments associated with one triangle of a sur-
face mesh

procedure INFO=TRIANGLEADAPT(N, A, B, C, TOL)
Input: N: The maximum order for the 3D Zernike moments. A, B, C: The three

vertices defining the triangle. The tolerance TOL for finite precision computation.
Initialize: cm

nl(old) = 0
for R ∈ {R3, . . . , R101} do

(1) Compute cm
nl(R) = TRIANGLE(N, A, B, C, R)

(2) Compute err = ||cm
nl(R)− cm

nl(old)||
(3) If err < TOL, break
(4) Set cm

nl(old) = cm
nl(R)

end for
(5) If err < TOL, set INFO = true, otherwise INFO = false.
Output: INFO, and the current Zernike moments cm

nl(R) associated with triangle
(A, B, C).
end procedure

There is a second limitation of Algorithm 1 that remains a problem for Algorithm 4:
if the strongest quadrature rule (in our case, 101) is not enough to compute the Zernike
moments exactly or to reach the desired tolerance, the algorithms fail. It is expected
that the quadrature strength needed to compute correctly the Zernike moments for a
tetrahedron (O, A, B, C) is related to the size of the corresponding triangle (A, B, C). To
verify this assumption, we performed the following experiment. We considered 8 different
discrete spheres represented with a triangular surface mesh. The first mesh corresponds
to an icosahedron, while the following meshes are generated consecutively by successive

Algorithms 2022, 15, 406 14 of 31

subdivisions of all triangles of the previous mesh. All those meshes are scaled so that
they fit within the unit ball, with a maximum radius of 0.75. We applied algorithm
TRIANGLEADAPT to all facets of all those meshes, and compared the maximum order on
exit of the procedure to the surface area of the corresponding triangle. Results are shown in
Figure 4.

Figure 4 shows that the larger the triangle, the higher the strength of the quadrature.
This result hints to a simple procedure to alleviate the second problem described above:
if the procedure TRIANGLEADAPT fails, split the triangle into four smaller triangles,
possibly recursively. We have implemented this procedure in Algorithm 5.

Surface area

S
tr

en
g
th

,
N

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

20

40

60

80

100

120

Figure 4. The strength N of the quadrature rule needed to compute the Zernike moment associated
with a triangle of the surface mesh representing a shape is plotted against the surface area of
this triangle.

Algorithm 5 Recursive computation of Zernike moments associated with one triangle of a sur-
face mesh

procedure TRIANGLEREC(N, A, B, C, TOL)
Input: N: The maximum order for the 3D Zernike moments. A, B, C: The three

vertices defining the triangle. The tolerance TOL for finite precision computation.
(1) Compute (INFO, cm

nl(T) =TRIANGLEADAPT(N, A, B, C, TOL)
if INFO==true then

(2) RETURN cm
nl(T)

else
(3) Find A′, B′, C′ the middle points of segment BC, AC, CA
(4) Compute

(a) cm
nl(1) = TRIANGLEREC(N, A, C′, B′, TOL)

(b) cm
nl(2) = TRIANGLEREC(N, B, A′, C′, TOL)

(c) cm
nl(3) = TRIANGLEREC(N, C, B′, A′, TOL)

(d) cm
nl(4) = TRIANGLEREC(N, A′, B′, C′, TOL)

(5) RETURN cm
nl(T) = cm

nl(1) + cm
nl(2) + cm

nl(3) + cm
nl(4).

end if
end procedure

The finite precision algorithm for computing the Zernike moments of a shape to a
finite precision TOL is then given by Algorithm 3.

Algorithms 2022, 15, 406 15 of 31

4. Reconstructing a Shape from Its 3D Zernike Moments

Recall that once a shape S has been characterized with its Zernike moments cm
nl , its

density ρ(x) at any point x in R3 can be reconstructed using Equation (14)

ρ(x) =
N

∑
n

∑
l

l

∑
m=−l

cm
nlZ

m
nl(x)

=
N

∑
n

∑
l

l

∑
m=−l

cm
nl
√

2n + 3Rnl(r)Ym
l (θ, φ),

(33)

where (r, θ, φ) are the spherical coordinates of x. The reconstruction is exact when N → +∞,
while the Zernike moments cm

nl and the Zernike polynomials are complex, the reconstruction
ρ(x) is real.

The equation above defines a simple algorithm for reconstructing the shape density
in R3. If the points x are chosen to be the nodes of a 3D grid, a surface mesh can then
be reconstructed using the marching tetrahedron algorithm [49]. We note, however, that
special care is needed when evaluating the radial polynomials Rnl(r) and the spherical
harmonics Ym

l (θ, φ) to avoid numerical instabilities when n is large. This is described below
in the Implementation section.

5. Implementation

The computation of the Zernike moments of a shape described by a surface trian-
gular mesh is performed either with the exact Algorithm 2 or with the finite precision
Algorithm 3. Both algorithms rely heavily on the functions that compute the geometric mo-
ment associated with a triangle of the mesh, TRIANGLE (Algorithm 1) and TRIANGLEREC
(Algorithm 5). We identify three elements that are essential for the implementations of
those algorithms:

(1) Definitions of the quadrature rules for integration on a triangle,
(2) Efficient computations of Rnl(r) and Qnl(r),
(3) Efficient computations of the spherical harmonics Ym

l (θ, φ).

We describe the specifics for those three elements.

5.1. Quadrature Rules for Integration over a Triangle

A quadrature rule over a domain D is defined through its ability to integrate exactly
over D the set of basis polynomials of degree n ≤ N, PN . This set has an infinite number of
representations. The simplest of those representations is to consider monomials. In two
dimensions, those monomials are {xiyj, i + j ≤ N}. Unfortunately, monomials of high
degrees are extremely sensitive to small perturbations. This gives rise to systems which are
poorly conditioned and hence difficult to solve numerically [61]. We have used instead the
approach of Witherden and Vincent [62] to derive our quadrature rules. They proposed to
use orthogonal polynomials ψij as a basis of PN with i + j ≤ N, such that∫

D
ψij(x)ψkl(x)dx = δikδjl ,

where δ is the Kronecker delta. By taking ψ00(x) = 1/c, they define the error associated
with a quadrature rule with Np points as:

χ2(N) = ∑
ij

{ Np

∑
k=1

wkψij(xk)− cδi0δj0

}2

. (34)

In Witherden and Vincent’s schemes, constructing an Np rule of strength N is then
akin with finding a set of points xk and associated weights wk that minimize χ2(N). They
provided an open source software package, PolyQuad (available on 23 September 2022 at

Algorithms 2022, 15, 406 16 of 31

https://github.com/PyFR/Polyquad) for this task. We have run PolyQuad for strengths
between 3 and 101 to generate the quadrature rules that we have used for computing
Zernike moments. In Appendix C, we list the number of points required for each strength.
The actual number of points is found to be similar to the empirical bound of d(N + 1)(N +
2)/6e proposed by Xiao and colleagues [60].

5.2. Efficient Computations of the Polynomials Rnl(r) and Qnl(r)

As described in Section 2, it is crucial to compute the radial polynomials Rnl(r) ac-
curately. A naive computation using its monomial decomposition does not achieve this
accuracy for high order n. Instead, we have used the recurrence (20) that is derived from
the properties of Jacobi polynomials (see Section 2).

The polynomial Qnl(r) are the indefinite integrals of the radial polynomials Rnl(r)
weighted by r2. Properties 1 and 2 (major results of this paper) provide simple recurrence
for computing those integrals.

5.3. Efficient Computations of the Spherical Harmonics Ym
l (θ, φ)

The spherical harmonics are related to the associated Legendre polynomials, from
which they inherit many properties. In particular, they can be computed recursively. We
have used the following recurrences:

Proposition 3. For non negative integers l and m with 0 ≤ m ≤ l the following relationships hold:

(i) For l > 1 and 0 ≤ m < l − 1:

Ym
l (θ, φ) =

√
(2l + 1)(2l − 1)
(l + m)(l −m)

cos θYm
l−1(θ, φ)

−

√
(2l + 1)(l + m− 1)(l −m− 1)

(2l + 3)(l + m)(l −m)
Ym

l−2(θ, φ). (35)

(ii) For l > 0 and m = l − 1:

Yl−1
l (θ, φ) =

√
2l + 1 cos θYl−1

l−1 (θ, φ). (36)

(iii) For l > 0 and m = l:

Yl
l (θ, φ) = − sin θ

√
2l + 1

2l
eiφYl−1

l−1 (θ, φ). (37)

With the initialization Y0
0 (θ, φ) = 1/

√
4π, Equations (35)–(37) provide an efficient scheme

for computing all spherical harmonics at angles (θ, φ).

5.4. Efficient Reconstruction of a Shape from Its Zernike Moments

As given by Equation (33), the Zernike moments can be used to reconstruct a field
ρ(x) for x within the unit ball. This field is expected to be 0 or 1 outside or inside of the
shape to be reconstructed, respectively. The summation over all orders of the Zernike
moment is performed using the same recursions that are used to compute the Zernike
moments. A triangulated surface is then constructed as an isosurface of this field, usually
at the level ρ(x) = 0.5. We chose the regularized marching tetrahedra algorithm [50] to
generate this surface.

6. Numerical Results

We have derived new algorithms for computing the Zernike moments of a shape
represented by a surface mesh, respectively. In this section, we analyze the computational
complexity of both. We propose experiments to measure the numerical stability of the pro-

https://github.com/PyFR/Polyquad

Algorithms 2022, 15, 406 17 of 31

grams that implement these algorithms. Finally we show examples of shape reconstructions
based on high order Zernike moments derived with these algorithms.

6.1. Accuracy of the Computed 3D Zernike Moments: Comparison with Other Algorithms

In the specific case of a homogeneous shape, the version of the Parseval’s theorem
for Zernike moments allows us to monitor the convergence of the computations of these
moments. Indeed, for an 0 shape, f 2(x) is constant. Taking this constant to 1, we get

∞

∑
n=0

∑
l

l

∑
m=−l

|cm
nl |

2 =
∫
B

f 2dx =
∫

V
dx.

In parallel, we have:

c0
00 =

∫
B

f 2(x)Z0
00dx =

√
3

4π

∫
V

dx.

Therefore,
∞

∑
n=0

∑
l

l

∑
m=−l

|cm
nl |

2 =

√
4π

3
c0

00. (38)

This implies that the Euclidean norm of the Zernike moments up to order N converges

to a factor times
√

c0
00 when N increases, which can be used as a test for the numerical

stability of the algorithm. Figure 5 shows this convergence for three different programs
for computing the Zernike moments, for maximum order up to 150. All calculations are
performed on a discretized sphere represented with a mesh of 20,480 triangles (this mesh
was generated from the regular icosahedron with 5 consecutive subdivisions of its facet).
This sphere is scaled inside the unit ball such that its maximum radius is r0 = 0.75. The
computations were performed on one thread of a Linux server, with a Xeon Platinum
8168 CPU running at 2.7 GHz.

0 50 100 150

Order (n)

100

1020

1040

1060

1080

C
o
n
v
er

g
en

ce
 (

R
)

PK-double

PK-GMP

Shape2Zernike

Figure 5. Numerical stability of the computation of Zernike moments. We plot the ratio of the sum

of the norms of the Zernike moments to the value of c0
00; this ratio should converge to

√
4π
3 (see

Equation (38)). We use three different programs, PK-double that implements the PK algorithm which
is a computation of the Zernike moments from the geometric moments of the shape using double
precision 0, PK-GMP that implements the same calculation using full arbitrary precision arithmetic,
and Shape2Zernike based on Algorithm 3 of this study.

The first program we use implements the computation of the Zernike moments from
the geometric moments of the shapes, using the PK algorithm proposed by Pozo et al. [52],
with the modified computation of geometric moments proposed by Koehl [53]. All calcu-
lations are performed in double precision. As seen in Figure 5, the convergence breaks
down at N = 50; this is similar to the behavior described by Pozo et al. [52] for their own

Algorithms 2022, 15, 406 18 of 31

algorithm, and for the alternate algorithm proposed by Novotni and Klein [22]. We believe,
in par with their comments, that the divergence is due both to the summations needed
for computing the Zernike moments from the geometric moments that involve terms with
alternating signs, and to the accuracy with which both high order monomials and high
order binomial coefficients are computed.

One option to circumvent this divergence problem is to increase the precision with
which real numbers are represented. The second program we have used is a rewrite
of the first program that makes full use of the GNU Multiple Precision (GMP) library.
The calculations of the geometric moments involve linear recursions; they can therefore
be performed using arbitrary precision integer arithmetics. The conversion to Zernike
moments is then performed with floats with 512 bit accuracy. As seen in Figure 5, this full
GMP implementation converges for order up to 100. It still fails, however, for order higher
than 100. In addition, the computational cost however is high: the full GMP calculation
required 4200 s for N = 100, while the double precision float calculation only requires
100 s.

The third program with have used is Shape2Zernike implementing Algorithm 3
introduced in this paper. Compared to the two other programs, it computes the Zernike
moments directly, without relying on the geometric moments. It is found to be stable over
a wide range of order (we have tested it up to order 400). It has a moderate computational
cost (220 s).

6.2. Accuracy of the Computed 3D Zernike Moments: Comparison with Exact Values

In the previous section, we have looked at the stability of the algorithm. To assess its
accuracy, we considered a sphere centered at the origin with radius r0 with 0 < r0 < 1. The
Zernike moments of such a sphere are defined as

cm
nl =

√
2n + 3

∫ r0

0
dr r2Rnl(r)

∫ π

0
sin θdθ

∫ 2π

0
dφYm

l (θ, φ).

Let us recall first the orthonormality of the spherical harmonics:∫ π

0
sin θdθ

∫ 2π

0
dφYm

l (θ, φ)Ym′
l′ (θ, φ) = δmm′δll′ . (39)

Applying this equation for m′ = 0 and l′ = 0, and using the fact that Y0
0 = 1/

√
4π,

we get ∫ π

0
sin θdθ

∫ 2π

0
dφYm

l (θ, φ) =
√

4πδm0δl0.

The integral on the left is therefore non zero only for l = 0 and m = 0, in which case it
is equal to

√
4π. The Zernike moments cm

nl of a sphere are then non zero only for l = 0 and
m = 0:

c0
n0(re f) =

√
4π
√

2n + 3
∫ r0

0
r2Rn0(r)dr =

√
4π
√

2n + 3Qn0(r0), (40)

where Qn0 is defined in Equation (27). Note finally that, as l = 0 is even, n needs also to
be even.

The exact algorithm (Algorithm 2) and the finite precision algorithm (Algorithm 3,
with TOL set to 10−8) have been applied to compute the Zernike moments of order 100
of triangle meshes representing the sphere with radius r0 = 0.75. Those meshes were
constructed from successive subdivisions of the icosahedron, leading to eight meshes with
80 facets for the coarser, and 1,310,720 facets for the finer. The error has been measured
using the Euclidean distance between the Zernike moments computed numerically with the

Algorithms 2022, 15, 406 19 of 31

exact or with the finite precision algorithm, and the reference Zernike moments computed
from Equation (40), divided by the Euclidean modulus of the reference:

E =

√
∑nlm

∣∣cm
nl − cm

nl(re f)
∣∣2√

∑nlm
∣∣cm

nl(re f)
∣∣2 .

Results for the exact algorithms are shown in Figure 6. Those for the finite precision
algorithm are 0. As expected, the error decreases as the number of triangles in the mesh
decrease. The meshes we have used do not represent the sphere exactly; the represen-
tation improves, however, as the number of triangles increase. The errors observed in
Figure 6 relate to this discretization error. The error associated with computing the Zernike
polynomial are minimal compared to those.

0 2 4 6 8 10 12 14

Number of triangles in mesh 10
5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

E
rr

o
r,

 E

Figure 6. Numerical stability of the exact algorithm when computing the Zernike moments of discrete
spheres. We plot the error in the numerical Zernike moments compared to the reference exact Zernike
moments for a sphere (computed with Equation (40)) as a function of the number of triangles in the
mesh represented the discrete sphere.

As discussed above, while it is possible to compute the Zernike moments for a sphere
analytically, representation of a sphere with a discrete 3D mesh is only approximate. To
further analyze the accuracy of our algorithms, we considered a second simple shape,
a cube. Such a cube can be represented exactly with a triangular mesh: we considered
a cube with 12 facets aligned with the 0 axes and just fitting in the unit ball (thus with
edges of size 2/

√
3). There are no analytical formula for the Zernike moments of a cube.

However, they can be computed symbolically using a symbolic algebra system (we have
used Mathematica [63]). To achieve this, we generated the monomial expansion of the
Zernike polynomials and then integrated them symbolically over the volume of the cube.
This provided an exact symbolic result for each moment which was then evaluated to
double precision. We compared the results of the double precision program PK (see above),
of the exact algorithm (Algorithm 2), and of the finite precision algorithm (Algorithm 3,
with TOL set to 10−8) (both implemented in Shape2Zernike) with those exact values for
Zernike moments up to order 100, using the following error function

εn =

√√√√∑
l

l

∑
m=−l

|cm
nl(computed)− cm

nl(exact)|2. (41)

Results are shown on Figure 7. The two new algorithms perform extremely well at all
orders with an error of order 10−15 compared to these exact values.

Algorithms 2022, 15, 406 20 of 31

PK-double

Shape2Zernike

Order (n)

 0 20 40 60 80 100

1025

1015

105

10-5

10-15

ε n

Figure 7. Accuracy of the computation of Zernike moments for a cube with 12 facets as a function of
the order n. The reference values were computed symbolically using a symbolic algebra system. The
approximate algorithm is indistinguishable from the exact one.

6.3. Reconstructing a Shape from its 3D Zernike Moments: Example of the Sphere

The reconstruction of a shape function ρ(x) can be carried out starting from
Equation (33). For the sphere with radius r0, the triple summation in this equation con-
verges to a step function equal to 1 for r < r0 and 0 for r > r0. We assessed the quality
of this reconstruction for the discrete sphere of radius r0 = 0.75 represented with a trian-
gular mesh with 1,310,720 facets. We computed D(r) at a set of points x whose spherical
coordinates are (r, 0, 0). In Figure 8, we show Dr for N = 20, 50 and 200. Note that all
reconstructions have a value near 0.5 for r = r0. This observation indicates that general
shape reconstruction consists of computing a field over the unit sphere with the field value
at a point x being the summation in Equation (33) for n = 0 up to a maximum preset
value N, and then taking the isosurface at level 0.5 of this field to define the surface of the
reconstructed object.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

D
(r
)

N=20

N=50

N=200

Figure 8. Summation of the series in Equation (33) for n up to N with N = 20, 50 and 200 for a scaled
sphere with radius of r0 = 0.75. The series converges to a straight line at value 1 between the origin
and r0, and vanishes beyond. Note the presence of overshoots, similar to oscillations in truncated
Fourier expansions. Those overshoots concentrate as N increases.

6.4. Reconstructing a Shape from Its 3D Zernike Moments: Importance of the Order N

We consider three different experiments for the reconstruction of a shape from its
Zernike moments based on generic shapes, Figure 9, on shapes of protein structures,
Figure 10, and on shapes of a human organ, the brain, Figure 11.

Figure 9 shows the quality of reconstruction of a shape from its Zernike moments
at different orders for standard 3D models from the computer graphics community. The
first row corresponds to a model of a gargoyle, available at the repository AIMS@SHAPE

Algorithms 2022, 15, 406 21 of 31

(accessed on 23 September 2022) (http://visionair.ge.imati.cnr.it/). The original mesh
includes 50,002 vertices and 100,000 triangles. We computed the Zernike moments of this
shape using the finite precision algorithm with a tolerance of 10−8, up to order 300. We
then reconstructed the shape by computing a field over the unit ball, where each node in
the field is assigned a value corresponding to Equation (33), with different orders of N
and then identifying the surface of the reconstructed shape with the 0.5 isosurface of this
field. The isosurface is built using the regularized marching tetrahedra algorithm [50]. As
expected, the quality of the reconstruction depends on the maximum order N considered.
For N = 20, the reconstructed surface only shows the global envelope with no details. For
N = 50, the shape of the gargoyle is better defined; however, fine details are still missing.
For example, we do not see any texture in the wings. N = 300 gives us a more accurate
representation of the shape, with fine details within the wings and in the mane of the
gargoyle.

Original Order 20 Order 50 Order 300

Figure 9. Reconstruction of a gargoyle (top row), a statue (middle row), and of the head of an
ogre from the Zernike moments computed from a triangle mesh representing their boundaries. We
compare the reconstructions generated from three different maximum order N, N = 20, N = 50, and
N = 300. The original shape is shown on the left. All figures were generated with MeshLab [64].

The second row corresponds to a statue of the bust of Ippolita Sforza, sculpted by
Francesco Laurana. It is available as part of the package MeshLab [64]. The mesh includes
27,861 vertices and 49,954 triangles. We computed its Zernike moments using the finite
precision algorithm with a tolerance of 10−8, up to order 300. We then reconstructed its
shape using the same procedure described above for the gargoyle, with orders 20, 50, and
300. For N = 20, the reconstructed bust is incomplete, with no details on its surface. For
N = 50, we start seeing faint features within the face, but the bottom of the bust is still

http://visionair.ge.imati.cnr.it/

Algorithms 2022, 15, 406 22 of 31

incomplete. N = 300 gives us a much more accurate representation of the model, especially
in the face.

The third row corresponds to the smiling version of Jerry the Ogre, introduced by
Carr et al. It is available at the 3D model repository of Keenan Crane (accessed on 23
September 2022) (https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/). The
mesh includes 27,861 vertices and 49,954 triangles. We computed its Zernike moments
using the finite precision algorithm with a tolerance of 10−8, up to order 300. We then
reconstructed its shape using the same procedure described above for the gargoyle and the
bust by Laurana, with orders 20, 50, and 300. For N = 20, the reconstructed face of Jerry
has no features. For N = 50, we start seeing faint features within the face; some elements
such as the eye are still missing. For N = 300 the face is reconstructed reasonable 0.

Original Order 20 Order 50 Order 300

Figure 10. Reconstruction of Calmodulin (top row), and TIM (bottom row) from the Zernike mo-
ments computed from a triangle mesh representing their boundaries. Calmodulin (PDB code 1CLL)
is a human small calcium binding protein while TIM (PDB code 1TIM) is the chicken triose phosphate
isomerase. Both proteins are represented as a union of balls, with each ball corresponding to an atom.
The surface of this union of balls, triangulated with the program smesh [65,66], serves as input to
the computation of the Zernike moments of their shapes. We compare the reconstructions generated
from three different maximum order N, N = 20, N = 50, and N = 300. The original shape is shown
on the left. All figures were generated with MeshLab [64].

Figure 10 shows the quality of reconstruction of a protein shape from its Zernike
moments at different orders. We consider two well studied proteins often used as models in
computational structural biology, calmodulin (top row) and a triose phosphate isomerase
(bottom row).

Calmodulin is a calcium binding protein expressed in all eukaryotic cells. It is a small
protein that consists of two small domains separated by a linker region. The flexibility of
this linker is key to the ability of calmodulin to bind to a wide range of substrates [67]. We
considered the apo form (without ligand) of the human version of protein available in the
Protein Data Bank [32] with the code 1CLL. This conformation is defined as the position of
its 1133 atoms. We use the standard model in chemistry of representing a structure as a
union of balls, with each ball corresponding to an atom. The surface of this union of ball is
represented as its skin surface [68]. It is computed from the boundary of the union of these
balls, where the center of a ball is given by the coordinates of the atom, and its radius is set
to its van der Waals radius plus a probe radius of R = 1.4 Å. We generated a quality mesh

https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/

Algorithms 2022, 15, 406 23 of 31

for the skin surface of calmodulin using the program smesh, described in details in [65,66].
The corresponding triangular mesh includes 203,400 vertices and 406,864 triangles. We
computed its Zernike moments using the finite precision algorithm with a tolerance of 10−8,
up to order 300. We then reconstructed a shape for calmodulin using the same procedure
described above, with orders 20, 50, and 300. Those two domains of calmodulin are clearly
separated in the absence of a ligand, as illustrated from its original surface. For N = 20,
the reconstruction shows the position of these two domains. However, it does not include
any local features, while some of those features (i.e., the presence of spherical patches)
appear for N = 50, they are only clearly visible at much higher orders, as illustrated here
for N = 300.

Triose phosphate isomerase (TIM) is an enzyme that catalyzes the reversible intercon-
version of triose phosphate isomers [69]. We considered the chicken version of the TIM
protein available in the Protein Data Bank [32] with the code 1TIM. This conformation
is defined from the positions of its 1870 atoms. We generated a quality mesh for its skin
surface using the same procedure described above for calmodulin. The corresponding
triangular mesh includes 398,658 vertices and 797,644 triangles. We then computed its
Zernike moments using the finite precision algorithm with a tolerance of 10−8, up to order
300. We reconstructed a shape for TIM using the same procedure described above, with
orders 20, 50, and 300. Compared to the example of calmodulin shown above, TIM is a more
globular protein. The reconstruction of its shape for N = 20 shows similar characteristics
than the corresponding reconstruction for calmodulin: the overall shape is conserved,
without information on local details. In contrast, Reconstructions at N = 50 and more
significantly at N = 300 show the local features of the surface of TIM, namely the local
spherical patches corresponding to its atoms.

Original Order 20 Order 50 Order 300

Figure 11. Reconstruction of the surface of a brain from the Zernike moments computed from a
triangle mesh representing its boundary. We compare the reconstructions generated from three
different maximum order N, N = 20, N = 50, and N = 300. The original brain surface is shown on
the left. All figures were generated with MeshLab [64].

The final example, illustrated in Figure 11, corresponds to a brain surface. We use
the brain surface data of one human subject from the Images and Data Archive of the
USC Stevens Neuroimaging and Informatics Institute data set (accessed on 23 September
2022) (http://ida.loni.usc.edu). The brain surface obtained there is represented with a
high quality oriented triangular mesh of genus zero, containing 65,538 vertices and 131,072
triangles. We computed its Zernike moments using the finite precision algorithm with a
tolerance of 10−8, up to order 300. We then reconstructed the shape of the brain with orders
20, 50, and 300. Sulci, the grooves, and gyri, the folds, make up the folded surface of the
brain. As the surface area of the brain increases from the formation of those sulci, more
functions are made possible. A smooth-surfaced brain is only able to grow to a certain
extent. Therefore, neurobiologists focus on those surface features when they study a 3D
image of a brain. As shown in Figure 11, reconstruction of the surface of a brain from
Zernike moments of orders up 20 only provides the general shape of this surface, with
all sulci being smoothed out. The full geometry of those sulci, as observed in the original

http://ida.loni.usc.edu

Algorithms 2022, 15, 406 24 of 31

surface, is only restored with high orders moments are considered for the reconstruction,
as illustrated in Figure 11 with N = 300.

All examples shown above highlight the same conclusions: at low order, up to N = 50,
the Zernike moments only capture the global features of a shape. Order 50 is usually the
limit to which Zernike moments can be computed for a shape represented by triangular
meshes. The new algorithms presented in the paper allow for computing Zernike moments
at much higher order. With N = 300, we observe reconstructed meshes that capture the
local features of the original shapes.

6.5. Computational Complexity for Geometric Moments and 3D Zernike Moments

The algorithm (Algorithm 2) introduced in Section 3 for the exact computation of the
Zernike moments of a shape represented by a triangular mesh of its boundary is of order
O(M× N5) where M is the number of facets in the surface mesh, and N is the maximum
order considered. The linear complexity with respect to the total number of facets coincides
with the complexity of discrete algorithms that approximate the moments by applying a
summation over the 3D image grid instead of computing an integral (considering constant
value for the function over each grid cell). The second algorithm (Algorithm 3), which
computes the Zernike moments with a finite precision is also of order M with respect to
the number of facets.

We implemented the two algorithms in a C++ program, Shape2Zernike, using double
precision float arithmetics and tested their computational complexities on the simple case
of a discrete sphere with radius 0.75, centered on the origin. We computed the Zernike
moments for this sphere up to order 100 for the exact algorithm and for the finite precision
algorithm, with the boundary of the sphere being represented with meshes with up to
1.3 million triangles. The experiments were run on an AMD Ryzen Threadripper PRO
3975WX processor with 193 GB of memory; each calculation was run as a single thread.
Results are shown in Figures 12 and 13.

EXACT FINITE PRECISION

10
2

10
4

10
6

Number of triangles in mesh

10
0

10
2

10
4

C
P

U
 t

im
e

(s
)

N=20

N=50

N=100

10
2

10
4

10
6

Number of triangles in mesh

10
0

10
2

10
4

C
P

U
 t

im
e

(s
)

N=20

N=50

N=100

Figure 12. CPU times required to compute the Zernike moments of a sphere as a function of the
number of triangles in the meshes that represent this sphere. We compare the exact algorithm (left)
with the finite precision algorithm (right), while the time complexity for the former is found to be
strictly linear with respect to the number of triangles, it deviates from linearity for the latter. We
observe the same behavior for different maximum order N (20, 50 and 100) at which the Zernike
moments are computed.

The running time for the exact algorithm is found to be strictly linear with respect to
the number of triangles in the mesh, as expected. The finite precision algorithm deviates
from the linearity for meshes with small number of meshes. This is not unexpected. Indeed,
the triangles of such meshes have larger surface area, requiring higher quadrature strengths
for computing accurately the Zernike moments (see Figure 4). The finite precision algorithm
remains significantly faster than the exact algorithm.

Algorithms 2022, 15, 406 25 of 31

Similar trends are observed as we analyze the running time with respect to the max-
imum order of the Zernike moments (Figure 13). The apparent complexity of the exact
algorithm with respect to the maximum order N of the Zernike moments are O(N4.2), differ-
ent from the theoretical order O(N5). This can be understood as follows. For a given facet
in the mesh, we sum the gm

nl over O(N2) points (i.e., the number of points needed for the
strength of the quadrature that provides an exact integration on the facet). Computations
of the gm

nl for each point proceed in two main steps. First, we need to compute the integrals
Qnl and the spherical harmonics Ym

l , both of complexity O(N2), and second, we need to
assemble the gm

nl from those numbers. The second step is order O(N3), corresponding to the
number of moments. Computing one Qnl or one Ym

l is significantly slower than assembling
one gm

nl , however. For small enough N the two steps take similar computing times. Hence
at small N the apparent complexity is close to O(N4). At larger values of N (i.e., N � 100),
the O(N5) complexity would be recovered. This situation does not occur as the maximum
strength of the quadratures on a facet is 101, i.e., corresponds to N at most 100.

EXACT FINITE PRECISION

20 40 60 80 100

Maximum order of Zernike coefficients

10
2

10
4

C
P

U
 t

im
e
 (

s)

20 40 60 80 100

Maximum order of Zernike coefficients

10
0

10
2

10
4

C
P

U
 t

im
e
 (

s)

Figure 13. CPU times required to compute the Zernike moments of a sphere as a function of the
maximum order N of those Zernike moments. We computed the Zernike moments for three discrete
representations of the sphere, each given by a triangular mesh. The corresponding meshes include
20,480, 81,920 (black line), and 327,680 (red line) triangles, respectively. Linear fits to these curves
give slopes of 4.2 for the exact algorithm and 2.4 for the finite algorithm, corresponding to apparent
complexities of O(N4.2) and O(N2.4) for those two algorithms.

The apparent complexity of the finite algorithm is significantly better, of order O(N2.4).
To understand the differences with the theoretical complexity of O(N5), we need to remem-
ber Figure 4. The actual strength of the quadrature needed to compute Zernike moments
with a very small error (TOL < 10−8) is much smaller than the exact strength, especially for
triangles with small areas. The spheres considered in our tests have more than 20,000 facets,
all scaled so that the sphere is with radius 0.75. We found that for nearly all those triangles,
the actual maximum strength was constant at the value 7, corresponding to only 13 points
in the quadrature. This leads to a significant speedup of the algorithm. We note that this
is the complexity expected in practical use of the algorithms, as shapes represented with
triangular meshes are usually characterized by a large number of triangles, and those
triangles have small areas when the shape is scaled to fit in the unit ball.

The algorithm maintains the independence of the contribution from each facet to the
moments of the whole shape. This allows for an easy parallelization, which we imple-
mented using POSIX threads. We tested the parallel version of Shape2Zernike on a Linux
server, with Xeon Platinum 8168 CPU at 2.7 GHz with 96 cores and 396 GB of memory. The
apparent speedups observed are reported in Figure 14. The calculations were performed on
the gargoyle (see above), represented by a mesh with 100,000 triangles, for four maximum
moment orders. The speedup factors were derived as an average over five independent
runs, to minimize spurious fluctuations. For maximum orders up to N = 100, the speedup
remains fairly linear over the whole range of cores requested by the program. For a maxi-

Algorithms 2022, 15, 406 26 of 31

mum order of N = 150, a saturation appears, and the largest speedup factor is 8 for 16 cores
used by the program. For a maximum order N = 300, the same saturation occurs, and the
maximum speedup factor is only 8, independent of the number of threads. We believe that
the saturation effect observed is related to cache thrashing issues on each core, as the total
storage required for large N values becomes important (a maximum order of 150 represents
a total of 2,306,676 moments to be computed).

0 5 10 15 20 25 30 35

Number of threads

0

5

10

15

20

25

30

S
p
ee

d
u
p
 (

co
m

p
ar

ed
 t

o
 1

 t
h
re

ad
)

N=50
N=100
N=150
N=300

Figure 14. CPU time required to compute the Zernike moments of the gargoyle The speedup in clock
time is plotted against the number of CPU or threads used by the parallel version of the approximate
algorithm, for different maximum order (50, 100, 150, and 300). The speedup is obtained as an average
over 5 independent runs.

7. Conclusions

We have proposed two new algorithms for the computation of the homogeneous
Zernike moments of a solid shape from a triangular mesh representing its boundary. Many
algorithms have been proposed for computing such Zernike moments of a shape. Most of
these methods usually proceed in two steps, namely computing the geometric moments of
the shape first, and then expressing the Zernike moments as linear combinations of those
moments. We have showed that this approach works well if the maximum order of the
moments is small but fails for large order, due to numerical stability issues associated with
computing the Zernike moments from the geometric moments. The new algorithms we
propose circumvent this problem by computing directly from the shape. They rely on the
analytical integration of the moments on tetrahedra defined by the surface triangles and
a central point and on a set of novel recurrent relationships between the corresponding
integrals. The first algorithm is exact. performing the computation of integrals over the
triangles using quadratures of appropriate order. This algorithm, however, is mostly of
academic interest due to its limitations. it requires quadrature rules with large strengths.
Such rules include large number of sampling points, leading to an overall time complexity
O(M× N5), making it impractical. Quadrature rules, however, are known to converge
fast. As such, it is not necessary to go to the maximum strength that is required for an
exact computation. The second algorithm implements this idea. We have shown that it
is fast, accurate, and allows for computations of moments of very high orders. We have
shown also that this program can be easily parallelized, based on the independence of
the contribution of each triangle in the boundary mesh. We did note however that as the
number of moments that are computed increase, the memory requirement for each thread
increases, leading to saturation effects in the parallelization speedup factor. This limitation
related to memory would hinder a naive implementation of this algorithm on GPU. We
are currently working on solutions to this problem. The free software implementing these
algorithms is available at (accessed on 23 September 2022) (https://github.com/jerhoud).

https://github.com/jerhoud

Algorithms 2022, 15, 406 27 of 31

Author Contributions: Conceptualization, J.H. and P.K.; methodology, J.H. and P.K.; software, J.H.
and P.K.; formal analysis, J.H. and P.K.; investigation, J.H. and P.K.; writing: original draft preparation,
J.H. and P.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The work discussed here originated from a visit by P.K. at the Institut de
Physique Théorique, CEA Saclay, France, during the fall of 2018. He thanks them for their hospitality
and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. A Recurrence for S0
nl(r)

We start with an integral representation of the 3D Zernike radial polynomials [57]:

Rnl(r) =
2
π
(−1)

n−l
2

∫ +∞

0
jn+1(q)jl(rq)qdq, (A1)

where jl are spherical Bessel functions. The derivative of Rnl(r) with respect to r is then

dRnl
dr

(r) =
2
π
(−1)

n−l
2

∫ +∞

0
jn+1(q)

∂jl(rq)
∂r

qdq. (A2)

Using the following relationship for spherical Bessel functions ([70], Equation (10.51.1))

qjn+1(q) = (2n + 1)jn(q)− qjn−1(q),

we get

dRnl
dr

(r) =
2
π
(−1)

n−l
2

∫ +∞

0
qjn+1(q)

∂jl(rq)
∂(rq)

qdq

=
2
π
(−1)

n−l
2 (2n + 1)

∫ +∞

0
jn(q)

∂jl(rq)
∂(rq)

qdq− 2
π
(−1)

n−l
2

∫ +∞

0
qjn−1(q)

∂jl(rq)
∂(rq)

qdq

=
2
π
(−1)

n−l
2 (2n + 1)

∫ +∞

0
jn(q)

∂jl(rq)
∂(rq)

qdq +
dRn−2,l

dr
(r).

(A3)

We use now the following relationship for spherical Bessel functions ([70],
Equation (10.51.1))

djl(x)
dx

=
l

2l + 1
jl−1(x)− l + 1

2l + 1
jl+1(x), (A4)

to get

dRnl
dr

(r) =
2
π
(−1)

n−l
2 (2n + 1)

∫ +∞

0
jn(q)

(
l

2l + 1
jl−1(rq)− l + 1

2l + 1
jl+1(rq)

)
qdq

+
dRn−2,l

dr
(r). (A5)

This equation leads to

dRnl
dr

(r) =
(2n + 1)l

2l + 1
Rn−1,l−1(r) +

(2n + 1)(l + 1)
2l + 1

Rn−1,l+1(r) +
dRn−2,l

dr
(r).

Algorithms 2022, 15, 406 28 of 31

After integration over [0, r0]

Rnl(r0) =
(2n + 1)l

2l + 1
S0

n−1,l−1(r0) +
(2n + 1)(l + 1)

2l + 1
S0

n−1,l+1(r0) + Rn−2,l(r0). (A6)

Shifting n→ n + 1 and l → l + 1, we get

Rn+1,l+1(r0) =
(2n + 3)(l + 1)

2l + 3
S0

nl(r0) +
(2n + 3)(l + 2)

2l + 3
S0

n,l+2(r0) + Rn−1,l+2(r0). (A7)

This leads to

S0
nl(r0) =

2l + 3
(2n + 3)(l + 1)

(Rn+1,l+1(r0)− Rn−1,l+2(r0))−
l + 2
l + 1

S0
n,l+2(r0), (A8)

which concludes the proof of Equation (25), the recurrence over the Snl(0, r).
The initialization follows from

S0
nn(r0) =

∫ r0

0
Rnn(r)dr =

∫ r0

0
rndr =

rn+1
0

n + 1

where we have used Equation (22) for Rnn(r).

Appendix B. A Recurrence for Sk
nl(r)

We start from the recurrence over the Rnl(r) (Equation (20) in the main body of the text)

Rnl(r) = K1(n, l)r2Rn−2,l(r) + K2(n, l)Rn−2,l(r) + K3(n, l)Rn−4,l(r), (A9)

where K1, K2, and K3 were defined in Equation (21) in the main text. Let k be a non negative
integer. After multiplication with rk, we get

rkRnl(r) = K1(n, l)rk+2Rn−2,l(r) + rkK2(n, l)Rn−2,l(r) + rkK3(n, l)Rn−4,l(r), (A10)

which we integrate over [0, r0]

Sk
nl(r0) = K1(n, l)Sk+2

n−2,l(r0) + K2(n, l)Sk
n−2,l(r0) + K3(n, l)Sk

n−4,l(r0). (A11)

Shifting n→ n + 2, we get

Sk
n+2,l(r0) = K1(n + 2, l)Sk+2

nl (r0) + K2(n + 2, l)Sk
nl(r0) + K3(n + 2, l)Sk

n−2,l(r0). (A12)

This then yields Equation (27).
Starting with S0

nl(r), repeated use of Equation (A12) allows us to compute all Sk
nl(r) for

k even, while this is enough for recurrence required in this paper, for sake of completeness,
we show how the same integrals can be evaluated for k odd.

The recurrence on Rnl expressed in Equation (20) has a coefficient with r to the power 2,
leading to the even recurrence. Janssen in their work on generalized Zernike Functions ([57])
derived a different recurrence on Rnl (his Equation (80)):

Rn+l,l(r) =
2n + 3
2n + 2

r
(

2l + 2
2l + 1

Rn,l+1(r) +
2l

2l + 1
Rn,l−1(r)

)
− n + 2

n + 1
Rn−1,l(r). (A13)

Note that applications of this recurrence require the initialization R00(r) = 1, and
setting Rnl ≡ 0 when n < l. After integration over [0, r0], we get

S0
n+l,l(r0) =

2n + 3
2n + 2

(
2l + 2
2l + 1

S1
n,l+1(r0) +

2l
2l + 1

S1
n,l−1(r0)

)
− n + 2

n + 1
S0

n−1,l(r), (A14)

Algorithms 2022, 15, 406 29 of 31

which we rewrite as

S1
n,l−1(r0) = −

l + 1
l

S1
n,l+1(r0) +

(2n + 2)(2l + 1)
(2n + 3)(2l)

S0
n+1,l(r0)

+
(2n + 4)(2l + 1)
(2n + 3)(2l)

S0
n−1,l(r0). (A15)

Equation (A15) provides a recurrence for computing S1
nl(r0) from S0

nl(r0). Integrals
Sk

nl(r0) with k odd, k > 1 can then be derived by repeated use of Equation (A12), starting
with S1

nl(r0).

Appendix C. Characteristics of the Triangle Quadrature Rules Used in This Work

Table A1. Characteristics of the triangle quadrature rules used in our algorithms. All those rules
were constructed with the program PolyQuad (accessed on 23 September 2022) (https://github.com/
PyFR/Polyquad) by Witherden and Vincent [62]. Stars near strengths identify the rules that are used
in the finite precision algorithm. The bound Nmin

p (third column) is the empirically proposed bound
on the number of points, Nmin

p = d(N + 1)(N + 2)/6e, as proposed by Xiao and Gimbutas [60]. E
(fourth column) is the “efficiency”, defined as: E = Nmin

p /Np. Efficient quadrature rules have E close
to 1.

Strength N #Points Np Bound Nmin
p E

*3 4 4 1
*5 7 7 1
*7 13 12 0.92
9 19 19 1

*11 28 26 0.93
13 37 35 0.95
*17 60 57 0.95
21 87 85 0.98
*25 120 117 0.98
31 181 176 0.97
*37 255 247 0.97
43 348 330 0.95
*51 501 460 0.92
65 814 737 0.91
*73 1030 925 0.90
81 1263 1135 0.90

*101 2007 1751 0.87

References
1. Zelditch, M.; Swiderski, D.; Sheets, H. Geometric Morphometrics for Biologists. A Primer; Elsevier: Amsterdam, The Netherlands;

Academic Press: London, UK, 2012.
2. Peng, H. Bioimage informatics: A new area of engineering biology. Bioinformatics 2008, 24, 1827–1836. [CrossRef] [PubMed]
3. Khairy, K.; Howard, J. Spherical harmonics-based parametric deconvolution of 3D surface images using bending energy

minimizations. Med. Image Anal. 2008, 12, 217–227. [CrossRef] [PubMed]
4. Shamir, L.; Delaney, J.; Orlov, N.; Eckley, D.; Goldberg, I. Pattern recognition software and techniques for biological image

analysis. PLoS Comput. Biol. 2010, 6, e1000974. [CrossRef] [PubMed]
5. Toomre, D.; Bewersdof, J. A new wave of cellular imaging. Annu. Rev. Cell. Dev. Biol. 2010, 26, 285–314. [CrossRef] [PubMed]
6. Thompson, D. On Growth and Form; University Press: Cambridge, UK, 1917.
7. Hu, M. Visual pattern recognition by moment invariants. IRE Trans. Infor. Theory 1962, 8, 179–187.
8. Teague, M. Image analysis via the general theory of moments. J. Opt. Soc. Amer. 1980, 70, 920–930. [CrossRef]
9. Teh, C.; Chin, R. On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intell. 1988, 10, 496–513.

[CrossRef]
10. Prokop, R.; Reeves, A. A survey of moment-based techniques for unoccluded object representation and recognition. Graph. Model.

Image Process. 1992, 54, 438–460. [CrossRef]
11. Hobson, E. The Theory of Spherical and Ellipsoidal Harmonics; Chelsea Co.: New York, NY, USA, 1955.

https://github.com/PyFR/Polyquad
https://github.com/PyFR/Polyquad
http://doi.org/10.1093/bioinformatics/btn346
http://www.ncbi.nlm.nih.gov/pubmed/18603566
http://dx.doi.org/10.1016/j.media.2007.10.005
http://www.ncbi.nlm.nih.gov/pubmed/18055248
http://dx.doi.org/10.1371/journal.pcbi.1000974
http://www.ncbi.nlm.nih.gov/pubmed/21124870
http://dx.doi.org/10.1146/annurev-cellbio-100109-104048
http://www.ncbi.nlm.nih.gov/pubmed/20929313
http://dx.doi.org/10.1364/JOSA.70.000920
http://dx.doi.org/10.1109/34.3913
http://dx.doi.org/10.1016/1049-9652(92)90027-U

Algorithms 2022, 15, 406 30 of 31

12. Byerly, W.E. An Elementary Treatise on Fourier’s Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications
to Problems in Mathematical Physics. In Proceedings of the Spherical Harmonics; Dover: New York, NY, USA, 1959; pp. 195–218.

13. Kazhdan, M.; Funkhouser, T.; Rusinkiewicz, S. Rotation invariant spherical harmonic representation of 3D shape descriptors. In
Proceedings of the Eurographics Symposium on Geometry Processing, Aachen, Germany, 23–25 June 2003.

14. Medyukhina, A.; Blickensdorf, M.; Cseresnyés, Z.; Ruef, N.; Stein, J.V.; Figge, M.T. Dynamic spherical harmonics approach for
shape classification of migrating cells. Sci. Rep. 2020, 10, 6072. [CrossRef]

15. Zernike, F. Beugungstheorie des Schneidenver-fahrens und seiner verbesserten Form, der Phasenkontrastmethode. Physica 1934,
1, 689–704. [CrossRef]

16. Nguyen, T.; Pradeep, S.; Judson-Torres, R.; Reed, J.; Teitell, M.; Zangle, T. Quantitative Phase Imaging: Recent Advances and
Expanding Potential in Biomedicine. ACS Nano 2022, 16, 11516–11544. [CrossRef] [PubMed]

17. Tahmasbi, A.; Saki, F.; Shokouhi, S. Classification of begnin anf malignant masses based on Zernike moments. Comput. Biol. Med.
2011, 41, 726–735. [CrossRef] [PubMed]

18. Boland, M.; Murphy, R. A neural network classifier capable of recognizing the patterns of all major subcellular structures in
fluorescence microscope images of HeLa cells. Bioinformatics 2001, 17, 1213–1223. [CrossRef] [PubMed]

19. Alizadeh, E.; Lyons, S.; Castle, J.; Prasad, A. Measuring systematic changes in invasive cancer cell shape using Zernike moments.
Integr. Biol. 2016, 8, 1183–1193. [CrossRef] [PubMed]

20. Toharia, P.; Robles, O.D.; Rodríguez, Á.; Pastor, L. A study of Zernike invariants for content-based image retrieval. In Proceedings
of the Pacific-Rim Symposium on Image and Video Technology; Springer: Berlin/Heidelberg, Germany, 2007, pp. 944–957.

21. Canterakis, N. 3D Zernike moments and Zernike affine invariants for 3D image analysis and recognition. In Proceedings of the
11th Scandinavian Conference on Image Analysis, Kangerlusssuaq, Greenland, 7–11 June 1999.

22. Novotni, M.; Klein, R. 3D Zernike descriptors for content based shape retrieval. In Proceedings of the ACM Symposium on Solid
and Physical Modeling, Seattle, WA, USA, 16–20 June 2003.

23. Novotni, M.; Klein, R. Shape retrieval using 3D Zernike descriptors. Comput. Aided Des. 2004, 36, 1047–1062. [CrossRef]
24. Wang, K.; Zhu, T.; Gao, Y.; Wang, J. Efficient terrain matching with 3-D Zernike moments. IEEE Trans. Aerosp. Elec. Sys. 2018,

55, 226–235. [CrossRef]
25. Ma, B.; Zhang, Y.; Tian, S. Building Reconstruction Using Three-Dimensional Zernike Moments in Digital Surface Model. In

Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018.
26. Capalbo, V.; De Petris, M.; De Luca, F.; Cui, W.; Yepes, G.; Knebe, A.; Rasia, E. The Three Hundred project: Quest of clusters

of galaxies morphology and dynamical state through Zernike polynomials. Mon. Not. R. Astron. Soc. 2021, 503, 6155–6169.
[CrossRef]

27. Sael, L.; Li, B.; La, D.; Fang, Y.; Ramani, K.; Rustamov, R.; Kihara, D. Fast protein tertiary structure retrieval based on global
surface shape similarity. Proteins Struct. Func. Bioinfo. 2008, 72, 1259–1273. [CrossRef]

28. Venkatraman, V.; Sael, L.; Kihara, D. Potential for protein surface shape analysis using spherical harmonics and 3D Zernike
descriptors. Cell. Biochem. Biophys. 2009, 54, 23–32. [CrossRef]

29. Ljung, F.; André, I. ZEAL: Protein structure alignment based on shape similarity. Bioinformatics 2021, 37, 2874–2881. [CrossRef]
30. Guzenko, D.; Burley, S.; Duarte, J. Real time structural search of the Protein Data Bank. PLoS Comput. Biol. 2020, 16, e1007970.

[CrossRef]
31. Burley, S.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.; Christie, C.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.; et al.

RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied
research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucl. Acids. Res.
2021, 49, D437–D451. [CrossRef] [PubMed]

32. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.; Bourne, P. The Protein Data Bank.
Nucl. Acids. Res. 2000, 28, 235–242. [CrossRef] [PubMed]

33. Aderinwale, T.; Bharadwaj, V.; Christoffer, C.; Terashi, G.; Zhang, Z.; Jahandideh, R.; Kagaya, Y.; Kihara, D. Real-time structure
search and structure classification for AlphaFold protein models. Commun. Biol. 2022, 5, 1–12. [CrossRef] [PubMed]

34. Senior, A.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.; Bridgland, A.; et al. Improved
protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [CrossRef]

35. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko,
A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]

36. Desantis, F.; Miotto, M.; Di Rienzo, L.; Milanetti, E.; Ruocco, G. Spatial organization of hydrophobic and charged residues affects
protein thermal stability and binding affinity. Sci. Rep. 2022, 12, 12087. [CrossRef]

37. Venkatraman, V.; Yang, Y.; Sael, L.; Kihara, D. Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinform.
2009, 10, 407. [CrossRef]

38. Christoffer, C.; Chen, S.; Bharadwaj, V.; Aderinwale, T.; Kumar, V.; Hormati, M.; Kihara, D. LZerD webserver for pairwise and
multiple protein–protein docking. Nucl. Acids. Res. 2021, 49, W359–W365. [CrossRef]

39. Daberdaku, S.; Ferrari, C. Exploring the potential of 3D Zernike descriptors and SVM for protein–protein interface prediction.
BMC Bioinform. 2018, 19, 35. [CrossRef]

40. Daberdaku, S.; Ferrari, C. Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics 2019, 35, 1870–1876.
[CrossRef]

http://dx.doi.org/10.1038/s41598-020-62997-7
http://dx.doi.org/10.1016/S0031-8914(34)80259-5
http://dx.doi.org/10.1021/acsnano.1c11507
http://www.ncbi.nlm.nih.gov/pubmed/35916417
http://dx.doi.org/10.1016/j.compbiomed.2011.06.009
http://www.ncbi.nlm.nih.gov/pubmed/21722886
http://dx.doi.org/10.1093/bioinformatics/17.12.1213
http://www.ncbi.nlm.nih.gov/pubmed/11751230
http://dx.doi.org/10.1039/C6IB00100A
http://www.ncbi.nlm.nih.gov/pubmed/27735002
http://dx.doi.org/10.1016/j.cad.2004.01.005
http://dx.doi.org/10.1109/TAES.2018.2849921
http://dx.doi.org/10.1093/mnras/staa3900
http://dx.doi.org/10.1002/prot.22030
http://dx.doi.org/10.1007/s12013-009-9051-x
http://dx.doi.org/10.1093/bioinformatics/btab205
http://dx.doi.org/10.1371/journal.pcbi.1007970
http://dx.doi.org/10.1093/nar/gkaa1038
http://www.ncbi.nlm.nih.gov/pubmed/33211854
http://dx.doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235
http://dx.doi.org/10.1038/s42003-022-03261-8
http://www.ncbi.nlm.nih.gov/pubmed/35383281
http://dx.doi.org/10.1038/s41586-019-1923-7
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.1038/s41598-022-16338-5
http://dx.doi.org/10.1186/1471-2105-10-407
http://dx.doi.org/10.1093/nar/gkab336
http://dx.doi.org/10.1186/s12859-018-2043-3
http://dx.doi.org/10.1093/bioinformatics/bty918

Algorithms 2022, 15, 406 31 of 31

41. Di Rienzo, L.; Milanetti, E.; Alba, J.; D’Abramo, M. Quantitative characterization of binding pockets and binding complementarity
by means of Zernike descriptors. J. Chem. Inform. Model. 2020, 60, 1390–1398. [CrossRef]

42. Milanetti, E.; Miotto, M.; Di Rienzo, L.; Monti, M.; Gosti, G.; Ruocco, G. 2D Zernike polynomial expansion: Finding the
protein–protein binding regions. Comput. Struct. Biotechnol. J. 2021, 19, 29–36. [CrossRef] [PubMed]

43. Di Rienzo, L.; De Flaviis, L.; Ruocco, G.; Folli, V.; Milanetti, E. Binding site identification of G protein-coupled receptors through a
3D Zernike polynomials-based method: Application to C. elegans olfactory receptors. J. Comput. Aided Molec. Des. 2022, 36, 11–24.
[CrossRef] [PubMed]

44. Memmolo, P.; Pirone, D.; Sirico, D.; Miccio, L.; Bianco, V.; Ayoub, A.; Psaltis, D.; Ferraro, P. Single-cell phase-contrast tomograms
data encoded by 3D Zernike descriptors. arXiv 2022, arXiv:2207.04854.

45. Hosny, K.; Hafez, M. An algorithm for fast computation of 3D Zernike moments for volumetric images. Math. Probl. Eng. 2012,
2012, 353406. [CrossRef]

46. Berjón, D.; Arnaldo, S.; Morán, F. A parallel implementation of 3D Zernike moment analysis. In Proceedings of the Parallel
Processing for Imaging Applications, San Francisco, CA, USA, 24–25 January 2011; SPIE: Bellingham, WA, USA 2011; Volume
7872, pp. 83–89.

47. De Araújo, B.; Lopes, D.; Jepp, P.; Jorge, J.; Wyvill, B. A survey on implicit surface polygonization. ACM Comput. Surv. (CSUR)
2015, 47, 1–39. [CrossRef]

48. Lorensen, W.; Cline, H. Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph.
1987, 21, 163–169. [CrossRef]

49. Doi, A.; Koide, A. An efficient method of triangulating equi-valued surfaces by using tetrahedral cells. IEICE Trans. Infor. Sys.
1991, 74, 214–224.

50. Treece, G.; Prager, R.; Gee, A. Regularised marching tetrahedra: Improved iso-surface extraction. Comput. Graph. 1999, 23, 583–598.
[CrossRef]

51. Lien, S.; Kajiya, J. Symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra. IEEE Comput. Graph.
Appl. 1984, 4, 35–41. [CrossRef]

52. Pozo, J.; Villa-Uriol, M.C.; Frangi, A. Efficient 3D geometric and Zernike moments computation from unstructured surface
meshes. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 471–484. [CrossRef] [PubMed]

53. Koehl, P. Fast Recursive Computation of 3D Geometric Moments from Surface Meshes. IEEE Trans. Pattern Anal. Mach. Intell.
2012, 34, 2158–2163. [CrossRef] [PubMed]

54. Deng, A.W.; Gwo, C.Y. A Stable Algorithm Computing High-Order 3D Zernike Moments and Shape Reconstructions. In
Proceedings of the 2020 4th International Conference on Digital Signal Processing, Chengdu, China, 19–21 June 2020; Association
for Computing Machinery: New York, NY, USA, 2020; pp. 38–42.

55. Tough, R.J.A.; Stone, A.J. Properties of the regular and irregular solid harmonics. J. Phys. A 1977, 10, 1261–1269. [CrossRef]
56. Mathar, R.J. Zernike basis to Cartesian transformations. arXiv 2008, arXiv:0809.2368.
57. Janssen, A. Generalized 3D Zernike functions for analytic construction of band-limited line-detecting wavelets. arXiv 2015,

arXiv:1510.04837.
58. Prata, A.; Rusch, W. Algorithm for computation of Zernike polynomials expansion coefficients. Appl. Opt. 1989, 28, 749–754.

[CrossRef]
59. Stroud, A. Approximate Calculation of Multiple Integrals; Prentice-Hall: Englewood Cliffs, NJ, USA, 1971.
60. Xiao, H.; Gimbutas, Z. A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions.

Comput. Math. Appl. 2010, 59, 663–676. [CrossRef]
61. Zhang, L.; Cui, T.; Liu, H. A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 2009, 89–96.
62. Witherden, F.; Vincent, P. On the identification of symmetric quadrature rules for finite element methods. Comput. Math. Appl.

2015, 69, 1232–1241. [CrossRef]
63. Wolfram Research Inc. Mathematica, Version 13.1; Wolfram Research: Champaign, IL, USA, 2022.
64. Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An Open-Source Mesh Processing

Tool. In Proceedings of the Eurographics Italian Chapter Conference; Scarano, V., De Chiara, R., Erra, U., Eds.; The Eurographics
Association: Saarbrücken, Germany, 2008.

65. Cheng, H.; Shi, X. Guaranteed Quality Triangulation of Molecular Skin Surfaces. In Proceedings of the IEEE Visualization, Austin,
TX, USA, 10–15 October 2004; pp. 481–488.

66. Cheng, H.; Shi, X. Quality Mesh Generation for Molecular Skin Surfaces Using Restricted Union of Balls. In Proceedings of the
IEEE Visualization, Minneapolis, MN, USA, 23–28 October 2005; pp. 399–405.

67. Chou, J.; Li, S.; Klee, C.; Bax, A. Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains.
Nature Struct. Biol. 2001, 8, 990–997. [CrossRef] [PubMed]

68. Edelsbrunner, H. Deformable Smooth Surface Design. Discret. Comput. Geom. 1999, 21, 87–115. [CrossRef]
69. Alber, T.; Banner, D.; Bloomer, A.; Petsko, G.; Phillips, D.; Rivers, P.; Wilson, I. On the three-dimensional structure and catalytic

mechanism of triose phosphate isomerase. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1981, 293, 159–171. [PubMed]
70. Olver, F.W.J.; Olde Daalhuis, A.B.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.;

McClain, M.A. (Eds.) NIST Digital Library of Mathematical Functions. Available online: https://link.springer.com/article/10.1
023/A:1022915830921 (accessed on 23 September 2022).

http://dx.doi.org/10.1021/acs.jcim.9b01066
http://dx.doi.org/10.1016/j.csbj.2020.11.051
http://www.ncbi.nlm.nih.gov/pubmed/33363707
http://dx.doi.org/10.1007/s10822-021-00434-1
http://www.ncbi.nlm.nih.gov/pubmed/34977999
http://dx.doi.org/10.1155/2012/353406
http://dx.doi.org/10.1145/2732197
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1016/S0097-8493(99)00076-X
http://dx.doi.org/10.1109/MCG.1984.6429334
http://dx.doi.org/10.1109/TPAMI.2010.139
http://www.ncbi.nlm.nih.gov/pubmed/20714011
http://dx.doi.org/10.1109/TPAMI.2012.23
http://www.ncbi.nlm.nih.gov/pubmed/22997126
http://dx.doi.org/10.1088/0305-4470/10/8/004
http://dx.doi.org/10.1364/AO.28.000749
http://dx.doi.org/10.1016/j.camwa.2009.10.027
http://dx.doi.org/10.1016/j.camwa.2015.03.017
http://dx.doi.org/10.1038/nsb1101-990
http://www.ncbi.nlm.nih.gov/pubmed/11685248
http://dx.doi.org/10.1007/PL00009412
http://www.ncbi.nlm.nih.gov/pubmed/6115415
https://link.springer.com/article/10.1023/A:1022915830921
https://link.springer.com/article/10.1023/A:1022915830921

	Introduction
	Moments from 3D Shapes
	Moments of a Shape
	Basis Function: Monomials
	Basis Function: Laplace Spherical Harmonics
	Basis Function: The Zernike Polynomials
	Computing the Zernike Polynomials from the Geometric Moments
	Numerical Instabilities Associated with the Zernike Polynomials

	Algorithms for Computing the 3D Zernike Moments for a Surface Triangular Mesh
	Zernike Moments over a Shape Defined by a Triangular Surface Mesh
	Basic Idea
	Computing the Integrals Qnl
	Computing the Integrals cnlm(T)
	Two Algorithms for Computing Zernike Moments
	Exact Zernike Moments for Shapes Described by Surface Triangular Meshes
	Finite Precision Zernike Moments for Shapes Described by Surface Triangular Meshes

	Reconstructing a Shape from Its 3D Zernike Moments
	Implementation
	Quadrature Rules for Integration over a Triangle
	Efficient Computations of the Polynomials Rnl(r) and Qnl(r)
	Efficient Computations of the Spherical Harmonics Ylm(,)
	Efficient Reconstruction of a Shape from Its Zernike Moments

	Numerical Results
	Accuracy of the Computed 3D Zernike Moments: Comparison with Other Algorithms
	Accuracy of the Computed 3D Zernike Moments: Comparison with Exact Values
	Reconstructing a Shape from its 3D Zernike Moments: Example of the Sphere
	Reconstructing a Shape from Its 3D Zernike Moments: Importance of the Order N
	Computational Complexity for Geometric Moments and 3D Zernike Moments

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

