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Abstract: Hyper-heuristics are widely used for solving numerous complex computational search 

problems because of their intrinsic capability to generalize across problem domains. The fair-share 

iterated local search is one of the most successful hyper-heuristics for cross-domain search with 

outstanding performances on six problem domains. However, it has recorded low performances on 

three supplementary problems, namely knapsack, quadratic assignment, and maximum-cut prob-

lems, which undermines its credibility across problem domains. The purpose of this study was to 

design an evolutionary algorithm-based iterated local search (EA-ILS) hyper-heuristic that applies 

a novel mutation operator to control the selection of perturbative low-level heuristics in searching 

for optimal sequences for performance improvement. The algorithm was compared to existing ones 

in the hyper-heuristics flexible (HyFlex) framework to demonstrate its performance across the prob-

lem domains of knapsack, quadratic assignment, and maximum cut. The comparative results have 

shown that the EA-ILS hyper-heuristic can obtain the best median objective function values on 22 

out of 30 instances in the HyFlex framework. Moreover, it has achieved superiority in its generali-

zation capability when compared to the reported top-performing hyper-heuristic algorithms. 

Keywords: combinatorial optimization; evolutionary algorithm; heuristic algorithm; knapsack 

problem; local search; maximum-cut problem; quadratic assignment 

 

1. Introduction 

Hyper-heuristics are search methodologies for solving numerous forms of combina-

torial optimization problems (COPs) in routing applications [1,2], scheduling [3,4], ma-

chine learning [5,6], generation of solvers [7], and software engineering [8–10]. They have 

been applied to several other application domains of combinatorial optimization such as 

university examination timetabling, university course timetabling, and school timetabling 

problems [11]. Due to the countless peculiarities and inherent complexity of the different 

forms of optimization problems, a customized algorithm usually fails to generalize well. 

Hence, the impetus for studying hyper-heuristics over heuristics and metaheuristics is to 

address the problem of generality that hyper-heuristics provide across different forms of 

optimization problems [12]. Meta-learning for offline learning of heuristic sequences was 

recently described for solving capacitated vehicle routing and graph coloring problems 

[13]. The study [14] proposed a novel mechanism to create an effective recombination 

procedure for sub-trees in a genetic programming hyper-heuristic to solve the job-shop 

scheduling problem. A fuzzy logic-based method for the selection of low-level heuristics 

was described to solve many instances of the 0/1 knapsack problem [15]. A genetic pro-

gramming-based hyper-heuristic was described for solving multiple tasks within a dy-

namic environment [16]. The ability of a generative hyper-heuristic underpinned by an 

artificial neural network was introduced for creating customized metaheuristics in 
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continuous domains [17]. The study in [18] proposed the use of a double deep Q-network 

(DDQN) for generating a constructive hyper-heuristic for COPs with uncertainties. 

Hyper-heuristics can broadly be classified into selection and generation categories. 

Selection is employed to automatically control the use of low-level heuristics (LLHs) while 

generation is used to generate new LHHs from the building blocks of previous ones [12]. 

Manifold hyper-heuristics have been proposed in the literature, but a particular set of 

them have been developed and their performances benchmarked against others within 

the hyper-heuristics flexible framework (HyFlex) [19]. The HyFlex framework was ini-

tially used for the CHeSC 2011 competition where twenty algorithms were tested and 

their performances compared on six problem domains. The AdapHH hyper-heuristic [20] 

emerged as the winner of the competition after obtaining the highest rank in three do-

mains of Boolean satisfiability (SAT), bin packing (BP), and the traveling salesman prob-

lem (TSP). The framework eventually became useful for benchmarking the performance 

of a newly proposed hyper-heuristic. The author of a newly proposed hyper-heuristic al-

gorithm would conventionally compare its performance with the original 20 CHeSC en-

tries. The fair-share iterated local search (FS-ILS) hyper-heuristic utilized a speed-propor-

tional selection scheme (SpeedNew) as the heuristic selection mechanism and accept prob-

abilistic worse (APW) as the solution acceptance mechanism [21]. It selects from a pool of 

perturbative heuristics during the perturbation phase of the ILS. It applies the local search 

heuristics in a variable neighborhood descent (VND) fashion on the resultant solution 

from the perturbation phase until the solution can no longer be improved. The VND is a 

variant of the variable neighborhood search (VNS) metaheuristic that deterministically 

explores the neighborhoods in a search space. 

The FS-ILS outperformed the 20 CHeSC entries in the HyFlex framework by obtain-

ing the highest scores on the Boolean satisfiability (SAT), permutation flow-shop (PFS), 

and vehicle routing problem (VRP) domains. A Thompson sampling hyper-heuristic 

(TSHH) was proposed in [22] and uses the Thompson sampling learning algorithm to re-

spectively select perturbative and local search heuristics during the perturbation and in-

tensification phases of the iterated local search (ILS). The selection of a heuristic to apply 

was based on its record of successes and failures when applied to a given problem. If the 

combined effect of a perturbative heuristic and a local search heuristic (when applied in 

an iteration) leads to a new best global solution, the “success” count of the heuristics is 

incremented; otherwise, the “failure” count is incremented, which makes it a reinforce-

ment learning scheme. The TSHH implemented an improving-or-equal (IE) acceptance 

mechanism and finished second behind the AdapHH using the F1 ranking. The hyper-

heuristic outperformed in personnel scheduling (PS), PFS, and TSP and underperformed 

in SAT and VRP. Ferreira et al. [23] proposed different settings of a multi-armed bandit 

scheme for heuristic selection, with the best version being able to only do well on VRP 

problems, which the authors blamed on the hyper-parameter settings. 

The HyFlex framework was extended in [24] by introducing three new problem do-

mains of the knapsack problem (KP), quadratic assignment problem (QAP), and maxi-

mum-cut problem (MAC). The experimental procedure in the work pitted FS-ILS against 

a no-restart version of FS-ILS (NR-FS-ILS), AdapHH, evolutionary programming hyper-

heuristic (EPH), a competitor in CHeSC 2011, and two other simple random procedures 

that differ in their acceptance mechanisms. EPH is based on the principle of evolutionary 

programming and co-evolution that concomitantly maintains a population of solutions 

with a population of low-level heuristic sequences that are applied to the solutions [11]. 

The AdapHH emerged as the winner on these new domains and the random procedure 

that accepts all moves surprisingly finished second while FS-ILS finished fifth among the 

six hyper-heuristics compared. In addition, the SSHH was tested on these three new prob-

lem domains [25] and its performance was compared with those of others presented for 

the extended HyFlex framework [24]. The SSHH and AdapHH emerged as the best two 

hyper-heuristics based on the experimental results. The new problem domains were used 

in two other works [26,27] that tuned a memetic algorithm, but only [27] compared the 
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proposed hyper-heuristic with others that were tested on the domains, using 15 out of the 

entire set of 30 benchmarking instances. 

This study was inspired by the inherent weaknesses exhibited by ILS hyper-heuris-

tics on the extended HyFlex suite to design an evolutionary algorithm-based iterated local 

search (EA-ILS) hyper-heuristic. The following two critical points are highlighted as areas 

of concern for ILS hyper-heuristics. First, ILS hyper-heuristics utilizing a typical local 

search invocation based on VNS may not be effective when solving problems that require 

deep search space and are time-consuming [28]. Therefore, designing an improved local 

search is worth exploring [29]. Second, although hyper-heuristic methods are generally 

not exact, an alternative for covering a deeper search space for performance enhancement 

could be to design ILS-based hyper-heuristics to perturb solutions more than once before 

the local search invocations. This will depend on how effective these multiple perturba-

tions can be for solving a COP. Since the perturbation strength is prime to the performance 

of ILS [30,31], designing a hyper-heuristic with an option to perturb solutions more than 

once is very viable. 

The introduced hyper-heuristic algorithm works on the principles of the basic ILS 

and evolutionary algorithms. It uses a novel mutation operator to construct LLH se-

quences with the possibility of multiple perturbations that ultimately end with a local 

LLHs search. The ILS is widely used in the literature for solving a wide range of COPs 

such as orienteering [32], inventory routing [33], classical knapsack [34], vehicle routing 

[35–37], and course timetabling [38–40]. The metaheuristic appears to be a versatile 

method that has been frequently combined with other optimization algorithms to solve 

COPs. Different instances of this hybridized set-up include pairing ILS with quadratic 

programming [41], tabu search [42], evolutionary algorithms [35], simulated annealing 

[43], and tabu search with simulated annealing [44]. The EA-ILS hyper-heuristic was for-

tified with a local search module based on the connotation of the hidden Markov model 

(HMM) to automatically learn promising sequences of local search heuristics rather than 

exhaustive application. The following are the unique contributions made in the present 

study to the discipline of combinatorial optimization: 

 The application of a novel mutation evolutionary operator to construct promising 

perturbative heuristic sequences of variable length of 1 or 2 to address a weakness of 

the previous ILS-based hyper-heuristics is an important contribution of the present 

study; 

 The design of the EA-ILS hyper-heuristic algorithm that combines the capability of 

ILS with a specialized mutation evolutionary operator for improved performance in 

solving numerous COPs is a unique contribution of this study; 

 The experimental comparison of the EA-ILS hyper-heuristic with the existing hyper-

heuristics in the HyFlex framework to demonstrate the effectiveness of the intro-

duced algorithm is a distinctive contribution. 

The remainder of this paper is succinctly summarized as follows: Section 2 reviews 

the relevant literature by surveying the recent methods that have been applied to tackle 

the problems of knapsack, quadratic assignment, and maximum cut. Section 3 presents 

the materials and methods used in the present study and explicates the EA-ILS hyper-

heuristic algorithm. Section 4 discusses the experimental results of evaluating the perfor-

mance of the EA-ILS hyper-heuristic against the performances of the existing hyper-heu-

ristics in the HyFlex framework. The article is ultimately concluded in Section 5 by sum-

marizing the important highlights. 

2. Related Studies 

There are numerous algorithms reported in the literature for solving the COPs of 

knapsack, quadratic assignment, and maximum cut. Previous studies have agglutinated 

different algorithms within the ILS for performance improvement. The authors in [45] 

employed meta-learning to improve the performance of ILS on the Google machine 
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reassignment problem (GMRP). The idea was to learn from some instances of a problem 

and recommend suitable ILS components based on the instance being solved. Hu et al. 

[46] combined a genetic algorithm (GA) with ILS to solve the instances of a dominating 

tree problem (DTP). In their approach, multiple solutions were kept and each solution in 

the population of solutions was subjected to possible improvement through the ILS pro-

cedure. The GA presented in the study utilized a specialized mutation procedure with 

high diversification strength and ignored crossover operators. The specialized mutation 

operator was applied after the ILS phase to each solution in the population during the 

second stage of the search process. The second stage helps to improve diversity in the 

solutions returned by the ILS in the first stage according to the study. 

The study reported in [47] combined the ILS with other techniques to effectively solve 

numerical optimization problems. The perturbation strategy was based on the success-

history-based parameter adaptation for differential evolution (SHADE) while the local 

search phase was based on a mathematical model. The ILS keeps multiple solutions while 

it relies primarily on the perturbation mechanism of the SHADE to control the strength of 

the ILS perturbation. The partition crossover operator was incorporated into an ILS frame-

work for the computational design of proteins [39]. The crossover operator was utilized 

as an additional perturbation operator to combine two solutions generated by the ILS 

framework to produce a new solution that is further enhanced by the steepest descent 

algorithm. The algorithm contested favorably with a classical ILS and the Rosetta fixbb 

method. The APW is not a new acceptance mechanism employed in this paper [21,48,49]. 

However, a strategy is proposed to oscillate its important parameter called temperature 

during the search process. 

In [50], ant colony optimization (ACO) was employed to generate rules for the selec-

tion of heuristics for the knapsack problem. Candidate hyper-heuristics were constructed 

by the virtual ants over time using the current problem state until all items had been 

packed. The best hyper-heuristic constructed during the simulation can now be applied 

to unseen instances. The studies in [51,52] designed a feature-independent hyper-heuristic 

through an evolutionary algorithm to solve the 0/1 knapsack problem. Similar to the ap-

proach in the previous study [50], a set of training instances were used to construct viable 

hyper-heuristics that were superior to the individual LLHs of the problem investigated. 

Olivas et al. [15,53] incorporated fuzzy logic into the inference process of the selection of 

heuristics for the knapsack problem. The authors considered seven features of the prob-

lem as inputs to the fuzzy inference engine and four LLHs as outputs. The fuzzy-based 

hyper-heuristic was optimized by a genetic algorithm that was benchmarked against tra-

ditional hyper-heuristics optimized by a particle swarm optimization (PSO) algorithm. 

The other optimization methods not based on hyper-heuristics that have been applied to 

solve the knapsack problem include the binary monarch optimization algorithm [54], bi-

nary bat algorithm [55], whale optimization [56], list-based simulated annealing [57], and 

artificial bee colony optimization [58]. A recent study [59] compared the genetic algorithm 

(GA), simulated annealing (SA), dynamic programming (DP), branch-and-bound (BB), 

greedy search (GS), and a hybrid of GA–SA to solve the knapsack problem. 

Senzaki et al. [60] applied a hyper-heuristic method based on the choice function se-

lection mechanism to solve the multi-objective quadratic assignment problem (mQAP). 

The task of the choice function is to select the genetic operators that are LLHs during an 

iteration of the multi-objective evolutionary algorithm (MOEA) as the base method. The 

method was reported to perform quite well on 22 instances of mQAP after being bench-

marked against other multi-objective optimization algorithms. Some of the approaches 

for solving a quadratic assignment problem (QAP) tend to favor the hybridizations of two 

or more algorithms. The study [61] hybridized quantum computing principles with an 

evolutionary algorithm to solve QAP while another study [62] integrated tabu search with 

a whale optimization algorithm. In [62], tabu search was employed to improve the solu-

tion constructed by the whale optimization algorithm. The study [63] hybridized an evo-

lutionary algorithm called elite GA with a tabu search for solving 135 instances of the QAP 
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from the well-known QAPLIB dataset. The authors reported that the hybrid method ob-

tained the best-known solutions for 131 instances. Dokeroglu et al. [64] applied a robust 

tabu search method to control the exploration–exploitation balance within an artificial bee 

colony. The resulting method was able to optimally solve 125 out of the 134 benchmarking 

instances of the problem. The agglutination of GA with Tabu (GA–Tabu) search has been 

recently published for solving the QAP [65] with a favorable comparative performance. 

Tabu search was hybridized with the evolutionary algorithm to solve the MAC [66]. 

The authors were able to find the best new solutions for 15 of 91 instances used to test 

their algorithm. Chen et al. [67] proposed a binary artificial bee colony algorithm with a 

local search procedure to solve 24 instances of the MAC as reported in the literature. Kim 

et al. [68] compared the performances of harmony search and two implementations of 

genetic algorithms, namely generational GA and steady-state GA, that were tested on 31 

instances of the MAC. The study reported that the harmony search algorithm outper-

formed the two GA implementations. The Q-learning model-free reinforcement learning 

algorithm was proposed to solve some instances of the MAC [69]. The method utilizes a 

message-passing neural network (MPNN) to predict the Q-values of removing or adding 

vertices to solution subsets. Seven observations were configured to characterize the prob-

lem state during the training of the deep Q-network. 

Previous algorithms have used the same instances of the HyFlex framework for per-

formance evaluation as follows: The FS-ILS with its variant NR-FS-ILS, based on the ILS, 

recorded a subdued performance on the extended HyFlex domains [24]. The AdapHH 

[20] is a state-of-the-art hyper-heuristic algorithm that outperformed both FS-ILS and NR-

FS-ILS on the extended benchmarking test domains [24,25]. It uses a relay hybridization 

technique to pair LLHs while solving a problem instance and emerged first in the CHeSC 

2011 competition. The sequence-based selection hyper-heuristic (SSHH) based on the 

principles of the HMM was proposed in [70]. It attempts to automatically identify the op-

timal sequences of heuristics while optimizing the solution of a given instance of a prob-

lem domain. The SSHH was initially tested on the first six problem domains in the first 

version of the HyFlex framework to outperform the twenty CHeSC 2011 entries in the 

SAT, BP, and TSP problem domains. The algorithm recorded a favorable performance 

amongst several competitors on KP, QAP, and MAC [25]. The other methods include the 

EPH and two simple hyper-heuristics that choose LLHs randomly [24].  

It is important to review the past research works on the HyFlex domains to identify 

inconsistencies for further improvement. However, algorithms such as the SSHH, and 

sometimes AdapHH, that were designed to automatically generate heuristic sequences 

could benefit from the explicit separation of diversification and intensification found in 

ILS-based methods. The ILS-based methods applied on the extended HyFlex domains 

have not yet been generally effective. It is still valuable to devise new means of exploring 

the strengths of the ILS methods because of the limited evidence of its effectiveness as a 

hyper-heuristic [21,22,48,71,72]. The present study has employed the instances provided 

in the extended HyFlex framework [24] to test the generality of the EA-ILS hyper-heuris-

tic. 

3. Materials and Methods 

The materials used to conduct this study and descriptions of the main COPs investi-

gated are presented in this section. Descriptions of the methods applied to construct the 

EA-ILS hyper-heuristic that solves the investigated COPs are provided thereafter. 

3.1. Materials 

The instances used for testing the EA-ILS hyper-heuristic contain extensions to the 

original HyFlex dataset located on the webpage (https://github.com/Steven-Adriaen-

sen/hyflext accessed on 10 September 2022). They are executable files of the implementa-

tions of the instances of new problems added to the HyFlex framework. The webpage of 

all the instances has the raw data for the existing hyper-heuristics used to benchmark the 
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performance of the EA-ILS hyper-heuristic. There are a total of 30 instances available in 

the extended HyFlex test suite for benchmarking the performance of a hyper-heuristic. All 

algorithms were coded in the Java programming language. The computer used for testing 

the EA-ILS hyper-heuristic has 8 gigabytes (GBs) of random access memory (RAM) and 

an Intel i5-3340 M central processing unit (CPU) with a 2.70 GHz clock speed. The evalu-

ation metrics employed for benchmarking the performance of the EA-ILS hyper-heuristic 

with the existing comparative algorithms are the standard evaluation metrics of μ-norm, 

μ-rank, best, worst [24,25], F1 scoring system [23,49,73], and statistical evaluation of the 

Friedman test [74] and boxplot analysis [22,75]. The ten benchmarking instances of the 

problem available in the test suite [24] were all taken from the well-known QAPLIB da-

taset [76]. The mathematical formulation used in the current study for the MAC problem 

is based on a recent reformulation [77]. The number of low-level heuristics per category 

for each problem is presented in Table 1. Crossover heuristics are ignored in the table 

because they were not used by the EA-ILS hyper-heuristic. 

Table 1. Tally of the LLHs across the Knapsack, Maximum-Cut, and Quadratic Assignment Prob-

lems. 

Problem Mutation Ruin-Recreate Local Search Total 

Knapsack problem (KP) 5 2 6 13 

Quadratic assignment problem (QAP) 2 3 2 7 

Maximum-cut problem (MAC) 2 3 3 8 

3.2. Methods 

A brief discussion of the basic ILS and a detailed description of the EA-ILS hyper-

heuristic are provided in this section to illuminate the novelty of the proposal. The differ-

ences between the two hyper-heuristics are alluded to show the contribution made by the 

ILS. 

3.2.1. Basic Iterated Local Search Algorithm 

The iterated local search (ILS) [78] is a simple approach based on the principles of 

diversification (perturbation) and intensification (local search). The search approach out-

lined in Algorithm 1 switches between the diversification and intensification phases 

throughout the search process. The initial solution of the ILS can be generated by any 

constructive heuristic that is suitable for the given problem domain. In the iterative block, 

perturbation of the incumbent solution is performed to diversify the search and avoid 

circling a particular search area. If the perturbation operation is too strong, the search pro-

cess cannot be controlled, and it becomes a random restart algorithm. Conversely, a shal-

low perturbation can perform searches to keep revisiting a particular search area, thereby 

limiting the progress of the search. In a typical circumstance, the perturbation phase of 

the search worsens the incumbent solution, but the local search phase is designed to 

search for better solutions within the neighborhood of the perturbed solution. The solu-

tion returned from the local search is considered a candidate solution when it is accepted 

by the acceptance mechanism. If the candidate solution is accepted, it replaces the incum-

bent solution, and the search continues in that fashion until a stopping criterion is met. 

Algorithm 1: Basic Iterated Local Search 

1.  �� ← generateInitialSolution () 

2.  � ← perform a local search on �� 

3.  while ¬stopping_condition 

4.    �′ ← �������(�) 

5.    �′′ ← perform a local search on �′ 

6.    � ← �
���, �� ��� �� ��������
�,      ��ℎ������

 

7.  end while 
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3.2.2. Evolutionary Algorithm-Based Iterated Local Search  

The evolutionary algorithm-based iterated local search (EA-ILS) hyper-heuristic 

searches the space of LLHs during the search process. It does so by constructing and ed-

iting the sequences of LLHs to conform to the working principles of the ILS. Perturbative 

LLHs are applied, followed by the application of the local search LLHs to affect intensifi-

cation in ILS. Similarly, the sequences generated by the EA-ILS hyper-heuristic begin with 

perturbative LLHs and end with a local search terminal. The conception of “operation 

sequence or simply a sequence” is used because the sequences are typically longer than 

what is presented when applied to a solution. Figure 1 depicts a sample sequence where 

EA-ILS applies LLH5 to the incumbent solution. The resulting solution is further per-

turbed with another perturbative heuristic (LLH7), and the local search heuristics are ap-

plied for intensification thereafter. The last operation, which is a call to the local search 

(LS) module, could use more than one local search LLH. Hence, the sequence of LLHs 

applied in an iteration could be longer than 3. The maximum length of a sequence is set 

at 2, and it is the third member of the sequence that represents the local search terminal. 

This is to keep the length of time dedicated to applying the sequence of LLHs on a solution 

during an iteration at a reasonable amount. The operations that appear in the EA-ILS hy-

per-heuristic described by Algorithm 2 are explained in Table 2. The improving iteration 

is an iteration of the EA-ILS hyper-heuristic that leads to the update of the best global 

solution. The non-improving iteration is an iteration of the EA-ILS hyper-heuristic that 

does not lead to the update of the best global solution. The acceptance strategy is the value 

of the temperature parameter used in the APW in the acceptance mechanism of this study. 

 

Figure 1. Sample operation sequence in the EA-ILS hyper-heuristic. 

Table 2. Description of Operations of the EA-ILS hyper-heuristic. 

Operation Description 

X.add(x, L) 
Add a new member x to a bounded list X with bound size L such that when a new entry up-

dates the size of X to L + 1, the item at the top of the list is removed. 

X.add(x, L, t) The addition of x from the previous operation is repeated t times. 

H An operation sequence or simply a sequence. 

A The bounded list for storing the most recent sequences that improved the best global solution. 

Rnd.Real(x, y) This operation generates a random real number � such that � < � < �. 

Rnd.Int(x, y) This operation generates an integer � such that � ≤ � < �. 

Rnd.Bool() Randomly generate a Boolean variable. 

better(x, y) 
Denotes a comparison operation that returns a Boolean value depending on whether solution 

� is better than � based on their objective function values. 

��
�, ��

� 
Bounded lists for recently rewarded parameter values for the LLHs. The former is kept for 

perturbative LLHs while the latter is kept for local search LLHs. 

��
�, ��

� 
The fixed lists of all possible parameter values available for the perturbative and local search 

LLHs, respectively. 

�� The bound size for the ��
� and ��

� lists. 

�� 
The number of consecutive non-improving iterations allowed for the acceptance strategy. Ex-

perimental value = 15. 

��  Similar to ��, but applied to the operation sequences. Experimental value = 1. 

nA The number of non-improving iterations completed so far for an acceptance strategy. 

nH Similar to nA, but applied to the operation sequences. 

���� The number of improving iterations completed so far for an acceptance strategy. 

����  Similar to ����, but for LLHs 
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����  
A pre-determined list of possible values that could be added to the value of the current ac-

ceptance strategy during its mutation. 

�� 
A bounded list of rewarding acceptance strategies based on the improvement of the global 

best solution. 

�����  
A list of combinations of mutation and ruin-recreate LLHs perturbative heuristics for a prob-

lem domain. 

rndSel() A function that returns a random member of a list. 

A The current value of the temperature parameter being used by the acceptance mechanism. 

cur_a The currently engaged acceptance strategy. 

�� The best solution found so far. 

��� The proposed solution after a perturbation–intensification cycle. 

�� The incumbent solution during the search process. 

 

Algorithm 2: The EA-ILS hyper-heuristic 

Variable: runtime 

1.  �� ← generateInitialSolution() 

2.  �� ← �� 

3.  init() 

4.  while getElapsedTime() < runTime 

5.    � ← rndSel(�) 

6.    for i ← 1 to p + 1  ⊳ � is the number of offspring 

7.      if i > 1 

8.        H ← mutate(H) 

9.      end if  

10.     setParam() 

11.     while nH < ��  

12.       ��� ← Apply the operation sequence � on ��  

13.       set_accept_strategy() 

14.       �� ← �
���, �� ��� �� ��������, ���� ���� 15
��, ��ℎ������, ���� ���� 24

 

15.       updateParam() ⊳ if ��� replaces �� 

16.       if better(��, ��) 

17.          �� ← �� 

18.         updateLS() 

19.         ����

�
← 1 

20.         ����

�
← 1 

21.         �� ← 0 

22.         �� ← 0 

23.       else 

24.         ��
�
← 1 

25.         ��
�
← 1 

26.       end if 

27.     end while 

28.     if ����  > 0 

29.       A.add(H, |�����|, ����) ⊳ add H to archive A 

30.     end if 

31.   end for 

32. end while 
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The initial solution for the EA-ILS hyper-heuristic is generated in Line 1 of Algorithm 

2 through a constructive LLH of a given problem domain. In Line 2, the initial solution is 

used to initialize the best solution found so far. The initial population of sequences is gen-

erated by the init() procedure in Line 3 and stored in a bounded list (A) of size |�����|; 

each one is similar to the sequence shown in Figure 1. In the same line, some other tasks 

to initialize some values needed within the algorithm are carried out. They include the 

following: 

 Initialization of the bounded lists for parameters ��
� and ��

� such that each element 

in the initial lists ��
� and ��

� is represented at least once within ��
� and ��

�, respec-

tively. The size of these bounded lists at the initialization stage is �� = 5; 

 Initialization of the bounded list for acceptance strategies (��) with a shuffled version 

of the array {0.38, 0.25, 0.15}. This means that the highest value of the temperature 

parameter for the accept probabilistic worse (APW) acceptance mechanism is initially 

set to 0.38; 

 Randomly selecting a member of ��  as the starting parameter value of the ac-

ceptance strategy before the search process begins. 

The runTime variable is the time that is checked against the elapsed time during the 

run of the EA-ILS hyper-heuristic. The value set that is returned by a benchmarking pro-

gram for runTime is reported in Section 4. The getElapsedTime() function returns the total 

elapsed time because the beginning of the EA-ILS hyper-heuristic runs on an instance of 

a problem. In Line 5, a sequence H is randomly picked from the bounded list of sequences 

(A) initialized in Line 3. This bounded list is set up to keep the sequences that generated 

the best new solutions when they were applied. Line 6 is the loop that controls the mech-

anism of applying sequences and their mutations. There are only two iterations completed 

by the loop because the value of � is set to 1 so that every selected sequence spawns an 

offspring that is tried before the selection of another sequence from archive A. The muta-

tion evolutionary operator designed for the EA-ILS hyper-heuristic is applied to � in 

Line 8 during the second iteration of the inner loop in Line 6 to likely produce another 

sequence. 

The parameters for the perturbative LLHs in the sequence are set in Line 10. This 

only happens to the perturbative LLHs that use the intensity of mutation parameter. Line 

11 marks a cycle of repeated application of an operation sequence until it no longer im-

proves the global best solution ��. In Line 12, the current operation sequence is applied 

to a solution by successively applying the perturbative LLHs in the sequence before the 

execution of the local search module for intensification. The acceptance strategy may be 

changed after applying a sequence. This will depend on whether the number of consecu-

tive non-improving iterations allowed for the current acceptance strategy has elapsed or 

not, as in Line 13 of Algorithm 2. The value of the parameter to be applied for a perturba-

tive or local search LLH is selected based on a random value through the function set-

Param()described by Algorithm 3. This random value is checked against the value of � =

0.5. Consequently, the parameter is selected at 50% probability from a recency list of pa-

rameters with accepted solutions; otherwise, it is selected from the general list of a param-

eter value �� . There are two versions of ��: one is maintained for the perturbative LLHs 

while the other is maintained for the local search LLHs. The value of ��
� = {0.0, 0.1, … , 0.6} 

and that of ��
� = {0.5, 0.6, 0.7}. 
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Algorithm 3: setParam() 

� ← ���. ����(0, 1) 

if � < � 

  p ← rndSel(��) ⊳ could be ��
� or ��

� 

Else 

  p ← rndSel(��) ⊳ could be ��
� or ��

� 

end if 

applyParam(p)  ⊳ Apply the selected parameter value 

The incumbent solution ��, as in Line 14 of Algorithm 2, is replaced by the proposed 

�′′ if the acceptance mechanism accepts the proposed solution. In this scenario, Line 15 of 

Algorithm 2—which updates the parameter-bounded lists for the parameterized pertur-

bative and local search LLHs—is triggered. The following activities, in the order they ap-

pear, are triggered only if a best new solution is found in the current iteration, and Line 

16 of Algorithm 2 checks for this condition. The best solution found so far is replaced by 

the proposed solution and learning parameters for the local search procedure are updated. 

The number of consecutive improving iterations for both the current sequence and the ac-

ceptance strategy is incremented while the counters for their non-improving iterations are 

reset to zero, as in Lines 17–22 of Algorithm 2. In particular, Line 18 updates the data 

structures of the local search when a new best global solution is found by the hyper-heu-

ristic. The full algorithmic outline of the local search procedure is given in Section 3.2.4. 

The numbers of non-improving iterations for both the currently engaged acceptance strat-

egy and the sequence are updated in Lines 24 and 25 when the proposed solution is not 

accepted or is inferior to the global best solution, as indicated in Line 23 of Algorithm 2. 

The perturbed solution goes through the intensification phase when the execution of a 

sequence reaches the local search terminal as identified with the “LS” tag in Figure 1. The 

intensification phase is carried out through the LS-Seq local search procedure, and the 

resulting solution gets screened by the acceptance mechanism in Line 14 of Algorithm 2.  
A different strategy is taken in the local search module of the EA-ILS hyper-heuristic 

for applying local search heuristics during the intensification phase. Instead of applying 

the heuristics in a variable neighborhood style as in [21,49], HMM is employed to auto-

matically learn promising sequences of local search LLHs. A vector iScore of size n and 

an n × n matrix called pScore are maintained for the n local search LLHs. A roulette wheel 

procedure is employed to select the first local search LLH in an iteration of the local search 

phase based on the values of the iScore vector. Subsequent selections through a roulette 

wheel procedure are performed with the pScore matrix that captures the transition prob-

ability of selecting a given j local search LLH after applying a previous one i.  

Line 28 of Algorithm 2 updates the bounded list of high-quality sequences discov-

ered during the search process. This update is achieved by adding the recently applied 

sequence to the bounded list if it has updated the global best solution at least once during 

its usage. In Line 29 of Algorithm 2, ����  copies of a sequence are added to the bounded 

list. This will happen if, at the end of the update operation, the number of operation se-

quences after the operation remains |�����|, regardless of the number of items added. The 

major features of the EA-ILS hyper-heuristic are explicated as follows: 

 The sequence of perturbative LLHs is discovered by an evolutionary algorithm, 

which means that the EA-ILS hyper-heuristic does not use a mainstream selection 

mechanism’ 

 The temperature parameter of the acceptance mechanism, that is, the APW of the pre-

sent study, oscillated during the search process;  

 The intensification phase in most ILS-based hyper-heuristics such as the FS-ILS algo-

rithm was achieved through a local search procedure based on the VND. The EA-ILS 

hyper-heuristic carries out intensification through a procedure based on the HMM. 
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The algorithmic details of LS-Seq and the local search procedure of the EA-ILS hyper-

heuristic can be found in [48]; 

 The parameter values of the LLHs in the EA-ILS hyper-heuristic are learned over 

time using bounded lists. 

The acceptance strategy implemented by Algorithm 4 for the search process repre-

sents the value of the temperature parameter used in the APW. The value is reviewed 

after nA iterations have elapsed for the current acceptance strategy. A new acceptance 

strategy not in the bounded recency list of acceptance strategies denoted by the symbol 

�� is generated with a probability of � = 0.3 through the linear_mutation procedure in-

voked in the set_accept_strategy described by Algorithm 4; otherwise, a value is randomly 

selected from the recency list. If the current acceptance strategy improves the best global 

solution during the episode, it is added to the bounded list before it is replaced by the 

newly chosen acceptance strategy. The variables attached to an acceptance strategy are 

reset to zero. The size of the list �� is bounded by a value �� = 7, which means that the 

size of the list will never exceed the value of 7 that was chosen after preliminary experi-

ments. 

Algorithm 4: set_accept_strategy() 

if nA = �� 

  � ← ���. ����(0, 1) 

  if � < � 

    a ← linear_mutation() 

  else 

    a ← rndSel(��) 

  end if 

  if ���� > 0 

    ��.add(cur_a, ��) 

  end if 

  cur_a ← a 

  ���� ← 0 

  nA ← 0 

end if 

The linear mutation operation that changes the value of an acceptance strategy dur-

ing the execution of Algorithm 4 is detailed by Algorithm 5. Firstly, an acceptance strategy 

is randomly selected from the bounded list of ”elite” acceptance strategies, a value p1_add 

is then randomly selected from a fixed list ����  and added to the selected acceptance 

strategy. If necessary, a repair is made on the resultant value to make sure the output of 

the procedure is valid and is not greater than 1. In this study, ���� = {0.1, 0.2, … , 0.5} was 

determined after a set of preliminary experiments. 

Algorithm 5: linear_mutation() 

p1 ← rndSel(��) 

p1_add ← rndSel(����) 

p2 ← p1 + p1_add 

if p2 > 1.0 

  p2 ← p2 – 1.0 

end if 

Output: p2 

The procedure for updating the bounded lists of parameter values used by LLHs for 

both local search and perturbative categories is described by Algorithm 6. These lists are 
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updated once an ILS cycle produces a solution that is accepted by the acceptance mecha-

nism. The while loop controls the update of the bounded list for perturbative LLHs, ��
�. 

The variable �����  simply represents the number of iterations covered by the perturbation 

stage while ��  represents the value used for the intensity of the mutation parameter when 

the ith perturbative heuristic in the operation sequence is applied to a solution. The value 

of �����  will be 1 if only one perturbative LLH appears in the operation sequence that was 

applied in the ILS cycle, or 2 if there are two perturbative LLHs in the operation sequence. 

The eventual number of updates on ��
� depends on whether the latest perturbative LLHs 

use the intensity of the mutation parameter or not. However, no parameter update is made 

for the perturbative LLHs if none of the perturbative LLHs applied in the last ILS cycle 

use the parameter. The local search parameter update begins after the while loop. The LS-

Seq local search procedure keeps the parameter values of the local search LLHs applied 

during the intensification phase in a list tagged p_list. If the size of p_list is zero, it means 

that no single local search heuristic has improved the solution constructed during the per-

turbation stage. The for loop simply goes through the list and adds every member to the 

bounded list of ”elite” parameters for the local search heuristics. The value of �� = 5 

means there is a maximum of five parameter values in either of the bounded lists at any 

point in time during the search process. 

Algorithm 6: updateParam() 

i ← 0 

while i < �����  

  ��
�.add(�� , ��) 

  i ← i + 1 

end while 

if |p_list| > 0 

  for � ∈ �_���� 

    ��
�.add(�� , ��) 

  end for 

end if 

3.2.3. Evolutionary Operator of EA-ILS Hyper-Heuristic 

The design of a novel mutation evolutionary operator for the EA-ILS hyper-heuristic 

is discussed in this section. The mutation operator that is applied to a sequence during the 

search process is implemented by Algorithm 7, which presents three main cases as fol-

lows. 

1. Wild mutation: This is the first case; it occurs (pw ∗ 100) % of the time when muta-

tion takes place. The value pw represents the probability of ”wild mutation”, which 

was set at 0.5 in this study. If {3, 2} is changed to {4, 0}, for example, it would be 

noticed that the two pairs are not similar, hence the name “wild mutation”; 

2. Add random: Since the maximum length of a sequence is 2, there are two cases when 

adding a new perturbative LLH to a sequence. Case 2a: If the randomly generated 

position (tagged loc) is 0, which denotes adding the new LLH at the first position, 

randomly select a perturbative LLH and add it to position 0, replacing the incumbent 

occupant of position 0. Case 2b: This is similar to Case 2a, only that the newly gener-

ated member is fixed at position 1; 

3. Remove random: The remove random case selects a random position and the LLH 

at that position is removed or replaced. This case presents three possible sub-cases as 

follows: The first two sub-cases are triggered when the position to remove from is 

the first position, i.e., position 0. The last sub-case is when a LLH at position 1 is to 

be removed; in this sub-case, the LLH at this position is simply removed. Case 3a: If 

a sequence is full, i.e., there are two perturbative LLHs in the sequence, remove the 

LLH ℎ�  at position 0 and move the LLH at the next position to position 0. Case 3b: 
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The current perturbative LLH at position 0 in the sequence is replaced with randomly 

generated LLH while the second position is still vacant. 

Algorithm 7. mutate() 

Input: an operation sequence H 

� ← Rnd.Real(0,1) 

if � < pw                    ⊳ Begin Case 1 

  �� ← rndSel(�����) 

  �� ← rndSel(�����) 

  Return 

end if                       ⊳ End Case 1 

loc ← Rnd.Int [0, 2) 

if Rnd.Bool()                ⊳ Begin Case 2 

  h ← rndSel(�����) 

  ���� ← h 

else                         ⊳ Begin Case 3          

  if loc = 0 ∧ �� ≠ −1 

    �� ← �� 
    �� ← −1 

  else if loc = 0 ∧ �� = −1 

    h ← rndSel(�����) 

    ���� ← h 

  else  

    ���� ← −1 

  end if 

end if 

3.2.4. Local Search Procedure of EA-ILS Hyper-Heuristic 

The local search procedure (LS-Seq) for the intensification stage of the EA-ILS hyper-

heuristic is briefly described in Algorithm 8. It is based on the hidden Markov model prin-

ciple for constructing effective heuristic sequences [70] and was proposed as an alternative 

to the VNS [48]. The LS-Seq was designed to eliminate the excessive iterations in the ILS-

based hyper-heuristics such as FS-ILS and NR-FS-ILS that carry local search invocation 

based on the VNS. It maintains two data structures which are iScore and pScore. The iScore 

is for storing the level of influence of a particular local search heuristic to produce the best 

new solutions. The pScore is for measuring the effectiveness of applying two local search 

heuristics in succession. The input to the procedure is a perturbed solution that goes 

through hill-climbing intensification and the best solution found at the end of the proce-

dure is returned. �����, ���, and �∗ respectively represent the perturbed solution, the so-

lution produced after applying a local search heuristic, and the best solution found so far 

during the intensification stage. The roulette wheel scheme was employed to select the 

first local search heuristic before the while loop using the vector iScore. However, within 

the loop, the next local search heuristic to apply is based on two parameters: the matrix 

pScore and the previously applied local search heuristic captured by its index prev. It is 

important to note that all the entries of the two data structures are initially set to 1. 

Algorithm 8: LS-Seq procedure 

Input: �����, the solution from the perturbation stage 

��� ← �����  

��� ← ���(������)/*Based on iScore, select the index of the current LLH*/ 

ℎ� ← ��[���]      /*get HyFlex id of the LLH*/ 

�∗ ← �����(ℎ�, ���) /*apply the LLH*/ 
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while �(�∗) < �(���) 

  ��� ← �∗  

  ���� ← ���/*update the index of the previous local search LLH*/ 

  ��� ← ���(������, ����)/*select the index of the next LLH*/ 

  ℎ� ← ��[���] 
  �∗ ← �����(ℎ�, ���)  

end while 

Output: ���, the best solution produced from the LS-Seq procedure 

Figure 2 illustrates how the data structures of LS-Seq were updated. In the first view, 

heuristic L0 has only been involved once during the update of the best global solution. L1 

and L2 have been involved two times and five times, respectively, hence the vector entries 

2, 3, 6. During the call of the LS-Seq procedure, L0, L1, and L2 are applied in the given 

order, leading to the update of both the iScore vector and the pScore matrix. Specifically, 

the intersection of L0–L1 was updated to 3 while that of L1–L2 was updated to 7 to 

strengthen the selection of L1 after the application of L0 and the selection of L2 after the 

application of L1. Since all the local search heuristics were applied once based on the se-

quence L0, L1, L2, they all received an increment of 1 in their respective iScore entries to 

change {2, 3, 6} to {3, 4, 7}. At the end of the third view, only L2 is applied during the 

current call of LS-Seq, and its iScore value is increased to 9. The iScore vector has the en-

tries {3, 5, 9}, while no update is performed on the pScore matrix because the sequence 

{L2} is a singleton. Eventually, the local search invocation almost creates a sequence based 

on the inter-neighborhood strengths discovered over time. 

 

Figure 2. Illustration of LS-Seq update procedure. 

4. Experimental Results 

The EA-ILS hyper-heuristic has been tested on all instances of each problem in the 

extended HyFlex suite. The stopping criterion for the EA-ILS hyper-heuristic was set ac-

cording to the execution time returned by a program on the machine used for the experi-

mentation. The time limit for the EA-ILS hyper-heuristic on the machine used for an ex-

periment is 530 s, which is the equivalent of 600 s on a standard testing computer 
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according to the CHeSC 2011 organizers. The performance of the EA-ILS hyper-heuristic 

on the extended HyFlex domains was benchmarked against those of other hyper-heuris-

tics that have been tested on the domains. The other competing algorithms include FS-

ILS, NR-FS-ILS, AdapHH, EPH, SR-IE, SR-AM, and SSHH. Both SR-IE and SR-AM select 

LLHs at random but differ in their acceptance mechanisms. SR-IE accepts solutions with 

equal or better quality than the incumbent solution while SR-AM accepts every proposed 

solution regardless of its quality. The data generated for the performances of the three 

domains were obtained from the webpage (https://github.com/Steven-Adriaensen/hyflext 

accessed on 10 September 2022), which the exception of that of the SSHH. The median 

objective function values (ofvs) of the solutions obtained for the SSHH can be found in a 

paper [25]. Tables 3 and 4 respectively highlight the performance of the EA-ILS hyper-

heuristic in terms of its overall best and median best ofvs obtained across the 30 instances 

of the problem domains in comparison with the top six performing hyper-heuristics re-

ported in [25], where the values in bold style denote the best values. In Table 3, the per-

centage deviation in the best ofv of the EA-ILS hyper-heuristic in each instance from the 

best-known values reported in [24], denoted by ∆(%), is presented. 

Table 3. Best ofvs Obtained by the EA-ILS in Comparison to the Existing Hyper-Heuristics. 

Domain I ∆(%) EA-ILS AdapHH FS-ILS NR-FS-ILS EPH SSHH SR-AM 

K
n

ap
sa

ck
 P

ro
b

le
m

 

0 0.0000 −104,046 −104,046 −104,046 −104,046 −104,046 −104,046 −104,046 

1 0.0026 −1,263,828 −1,263,317 −1,238,256 −1,251,478 −1,257,833 −1,261,320 −1,218,285 

2 0.0592 −243,001 −242,841 −239,378 −241,794 −242,198 −242,963 −239,346 

3 0.0009 −431,359 −431,363 −431,347 −431,354 −431,350 −431,362 −431,330 

4 0.0000 −396,167 −396,167 −396,167 −396,167 −396,167 −396,167 −396,167 

5 1.8119 −4,337,691 −4,378,410 −4,266,654 −4,248,962 −4,341,328 −4,268,665 −4,264,094 

6 0.7982 −946,555 −943,371 −938,125 −938,646 −943,247 −943,136 −934,838 

7 0.0000 −1,577,175 −1,577,175 −1577,166 −1,577,166 −1,577,175 −1,577,175 −1,577,175 

8 0.0014 −1,530,515 −1,530,497 −1530,479 −1,530,480 −1,530,514 −1,530,511 −1,530,476 

9 0.0063 −1,467,362 −1,467,362 −1467,357 −1,467,353 −1,467,387 −1,467,362 −1,467,357 

Q
u

ad
ra

ti
c 

A
ss

ig
n

m
en

t 
P

ro
b

-

le
m

 

0 0.0000 152,002 152,046 152,002 152,044 152,116 152,224 152,280 

1 0.0065 153,900 153,890 153,916 153,890 153,942 154,130 154,160 

2 0.0000 147,862 147,868 147,898 147,866 147,872 147,930 148,058 

3 0.0013 149,578 149,672 149,596 149,594 149,762 149,782 149,846 

4 0.7836 21,217,438 21,303,448 21,246,800 21,242,104 21,279,308 21,325,030 21,454,914 

5 0.0000 1,185,996,137 1,185,996,137 1,186,007,112 1,186,055,449 1,185,996,137 1,186,663,179 1,187,672,220 

6 13.1320 499,802,038 500,066,316 499,728,427 499,571,734 500,645,098 500,015,697 499,912,219 

7 2.2737 44,846,660 44,825,454 44,840,214 44,843,206 44,817,780 44,855,568 44,850,886 

8 6.8364 8,141,608 8,148,152 8,152,748 8,147,252 8,140,772 8,151,040 8,154,234 

9 0.0022 273,044 273,054 273,112 273,054 273,276 273,216 273,262 

M
a

x
im

u
m

-c
u

t 
P

ro
b

le
m

 

0 0.0000 −41,684,814 −41,684,814 −41,684,814 −41,684,814 −41,446,603 −41,517,765 −40,699,212 

1 1.2953 −279,538,175 −274,477,564 −263,474,137 −261,502,273 −269,348,577 −277,548,425 −265,390,780 

2 0.0979 −3061 −3053 −3057 −3056 −3041 −3062 −3056 

3 0.0328 −3049 −3032 −3033 −3042 −3017 −3050 −3044 

4 0.2621 −3044 −3037 −3037 −3043 −3017 −3051 −3043 

5 0.8159 −13,250 −13,177 −13,158 −13,152 −13,140 −13,300 −13,230 

6 1.3006 −1366 −1334 −1318 −1332 −1272 −1358 −1332 

7 1.4856 −10,146 −9929 −9744 −9765 −9851 −10,125 −9951 

8 0.0000 −458 −458 −456 −456 −440 −458 −456 

9 2.3889 −2942 −2832 −2718 −2730 −2760 −2960 −2862 
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Table 4. Median ofvs Obtained by the EA-ILS in Comparison to the Existing Hyper-Heuristics. 

Domain I EA-ILS AdapHH FS-ILS NR-FS-ILS EPH SSHH SR-AM 

K
n

ap
sa

ck
 P

ro
b

le
m

 

0 −104,046  −104,046  −104,046  −104,046  −104,046  −104,046  −104,025  

1 −1,262,154  −1,258,634  −1,220,103  −1,231,767  −1,253,074  −1,247,642  −1,209,914  

2 −242,603  −242,104  −236,813  −239,578  −240,663  −241,934  −238,397  

3 −431,344  −431,351  −431,297  −431,312  −431,333  −431,350  −431,311  

4 −396,167  −396,167  −395,941  −395,654  −396,167  −396,167  −396,167  

5 −4,256,586  −4,328,770  −3,756,992  −3,697,266  −4,283,926  −4,251,693  −4,248,962  

6 −940,291  −937,868  −906,490  −895,516  −936,200  −929,052  −923,973  

7 −1,577,175  −1,577,175  −1,572,999  −1,572,999  −1,577,175  −1,577,175  −1,577,175  

8 −1,530,477  −1,530,463  −1,347,297  −1,346,608  −1,530,471  −1,530,477  −1,530,453  

9 −1,467,357  −1,467,353  −1,463,681  −1,462,759  −1,467,357  −1,467,357  −1,467,353  

Q
u

ad
ra

ti
c 

A
ss

ig
n

m
en

t 
P

ro
b

-

le
m

 

0 152,102  152,214  152,196  152,196  152,388  152,572  152,402  

1 154,010  154,164  154,088  154,166  154,390  154,492  154,290  

2 147,890  147,970  148,002  147,978  148,122  148,374  148,190  

3 149,722  149,850  149,858  149,828  150,144  150,366  149,992  

4 21,306,194  21,366,688  21,309,208  21,321,554  21,401,254  21,419,490  21,518,130  

5 1,187,379,429  1,187,875,748  1,187,490,923  1,187,383,316  1,189,221,001  1,190,346,287  1,189,321,259  

6 501,094,667  502,937,700  503,088,738  502,654,006  502,409,100  504,406,437  502,293,807  

7 44,867,334  44,858,394  44,874,028  44,873,022  44,860,940  44,892,452  44,866,876  

8 8,152,360  8,163,764  8,169,250  8,162,592  8,163,304  8,179,752  8,168,990  

9 273,312  273,414  273,362  273,336  273,630  273,622  273,512  

M
a

x
im

u
m

-c
u

t 
P

ro
b

le
m

 

0 −41,398,025  −41,348,693  −41,348,693  −41,145,032  −40,953,212  −41,101,646  −40,502,841  

1 −276,571,977  −255,265,025  −255,265,025  −257,764,081  −260,608,752  −273,938,900  −263,151,470  

2 −3051  −3044  −3041  −3044  −3023  −3056  −3046  

3 −3035  −3025  −3020  −3025  −3004  −3040  −3033  

4 −3039  −3026  −3026  −3028  −3004  −3041  −3035  

5 −13,211  −13,126  −13,083  −13,091  −13,065  −13,243  −13,177  

6 −1356  −1314  −1302  −1304  −1206  −1352  −1322  

7 −10,078  −9823  −9632  −9668  −9794  −10,074  −9878  

8 −456  −450  −450  −450  −430  −454  −454  

9 −2902  −2786  −2676  −2680  −2,648  −2912  −2814  

4.1. Comparison of Hyper-Heuristic Algorithms  

The F1 scoring system is one of the most popular metrics for evaluating hyper-heu-

ristics [11]. The competing algorithms are assigned points based on the ofvs of their me-

dian (16th) best solutions obtained after 31 trials on each instance of a problem in the given 

test suite. Points 10, 8, 6, 5, 4, 3, 2, and 1 are awarded to the best hyper-heuristic down to 

the eighth best hyper-heuristic on the instance of a problem, respectively. Ties are handled 

by averaging the points that would have been given to the hyper-heuristics if there was 

no tie and assigning the average score to each of the hyper-heuristics. The results follow-

ing the evaluation of the EA-ILS hyper-heuristic against the existing seven hyper-heuris-

tics using the F1 ranking are presented in the form of bar charts in Figure 3. The EA-ILS 

hyper-heuristic emerged as the winner of the contest across the problem domains used as 

the basis for evaluation (Figure 3a–d). The scores of the EA-ILS hyper-heuristic on KP, 

QAP, and MAC problems are 78.2, 95.0, and 90.0, respectively, bearing in mind that the 

total obtainable score on each domain is 100.0. The top three performing hyper-heuristics 

are EA-ILS with 263.2 points, AdapHH with 180.2 points, and SSHH with 171.2 points 

while SR-IE finished last with 48.5 points. The no-restart version of the FS-ILS hyper-heu-

ristic (NR-FS-ILS) outperformed the original version (FS-ILS) in all the domains while the 

SR-AM hyper-heuristic finished fourth based on the overall rankings. 
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Figure 3. F1 scores of the hyper-heuristics on the three problem domains (a–c) and the sum of scores 

across the three domains (d). 

The performance of the EA-ILS hyper-heuristic was further compared with those of 

six other hyper-heuristics using the evaluation metrics of μ-norm, μ-rank, best, and worst 

[24,25]. The μ-norm is an average normalized evaluation function and is a more robust 

evaluation metric than the F1 scoring system. This is because it can evaluate the perfor-

mance of a hyper-heuristic based on the quality of the 31 solutions obtained over 31 trials 

on a problem instance relative to its competitors. The μ-rank is the average rank of the 

median cost obtained by each metric and is based on the value of the μ-norm. This means 

that the comparative hyper-heuristics are ranked based on the increasing value of μ-norm. 

The highest μ-rank is 1 while the lowest is n, where n is the number of competing hyper-

heuristics. The metrics best and worst refer to the number of instances for which a hyper-

heuristic obtained the best (highest) and worst (lowest) median ofvs. The SSHH algorithm 

is not included in the evaluation because the quality of the 31 solutions obtained from its 

test on the instances could not be obtained. Table 5 presents the AdapHH hyper-heuristic 

as the closest challenger to the EA-ILS hyper-heuristic on the knapsack problem, but the 

metric values for the EA-ILS hyper-heuristic still establish its superiority. In the other two 

problem domains, the EA-ILS hyper-heuristic was dominant over the comparative hyper-

heuristics across evaluation metrics and problem domains as shown in Tables 5–8. The 

overall performance of the EA-ILS hyper-heuristic is seen in Table 8 to be better than those 

of the comparative hyper-heuristics across the evaluation metrics. 

Table 5. Evaluation Results on the Knapsack Problem. 

Rank Hyper-Heuristic µ-Norm µ-Rank Best Worst 

1 EA-ILS 0.0210 1.30 8 0 

2 AdapHH 0.0302 1.70 5 0 

3 EPH 0.0556 2.00 4 0 

4 SR-AM 0.1507 4.00 2 0 

5 SR-IE 0.3300 5.50 0 4 

6 NR-FS-ILS 0.3628 5.30 1 6 

7 FS-ILS 0.3967 5.40 1 2 
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Table 6. Evaluation Results on the Quadratic Assignment Problem. 

Rank Hyper-Heuristic µ-Norm µ-Rank Best Worst 

1 EA-ILS 0.0727 1.30 9 0 

2 NR-FS-ILS 0.1036 2.90 0 0 

3 AdapHH 0.1063 3.40 1 0 

4 FS-ILS 0.1071 3.80 0 0 

5 EPH 0.1369 4.60 0 0 

6 SR-AM 0.1486 4.90 0 0 

7 SR-IE 0.6355 7.00 0 10 

Table 7. Evaluation Results on the Maximum-Cut Problem. 

Rank Hyper-Heuristic µ-Norm µ-Rank Best Worst 

1 EA-ILS 0.0886 1.00 10 0 

2 SR-AM 0.2392 2.50 0 0 

3 AdapHH 0.2658 3.00 0 0 

4 NR-FS-ILS 0.3634 3.90 0 0 

5 FS-ILS 0.3811 4.80 0 2 

6 EPH 0.5116 5.60 0 1 

7 SR-IE 0.7305 6.60 0 7 

Table 8. Overall Performance on the Extended Hyflex Test Suite. 

Rank Hyper-Heuristic µ-Norm µ-Rank Best Worst 

1 EA-ILS 0.0608 1.20 27 0 

2 AdapHH 0.1341 2.70 6 0 

3 SR-AM 0.1795 3.80 2 0 

4 EPH 0.2347 4.07 4 1 

5 NR-FS-ILS 0.2766 4.03 1 6 

6 FS-ILS 0.2950 4.67 1 4 

7 SR-IE 0.5653 6.37 0 21 

4.2. Statistical Significance of Hyper-Heuristic Algorithms 

The statistical significance of the superiority of the EA-ILS hyper-heuristic over the 

comparative hyper-heuristics was established across the three problem domains. The 

Friedman test was first performed on the median ofvs of the competing hyper-heuristics 

to statistically evaluate these values. The boxplot visualizations of the median ofvs per 

problem domain and overall performance are subsequently presented. 

4.2.1. Friedman Test 

The median ofvs obtained by the hyper-heuristics, including the SSHH, were sub-

jected to the Friedman test at a significance level of 0.05. The test result returned a p-value 

less than 2.2 × 10−16, which is an insignificant value. This result means that there is a sig-

nificant difference between the median ofvs obtained by the EA-ILS hyper-heuristic across 

the three problem domains. The Friedman rankings are presented in Table 9 and indicate 

that the EA-ILS hyper-heuristic is the best with a rank of 1.67 while AdapHH and SSHH 

finished second and third, respectively. The two variants of ILS, which are FS-ILS and NR-

FS-ILS, finished sixth and seventh, respectively. 
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Table 9. Ranking of the Hyper-Heuristics Using the Friedman Test. 

S/N Hyper-Heuristic Rank 

1 EA-ILS 1.67 

2 AdapHH 3.38 

3 SSHH 3.88 

4 SR-AM 4.58 

5 EPH 4.78 

6 NR-FS-ILS 4.83 

7 FS-ILS 5.45 

8 SR-IE 7.35 

4.2.2. Boxplot Analysis 

The boxplots in Figure 4a–d represent the performance of the eight hyper-heuristics 

presented in Table 9. The ten median ofvs obtained by the eight hyper-heuristics over the 

ten instances of the problem domains were used as data points for plotting the boxplots. 

The overall boxplot in Figure 4d combines the data points from each domain to visualize 

the overall performance of each hyper-heuristic. The median ofv obtained by each algo-

rithm in an instance i was normalized to a value in the range [0, 1] using Equation (1) to 

obtain a uniform evaluation ���(�, �, ℎ, �, �) as follows: 

���(�, �, ℎ, �, �) =
��

� − ��
�

��
� − ��

�
 (1)

where ��
� is the median ofv obtained by a given hyper-heuristic h on an instance i, ��

� is 

the median ofv obtained by the best hyper-heuristic b on an instance i, and ��
� is the me-

dian ofv obtained by the worst hyper-heuristic w on an instance i. The best hyper-heuristic 

in an instance receives a value of 0.0 while the worst receives a value of 1.0 according to 

Equation (1). Figure 4 shows that the EA-ILS hyper-heuristic is the best performing across 

the problem domains. 

 

Figure 4. Boxplot visualizations of the median objective function values obtained by hyper-heuris-

tics per domain (a–c) and the overall boxplot over all three domains (d). 
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4.3. Application of EA-ILS Hyper-Heuristic to HyFlex Version 1.0 

The EA-ILS hyper-heuristic was tested on six problem domains of the first version of 

HyFlex (HyFlex V1.0) to further demonstrate its generality. The problem domains are 

Boolean satisfiability (SAT), bin packing (BP), personnel scheduling (PS), permutation 

flow-shop (PFS), traveling salesman problem (TSP), and vehicle routing problem (VRP). 

Tables 10 and 11 respectively show comparisons of the best and median ofvs of the EA-

ILS hyper-heuristic obtained from its 31 runs in each instance against the state-of-the-art 

hyper-heuristics AdapHH, FS-ILS, and TS-ILS [48]. The values presented in the tables fur-

ther establish the competitiveness of the EA-ILS hyper-heuristic when compared to the 

state-of-the-art ones. It is important to note that only algorithms that were run with the 

updated version of HyFlex v1.0 can be directly compared with the EA-ILS hyper-heuristic 

on the PS domain. 

Table 10. Best ofvs Obtained by EA-ILS against three state-of-the-art Hyper-Heuristics. 

Domain Instance EA-ILS AdapHH FS-ILS TS-ILS 

MAX-SAT 

SAT3 1.0 1.0 1.0 0.0 

SAT5 1.0 3.0 1.0 1.0 

SAT4 0.0 1.0 0.0 0.0 

SAT10 1.0 1.0 1.0 1.0 

SAT11 7.0 7.0 7.0 7.0 

Bin Pack-

ing 

BP7 0.01107109 0.0131 0.01384737 0.01569294 

BP1 0.00339113 0.0028 0.00666972 0.00306951 

BP9 0.00162385 0.0004 0.01004134 0.00049110 

BP10 0.10829805 0.1083 0.10833606 0.10827981 

BP11 0.00431172 0.0031 0.01047079 0.00115128 

Personnel 

Scheduling 

PS5 15.0 - 17.0 15.0 

PS9 9176.0 - 9486.0 9291.0 

PS8 3136.0 - 3148.0 3142.0 

PS10 1380.0 - 1360.0 1453.0 

PS11 305.0 - 325.0 315.0 

Flowshop 

PFS1 6210.0 6214.0 6214.0 6210.0 

PFS8 26700.0 26757.0 26743.0 26744.0 

PFS3 6303.0 6303.0 6303.0 6303.0 

PFS10 11308.0 11318.0 11332.0 11308.0 

PFS11 26511.0 26541.0 26547.0 26516.0 

Travelling 

Salesman 

TSP0 48194.9 48194.9 48194.9 48194.9 

TSP8 20732537.2 20752853.8 20933386.7 20662037.2 

TSP2 6798.8 6797.5 6796.5 6798.6 

TSP7 66017.2 66277.1 65748.4 65592.7 

TSP6 52545.2 52383.8 52385.5 52308.7 

Vehicle 

Routing 

VRP6 61943.4 58052.1 63429.7 60145.1 

VRP2 12270.1 13304.9 12277.1 12266.9 

VRP5 143902.4 145481.5 142481.3 142607.9 

VRP1 20652.2 20652.3 20651.6 20652.2 

VRP9 144030.2 146154.1 144686.3 143479.0 

Table 11. Median ofvs Obtained by EA-ILS against three state-of-the-art Hyper-Heuristics. 

Domain Instance EA-ILS AdapHH FS-ILS TS-ILS 

MAX-SAT 

SAT3 4.0 3.0 2.0 2.0 

SAT5 5.0 5.0 3.0 3.0 

SAT4 2.0 2.0 1.0 1.0 

SAT10 6.0 3.0 2.0 1.0 

SAT11 9.0 8.0 8.0 8.0 
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Bin Packing 

BP7 0.01612590 0.01607535 0.01851932 0.01876799 

BP1 0.00354067 0.00360372 0.00751493 0.00350695 

BP9 0.00267695 0.00356587 0.01122520 0.00052035 

BP10 0.10831818 0.10828303 0.10840170 0.10828402 

BP11 0.00755952 0.00354259 0.01355520 0.00142866 

Personnel Scheduling 

PS5 20.0 - 23.0 21.0 

PS9 9560.0 - 9763.0 9548.0 

PS8 3164.0 - 3236.0 3181.0 

PS10 1550.0 - 1635.0 1550.0 

PS11 325.0 - 345.0 330.0 

Flowshop 

PFS1 6224.0 6240.0 6241.0 6232.0 

PFS8 26769.0 26814.0 26797.0 26785.0 

PFS3 6323.0 6326.0 6323.0 6325.0 

PFS10 11344.0 11359.0 11374.0 11340.0 

PFS11 26583.0 26643.0 26605.0 26601.0 

Travelling Salesman 

TSP0 48194.9 48194.9 48194.9 48194.9 

TSP8 21333200.2 20822145.6 21172591.7 20779493.2 

TSP2 6805.8 6810.5 6806.7 6805.3 

TSP7 66483.8 66879.8 66415.3 66133.0 

TSP6 53997.5 53099.8 52840.8 53762.4 

Vehicle Routing 

VRP6 66178.5 60900.6 65638.8 63709.0 

VRP2 13286.3 13347.6 12308.0 13292.8 

VRP5 146813.7 148516.8 146871.0 145401.5 

VRP1 20654.1 20656.6 20654.1 20654.7 

VRP9 145765.2 148689.2 146242.7 145205.4 

The entries for TS-ILS and FS-ILS were taken from a previous study [48] where both 

methods were tested on the same machine. The EA-ILS hyper-heuristic comfortably out-

performed others on the PS and PFS problem domains. Moreover, it has outperformed 

the FS-ILS hyper-heuristic on the BP problem but is inferior to others on the SAT accord-

ing to the median ofvs obtained. The performances of the 20 CHeSC entries, EA-ILS, TS-

ILS, and FS-ILS were further analyzed using the F1 ranking test. Table 12 shows the results 

of the EA-ILS hyper-heuristic versus only the 20 CHeSC entries while Figure 5 shows the 

results of the EA-ILS hyper-heuristic vs. the 20 CHeSC entries, FS-ILS, and TS-ILS. The 

overall F1 ranking of the EA-ILS hyper-heuristic based on the total number of algorithms 

is 3 as observed in Figure 5, behind the TS-ILS and FS-ILS hyper-heuristics. We recorded 

a total score of 126.25 and a deficit of 4.50 for the score of the FS-ILS hyper-heuristic. It 

finished fourth, third, first, fifth, and joint third in the SAT, BP, PFS, TSP, and VRP prob-

lem domains, respectively. The results of the PS of the EA-ILS, FS-ILS, and TS-ILS hyper-

heuristics could not be used for these rankings. This is because of the use of the updated 

HyFlex library, which was released to correct the errors identified on the PS domain. 

Table 12. F1 scores of top 7 Hyper-heuristics after comparing EA-ILS with the 20 CHeSC entries. 

 Problem Domains 

Hyper-Heuristic SAT BP PFS TSP VRP Overall 

EA-ILS 21.2 36.0 48.0 24.0 29.5 158.7 

AdapHH 33.6 42.0 30.0 36.25 13.0 154.85 

ML 11.0 8.0 31.5 11.0 19.5 81.0 

VNS-TW 33.6 2.0 26.0 15.25 4.0 80.85 

PHUNTER 8.0 2.0 6.0 24.25 30.0 70.25 

EPH 0.0 6.0 16.0 32.25 11.0 65.25 
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NAHH 11.5 18.0 18.5 11.0 5.0 64.0 

 

Figure 5. F1 plots of EA-ILS with other top hyper-heuristics on the HyFlex domains. 

The comparison of three ILS-based hyper-heuristics using a more robust �-norm per-

formance metric [24,25] was performed across the six domains from HyFlex v1.0. The per-

formance metric normalizes the 31 objective function values obtained by a given hyper-

heuristic, thus using the results of all 31 trials per instance as a basis for the evaluation. A 

fair comparison is possible based on the six domains of HyFlex v1.0 because the results 

for the PS achieved by the FS-ILS hyper-heuristic and the TS-ILS hyper-heuristic were 

based on the updated library for the domain. Table 13 summarizes the benchmarking of 

the performance of the EA-ILS hyper-heuristic with the results obtained by the FS-ILS and 

TS-ILS hyper-heuristics on the original six problem domains. 

Table 13. Benchmarking EA-ILS with FS-ILS and TSILS on the six domains of HyFlex v1.0 using the 

�-norm metric 

Hyper-Heuristic 
Problem Domains 

SAT BP PS PFS TSP VRP Overall 

TS-ILS 0.1341 0.1052 0.3735 0.4515 0.2852 0.3514 0.2835 

EA-ILS 0.3677 0.1779 0.3418 0.3964 0.4435 0.3982 0.3542 

FS-ILS 0.1365 0.5547 0.5505 0.5601 0.2692 0.3653 0.4061 

It is evident from Table 13 that the EA-ILS hyper-heuristic is highly competitive, even 

in the six domains of HyFlex v1.0. Its weaknesses are evidenced by its application to the 

SAT and TSP problem domains. Although Table 10 suggests that the hyper-heuristic can 

find high-quality solutions, it is perhaps the lack of consistency in evolving the most ef-

fective perturbative heuristics, especially on the SAT domain, that has made it inferior to 

the two state-of-the-art hyper-heuristics. However, the EA-ILS hyper-heuristic outper-

formed both the FS-ILS and TS-ILS hyper-heuristics in the PS and PFS problem domains. 

This is highly commendable because of the strong performances of both competitors in 

the PFS domain and the strong performance of TS-ILS in the PS domain. The EA-ILS hy-

per-heuristic was not far from the best method for BP and VRP problems. Overall, it had 

a better �-norm score than the FS-ILS hyper-heuristic, suggesting its better generalization 

ability across the original six problem domains.  
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4.4. Effect of Local Search Procedure 

The local search procedure (LS-Seq) of the EA-ILS hyper-heuristic was compared 

with the VND-style local search, tagged LS-VND, commonly used in the FS-ILS hyper-

heuristic and NR-FS-ILS. The purpose was to experimentally investigate the effect of the 

local search component of the EA-ILS hyper-heuristic on its performance. Two representa-

tive instances were selected for each problem domain for experimentation. The control 

hyper-heuristic was constructed by replacing LS-Seq with LS-VND in the EA-ILS hyper-

heuristic. The comparative results are presented in Table 14, wherein a shaded cell means 

the set-up has a better objective function value than the alternative set-up in the adjacent 

cell. The α and β set-ups were run in an overlapped manner such that when a single run 

or trial is completed on a sample instance for a set-up, the run of the next set-up on the 

same instance immediately follows. Moreover, both set-ups start with the same random 

number seed for each run throughout the entirety of the sample instances. This mecha-

nism ensures fairness in the experiment. The meaning of the column names in Table 14 

along with other important information are described as follows: The column name α rep-

resents the EA-ILS hyper-heuristic with the LS-Seq procedure as the intensification mod-

ule while β is the control hyper-heuristic with the LS-VND procedure as the intensification 

module. α_iter is the number of iterations covered by α while solving a problem instance 

during a run. β_iter is the number of iterations covered by β while solving a problem 

instance during a run. α_lsi is the average number of calls to local search heuristics per 

iteration by α. β_lsi is the average number of calls to local search heuristics per iteration 

by β. The numbers of local search heuristics on the KP, QAP, and MAC domains are 6, 2, 

and 3, respectively. 

Table 14. Test Results from the Overlapping Runs of the two EA-ILS Set-ups. 

 � � ����� ����� ���� ���� 

KP1-1 −1,262,437  −1,255,857  1561 414 6.52 31.09 

KP1-2 −1,260,453  −1,256,773  1234 368 5.95 35.49 

KP1-3 −1,262,433  −1,259,963  1655 356 7.00 39.09 

KP1-4 −1,263,828  −1,256,390  1929 385 9.87 34.76 

KP1-5 −1,254,789  −1,259,903  2089 382 5.07 34.47 

KP5-1 −4,276,582  −4,258,774  182 15 10.13 114.20 

KP5-2 −4,258,106  −3,974,568  145 16 3.16 111.25 

KP5-3 −4,251,970  −4,248,962  100 7 14.17 199.14 

KP5-4 −4,259,539  −3,683,130  158 8 9. 53 203. 50 

KP5-5 −4,270,759  −4,248,962  177 9 6.06 162.89 

QAP0-1 152,068  152,164  1876 2273 1.89 2.84 

QAP0-2 152,360  152,026  1594 2928 1.80 2.92 

QAP0-3 152,398  152,070  2408 2234 1.83 2.87 

QAP0-4 152,076  152,086  1895 2559 1.82 2.83 

QAP0-5 152,048  152,060  3466 2099 1.83 2.81 

QAP7-1 44,884,414  44,870,046  68 81 1.78 2.79 

QAP7-2 44,866,080  44,882,160  180 156 1.90 2.96 

QAP7-3 44,859,006  44,873,662  164 187 1.86 2.84 

QAP7-4 44,870,856  44,854,654  131 233 1.79 2.83 

QAP7-5 44,879,374  44,843,808  180 251 1.89 2.87 

MAC5-1 −13,217  −13,172  10,718 6931 2.17 4.25 

MAC5-2 −13,226  −13,139  13,920 6733 2.27 4.28 

MAC5-3 −13,193  −13,246  10,297 6740 2.23 4.36 

MAC5-4 −13,227  −13,214  10,923 6696 2.25 4.38 

MAC5-5 −13,186  −13,166  10,494 6732 2.27 4.33 

MAC6-1 −1358 −1354 38,313 23,406 1.91 4.19 
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MAC6-2 −1352 −1358 38,719 22,350 2.05 4.29 

MAC6-3 −1362 −1344 38,209 23,286 1.92 4.25 

MAC6-4 −1350 −1352 49,983 24,363 1.86 4.18 

MAC6-5 −1356 −1350 33,797 26,373 2.04 4.04 

The ofv of each run from the two set-ups were normalized to values in the range [0, 

1] using the maximum and minimum ofvs over five trials completed for each sample in-

stance to perform the Wilcoxon signed rank sum test. The reported p-value was 0.2249 at 

a 0.05 level of significance. The obtained p-value indicates that across the entire set of 30 

data points, there is no significant difference between the performances of the two exper-

imental set-ups of the EA-ILS hyper-heuristic. This finding can be attributed to the per-

formance of the EA-ILS hyper-heuristic with the VND style of local search in the QAP 

domain. It was highly competitive or even slightly better than the EA-ILS hyper-heuristic 

with LS-Seq in the two instances of the QAP domain. In fact, after the removal of 10 data 

points that corresponded to the performance in QAP0 and QAP7 instances, a p-value of 

0.01962 was returned from the Wilcoxon signed rank sum test. This would suggest a sig-

nificant difference in the performances of the two set-ups. 

The sum of ranks for the entire set of data points for which the EA-ILS hyper-heuristic 

with LS-Seq outperformed the control algorithm of the EA-ILS hyper-heuristic with LS-

VND is 291 while the sum of ranks of the opposite outcome is 173. A careful observation 

of the α_iter and β_iter values indicates that the first set-up completes a better diversifi-

cation–intensification cycle than the control set-up in the KP instances. Peradventure this 

is the reason for the huge difference in the performances of the two set-ups. The LS-Seq 

set-up was able to visit many search areas and had leverage to escape the local optima 

over the alternative set-up because of the invocation of local search heuristics. The local 

search calls per iteration did not pose a challenge for the LS-VND set-up in the QAP do-

main based on its performance relative to that of LS-Seq. This observation may be at-

tributed to the low number of local search heuristics available for the problem domain. 

Consequently, extensive local search calls improved its search capabilities and made it 

more competitive in the QAP domain. The other interesting phenomenon observed for 

the QAP instances is that the number of cycles completed by LS-Seq for a trial may not be 

higher than that of LS-VND. The EA-ILS hyper-heuristic with LS-Seq performed better 

than its LS-VND counterpart in the MAC instances. This can also be directly attributed to 

the average number of cycles completed by the former set-up in both the MAC5 and 

MAC6 instances. It can be safely concluded that the LS-Seq procedure performs faster 

with better search than LS-VND in both KP and MAC domains while the same statement 

cannot be made for the QAP domain. 

The better performance obtained by the EA-ILS hyper-heuristic with LS-Seq in KP 

and MAC instances can be directly linked to the set-up covering many more iterations 

than its counterpart. Furthermore, experimental results suggest that the more local search 

heuristics that are available for a domain, the more likely an ILS with an LS-VND intensi-

fication procedure is to perform worse, compared to the ILS with a quicker escape from 

the intensification procedure such as LS-Seq. The LS-Seq has more advantages over the 

LS-VND in terms of its search capability. Perhaps if the number of local search heuristics 

for the QAP is increased to four, the LS-Seq outperforms the LS-VND in the same  way it 

occurred in the KP and MAC instances. If a recommendation is to be made based on the 

experimental results, it is safe to use the VND style of local search strategy if the number 

of local search heuristics is small. The moment the number is at least four, a smarter local 

search procedure is required. This experiment has been able to show that the LS-VND 

procedure could impede the performance of the ILS, especially when the number of local 

search heuristics is large. This could be one of the main reasons that FS-ILS and NR-FS-

ILS hyper-heuristics performed poorly in the KP and MAC problem domains. 
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4.5. Analysis of Effective Heuristics for EA-ILS Hyper-Heuristic 

The distribution of effective perturbative heuristic sequences of the EA-ILS hyper-

heuristic used to discover the best global solutions is provided in this section. Two sample 

instances were selected across the six problem domains to observe the low-level pertur-

bative heuristics that make a positive impact on the search performance of the EA-ILS 

hyper-heuristic. The top 10 solutions produced by the EA-ILS hyper-heuristic were taken 

to analyze effective heuristics for a sample instance. The number of times a heuristic se-

quence updated the best solution was recorded for each sequence. The EA-ILS hyper-heu-

ristic typically evolves many sequences during the optimization process and each of them 

may improve the best solution at least once. Therefore, the top n sequences with their 

improvement tallies were selected for the analysis. Figures 6–8 present the analysis of the 

twelve selected instances of the problem domains. 

 

Figure 6. Analysis of two SAT and two BP instances. 

 

Figure 7. Analysis of two PS and two PFS instances. 
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Figure 8. Analysis of two KP and two MAC instances. 

More rewards were obtained for the SAT3 and SAT4 instances when a sole perturba-

tive heuristic of LLH0 or LLH1 was applied before intensification. The consecutive per-

turbations with LLH2 of a ruin-recreate heuristic with any other choice between two mu-

tation heuristics, LLH5 and LLH3, are very rewarding for solving instances of a bin pack-

ing problem as observed in Figure 6c,d. There is quite a balance between a single pertur-

bation and consecutive perturbations for personnel scheduling, while solving the in-

stances of the permutation flow-shop problem does not need extensive perturbations. The 

favored mutation heuristic of the EA-ILS hyper-heuristic in the domain is LLH0. Solving 

the problems of knapsack and maximum cut requires consecutive perturbations. Less 

than 25% of the best solutions found in the MAC6 and MAC7 instances are based on a 

single perturbation. This could explain why the EA-ILS hyper-heuristic was so effective 

on these problems unlike the FS-ILS and NR-FS-ILS hyper-heuristics. Although the effec-

tiveness of the EA-ILS hyper-heuristic in BP, PS, KP, and MAC domains is evident, the 

LS-Seq procedure also contributed positively to its rapid navigation of the search space 

because it was able to quickly jump out of the local search procedure when a local opti-

mum was detected. 

5. Conclusions 

The evolutionary algorithm-based iterated local search (EA-ILS) hyper-heuristic de-

veloped in this study is a highly effective tool for solving COPs. Hyper-heuristics are 

search methodologies for solving numerous forms of computational search problems with 

manifold applications in complex social problems affecting humanity. The EA-ILS hyper-

heuristic recorded impressive performance when compared to the competitive hyper-

heuristics for solving the QAP domain. It has obtained the best median ofv across several 

problem instances. The overall performance consolidates the observation that the EA-ILS 

hyper-heuristic obtained the best median ofv in 27 out of the available 30 instances across 

three supplementary problem domains. The reason that the EA-ILS hyper-heuristic gen-

erally obtained the best performance against FS-ILS and NR-FS-ILS is explained as fol-

lows: The three algorithms have the potential to pair perturbative LLHs when it is neces-

sary. However, FS-ILS and NR-FS-ILS lack the feature of pairing two heuristics to visit a 

deeper search space because they are designed to operate based on the traditional pertur-

bative LLH plus local search LLH obtained in a typical ILS-based implementation. The 

EA-ILS hyper-heuristic utilizes an evolutionary algorithm to automatically learn se-

quences of perturbative LLHs with the capability of pairing two heuristics for a deeper 

solution space search. 

The EA-ILS hyper-heuristic has been presented in this paper as a high-performance 

tool for solving COPs with a focus on knapsack, quadratic assignment, and maximum-cut 
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problems. The evolutionary learning mechanism was employed to learn how an ILS 

solver perturbs the solutions while solving an instance of a given problem by an oscillat-

ing parameter of an existing acceptance mechanism. The EA-ILS hyper-heuristic has a 

different local search module that automatically learns the promising sequences of local 

search heuristics during the intensification phase of the algorithm. This study has made 

significant contributions to the existing discipline of combinatorial optimization and 

achieved the purpose of designing a hyper-heuristic for performance improvement. The 

extension of the existing ILS framework has been effective considering the dominating 

performance that the EA-ILS hyper-heuristic had over the existing hyper-heuristics ac-

cording to the experimental results in QAP, KP, and MAC instances. The implementation 

of the EA-ILS hyper-heuristic has been able to correct the weaknesses of the ILS-based 

methods in the extended HyFlex domains by performing consecutive perturbations when 

necessary and utilizing a faster local search procedure, especially for problem domains 

such as personnel scheduling with slow heuristics. The EA-ILS hyper-heuristic did not 

completely dominate across the instances of HyFlex v1.0 but was able to outperform the 

FS-ILS hyper-heuristic across the six problem domains. In addition, it ranked ahead of the 

TS-ILS hyper-heuristic in the problem domains of PS and PFS in terms of effectiveness. 

Reviewing the performance of the EA-ILS hyper-heuristic in the initial problem do-

mains of HyFlex, it is evident that it struggled to quickly evolve effective perturbative 

heuristic sequences for some instances. Some domains where the EA-ILS hyper-heuristic 

struggled with evolving effective heuristic sequences include SAT, especially in SAT5 and 

SAT10, and TSP, especially in the TSP8 instance. This is because of the large amount time 

it takes the LLH to finish its operation on the TSP8 instance, while for the other instances, 

it could be the result of extreme criteria used for allowing an operation sequence into an 

archive. This backdrop opens up the need for more research efforts on the EA-ILS hyper-

heuristic. A possible area of improvement could be to combine multiple criteria for archive 

entries, using the acceptance of solutions with the improvement of the best global solution 

instead of only the latter as employed in this study. Although the EA-ILS hyper-heuristic 

was competitive in both HyFlex 1.0 and HyFlex 2.0 problem domains, further improve-

ment can be realized by combining an evolutionary algorithm to create heuristic se-

quences with effective selection mechanisms. 
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