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Abstract: Supergrid graphs are derived by computing stitch paths for computerized embroidery
machines. In the past, we have studied the Hamiltonian-related properties of supergrid graphs and
their subclasses of graphs. In this paper, we propose a generalized graph class for supergrid graphs
called extended supergrid graphs. Extended supergrid graphs include grid graphs, supergrid graphs,
diagonal supergrid graphs, and triangular supergrid graphs as subclasses of graphs. In this paper,
we study the problems of domination and independent domination on extended supergrid graphs.
A dominating set of a graph is the subset of vertices on it, such that every vertex of the graph is
in this set or adjacent to at least a vertex of this set. If any two vertices in a dominating set are not
adjacent, this is called an independent dominating set. Domination and independent domination
problems find a dominating set and an independent dominating set with the least number of vertices
on a graph, respectively. The domination and independent domination set problems on grid graphs
are known to be NP-complete, meaning that these two problems on extended supergrid graphs are
also NP-complete. However, the complexities of these two problems in other subclasses of graphs
remain unknown. In this paper, we first prove that these two problems on diagonal supergrid
graphs are NP-complete, then, by a simple extension, we prove that these two problems on supergrid
graphs and triangular supergrid graphs are also NP-complete. In addition, these two problems on
rectangular supergrid graphs are known to be linearly solvable; however, the complexities of these
two problems on rectangular triangular-supergrid graphs remain unknown. This paper provides
tight upper bounds on the sizes of the minimum dominating and independent dominating sets for
rectangular triangular-supergrid graphs.

Keywords: domination; independent domination; extended supergrid graph; supergrid graph; diagonal
supergrid graph; triangular supergrid graph; rectangular triangular-supergrid graph; grid graph

1. Introduction

For a graph G, we denote the vertex and edge sets of G as V(G) and E(G), respectively.
Let v be a vertex of V(G), and let S be a subset of V(G). We denote the subgraph induced
by S as G[S]. The degree of vertex v in G is denoted by degG(v), which represents the
number of edges incident with v in G. The set of neighbors of a vertex v in G is denoted
by NG(v) = {u ∈ V(G)|(u, v) ∈ E(G)} and NG[v] = NG(v) ∪ {v}. The neighborhood set
of vertex set S in G is defined as NG(S) = ∪v∈SNG(v)− S and NG[S] = NG(S) ∪ S. Let
D ⊆ V(G); a set D is said to dominate vertex v if NG[v] ∩ D 6= ∅. In addition, we can
say that vertex v dominates its neighbors and itself. We say that D dominates S when D
dominates every vertex of set S. If D dominates V(G), set D is said to be a dominating set
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of G. The domination number of a graph G, expressed as γ(G), is the minimum size of
a dominating set of G. A minimum dominating set of graph G is a dominating set with
size γ(G). The domination problem is to find a minimum dominating set of a graph, and is a
well-known NP-complete problem for general graphs [1]. However, the problem remains
NP-complete when the input is restricted to certain special classes of graphs, including
grid graphs [2], 4-regular planar graphs [1], etc.

In the literature, the problems of domination and its variants have been extensively
studied. A variant of the domination problem is to find a minimum dominating set that
satisfies some special conditions. For example, the connected domination problem is to
compute a minimum dominating set such that the subgraph induced by it is connected,
and the dominating cycle problem is to find a cycle with the least number of vertices to
dominate the input graph. In the past, many scholars have proposed many applications
for dominating sets and their variants. For instance, in distributed network applications
the domination problem is to find the minimum number of control centers placed in the
network to ensure that each node is close to at least one center. In a guard location system,
the connected domination problem is to locate the fewest number of guards, allowing them
to connect to each other in order to protect each other and monitor other locations. For
related concepts and applications of these problems, we refer the reader to two survey
books in [3,4]. In this paper, the domination problem, as well as one variant called the
independent domination problem, are studied.

A set of vertices is called independent if any two vertices in it are not adjacent. An
independent dominating set of a graph G is a dominating set I satisfying I as an indepen-
dent set. The independent domination number of a graph G, expressed as γind(G), is the
minimum cardinality of an independent domination set in G. Because an independent
dominating set of a graph G is a dominating set of G, γ(G) 6 γind(G) for any graph G.
That is, γ(G) provides a trivial lower bound for γind(G). The independent domination problem
on graph G is to find an independent dominating set with size γind(G). This problem is
NP-complete for general graphs [1], and remains NP-complete for grid graphs [2], com-
parability graphs, bipartite graphs [5], sat-graphs [6], line graphs [7], chordal bipartite
graphs [8], etc. However, when the input is in some special class of graphs, it allows
polynomial-time algorithms, including permutation graphs, interval graphs [9], chordal
graphs [10], circular-arc graphs [11], AT-free graphs [12], bounded clique-width graphs [13],
etc. For more relevant works on independent domination, we refer the reader to a survey
in [14], and more results in [15–18]. For other relevant works and comparisons, the reader
is referred to [19–21].

Supergrid graphs have been proposed for computing the stitch traces for computerized
embroidery machines [22]. Unfortunately, the Hamiltonian cycle and path problems on
supergrid graphs have been shown to be NP-complete in [22]. Thus, we studied the
complexities of the Hamiltonian and longest paths for the special classes of supergrid
graphs in [23–27]. In this paper, we expand supergrid graphs to a generalized graph class
called extended supergrid graphs. In general, a supergrid graph is not a grid graph, and vice
versa. Extended graphs contain supergrid, grid, diagonal supergrid, triangular supergrid
graphs as graph subcalsses. Generally, rectangular grid graphs form a subclass of grid
graphs, rectangular supergrid graphs form a subclass of supergrid and diagonal supergrid
graphs, and rectangular triangular-supergrid graphs are a subclass of triangular supergrid
graphs. However, the intersection of rectangular grid graphs, rectangular supergrid graphs,
and rectangular triangular-supergrid graphs is empty, except for certain special paths.
In this paper, we study the complexities of domination and independent domination
problems for extended supergrid graphs and their subclasses. The domination problem
on grid graphs is known to be NP-complete [2]. Thus, the studied problems are NP-
complete as well for extended supergrid graphs. In [28], we provided a rough proof to
claim that the domination and independent domination problems on supergrid graphs
are NP-complete. In this paper, we present a full proof to show that the domination and
independent domination problems on diagonal supergrid graphs are NP-complete. By a
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simple extension, we verify that these two problems for supergrid and triagular supergrid
graphs are NP-complete as well. On the other hand, the domination and independent
domination numbers of rectangular grid graphs have been computed in [18,29–31]. In [28],
we solved the domination and independent domination problems on rectangular supergrid
graphs in linear time. However, the complexities of the domination and independent
domination problems on rectangular triangular-supergrid graphs remain unknown. In this
paper, we provide a tight upper bound of the domination and independent domination
numbers for rectangular triangular-supergrid graphs.

The remainder of this paper is organized as follows. Section 2 describes the symbols
used in this paper, definitions, and several known related results. In Section 3, we first prove
the domination and independent domination problems on diagonal supergrid graphs to be
NP-complete in detail. We then extend this result into supergrid and triangular supergrid
graphs. In Section 4, we provide a tight upper bound of the domination and independent
domination numbers for rectangular triangular-supergrid graphs. Finally, concluding
remarks are made in Section 5.

2. Preliminaries

In this section, we define the notation used in the paper and present results in the
literature that are relevant to our work. For graph theory terms not defined here, the reader
is referred to [32]. Let G be an undirected and simple graph with a vertex set V(G) and
an edge set E(G). A (simple) path P in G, expressed as v1 → v2 → . . . → v|P|−1 → v|P|,
is a sequence (v1, v2, . . . , v|P|−1, v|P|) of distinct vertices such that (vi, vi+1) ∈ E(G) for
1 6 i < |P|. We use “vi ∈ P” to mean “vi is a vertex that appears in P” and the edge
“(vi, vi+1) ∈ P” to mean “P visits edge (vi, vi+1)”. The path from vertex v1 to vertex vk is
represented as the (v1, vk)-path, and to avoid confusion we use Pn to denote a path with n
vertices. To simplify notation, we use % for modulo arithmetic throughout the rest of this
paper. The following lemma shows the domination and independent domination numbers
γ(Pn) and γind(Pn) of path Pn provided in [30], and can be easily proven by induction on n.

Lemma 1 (see [30]). γ(Pn) = γind(Pn) = b n+2
3 c = d

n
3 e, where n denotes the number of vertices

in path Pn.

Due to the above lemma, the following proposed graph classes do not contain paths
as graph subclasses. We introduce extended supergrid graphs and its subclasses of graphs
as follows. Let S∞ be an infinite graph such that its vertex set V(S∞) contains all points of
the Euclidean plane with integer coordinates and its edge set E(S∞) = {(u, v)| |ux − vx| 6
1 and |uy − vy| 6 1}, where µx and µy represent the x and y coordinates of vertex µ,
respectively, expressed as µ = (µx, µy) for µ ∈ V(S∞). We call S∞ the two-dimensional integer
supergrid. Suppose (u, v) ∈ E(S∞). In the graph we represent, when uy < vy, this indicates
that vertex u is above v, and when ux < vx, u is to the left of v. If ux = vx (respectively,
uy = vy), then (u, v) is called a vertical (respectively, horizontal) edge; otherwise, it is
called a diagonal edge. There are two types of diagonal edges (u, v): if vx = ux − 1 and
vy = uy + 1, then diagonal edge (u, v) is called l-skewed; otherwise, it is called r-skewed.
In our graph representation, when (u, v) is a l-skewed diagonal edge and u is above v,
u is located at the upper right of v in the plane; otherwise, u is located in the upper left
of v in the plane. The two-dimensional integer grid G∞ is an infinite graph that satisfies
V(G∞) = V(S∞) and E(G∞) = {(u, v)| (u, v) is a horizontal or vertical edge}. In addition,
the two-dimensional triangular integer grid T∞ is an infinite graph satisfying V(T∞) = V(S∞)
and E(T∞) = {(u, v)| (u, v) is a horizontal, vertical, or r-skewed diagonal edge}. For
example, Figure 1a–c depicts partial fragments of the infinite graphs G∞, T∞ and S∞,
respectively.
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(a) (b) (c)

r-skewed
diagonal edge

l-skewed
diagonal edge

Figure 1. Partial fragments of (a) G∞, (b) T∞, and (c) S∞.

An extended supergrid graph is a finite connected subgraph of S∞, while a grid graph
(respectively, triangular grid graph, supergrid graph) is a finite and vertex-induced subgraph
of G∞ (respectively, T∞, S∞). Note that an extended supergrid graph is not necessarily a
vertex-induced subgraph of S∞. Thus, extended supergrid graphs contain grid graphs,
triangular grid graphs, and supergrid graphs as subclasses of graphs. A diagonal supergrid
graph is an extended supergrid graph with an edge set that contains at least one l-skewed
and one r-skewed diagonal edge, and a triangular supergrid graph is an extended supergrid
graph such that its edge set contains at least one r-skewed diagonal edge and no l-skewed
diagonal edges. In general, a diagonal supergrid graph is not necessarily a supergrid
graph, and vice versa. The same applies to triangular supergrid graphs and triangular
grid graphs. Let Ce, Cg, Cs, Cd, Cτ , and Ct be the graph classes of extended supergrid,
grid, supergrid, diagonal supergrid, triangular supergrid, and triangular grid graphs,
respectively. Then, Cg, Cs, Cd, Cτ , Ct ⊂ Ce, Cg ∩ Cs = Cg ∩ Ct = Cs ∩ Ct = ∅, Cs ∩ Cd 6= ∅,
and Cτ ∩ Ct 6= ∅. Figure 2 shows the relationship among these graph classes and indi-
cates the complexities of the studied problems for these graph classes. Obviously, all
grid graphs are bipartite [33] and planar; however, (extended, diagonal, triangular) su-
pergrid graphs and triangular grid graphs may not be bipartite. Let Gg, Gs, and Gt be
a grid, supergrid, and triangular grid graph, respectively. Let ν ∈ V(Gg), µ ∈ V(Gs),
and ω ∈ V(Gt). Then, NGg(ν) ⊆ {(νx, νy + 1), (νx, νy − 1), (νx + 1, νy), (νx − 1, νy)},
NGs(µ) ⊆ {(µx, µy + 1), (µx, µy− 1), (µx + 1, µy), (µx− 1, µy), (µx− 1, µy− 1), (µx− 1, µy +
1), (µx + 1, µy − 1), (µx + 1, µy + 1)}, and NGt(ω) ⊆ {(ωx, ωy + 1), (ωx, ωy − 1), (ωx +
1, ωy), (ωx− 1, ωy), (ωx− 1, ωy− 1), (ωx + 1, ωy + 1)}. That is, degGg(ν) 6 4, degGs(µ) 6 8,
and degGt(ω) 6 6.

diagonal
supergrid graphs

grid graphs

C

C Cg d

e

triangular
grid graphs

Ct

rectangular
grid graphs

rectangular
supergrid graphs

rectangular triangular-
supergrid graphs

extended
supergrid graphs

supergrid graphs

Cs

triangular
supergrid graphs

Ct

planar graphs bipartite graphs

P ?

NP-c

Figure 2. The containment relations among the classes of extended supergrid, grid, supergrid,
diagonal supergrid, triangular supergrid, and triangular grid graphs, where C → C ′ indicates that C ′

is a subclass of C. NP-c = NP-complete, P = Polynomial, and ? = unknown for the studied problems.

A rectangular grid graph, denoted Gm×n, is the Cartesian product of paths Pm and Pn;
thus, (u, v) ∈ E(Gm×n) if and only if their distance is 1, that is, |ux − vx|+ |uy − vy| = 1,
where Pi is the simple path with i vertices. A rectangular supergrid (called King’s) graph,
denoted Rm×n, is the strong product of paths Pm and Pn; thus, (u, v) ∈ E(Rm×n) if and only
if their distance is less than or equal to

√
2, that is, 0 6 |ux − vx| 6 1 and 0 6 |uy − vy| 6 1.

A rectangular triangular-supergrid graph, denoted Tm×n, is obtained from Gm×n by adding
edges (u, v) for u, v ∈ V(Gm×n), ux = vx − 1, and uy = vy − 1, i.e., adding diagonal
r-skewed edge to each square of Gm×n. Then, for v ∈ V(Gm×n), u ∈ V(Rm×n) and
w ∈ V(Tm×n), we have degGm×n(v) 6 4, degRm×n(u) 6 8, and degTm×n(v) 6 6. Furthermore,



Algorithms 2022, 15, 402 5 of 19

for m, n > 2, 2 6 degGm×n(v), 3 6 degRm×n(u), and 2 6 degTm×n(w). Note that we use (1, 1)
to denote the coordinates of the upper-left-most vertex of a (grid, supergrid, triangular
supergrid) graph in the figures. For example, Figure 3a–c shows G8×9, R8×9 and T8×9,
respectively. Notice that Gm×n, Rm×n, and Tm×n are not paths; hence, m, n > 2. Without
loss of generality, we assume that n > m > 2 for these rectangular graphs.

m = 8

n = 9

(1, 1)

vertical separation

h
o

ri
z
o

n
ta

l 
se

p
a
ra

ti
o

n(1, 1) (9, 1)

(9, 8)(1, 8)

vertical edge

horizontal edge

r-skewed
diagonal edge

horizontal path P9

(b)

m = 8

n = 9

(1, 1)

(a)

m = 8

n = 9

(c)

Figure 3. (a) A rectangular grid graph G8×9, (b) a rectangular supergrid graph R8×9, and (c) a
rectangular triangular-supergrid graph T8×9, where the set of eight arrow lines in (b) indicates a
horizontal path P9 and the bold dashed lines in (c) indicate vertical and horizontal separations on
T8×9.

A path in an extended supergrid graph is called a horizontal (respectively, vertical) path
if all of its edges are horizontal (respectively, vertical) edges. For instance, the arrow lines
in Figure 3b depict a horizontal path P9. In [28,34], the domination number γ(Rm×n) and
the independent domination number γind(Rm×n) of Rm×n are computed as follows:

Lemma 2 (see [28,34]). γ(Rm×n) = γind(Rm×n) = dm
3 ed

n
3 e.

The complexities of the domination and independent domination problems on rectan-
gular triangular-supergrid graphs remain open. In this paper, we provide a tight upper
bound of γ(Tm×n) and γind(Tm×n). To simplify notation, for a dominating set D of graph
G and the subgraph H of G, we denote the restriction from D to H as D|H . In our method,
a partition may be made on a rectangular triangular-supergrid graph which is split into
two disjoint parts, and is defined below.

Definition 1. Let T be a rectangular triangular-supergrid graph. The separation operation on T is
to divide T into two vertex-disjoint rectangular triangular-supergrid subgraphs T1 and T2, that is,
V(T) = V(T1) ∪V(T2) and V(T1) ∩V(T2) = ∅. If a separation consists of a set of horizontal
edges, it is called vertical, and if it consists of a set of vertical edges, it is called horizontal. For
example, the bold vertical (respectively, horizontal) dashed line in Figure 3c represents a vertical
(respectively, horizontal) separation on T8×9 divided into T8×3 and T8×6 (respectively, T3×9 and
T5×9).

3. NP-Completeness Results

The domination and independent domination problems on grid graphs have been
shown to be NP-complete [2]; thus, they are NP-complete for extended supergrid graphs
as well, as extended supergrid graphs contain grid graphs as a subclass of graphs (see
Figure 2). However, their complexities for diagonal supergrid, triangular supergrid, and
supergrid graphs remain unknown. In [28], we have provided a rough proof to claim that
they are NP-complete for supergrid graphs. In this section, we present a complete proof to
show that they are NP-complete for diagonal supergrid graphs. We then expand this to
verify that they are NP-complete for supergrid and triangular supergrid graphs as well. To
demonstrate this, we establish a polynomial-time reduction from the domination problem
on grid graphs. In [2], Clark et al. provided the following theorem:

Theorem 1 (see [2]). The domination problem on grid graphs is NP-complete.



Algorithms 2022, 15, 402 6 of 19

We reduce the domination problem on grid graphs to the domination problem on
diagonal supergrid graphs. Consider a grid graph Gg; a diagonal supergrid graph Gd is
constructed to satisfy that Gg has a dominating set D of size |D| 6 k if and only if Gd
contains a dominating set D′ of size |D′| 6 k + 2|E(Gg)|. The steps for constructing the
diagonal supergrid graph Gd from the grid graph Gg are as follows. First, the input grid
graph Gg is enlarged to transform each edge of Gg into a vertical or horizontal path with
seven edges, that is, each edge of Gg is enlarged by a factor of seven. The enlarged grid
graph is represented as G′g. For example, Figure 4b shows the grid graph G′g enlarged
from Gg in Figure 4a. The second step is to replace each (u, v)-path of the graph G′g with
a special diagonal supergrid graph, where u, v ∈ V(Gg). This special diagonal supergrid
is a (u, v)-path with seven edges, and contains at least one l-skewed and one r-skewed
edges; we call it snake (u, v)-path and denote it as S(u, v). For a snake (u, v)-path S(u, v),
u and v are said to be the connectors of S(u, v). Figure 4c shows a snake (u, v)-path. Then,
the constructed graph is a diagonal supergrid graph Gd. For example, Figure 4d depicts a
diagonal supergrid graph Gd constructed from the grid graph Gg in Figure 4a.

(a)

(b)

(c)

(d)

u v

u v

Figure 4. (a) A grid graph Gg, (b) a grid graph G′g that magnifies each edge of Gg by a factor of seven,
(c) a snake (u, v)-path S(u, v) with eight vertices, and (d) a diagonal supergrid graph Gd constructed
from G′g by replacing each enlarged path with a snake path in (c), where the solid lines represent
edges of Gg and Gd, double circles represent the vertices of Gg, and filled circles represent the vertices
in a dominating set of Gg or Gd.

Next, we propose a method for placing snake paths on the enlarged grid graph G′g
such that any two snake paths are vertex-disjoint except for their connectors. Consider a
square of a grid graph Gg with vertices (i, j), (i, j + 1), (i + 1, j), (i + 1, j + 1). Then, these
four vertices are the connectors of the corresponding snake paths. If i, j are both odd or even,
we place the four snake paths as shown in Figure 5a; otherwise, we place these snake paths
as shown in Figure 5b. Then, in a corresponding square of an enlarged grid G′g, at most two
snake paths are placed inside it and opposite each other. In addition, the two snake paths
inside the corresponding square are separated by at least two integer points. Therefore,
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none of the vertices are repeated except for the connectors of the snake paths. Algorithm 1
illustrates the detailed steps above for placing snake paths. For example, Figure 6 describes
the arrangement of snake paths in Gd for Gg = G16×16. Then, the following property holds
immediately.

(a) (b)

( , )i j ( +1, )i j

( , +1)i j ( +1, +1)i j

Figure 5. Arrangement of snake paths for a square (i, j), (i, j + 1), (i + 1, j), (i + 1, j + 1) of Gg, where
(a) i, j are even or odd and (b) i is odd and j is even, or i is even and j is odd.

row

col

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6. Arrangement of snake paths in Gd from Gg = G16×16; thick triangle lines denote the snake
paths of Gd and horizontal or vertical dashed lines represent the enlarged paths of G′g.

Lemma 3. Algorithm 1 arranges the snake paths of Gd such that these paths are vertex-disjoint
except for their connectors.

The construction algorithm of diagonal supergrid graph Gd is formally presented
as Algorithm 1. Because a snake path is a diagonal supergrid graph and the input grid
graph Gg contains at least one edge, the constructed graph Gd of Algorithm 1 is a diagonal
supergrid graph. In addition, each edge of Gg is enlarged a constant number of times,
and each enlarged edge is replaced with one snake path, Algorithm 1 runs in O(|V(Gg)|+
|E(Gg)|)-linear time. Thus, the following lemma holds true.
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Algorithm 1: The diagonal supergrid graph construction algorithm
Input: A grid graph Gg. (see Figure 4a)
Output: A diagonal supergrid graph Gd. (see Figure 4d)
Method: // an algorithm for constructing a diagonal supergrid graph from a grid graph

1. enlarge Gg to a grid graph G′g, so that each edge of Gg is transformed into a
vertical or horizontal path with 7 edges; (see Figure 4b)

2. let Gd = G′g;
3. for each enlarged (u, v)-path P(u, v) in G′g, where u, v ∈ V(Gg) do
4. let u = (ux, uy) and v = (vx, vy) be the vertices in grid graph Gg with ux 6 vx

and uy 6 vy;
5. let S(u, v) be the snake (u, v)-path corresponding to P(u, v);

// Note that if vx = ux + 1, then P(u, v) is a horizontal path; otherwise, P(u, v) is a
vertical path

6. if vx = ux + 1 then
7. if uy%2 = 1 then
8. if ux%2 = 1 then
9. replace P(u, v) with S(u, v) in Gd so that S(u, v) is above P(u, v);

10. else
11. replace P(u, v) with S(u, v) in Gd so that S(u, v) is below P(u, v);

12. else
13. if ux%2 = 1 then
14. replace P(u, v) with S(u, v) in Gd so that S(u, v) is below P(u, v);
15. else
16. replace P(u, v) with S(u, v) in Gd so that S(u, v) is above P(u, v);

17. else
18. if ux%2 = 1 then
19. if uy%2 = 1 then
20. replace P(u, v) with S(u, v) in Gd so that S(u, v) is to the right of

P(u, v);
21. else
22. replace P(u, v) with S(u, v) in Gd so that S(u, v) is to the left of

P(u, v);

23. else
24. if uy%2 = 1 then
25. replace P(u, v) with S(u, v) in Gd so that S(u, v) is to the left of

P(u, v);
26. else
27. replace P(u, v) with S(u, v) in Gd so that S(u, v) is to the right of

P(u, v);

28. output Gd.

Lemma 4. Given a grid graph Gg, Algorithm 1 constructs a diagonal supergrid graph Gd in
O(|V(Gg)|+ |E(Gg)|)-linear time.

Next, we verify that grid graph Gg has a dominating set D of size |D| 6 k if and only
if diagonal supergrid graph Gd contains a dominating set D′ of size |D′| 6 k + 2|E(Gg)|.
Before providing the proof, we first observe several properties of the snake path. Note that
the snake path is a simple path P8 with eight vertices. Recall that for a dominating set D of
graph G and the subgraph H of G, we denote the restriction from D to H as D|H . Let D′

be a dominating set of diagonal supergrid graph Gd, and let S(u, v) be a snake path with
connectors u and v in Gd. Let ud ∈ NGd(u) ∩ D′ if u 6∈ D′, and vd ∈ NGd(v) ∩ D′ if v 6∈ D′.
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Then, ud and vd dominate u and v, respectively, if u, v 6∈ D′. According to whether u and v
are in D′, we consider the following situations.

Case 1: u, v ∈ D′. Because D′ is a dominating set of Gd, Gd[S(u, v)− (NGd [u]∪NGd [v])]
is a path P4 with four vertices. Per Lemma 1, γ(S(u, v) − (NGd [u] ∪ NGd [v])) = 2 (see
Figure 7a). Therefore, |D′|S(u,v)−{u,v}| > 2 and γ(S(u, v)− (NGd [u] ∪ NGd [v])) = 2.

Case 2: either u ∈ D′ or v ∈ D′. Without loss of generality, assume u ∈ D′ and
v 6∈ D′. Consider that S(u, v) does not contain vd. Then, Gd[S(u, v) − (NGd [u] ∪ {v})]
is a path P5 with five vertices. Per Lemma 1, γ(S(u, v) − (NGd [u] ∪ {v})) = 2. On the
other hand, Consider that S(u, v) contains vd. Then, Gd[S(u, v) − NGd [u]] is a path P6
with six vertices. Per Lemma 1, γ(S(u, v) − NGd [u]) = 2 (see Figure 7b). In any case,
γ(S(u, v)− (NGd [u] ∪ {v}) = γ(S(u, v)− NGd [u])) = 2, |D′|S(u,v)| > 3, and if D′ − S(u, v)
does not dominate v then there exists a vertex vd in D′ ∩ S(u, v) such that vd dominates v.

Case 3: u, v 6∈ D′. Depending on the positions of ud and vd, we have the following
three subcases.

Case 3.1: ud, vd 6∈ S(u, v). In this subcase, {ud, vd} ∩ S(u, v) = ∅. Then, S(u, v) −
{u, v} is a path P6 with six vertices. Per Lemma 1, γ(S(u, v)− {u, v}) = 2 (see Figure 7c).
Thus, |D′|S(u,v)| > 2.

Case 3.2: either ud 6∈ S(u, v) or vd 6∈ S(u, v). Without loss of generality, assume that ud ∈
S(u, v) and vd 6∈ S(u, v). Then, S(u, v)− (NGd(ud) ∪ {v}) is a path P4 with four vertices. Per
Lemma 1, γ(S(u, v)− (NGd(ud)∪ {v})) = 2 (see Figure 7d). Thus, |D′|S(u,v)−(NGd

(ud)∪{v})
| >

2 and |D′|S(u,v)| > 3. Then, γ(S(u, v)− {u, v}) = 3.
Case 3.3: ud, vd ∈ S(u, v). In this subcase, it needs at least one other vertex of S(u, v)

to dominate S(u, v)− (NGd(ud) ∪ NGd(vd)). Thus, |D′|S(u,v)| > 3 and γ(S(u, v)) = 3.
It follows from the above cases that we can conclude the following lemma.

Lemma 5. Let D′ be a dominating set of diagonal supergrid graph Gd constructed by Algorithm 1,
and let S(u, v) be a snake path with connectors u and v in Gd. Then, the following statement holds:

(1) If u, v ∈ D′, then γ(S(u, v) − (NGd [u] ∪ NGd [v])) = 2 and |D′|S(u,v)−{u,v}| > 2 (see
Figure 7a).

(2) If u ∈ D′ and v 6∈ D′, then γ(S(u, v)− NGd [u]) = γ(S(u, v)− (NGd [u] ∪ {v})) = 2,
|D′|S(u,v)| > 3, and if D′ − S(u, v) does not dominate v, then there exists a vertex vd in
D′ ∩ S(u, v) such that vd dominates v (see Figure 7b).

(3) If u, v 6∈ D′, then

if (NGd(u) − S(u, v)) ∩ D′ 6= ∅ and (NGd(v) − S(u, v)) ∩ D′ 6= ∅, then γ(S(u, v) −
{u, v}) = 2 and |D′|S(u,v)| > 2 (see Figure 7c); otherwise, γ(S(u, v) − {u, v}) = 3 and
|D′|S(u,v)| > 3 (see Figure 7d).

(a)
(b)

(c)

u v

w1 w2

w3

w4

w5

w6

u v

u v

ud vd

(d)

u v

ud vd

vd

Figure 7. The minimum dominating set of S(u, v) in Gd for (a) u, v ∈ D′, (b) u ∈ D′ and v 6∈ D′,
(c) u, v 6∈ D′ and (NGd (u)− S(u, v)) ∩ D′ 6= ∅ and (NGd (v)− S(u, v)) ∩ D′ 6= ∅, and (d) u, v 6∈ D′

and, (NGd (u)− S(u, v)) ∩ D′ = ∅ or (NGd (v)− S(u, v)) ∩ D′ = ∅, where D′ is a dominating set of
Gd and filled circles represent vertices in D′.

Based on the above lemma, we prove that grid graph Gg contains a dominating set
D with |D| 6 k if and only if diagonal supergrid graph Gd has a dominating set D′ with
|D′| 6 k + 2|E(Gg)|. We first prove that the only if part is as follows.
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Lemma 6. Suppose grid graph Gg has a dominating set D with size |D| 6 k. Then, diagonal
supergrid graph Gd contains a dominating set D′ with size |D′| 6 k + 2|E(Gg)|.

Proof. We construct a dominating set D′ of Gd from D such that the size of D′ is no greater
than k + 2|E(Gg)|. Initially, let D′ = D. Let (u, v) be an edge of the grid graph Gg, and
let S(u, v) = u → w1 → w2 → w3 → w4 → w5 → w6 → v be the snake (u, v)-path in the
diagonal supergrid graph Gd constructed from (u, v), as depicted in Figure 7a. Consider
the following three cases.

Case 1: u, v ∈ D. In this case, w1 and w6 are dominated by u and v, respectively. Let
P′ = w2 → w3 → w4 → w5. Per Lemma 1, γ(P′) = 2. Then, {w3, w5} is a minimum
dominating set of P′. Let D′ = D′ ∪ {w3, w5}. Then, D′ dominates V(S(u, v)) and |D′| =
|D′|+ 2. Figure 7a shows such a dominating set of S(u, v).

Case 2: either u ∈ D or v ∈ D. Without loss of generality, assume that u ∈ D
and v 6∈ D. Then, w1 is dominated by u. Consider that v is not dominated by D′. Let
P′ = w2 → w3 → w4 → w5 → w6 → v. Per Lemma 1, γ(P′) = 2. Then, {w3, w6} is a
minimum dominating set of P′. Let D′ = D′ ∪ {w3, w6}. Then, D′ dominates V(S(u, v))
and |D′| = |D′|+ 2. Figure 7b depicts such a dominating set of S(u, v). On the other hand,
consider that v is dominated by D′. Let P′ = w2 → w3 → w4 → w5 → w6. Per Lemma 1,
γ(P′) = 2. Then, {w3, w6} is a minimum dominating set of P′. Let D′ = D′ ∪ {w3, w6}.
Then, D′ dominates V(S(u, v)) and |D′| = |D′|+ 2.

Case 3: u, v 6∈ D. Because D is a dominating set of Gg, there exist two vertices
z1 ∈ NGg(u) and z2 ∈ NGg(v) such that z1 and z2 dominate u and v, respectively. Let
S(z1, u) and S(z2, v) be the snake paths of Gd constructed from edges (z1, u) and (z2, v),
respectively. In our construction algorithm of D′, we compute the dominating sets of
S(z1, u) and S(z2, v) before the dominating set of S(u, v), where z1, z2 ∈ D and u, v 6∈
D. From Case 2, we can find one vertex of S(z1, u) ∩ NGd(u) (respectively, S(z2, v) ∩
NGd(v)) to dominate u (respectively, v) before computing the dominating set of S(u, v)
(see Figure 7b). By Lemma 1, there exists a set {w2, w5} of S(u, v) − {u, v} such that it
dominates V(S(u, v))− {u, v}; see Figure 7c. Let D′ = D′ ∪ {w2, w5}. Then, D′ dominates
V(S(u, v)) and |D′| = |D′|+ 2.

Based on the above cases, we construct a dominating set D′ of Gd by the following steps.
Initially, let D′ = D and let (u, v) ∈ E(Gg). For each u, v ∈ D, we construct a dominating
set of S(u, v) via Case 1. We then construct a dominating set of S(u, v) by Case 2 for each
u ∈ D and v 6∈ D. Finally, for each u, v 6∈ D, a dominating set of S(u, v) is constructed via
Case 3. From the above cases, |D′| = |D′|+ 2 after processing each snake path of Gd. Thus,
we construct a dominating set D′ of Gd with size |D′| = |D|+ 2|E(Gg)| 6 k + 2|E(Gg)|
after computing dominating sets of all snake paths in Gd. For example, Figure 4a shows the
dominating set D of Gg with |D| = 4, and the constructed dominating set D′ of Gd from D
is shown in Figure 4d, where |D′| = |D|+ 2|E(Gg)| = 4 + 2 · 11 = 26. This completes the
proof of the lemma.

Next, we prove that the if part is in Lemma 7. Recall that for a dominating set D of
graph G and the subgraph H of G, the restriction of D to H is represented as D|H .

Lemma 7. Suppose diagonal supergrid graph Gd has a dominating set D′ with |D′| 6 k +
2|E(Gg)|. Then, grid graph Gg contains a dominating set D with size |D| 6 k.

Proof. We show that there exists a dominating set D of Gg with size k or less. To prove this
lemma, we first construct a dominating set D̂ of Gd obtained from D′ such that |D̂| 6 |D′|
and remove all vertices not in Gg from D̂, resulting in a dominating set D of Gg. Initially,
let D̂ = D′. Consider a snake path S(u, v) = u→ w1 → w2 → w3 → w4 → w5 → w6 → v
of Gd constructed from edge (u, v) of Gg. Let ud (respectively, vd) be in D′ such that it
dominates u (respectively, v) if u 6∈ D′ (respectively, v 6∈ D′). Depending on whether
u, v ∈ D′, we have the following three cases:
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Case 1: u, v ∈ D′. Let P′ = w2 → w3 → w4 → w5. By Lemma 1, γ(P′) = 2. Let W =
{w3, w5} be a minimum dominating set of S(u, v)− (NGd [u] ∪ NGd [v]). If |D̂|S(u,v)| > 4,
then let D̂ = D̂− D̂|S(u,v) ∪W ∪ {u, v}, that is, |D̂|S(u,v)| = 4, after processing S(u, v) for
u, v ∈ D′.

Case 2: either u ∈ D′ or v ∈ D′. Without loss of generality, assume that u ∈ D′ and
v 6∈ D′. Then, w1 is dominated by u. Let P′ = w2 → w3 → w4 → w5 → w6 → v. By
Statement (2) of Lemma 5, at least two vertices of P′ are in D′. Let W = {w3, w6} be a
minimum dominating set of S(u, v)− NGd [u]; see Figure 7b. If |D̂|S(u,v)| > 3 or w6 6∈ D̂,
then let D̂ = D̂ − D̂|S(u,v) ∪W ∪ {u}, that is, |D̂|S(u,v)| = 3 in this case. In addition, D̂
dominates v after processing S(u, v) for u ∈ D′ and v 6∈ D′.

Case 3: u, v 6∈ D′. First, consider that degGg(u) = 1 and degGg(v) = 1. Then, E(Gg) =

{(u, v)} and Gd only contains a snake path S(u, v). By Lemma 1, |D′| > 3. Let D̂ =
{u, w3, w6}. Then, D̂ is a dominating set of Gd with size 3. Let D = D̂− {w3, w6}; hence,
D is a dominating set of Gg with size 1. Then, 3 6 |D′| 6 k + 2 · 1, and hence |D| = 1 6 k.
Thus, the lemma holds when u, v 6∈ D′ and degGg(u) = degGg(v) = 1. In the following,
suppose that degGg(u) 6= 1 or degGg(v) 6= 1. Then, there exists at least one vertex z1
of Gg such that z1 ∈ NGg(u) or z1 ∈ NGg(v). Without loss of generality, assume that
(z1, u) ∈ E(Gg). We pick z1 to satisfy the requirement that if z1 6∈ D′, then NGg(u)∩D′ = ∅.
Let S(z1, u) = z1 → x1 → x2 → x3 → x4 → x5 → x6 → u be the snake path of Gd
constructed from edge (z1, u) of Gg, as shown in Figure 8a. Depending on whether z1 ∈ D′,
there are two subcases.

Case 3.1: z1 6∈ D′. In this subcase, NGg(u) ∩ D′ = ∅. Suppose that ud ∈ S(u, v). By
Statement (3) of Lemma 5, |D′|S(u,v)| > 3. Let D̂ = D̂ − D′|S(u,v) ∪ {u, w3, w6}. Then, the

size of D̂ does not increase and u ∈ D̂. On the other hand, suppose that ud ∈ S(z1, u). By
Statement (3) of Lemma 5, |D′|S(z1,u)| > 3. Let D̂ = D̂ − D′|S(z1,u) ∪ {u, x1, x4}. Then, the

size of D̂ does not increase and u ∈ D̂. In any case, we can set u ∈ D̂ and |D̂| does not
increase. Then, it is the same as Case 2. Figure 8a depicts such a case.

Case 3.2: z1 ∈ D′. In this subcase, γ(S(z1, u)) = 3 and {z1, x3, x6} is a minimum domi-
nating set of S(z1, u); see Figure 8b,c. If |D′|S(z1,u)| > 3 or x6 6∈ D′, let D̂ = D̂− D′|S(z1,u) ∪
{z1, x3, x6}. Depending on whether degGg(v) = 1, we consider the
following subcases.

Case 3.2.1: degGg(v) 6= 1. In this subcase, there exists a vertex z2 of NGg(v). We
pick such a vertex z2, which is the same as that of z1. Let S(z2, v) = z2 → y1 → y2 →
y3 → y4 → y5 → y6 → v be the snake path of Gd constructed from edge (z2, v) of Gg,
as shown in Figure 8b. If z2 6∈ D′, then it is the same as Case 3.1. Consider that z2 ∈ D′.
Then, {z2, y3, y6} is a minimum dominating set of S(z2, v) and v is dominated by y6. If
|D′|S(z2,v)| > 3 or y6 6∈ D′, then let D̂ = D̂ − D′|S(z2,v) ∪ {z2, y3, y6}. In addition, u and v

are dominated by D̂ after processing S(z1, u) and S(z2, v). By Statement (3) of Lemma 5,
γ(S(u, v)− {u, v}) = 2. Let {w2, w5} be a minimum dominating set of S(u, v)− {u, v}. If
|D′|S(u,v)| > 2, then let D̂ = D̂− D′|S(u,v) ∪ {w2, w5}. Figure 8b depicts a such construction

of D̂.
Case 3.2.2: degGg(v) = 1. In this subcase, w6 dominates v; see Figure 8c. By Statement

(3) of Lemma 5, |D′|S(u,v)| > 3. We then set u to be in D̂ and re-compute the minimum

dominating set of S(u, v), that is, D̂ = D̂ − D′|S(u,v) ∪ {u, w3, w6}. Then, |D̂| does not

increase and u ∈ D̂. Figure 8c shows a such minimum dominating set of S(z1, u) ∪ S(u, v)
in this subcase.
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Figure 8. The dominating set of snake path S(u, v) in Gd where u, v 6∈ D′, where (a) z1 6∈ D′,
(b) z1 ∈ D′ and degGg (v) 6= 1, and (c) z1 ∈ D′ and degGg (v) = 1. Note that D′ is a dominating set of
Gd; the filled circles represent vertices of D′.

From the above cases, we can construct a dominating set D̂ of Gd from D′ such that
|D̂| 6 |D′|, as follows. First, for each u, v 6∈ D′ we construct dominating sets of S(u, v) via
Case 3. Then, for each u ∈ D′ and v 6∈ D′ we construct dominating sets of S(u, v) via Case 2.
Finally, we construct dominating sets of S(u, v) via Case 1 for u, v ∈ D′. For example, given
a dominating set D′ of Gd with size 22 in Figure 9a, the constructed dominating set D̂ of Gd
with size 22 from D′ is depicted in Figure 9b. Then, D̂ satisfies the following properties:

(p1) |D̂| 6 |D′|,
(p2) for each snake (u, v)-path S(u, v), |D̂ ∩ (S(u, v)− {u, v})| = 2, and
(p3) for each snake (u, v)-path S(u, v) with u, v 6∈ D̂, there exist z1 ∈ NGg(u) and z2 ∈

NGg(v) such that z1, z2 ∈ D̂ while degGg(u) 6= 1 and degGg(v) 6= 1.

(a) (b)

Figure 9. (a) The dominating set D′ of Gd with size 22, and (b) a dominating set D̂ of Gd with size 22
(6 |D′|) obtained from D′. Solid lines indicate the edges of Gd, double circles represent the vertices
of Gg, and filled circles indicate the vertices in a dominating set of Gd.

Then, a dominating set D of Gg is obtained from D̂ according to the following steps:

(s1) initially, let D = D̂;
(s2) remove from D all vertices of D that are not in Dg;
(s3) the result set D is a dominating set of Gg.

Because for each snake path S(u, v), D̂ ∩ S(u, v) contains exactly two vertices that
are not in Gg, we obtain |D| = |D̂| − 2|E(Gg)|. Then, |D| = |D̂| − 2|E(Gg)| 6 |D′| −
2|E(Gg)| 6 (k + 2|E(Gg)|)− 2|E(Gg)| = k. Therefore, we construct a dominating set D of
Gg of size |D| 6 k.

It immediately follows from Lemmas 6 and 7 that the following lemma is summarized:

Lemma 8. Let Gg be a grid graph, and let Gd be a diagonal supergrid graph constructed from Gg
by Algorithm 1. Then, Gg has a dominating set D with size |D| 6 k if and only if Gd contains a
dominating set D′ with size |D′| 6 k + 2|E(Gg)|.

Obviously, the domination problem on a diagonal supergrid graph is in NP. By
Theorem 1 and Lemmas 4 and 8 we derive the following theorem:
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Theorem 2. The domination problem for diagonal supergrid graphs is NP-complete.

The dominating sets of diagonal supergrid graphs constructed in Lemmas 6 and 7 can
be easily modified to be independent dominating sets. Therefore, the independent domi-
nation problem on diagonal supergrid graphs is NP-complete as well, and the following
corollary holds true.

Corollary 1. The independent domination problem for diagonal supergrid graphs is NP-complete.

Through the construction of diagonal supergrid graph Gd, we can see that Gd is
a supergrid graph which is a vertex-induced subgraph of the infinite two-dimensional
supergrid S∞. Therefore, the following theorem holds immediately.

Theorem 3. The domination and independent domination problems for supergrid graphs are
NP-complete.

The NP-complete results above can be easily extended to triangular supergrid graphs.
Recall that a triangular supergrid graph is an extended supergrid graph of which the
edge set contains at least one r-skewed diagonal edge and does not contain any l-skewed
diagonal edges. To verify that the domination problem on a triangular supergrid graph is
NP-complete, we modify Algorithm 1 as follows:

Step 1: enlarge the input grid graph Gg to another grid graph G′g such that each edge of
Gg is transformed into a horizontal or vertical path with six edges (see Figure 10b);

Step 2: for each horizontal (respectively, vertical) (u, v)-path in G′g where u, v ∈ V(Gg),
replace it by a horizontal (respectively, vertical) triangle path T(u, v) connecting u
and v (see Figure 10c);

Step 3: the constructed graph is a triangular supergrid graph Gτ (see Figure 10d), and
outputs Gτ .

(a)

(b)

(c)

u v

u v

v

u

(d)

u v

Figure 10. (a) A grid graph Gg, (b) grid graph G′g by magnifying each edge of Gg by a factor of
six, (c) (horizontal or vertical) triangle (u, v)-path T(u, v), and (d) a triangular supergrid graph Gτ

constructed from G′g by replacing each of its enlarged paths with the triangle path in (c).
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We can see that each triangle path is a path with eight vertices. Thus, Lemma 5 holds
for Gτ . By Lemma 8, Gg has a dominating set D of size |D| 6 k if and only if Gτ contains
a dominating set D′ of size |D′| 6 k + 2|E(Gg)|. Therefore, the following theorem holds
immediately.

Theorem 4. The domination and independent domination problems on triangular supergrid graphs
are NP-complete.

4. The Domination and Independent Domination Numbers of Rectangular
Triangular-Supergrid Graphs

In this section, we first compute γ(Tm×n) = γind(Tm×n) for a rectangular triangular-
supergrid graph Tm×n with n > m and 3 > m > 2. We then provide an upper bound of
γ(Tm×n) and γind(Tm×n) for n > m > 4. First, we consider n > m and m = 2, as follows.

Lemma 9. γ(T2×n) = γind(T2×n) = d 2n
5 e.

Proof. Through the structure of T2×n, a vertex of T2×n dominates at most five vertices,
including its four neighbors and itself. Thus, γ(T2×n) > d 2n

5 e. We compute a dominating
set of T2×n with size d 2n

5 e, as follows. First, we make b n
5 c or b n

5 c − 1 vertical separations
on T2×n to obtain d n

5 e subgraphs T1, T2, . . ., Tb n
5 c, T

∗ of T2×n such that Ti, 1 6 i 6 b n
5 c is

a rectangular triangular-supergrid graph T2×5 and T∗ is a T2×j, 1 6 j 6 4, if n%5 6= 0.
Note that T∗ = ∅ when n%5 = 0. Let µi = (2, 2) and νi = (4, 1) be two vertices of Ti for
1 6 i 6 b n

5 c, and let D′ = ∪16i6b n
5 c{µi, νi}. Then, D′ is a dominating set of T2×n − T∗.

Consider that T∗ does exist, i.e., n%5 6= 0. Then, T∗ = T2×j for 1 6 j 6 4. We then compute
one or two vertices µ and ν of T∗ as follows: if j = 1, let µ = (1, 2); otherwise, if j = 2,
let µ = (2, 2). Furthermore, if j = 3, let µ = (2, 2) and ν = (3, 1); otherwise, if j = 4,
let µ = (2, 2) and ν = (4, 2). Then, {µ, ν} dominates T∗. Let D = D′ ∪ {µ, ν}. Then,
|D| = d 2n

5 e and D dominates T2×n. Thus, γ(T2×n) = d 2n
5 e. By the above construction,

we can see that D is an independent dominating set of T2×n; hence, γind(T2×n) = d 2n
5 e.

For instance, Figure 11 depicts our constructed (independent) dominating set of T2×n for
2 6 n 6 10.

g( )T2´n n

1 2

2        3

2 4

2 5

3 6

3 7

4 8

4 9

4 10

g( )T2´n n

Figure 11. γ(T2×n) = γind(T2×n) = d 2n
5 e for 2 6 n 6 10; filled circles indicate vertices in the

minimum (independent) dominating set of T2×n.

Next, we compute γ(T3×n) and γind(T3×n) as the following lemma.

Lemma 10. γ(T3×n) = γind(T3×n) = b n
2 c+ 1.

Proof. We first claim the following:

(C1) There exists a minimum dominating set Dn of T3×n with size b n
2 c + 1 such that

Dn = {(1 + 2i, 2)|0 6 i 6 b n
2 c} if n%2 = 1; otherwise, Dn = {(1 + 2i, 2)|0 6 i 6

b n
2 c − 1} ∪ {(n, 2)}.

(C2) For any minimum dominating set D̂n of T3×n, D̂ does not contain vertex (n, 3), and if
n%2 = 1, then D̂ contains vertex (n, 2) and does not contain vertex (n, 1).
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We prove the above claims by induction on n, where n > 3. Initially, let n = 3, 4, or
5. By inspecting T3×3, T3×4, and T3×5, it is easy to verify that the above claims hold true;
see Figure 12. Assume that the claims hold when n = k and k > 5. Then, there exists no
minimum dominating set of T3×k containing vertex (k, 3), and there exists a minimum
dominating set Dk of T3×k with size b k

2c+ 1 such that Dk = {(1 + 2i, 2)|0 6 i 6 b k
2c} if

k%2 = 1; otherwise, Dk = {(1 + 2i, 2)|0 6 i 6 b k
2c − 1} ∪ {(k, 2)}. In addition, if k%2 = 1,

then any minimum dominating set D̂k of T3×k satisfies the requirement that D̂k contains
vertex (k, 2) and does not contain vertices (k, 1) and (k, 3). Now, suppose that n = k + 1.
There are two possible cases.

Case 1: k%2 = 1. Let k = 2t + 1, t > 1. By induction hypothesis, any minimum
dominating set D̂k of T3×k does not contain vertex (k, 1); hence, D̂k does not dominate vertex
(k + 1, 1). Thus, γ(T3×(k+1)) > γ(T3×k). Let Dk+1 = Dk ∪ {(k + 1, 2)}. Then, |Dk+1| =
|Dk|+ 1 = t + 2; hence, Dk+1 is a minimum dominating set of T3×(k+1). Therefore, Claim
(C1) holds true in this case. Next, we verify Claim (C2). Let u = (k, 1), v = (k + 1, 2), and
let w = (k + 1, 1). Assume by contradiction that D̃ is a minimum domination set of T3×(k+1)
satisfying the requirement that D̃ contain vertex (k + 1, 3). To dominate w, one of u, v, w
must be in D̃. Consider that u ∈ D̃. Then, |D̃|T3×k

| > γ(T3×k) by induction hypothesis.
Then, D̃ = D̃|T3×k

∪ {(k + 1, 3)}; hence, |D̃| > γ(T3×k) + 1. Thus, |D̃| > γ(T3×k) + 2. This
contradicts our above construction Dk+1 of T3×(k+1) with size |Dk+1| = γ(T3×k)+ 1 = t+ 2.
In addition, consider that w or v is in D̃. Then, D̃|T3×(k−1)

∪ {v, (k + 1, 3)} ⊆ D̃; hence,

|D̃| > |D̃|T3×(k−1)
| + 2. By induction hypothesis, |D̃|T3×(k−1)

| > |Dk−1| = b k−1
2 c + 1 =

b 2t
2 c + 1 = t + 1. Then, |D̃| > |D̃|T3×(k−1)| + 2 > t + 3. Thus, |D̃| > |Dk+1|, where
|Dk+1| = t + 2 and Dk+1 is a dominating set of T3×(k+1); hence, a contradiction occurs.
By contradiction, there exists no minimum domination set of T3×(k+1) containing vertex
(k + 1, 3). Thus, Claim (C2) holds true when n = k + 1.

Case 2: k%2 = 0. In this case, let Dk+1 = Dk − {(k, 1)} ∪ {(k + 1, 2)}. Then, |Dk+1| =
|Dk| = b k

2c+ 1. Because T3×k is a subgraph of T3×(k+1), γ(T3×k) 6 γ(T3×(k+1)), it is true
that Dk+1 is a minimum dominating set of T3×(k+1). Thus, Claim (C1) holds true in this
case. Next, we verify Claim (C2) in this case. By similar arguments to those proving
Case 1, we can verify that there exists no minimum domination set of T3×(k+1) containing
vertices (k + 1, 1) and (k + 1, 3). Let z = (k + 1, 2), z1 = (k, 1), z2 = (k, 2), z3 = (k, 3),
and let Z = {z1, z2, z3}, as shown in Figure 12. Assume by contradiction that there exists
a minimum domination set D̃ of T3×(k+1) such that z 6∈ D̃. To dominate (k + 1, 1) and
(k + 1, 3), at least two vertices of Z are necessary. If z3 ∈ D̃, then D̃ is not a minimum
dominating set of T3×k; by induction hypothesis, a contradiction occurs. Thus, z1, z2 ∈ D̃.
Let D̃′ = D̃−{(k, 1)}. Then, D̃′ remains a dominating set of T3×k, as NT3×k [z1] ⊂ NT3×k (z2);
that is, D̃ is not a minimum dominating set of T3×k. Thus, |D̃| > γ(T3×k). This contradicts
the requirement that Dk+1 constructed above be a dominating set of T3×(k+1) with size
γ(T3×k). Thus, any minimum domination set of T3×(k+1) contains vertex z = (k + 1, 2). It
follows from the above arguments that Claim (C2) holds true when n = k + 1.

By the above cases, Claims (C1) and (C2) hold true when n = k + 1. By induction,
these claims hold true for n > 3. Thus, γ(T3×n) = b n

2 c+ 1. Figure 12 shows the minimum
dominating set Dn of T3×n for 3 6 n 6 10.

Because each independent dominating set of a graph is a dominating set for that graph,
γ(T3×n) 6 γind(T3×n). For the case of n%2 = 1, Dn in Claim (C1) is an independent set as
well; hence, it is a minimum independent dominating set of T3×n. Consider n%2 = 0. Let
D′n = Dn − {(n, 2)} ∪ {(n, 1)}. Then, |D′n| = |Dn| and D′n is an independent set. Thus, D′n
is a minimum independent dominating set of T3×n. In any case, we construct a minimum
independent dominating set of T3×n with size γ(T3×n). Thus, γ(T3×n) = γind(T3×n) =
b n

2 c+ 1.
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g( )T3´n n

32

3       4

3 5

4 6

4 7

5 8

5 9

g( )T3´n n

6 10

u

v

w

z

z1

z2

z3

Figure 12. γ(T3×n) = γind(T3×n) = b n
2 c+ 1 for 3 6 n 6 10; filled circles indicate the vertices in the

minimum (independent) dominating set of T3×n.

Next, we consider n > m > 4 for a rectangular triangular-supergrid graph Tm×n.

Lemma 11. Let Tm×n be a rectangular triangular-supergrid graph with n > m > 4. Then,
γ(Tm×n) 6 dm

3 ed
n+1

2 e and γind(Tm×n) 6 dm
3 ed

n+1
2 e.

Proof. Based on Lemmas 1, 9 and 10, we compute an (independent) dominating set of Tm×n
as follows. First, we make bm

3 c − 1 or bm
3 c horizontal separations on Tm×n to obtain bm

3 c
disjoint subgraphs T3×n and one T(m−3·bm

3 c)×n if m%3 6= 0, as shown in Figure 13a. Let T1,
T2, · · · , Tdm

3 e be partitioned subgraphs such that Ti is located above Ti+1 for 1 6 i 6 dm
3 e− 1.

By Lemma 10, we can obtain a minimum (independent) dominating set Di of Ti with size
b n

2 c+ 1 for 1 6 i 6 dm
3 e − 1. Depending on the number of m%3, we consider the following

cases:
Case 1: m%3 = 0. In this case, let Ddm

3 e be the minimum (independent) dominating
set of Tdm

3 e constructed from the proof of Lemma 10, and let D = ∪16i6dm
3 eDi. Then,

|D| = dm
3 e(b

n
2 c+ 1).

Case 2: m%3 = 1. In this case, let Ddm
3 e be the minimum (independent) dominating set

of Tdm
3 e constructed from Lemma 1. Then, |Ddm

3 e| = d
n
3 e. Let D = ∪16i6dm

3 e−1Di ∪ Ddm
3 e.

Then, |D| = (dm
3 e − 1)(b n

2 c+ 1) + d n
3 e 6 d

m
3 e(b

n
2 c+ 1).

Case 3: m%3 = 2. In this case, let Ddm
3 e be the minimum (independent) dominating

set of Tdm
3 e constructed from the proof of Lemma 9. Then, |Ddm

3 e| = d
2n
5 e. Let D =

∪16i6dm
3 e−1Di ∪ Ddm

3 e. Then, |D| = (dm
3 e − 1)(b n

2 c+ 1) + d 2n
5 e 6 d

m
3 e(b

n
2 c+ 1).

In any case, we construct a (independent) dominating set D of Tm×n with size dm
3 e(b

n
2 c+

1) = dm
3 ed

n+1
2 e or less. For example, Figure 13b shows the constructed (independent)

dominating set D of T8×13 with size 2× 7 + 6 = (d 8
3e − 1)× d 13+1

2 e+ d
2×13

5 e 6 d
8
3ed

13+1
2 e.

That is, we obtain an upper bound dm
3 ed

n+1
2 e of γ(Tm×n) (γind(Tm×n)), and hence the

lemma holds true.

(a)

n

3

3

2

(b)

n

3

3

2

Figure 13. (a) Partitioning of Tm×n into dm
3 e disjoint subgraphs, and (b) an (independent) dominat-

ing set of Tm×n. Solid dashed lines indicate separations and filled circles indicate vertices in the
(independent) dominating set.
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By the above lemma, we can see that each vertex in the constructed (independent)
dominating set of Tm×n almost dominates six vertices. By the structure of Tm×n, each
vertex dominates at most seven vertices, including its six neighbors and itself. However,
there exists no dominating set of Tm×n in which its each vertex dominates seven vertices.
Thus, dmn

7 e < γ(Tm×n) 6 γind(Tm×n). Because an independent dominating set of a graph
is a dominating set of the graph, γ(Tm×n) provides a trivial lower bound of γind(Tm×n).
Then, dmn

7 e < γ(Tm×n) 6 γind(Tm×n) 6 dm
3 ed

n+1
2 e for n > m > 4. Thus, we obtain a

tight upper bound of γ(Tm×n) and γind(Tm×n). Using Lemmas 9–11, we can conclude the
following theorem.

Theorem 5. Let Tm×n be a rectangular triangular-supergrid graph with n > m > 2. Then,
dmn

7 e < γ(Tm×n) 6 γind(Tm×n) if n > m > 4, and

γ(Tm×n)(γind(Tm×n))


= d 2n

5 e , if m = 2;
= d n+1

2 e , if m = 3;
6 dm

3 ed
n+1

2 e , otherwise.

Proof. By Lemma 9, γ(T2×n) = γind(T2×n) = d 2n
5 e. By Lemma 10, γ(T3×n) = γind(T3×n) =

d n+1
2 e. Lemma 11 provides that γ(Tm×n) 6 dm

3 ed
n+1

2 e and γind(Tm×n) 6 dm
3 ed

n+1
2 e for

n > m > 4. In addition, dmn
7 e < γ(Tm×n) 6 γind(Tm×n) if n > m > 4. Thus, the theorem

holds true.

5. Concluding Remarks

Here, we first introduce the class of extended supergrid graphs containing grid, trian-
gular grid, supergrid, diagonal supergrid, and triangular supergrid graphs as subclasses.
Domination and independent domination problems for grid graphs are known to be NP-
complete, and they are NP-complete for extended supergrid graphs as well. However,
the complexities of other subclasses of extended supergrid graphs remain unknown. In
this paper, we first prove that the domination and independent domination problems on
diagonal supergrid graphs are NP-complete. As this result can be immediately applie dto
supergrid and triangular supergrid graphs, both problems are NP-complete for them as
well. The studied problems on rectangular supergrid graphs and rectangular grid graphs
have been solved in linear time. However, their complexities remain unknown for rectan-
gular triangular-supergrid graphs. In this paper, we provide a tight upper bound of the
domination and independent domination numbers for rectangular triangular-supergrid
graphs. It might be interesting to obtain a lower bound of the domination and independent
domination numbers for rectangular triangular-supergrid graphs, which we leave as an
open question for future interested readers. Furthermore, the complexities of the domina-
tion and independent domination problems for triangular grid graphs remain unknown.
We speculate that they are NP-complete. However, we are unable to verify this, and would
like to publish it as an open problem for interested readers. Finally, we conclude the status
of the complexities of the domination and independent domination problems for extended
supergrid graphs in Figure 14.

diagonal
supergrid graphs

grid graphs

C

C Cg d

e

triangular
grid graphs

Ct

rectangular
grid graphs

rectangular
supergrid graphs

rectangular triangular-
supergrid graphs

extended
supergrid graphs

supergrid graphs

Cs

triangular
supergrid graphs

Ct

planar graphs bipartite graphs

P ?P

NP-c

* * *

?NP-c

Figure 14. The complexities of the domination and independent domination problems for the classes
of extended supergrid graphs. NP-c = NP-complete, P = Polynomial, * = this paper solved, ?NP-c =
speculated to be NP-complete, and ?P = speculated to be polynomial.
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