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Abstract: Lithium-ion is a progressive battery technology that has been used in vastly different
electrical systems. Failure of the battery can lead to failure in the entire system where the battery is
embedded and cause irreversible damage. To avoid probable damages, research is actively conducted,
and data-driven methods are proposed, based on prognostics and health management (PHM) systems.
PHM can use multiple time-scale data and stored information from battery capacities over several
cycles to determine the battery state of health (SOH) and its remaining useful life (RUL). This results in
battery safety, stability, reliability, and longer lifetime. In this paper, we propose different data-driven
approaches to battery prognostics that rely on: Long Short-Term Memory (LSTM), Autoregressive
Integrated Moving Average (ARIMA), and Reinforcement Learning (RL) based on the permutation
entropy of battery voltage sequences at each cycle, since they take into account vital information from
past data and result in high accuracy.

Keywords: lithium-ion battery; prognostics; long short-term memory; ARIMA; reinforcement learning

1. Introduction
1.1. Lithium-Ion Batteries

Lithium-ion batteries, as the primary power source in electric vehicles, have attracted
significant attention recently and have become a focus of research. It is assumed that
lithium-ion batteries have the inherent potential for building future power sources for
environmentally friendly vehicles [1].

Lithium-ion batteries are the best option for electrical vehicles due to their high-quality
performance, capacity, small volume, light weight, low pollution, and rechargeability with
no memory effect [2]. However, battery performance degrades when facing poor pavement
conditions, temperature, and load changes. This leads to leakage, insulation damage, and
partial short-circuits. Consequential situations can arise if these failures are not detected
timeously [3,4]. As an example, several Boeing 787 aircraft caught fire because of lithium-
ion battery failure in 2013, causing the airliners to be grounded [5]. Hence, it is necessary to
detect performance degradations timeously and estimate future battery performance. This
is where battery prognostics and health management (PHM) plays an important and vital
role. PHM determines the battery state of health prediction (SOH) and battery remaining
useful life prediction (RUL) of the product using possible failure information in the system,
thus yielding improved system reliability and stability in the actual life-cycle of the battery.

Battery PHM and a battery management system (BMS) are important to ensure the
reliable and safe functionality of energy storage units [6]. Battery RUL prediction, battery
SOH prediction, and battery capacity fade prediction are among the topics which have
drawn more attention from researchers in the recent decade [7]. However, these tasks are
very difficult, as battery degradation has a complex nature and numerous factors must be
taken into consideration [8,9].
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1.2. Entropy Measures

Entropy is a measurement metric for irregularities in time series data, and is used to
quantify the stochastic process in data analyses [10]. It was first introduced in classical
thermodynamics, and has applications in diverse fields such as chemistry and physics,
biological systems, cosmology, economics, sociology, weather science, climate change
research, and information systems. Entropy has expanded to far-ranging fields and systems.
Shannon, Permutation, Renyi, Tsallis, Approximate, and Sample entropy measures are
some of the conceptions of entropy regularly in use [11].

From the afore-mentioned entropies, permutation entropy (PE) is a simple and robust
approach to calculating the complexity of a non-linear system using the order relations
between values of a time series and assigning a probability to the ordinal patterns. The
permutation entropy measure technique works flexibly; it is computationally efficient, and
has a range of several thousand parameter values similar to Lyapunov exponents. PE is
discussed in more detail in Reference [12]. In this study, PE of the discharge battery voltage
sequences is calculated and used as an input to the proposed models.

1.3. ML and DL Techniques

Recently, Machine Learning (ML) and Deep Learning (DL) algorithms have found
very significant and useful applications in research and practice. These concepts have been
used to develop various models for predicting different characteristics in diverse fields.
In general, ML and DL algorithms aim to capture information from past data, learn from
that data, and apply what they have learned to make informed decisions. Therefore, the
associated systems are not required to be broadly programmed in all aspects.

ML is used to synthesize the fundamental relationships between large amount of data
to solve real-time problems such as big-data analytics and evolution of information [13].
DL, in turn, is able to process a large number of features and, hence, is preferred when
computing huge datasets and unstructured data. DL facilitates analysis and extraction of
important information from raw data by using computer systems. [14]. Different types of
parameters with various quantities can be applied to the developed models as the input to
obtain expected predictive variables as the output.

Deep Learning techniques, including Long Short-Term Memory (LSTM) [15] and
Reinforcement Learning (RL) [16], can fit numerical dependent variables and have great
generalization ability, and therefore, are applicable to battery data. The LSTM algorithm, a
Deep Learning algorithm with multiple gates, performs on the basis of updating and storing
key information in the time series data [15], and is applicable to battery prognostics. The RL
algorithm, on the other hand—as one of the latest Deep Learning methods and tools—has
the capability of creating a simulation of the whole system and making intelligent decisions
(i.e., charge, replace, repair, etc.) after it is utilized to predict the battery RUL and SOH for
the purpose of battery PHM and BMS [16].

1.4. Research Objective

In this study, the objective is to progress the study of lithium-ion battery performance
based on battery SOH and RUL prognostics. To do so, we propose an entropy-based
Reinforcement Learning model, predict the next-cycle battery capacity, and compare the
numerical results from the proposed entropy-based RL models to those from two other
data-driven methods—namely, ARIMA and LSTM—which are both constructed based
on the same input variable (i.e., permutation entropy of voltage sequences at each cycle).
Permutation entropy of the battery discharge voltage, as well as the previous battery
capacities, are given to these models as input variables. Finally, evaluation metrics such as
MSE, MAE, and RMSE are applied to the proposed methods to compare the observed and
predicted battery capacities.

Based on Figure 1, the remainder of this work consists of the following sections. First,
battery data is prepared and provided for the study. The data is then analyzed from different
points of view. Based on the data analysis, various models are proposed for lithium-ion
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battery performance using ML and DL techniques. We evaluate and compare the models
in detail in the next sections. Finally, conclusions are presented in the last section.

Figure 1. Prediction system for the lithium-ion batteries.

2. Related Work

In the current literature, entropy-based predictive models for battery prognostics, as
well as other predictive models, have been researched and tested. Table 1 illustrates a brief
overview of some of the most relevant and recently published papers that use data-driven
methods for lithium-ion battery prognostics.

Table 1. An overview of different approaches to lithium-ion battery prognostics.

Ref. Data Methods Results

[17]
NASA Ames Prognostics
Center of Excellence (PCoE)
database

Deep neural networks
(DNN)

The proposed model successfully predicts the SOH
and RUL of the lithium-ion battery but is less effective
when real-time processing comes into play.

[18]
Center for Advanced Life
Cycle Engineering (CALCE) at
the University of Maryland

Deep neural networks
(DNN)

The ANN predicts the battery State of Charge values
with accuracy using only voltage, current, and
charge/discharge time as inputs and achieves an MSE
of 3.11 × 10−6.

[19] NASA Ames Long short-term memory
(LSTM)

The proposed model has a better performance for the
time series problem of li-ion battery prognostics and a
stronger learning ability of the degradation process
when compared to other ANN algorithms.

[20] NASA lithium-ion battery
dataset

Long short-term memory
(LSTM)

The method produces exceptional performances for
RUL prediction under different loading and operating
conditions.

[21]
Data repository of the NASA
Ames Prognostics Center of
Excellence (PCoE)

Autoregressive integrated
moving average (ARIMA)

The RMSE of the model for the RUL prognostics
varies in the range of 0.0026 to 0.1065.

[22]
Lithium-ion battery packs
from forklifts in commercial
operations

Autoregressive integrated
moving average (ARIMA)

The ARIMA method can be used for SOH prognostics,
but the loss function indicates further enhancement is
needed for the environmental conditions.

[23] NASA prognostic model
library Reinforcement Learning (RL)

RL model enables accurate calibration of the battery
prognostics but has only been tested on simulated
data and sim-to-real transfer needs to be made to test
the proposed algorithm on real data.

[24] SPMeT Reinforcement Learning (RL)

The proposed method can extend the battery life
effectively and ensure end-user convenience.
However, experimental validation needs to be
implemented for the optimal charging strategy.
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Table 1. Cont.

Ref. Data Methods Results

[25] Simulated datasets Ensemble Learning
A data-driven method known as Ensemble Learning is
presented for predicting degradation in a time-varying
environment.

[26]

Experimental data from
multiple lithium-ion battery
cells at three different
temperatures

Sparse Bayesian

The authors present a Sparse Bayesian model based on
sample entropy of voltages for estimating SOH and
RUL. It is shown that the Sparse Bayesian model
outperforms the Polynomial model with the same
input and target data.

[27] Collected data through an
experimental study

Unscented Particle Filter and
Support Vector Regression

A hybrid model based on a combination of a
data-driven method and a model-based approach is
presented, which results in higher accuracy compared
to each model individually.

The literature review reveals a research gap, which can be summarized as follows.
Most of the research undertaken so far has relied on traditional Machine Learning and
Deep Learning methods. However, the RL method is recognized as an area with room
for exploration. Based on these findings, this paper is devoted to filling this gap in the
research. LSTM and ARIMA methods are also studied as state-of-the-art models, which
can be developed based on the entropy measures and compared with the RL method.

The main contribution of our study is the proposal of a Reinforcement Learning
model based on the permutation entropy of the voltage sequences for predicting the next-
cycle battery capacity. To the best of our knowledge, an RL model for lithium-ion battery
prognostics, using entropy measures as the input, has not been previously tested in the
literature. Additionally, we compare the numerical results from our proposed entropy-
based RL model with the results from the state-of-the-art models (i.e., ARIMA and LSMT),
which are built based on entropy measures for a fair and reliable comparison.

3. Data and Battery Specifications

The datasets used in this study were retrieved from the Center for Advanced Life
Cycle Engineering (CALCE) at the University of Maryland [28]. The studied batteries are
graphite/LiCoO2 pouch cells with a capacity rating of 1500 mAh, weight of 30.3 gm, and
dimensions of 3.4 × 84.8 × 50.1 mm, labeled as PL19, PL11, and PL09. Table 2 shows the
number of cycles in each dataset.

Table 2. Battery Cycles.

Batteries # of Cycles

PL19 526
PL11 702
PL09 528

Figure 2 illustrates the battery capacities over the number of cycles and indicates the
decrease in capacities as the number of cycles increases. It can also be observed that in PL09
and PL19 capacities are discrete, while in PL11, they differ continuously.

Since the battery capacity and entropy were not observed in all cycles, we have
estimated each unrecorded capacity value and its related entropy using the average of its
previous and next known capacity and entropy value. By doing so, we have increased the
number of data, and hence, the proposed models can be trained and tested more accurately.

Figures 3–5 indicate the resultant capacities and entropies after filling the missing data.
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Figure 2. Capacity vs. Cycle for PL11, PL19, and PL09.

Figure 3. Capacity vs. Cycle (left) and Entropy vs. Cycle (right) for PL19.

Figure 4. Capacity vs. Cycle (left) and Entropy vs. Cycle (right) for PL11.

Figure 5. Capacity vs. Cycle (left) and Entropy vs. Cycle (right) for PL09.



Algorithms 2022, 15, 393 6 of 17

4. Methodology

The mathematical notations used throughout this paper are summarized in Table 3.

Table 3. Glossary.

Indices

n Number of time series data
T Number of times the permutation is found in time series data

Variables

xt Input variable (permutation entropy of battery voltage) at step t
yt Observed battery capacity at step t
ŷt Output variable (predicted battery capacity) at step t
ht Previous state at step t
ct Current state at step t
c̃t Intermediate cell state at step t
it Input gate at step t
ft Forget gate at step t
ot Output gate at step t
p Order of auto-regression
d Order of difference
q Order of moving average
st State at step t
at Action at step t
rt Reward at step t
R Sum of the rewards
α Learning rate
γ Discount factor
Qst . at

Q Table for states and actions at step t

Parameters

PE Permutation entropy
D Order of permutation entropy
τ Time delay in data series
V Time series data matrix
li Columns in V
π Permutation pattern
P Relative probability of each permutation
Wi, W f , Wo, Wc, Ui, U f , Uo, Uc Weights in LSTM cells
bi, b f , bo, bc bias vectors in LSTM cells
θ,∅ ARIMA coefficients
εt Normal white noise with zero mean

In the following subsections, permutation entropy calculation and the proposed
models will be discussed.

4.1. Permutation Entropy

To compute a D order permutation entropy for a one-dimensional set of time series
data with n data points, the following steps are taken [29]. First, the data is partitioned into
a matrix with D rows and n− (D− 1)τ columns, where τ is the delay time.

V =


v(1)
v(2)

...
v(n)

v(1 + τ)
v(2 + τ)

...
v(n + τ)

· · ·
· · ·

· · ·

v(1 + (D− 1)τ)
v(2 + (D− 1)τ)

...
v(n + (D− 1)τ)

 (1)

After rebuilding the data, π is defined as the permutation pattern for V columns:

π = {l0.l1. . . . .lD−1} = {0.1. . . . .D− 1} (2)
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The relative probability of each permutation in π is calculated as below:

P(π) =
T

n− D + 1
(3)

where T is the number of times the permutation is found in the time series. Finally, the
relative probabilities are used to compute the permutation entropy:

PE = −
D!

∑
i=1

P(π) log2 P(π) (4)

An algorithm for the permutation entropy computation is presented below.

Algorithm 1: Permutation Entropy

Step1 Reshape the data series into a matrix as in Equation (1)

Step2 Find the permutation patterns π

Step3 Calculate the probability of each permutation in π

Step4 Compute PE as in Equation (4)

Permutation entropy of the coarse-grained battery voltage is extracted, as in Figure 6.
Despite the noise affecting the entropies, in PL11, the differences in the entropies are
relatively small compared to the earlier cycles, while the deviations increase as the number
of cycles increases. In PL19, the range of entropy is approximately constant over a different
number of cycles; however, in PL09, they are completely random.

Figure 6. Entropy vs. Cycles for PL11, PL19, and PL09.

After data analysis, we split the data into train and test subsets. The proposed models
utilize approximately 90% of the data for training purposes and take the rest for evalua-
tion, as in Figure 7. The mechanism through which the training/test ration is selected is
explained in the following sections.

Figure 7. Train–Test split schematic.

4.2. Predictive Models

The predictive models are presented in this section as follows.

4.2.1. LSTM

Long Short-Term Memory, known simply as LSTM, is a framework for a recurrent neu-
ral network (RNN) which avoids the problem of long-term dependency. Unlike standard
feedforward neural networks, LSTM has feedback connections, and hence, it can update
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and store necessary information. It has been widely utilized in time series forecasting in
different fields of science in recent years [30].

A unit LSTM cell consists of an input gate it, forget gate ft, and an output gate ot.
Each gate receives the current input xt, the previous state ht−1, and the state ct−1 of the
cell’s internal memory. xt, ht−1, and ct−1 are passed through non-linear functions, which
yield the updated ct and ht [31]. Considering Wi, W f , Wo, Wc and Ui, U f , Uo, Uc as the
correspondig weights matrices and bi, b f , bo, bc as the bias vectors, each LSTM cell operates
based on the following Equations.

it = σ(xtUi + ht−1Wi + bi) (5)

c̃t = tan h(xtUc + ht−1Wc + bc) (6)

ft = σ
(

xtU f + ht−1W f + b f

)
(7)

ct = ft ∗ Ct−1 + it ∗ c̃t (8)

ot = σ(xtUo + ht−1Wo + bo) (9)

ht = tan h(ct) ∗ ot (10)

In this study, all three gates take permutation entropy of the battery voltage at cycle t
and the battery capacity at cycle t− 1 as their input variables, xt and ct−1, and output the
estimated battery capacity, ŷ, for the given inputs as shown in Figure 8. Furthermore, an
algorithm is presented for the proposed LSTM model.

Figure 8. Schematic of a unit LSTM cell.

Algorithm 2: LSTM

Input: x = {PE1. PE2. . . . .PEn}: Permutation Entropy of Battery Voltage and ct−1;

Output: ŷ = {Capacity1.Capacity2. . . . . Capacityn}: Battery Capacity;

for t in range(epoch) do

Step1 Calculate it
Step2 Determine c̃t

Step3 Calculate ft

Step4 Update ct

Step5 Calculate ot

Step6 Update ht

Step7 Determine the output ŷ = LSTMforward(x)
Step8 Compute the loss function as Equations (20)–(22)

end
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4.2.2. ARIMA

The Autoregressive Integrated Moving Average (ARIMA) method is proposed as a
technique for statistical analysis in time series data. An ARIMA model is a combination
of the autoregressive (AR) and moving average (MA) models. The ARIMA model can be
explained according to three notations—p, d, and q—which define the type of the ARIMA
model:

- p : order of auto-regression
- d : order of difference
- q : order of moving average

For AR (p), we have:

ŷt = ∅1yt−1 +∅2yt−2 + · · ·+∅pyt−p + εt (11)

MA (q) can be described as follows:

ŷt = εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (12)

ARMA (p.q) is a combination of AR (p) and MA (q), and is described as below:

ŷt = ∅1yt−1 + · · ·+∅pyt−p + εt − θ1εt−1 − · · · − θqεt−q (13)

where yt and ŷt, respectively, are the observed and estimated values; ∅ and θ, respectively,
are coefficients; and εt is a normal white noise process with zero mean.

ARIMA is an advanced version of ARMA, which also works well for non-stationary
time series data. To convert the non-stationary to stationary data, a data transformation
is needed using a d-order difference equation [32]. Consequently, ARIMA (p.d.q) can be
described as Equation (14).

ŵt = ∅1wt−1 + · · ·+∅pwt−p + εt − θ1εt−1 · · · − θqεt−q (14)

where wt = ∇dyt and ∇ is the gradient operator. When d = 0, Equation (14) is the same as
Equation (13) and, thus, ARIMA acts the same as ARMA. p and q are initialized using the
autocorrelation function (ACF) and partial autocorrelation function (PAFC).

AFC measures the average correlation between data points in a time series and pre-
vious values of the series measured for different lag lengths. PACF is the same as ACF,
except that each correlation controls for any correlation between observations of a shorter
lag length [32].

Figure 9 demonstrates the ARIMA framework from the input data stage through the
prediction stage.

Figure 9. ARIMA framework.

In this study, an ARIMA model is proposed to predict future battery capacities. Since
we are working with a non-stationary time series, we have made a data transformation
with d = 1. p and q, respectively, are set to 5 and 0, and thus, predictions were made with
ARIMA (5.1.0). The rationale behind choosing the order of the ARIMA model is as follows.
We compare the results from a range of non-negative integers, p = [1, 10] (extracted from
the existing literature), and select the optimal number of time lags for the autoregressive
model, which results in minimal errors compared to other orders in that range. The results
from the optimal model are displayed and reported here.

There is a battery voltage sequence at each cycle (i.e., a time series of voltages at each
cycle). We first compute the permutation entropy of each voltage sequence according to the
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corresponding algorithm; then, we use the time series of the permutation entropy measures
(i.e., one entropy measure at each cycle) as an input in the ARIMA model, compare them
with the deviations in the battery capacities, and predict the next-cycle battery capacity as
an output of the model.

An algorithm for the ARIMA model is presented as follows.

Algorithm 3: ARIMA

Input: x = {PE1.PE2. . . . .PEn}: Permutation Entropy of Battery Voltage Sequences at each Cycle;

Output: ŷ = {Capacity1.Capacity2. . . . . Capacityn}: Battery Capacity;

- Make time series data stationary with appropriate d;
- Initialize p and q using ACP and PACF;
- Fit ARIMA (p.d.q) to data;
- Predict the next-cycle capacity as Equation (14);
- Calculate the loss function using Equations (20)–(22).

4.2.3. Reinforcement Learning

Reinforcement Learning (RL) is a type of multi-layered neural network, and has
become a focus of research in modern artificial intelligence. The concept is based on
rewarding or punishing an agent’s performance in a specific environment. A state is a
description of the environment made to provide the necessary information for the agent to
decide at each time step. For each and every state s, the agent has a number of selecting
actions a to make decisions from. A policy is required, based on a cost function, to map
each state to the optimal action with the consideration of maximizing its reward function
during the episode [33].

Reinforcement Learning has real-life applications in various fields such as driving cars,
landing rockets, trading and finance, diagnosing patients, and so on. This Deep Learning
technique differs from supervised learning, as it does not require correct sets of actions and
labeled input/output pairs [34]. Instead, the goal is to find a balance between exploration
and exploitation. Figure 10 illustrates the schematic of a general Reinforcement Learning
structure and its Equations are described as follows.

Figure 10. Reinforcement Learning Schematic.

at ∼ π(at|st) (15)

st+1 ∼ fstate(st+1|st.at) (16)

rt+1 = freward(st. at.st+1) (17)

R =
∞

∑
t=0

γtrt+1 (18)

Qnew
st . at = Qold

s. at + α


Target︷ ︸︸ ︷

rt + γmaxQnext s−a
st+1. a −

Prediction︷ ︸︸ ︷
QQ

st . at

 (19)
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In this study, we have considered the permutation entropy of the battery voltage as
the states and the capacities as the actions, which should be taken at each state based on
the given entropy. An algorithm for the RL model is presented in the following.

Algorithm 4: Reinforcement Learning

States: s = {PE1. PE2. . . . .PEn}: Permutation Entropy of Battery Voltage;

Actions: a = {Capacity1.Capacity2. . . . . Capacityn}: Battery Capacity;

Define the optimal policy;

Initialize the parameters α and γ;

for t in range (epoch) do

Calculate at using the optimal policy

Determine st+1 as a function of the state and the previous state and action

Compute rt+1 and R
Update Qst . at

using Equation (19)

Evaluate the estimation using the following loss function as in Equations (20)–(22)

end

The hyperparameters of the proposed models define how they are structured. Optimal
hyperparameters are approximated so that the loss is reduced. In other words, we explore
various model architectures and search for the optimal values in the hyperparameter space
to minimize the resulting performance metrics; for instance, Mean Squared Error. For
this purpose, in the three models, grid search is used for tuning the hyperparameters and
achieving reliable comparisons between the numerical results from the models. A model is
built for each possible combination of all of the hyperparameter values; next, the models
are evaluated based on the performance metrics, and then the architecture which produces
the best results is selected. The results and findings are reported in the following section.

5. Results and Findings

The numerical results and findings are presented in this section as follows.

5.1. Performance Measures

To evaluate the performance of the proposed models, we present the observed and
predicted battery capacities for ARIMA and LSTM models and the reward and loss func-
tions obtained from the RL model. Furthermore, we compare the observed and predicted
battery capacities gained from each of these models using three performance metrics [35]
as shown below:

Mean Squared Error (MSE):

MSE =
1
n

n

∑
t=1

(yt − ŷt)
2 (20)

Mean Absolute Error (MAE):

MAE =
1
n

n

∑
t=1
|yt − ŷt| (21)

Root Mean Squared Error (RMSE):

RMSE =
√

MSE =

√
1
n

n

∑
t=1

(yt − ŷt)
2 (22)

where yt and ŷt, respectively, are the observed and predicted capacity at cycle t, and n is
the number of test data.
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5.2. Numerical Results

The observed and predicted battery capacities results from ARIMA and LSTM models
are shown in Figures 11–13. Based on the graphs obtained, it can be seen that in all three
datasets the ARIMA model predictions are following the trends in the test data, and so,
yields better results as compared to the LSTM model for predicting the time series of battery
capacities.

Figure 11. Train, test, and predicted data results from ARIMA and LSTM models for PL19.

Figure 12. Train, test, and predicted data results from ARIMA and LSTM models for PL11.

Figure 13. Train, test, and predicted data results from ARIMA and LSTM models for PL09.

The early battery-life prediction, which includes a prediction of the battery cycles at
earlier cycles, is performed, and the results are displayed in Figures 14–16. It is observed that
the deviation between the predicted capacities and the actual capacities are not significant,
indicating that the proposed ARIMA and LSTM models are capable of predicting battery
capacities at earlier cycles.
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Figure 14. Train, test, and predicted data results from ARIMA and LSTM models for PL19.

Figure 15. Train, test, and predicted data results from ARIMA and LSTM models for PL11.

Figure 16. Train, test, and predicted data results from ARIMA and LSTM models for PL09.

In the RL model, as demonstrated in Figure 17, the reward values have an impressive
increase and immediately become stable with some noise. The loss values increase at first;
however, after approximately 250 epochs, they decline to 0, which verifies the procedure of
Reinforcement Learning.

To find the best data split ratio, our proposed RL approach is initially trained using
shuffled datasets with five different training ratios (70%, 75%, 80%, 85%, and 90%). After-
wards, Mean Squared Error (MSE) is utilized as a loss function to evaluate the obtained
results. Based on Table 4, the best accuracy is gained by using 90% of each dataset for
training purposes and using the rest for the testing process (Figure 18). Finally, this ratio is
applied to training the other two models (LSTM and ARIMA). To save space, the results
from the LSTM and ARIMA models are not reported here. The results from the other two
models are consistent with those from RL (i.e., the best training ratio of 10%).
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Figure 17. Reward and Loss Function (RL model).

Table 4. MSE Value for Different Training Ratios for the RL model.

Battery
Training Ratio

70% 75% 80% 85% 90%

PL19 0.0422 0.0618 0.0179 0.0008 0.0002
PL11 0.0718 0.0465 0.0153 0.0156 0.0084
PL09 0.0209 0.0007 0.0006 0.0003 0.0003

Figure 18. Finding the best Train–Test Split.

5.3. Comparisons

Tables 5–7 represent a snapshot comparison of the aforesaid models for the PL19,
PL11, and PL09 datasets, respectively. As the results show, in all datasets, ARIMA slightly
surpasses the LSTM and RL models since it results in the smallest MSE, MAE, and RMSE
values. However, the differences are not significant, and for PL19 and PL11, ARIMA and
RL yield approximately the same values of performance measures. It is concluded that
LSTM and RL also result in minor errors.

Table 5. MSE, MAE, and RMSE values for the predictive models (PL19).

Evaluation Metric LSTM ARIMA RL

MSE 0.00003 0.00001 0.0002
MAE 0.00417 0.00001 0.00005
RMSE 0.00580 0.00003 0.00009
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Table 6. MSE, MAE, and RMSE values for the predictive models (PL11).

Evaluation Metric LSTM ARIMA RL

MSE 0.00011 0.00001 0.0084
MAE 0.00012 0.00026 0.00054
RMSE 0.01095 0.00066 0.00090

Table 7. MSE, MAE, and RMSE values for the predictive models (PL09).

Evaluation Metric LSTM ARIMA RL

MSE 0.00001 0.00001 0.0003
MAE 0.00171 0.00001 0.03997
RMSE 0.00200 0.00002 0.05751

From Tables 5–7, it is observed that the ARIMA model yields smaller errors compared
to the LSTM model. ARIMA, which is a mean-reverting process, has the ability to pre-
dict battery capacities with smaller deviations. However, the LSTM model—which is a
recurrent network—attempts to avoid the long-term dependency by storing only necessary
information, and thus, it is unable to probabilistically exclude the input (i.e., previous
permutation entropy of battery voltage sequences) and the recurrent connections to the
units of the network from the activation and weight updates while the model is being
trained. Consequently, the deviations between the actual battery capacities and the pre-
dicted capacities resulting from the LSTM model are greater than those resulting from the
ARIMA model. The results displayed on Figures 11–13 are consistent with the Tables.

6. Conclusions

In lithium-ion battery applications, failures in the system can be minimized by per-
forming prognostics and health management. Data-driven methods are one way of doing
so, and identify the optimal replacement intervals or the optimal time for changing the
battery in an appropriate manner. This paper presents three different models (LSTM,
ARIMA, and RL), which all are built based on the permutation entropies of the battery
voltage sequences, for next-cycle battery capacity prediction using the status of the previous
states. In various data conditions, different models may be required; having a collection
of models, even for the same purpose, can be useful. In addition to accurate prediction of
battery capacities based on the ARIMA model, it is shown that the LSTM and the proposed
entropy-based RL models have similar performance and both result in small errors.
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