
Citation: Galanis, N.-I.; Vafiadis, P.;

Mirzaev, K.-G.; Papakostas, G.A.

Convolutional Neural Networks: A

Roundup and Benchmark of Their

Pooling Layer Variants. Algorithms

2022, 15, 391. https://doi.org/

10.3390/a15110391

Academic Editor: Frank Werner

Received: 9 September 2022

Accepted: 18 October 2022

Published: 23 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Convolutional Neural Networks: A Roundup and Benchmark
of Their Pooling Layer Variants
Nikolaos-Ioannis Galanis , Panagiotis Vafiadis , Kostas-Gkouram Mirzaev and George A. Papakostas *

MLV Research Group, Department of Computer Science, International Hellenic University, 65404 Kavala, Greece
* Correspondence: gpapak@cs.ihu.gr

Abstract: One of the essential layers in most Convolutional Neural Networks (CNNs) is the pooling
layer, which is placed right after the convolution layer, effectively downsampling the input and
reducing the computational power required. Different pooling methods have been proposed over
the years, each with its own advantages and disadvantages, rendering them a better fit for different
applications. We introduce a benchmark between many of these methods that highlights an optimal
choice for different scenarios depending on each project’s individual needs, whether it is detail
retention, performance, or overall computational speed requirements.

Keywords: Convolutional Neural Network (CNN); pooling; deep learning; computer vision; image
analysis; benchmark

1. Introduction

Computer vision can be described as the way machines interpret images and is a
field of AI that trains computers to comprehend the visual world [1]. During the last
20 years, computer vision has evolved rapidly, with deep learning and especially Deep
Convolutional Neural Networks (D-CNNs) standing out among other methodologies. The
accuracy rates for object classification and identification have increased to the point of being
comparable to that of humans, enabling quick automated image detection and reactions to
optical inputs.

CNNs are considered unquestionably the most significant artificial neural network
architecture for any computer vision and image analysis project at the moment. Making
an appearance in the 1950s with simple and complex cell biological experiments [2,3] and
officially introduced in the 1980s [4] as a neural network model for a mechanism of visual
pattern recognition, they have progressed greatly over the last years until today’s complex
pre-trained computer vision models. One of the main applications of deep learning and
CNN’s is that of image classification where the system tries to identify a scene or an object
inside it. CNNs can also be taken a step further, by using one or more bounding boxes to
recognize and locate multiple objects inside an image.

Many traditional machine learning models such as Support Vector Machine (SVM) [5]
or K-Nearest Neighbor (KNN) [6] were used for image classification before CNNs, where
each individual pixel was considered a feature. With CNNs, the convolution layer was
introduced, breaking down the image into multiple features, which are used for predicting
the output values. However, since convolution itself is a demanding computation, pooling
was introduced to make the overall process less resource intensive along the network. This
method reduces the overall amount of computations required, essentially downsampling
the input every time it is applied while trying to maintain the most important information.

In this review, we attempt to summarize many of the pooling variants along with
the advantages and disadvantages of each individual method, while also comparing their
performance in a classification scenario with three different datasets.

Initially, the pooling methods are presented one by one, providing an overview of
each approach. In the end, we summarize the models and datasets that each method uses

Algorithms 2022, 15, 391. https://doi.org/10.3390/a15110391 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15110391
https://doi.org/10.3390/a15110391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9528-4349
https://orcid.org/0000-0002-6448-5524
https://orcid.org/0000-0003-4473-4631
https://orcid.org/0000-0001-5545-1499
https://doi.org/10.3390/a15110391
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15110391?type=check_update&version=2

Algorithms 2022, 15, 391 2 of 19

in a table, as a preamble to the testing methodology, which is explained right after. Finally,
we present and analyze our benchmark results, focusing on the performance and ability to
retain the details of the original input.

2. Materials and Methods
2.1. Related Work

The following content is separated into two sections: a roundup of pooling methods
summarizing each approach and a benchmark of their performance taking into account
multiple factors, focusing on 2D image applications. There have been some review papers
on this subject in the past, mostly summarizing the theory behind individual proposals.

Some of them are quite extensive [7,8] and may reference the test results from various
external sources [8], though this type of compilation is not ideal for a direct comparison
since each experiment is performed under different conditions (model, hardware, etc.).
Others focus on deep architectures or neural networks in general, including only some of
the pooling methods along with their main research subject [9,10]. In some cases, there
are even small-scale tests, but they are targeted at very specific use cases, such as medical
data [11].

To our best knowledge, though the subject is similar—which may cause some overlap-
ping content—there has not been an extended benchmark implementation using the same
environment so that there can be a direct comparison between the methods’ performances.

2.2. Pooling the Literature

The publications that this review was based on were located by searching for a combi-
nation of the terms “Pooling” and “CNN” or “Convolution” (and their derivatives, such as
“convolutional”) in the title, keywords, and abstract. After shortlisting some of the results,
further literature was added by extensively searching through references and related publi-
cations of the initially selected papers, focusing on the applications of CNNs and not the
generic subject. While there are some references in 1990 when Yamaguchi introduced the
concept of Max pooling [12], most pooling proposals and ideas appear to be chronologically
placed in the last decade. Figure 1 shows a steady interest in the general subject of pooling
for the last decade, perhaps with small increases or decreases per year.

2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

0

500

1000

1500

2000

Figure 1. Publications for total results about pooling for CNNs in Scopus.

2.3. Let the Pooling Begin

Three of the most common pooling methods are Max pooling, Min pooling, and
Average pooling. As their names suggest, for every area of the input where the sliding
window focuses, the maximum, minimum, or average value is calculated accordingly.

Average pooling (also referred to as Mean pooling) has the drawback that it takes
into consideration all values regardless of their magnitude, and even worse, in some cases
(depending on the activation function that is used), strong positive and negative activations
can cancel each other out completely.

On the other hand, Max pooling captures the strongest activations while ignoring
other weaker activations that might be equally important, thus erasing input data, while
also tending to overfit frequently and not generalizing very well. While most of the other
methods try to either improve, combine, or even completely replace these “basics”, they

Algorithms 2022, 15, 391 3 of 19

still tend to be widely used due to their efficiency, ease of use, and low computational
power required. Let us explore each of the available methods in detail.

2.3.1. Max and Min Pooling

Max pooling is one of the most-common pooling methods, which selects the maxi-
mum element from the area of the feature map covered by the kernel applied, as seen in
Figure 2. Depending on the filter and stride, the outcome is a feature map having the most
distinguished features of the input [13]. On the other hand, Min pooling does the exact
opposite, selecting the minimum element from the selected area. As expected, Max pooling
tends to retain the lighter parts of the input when it comes to images, while Min pooling
does the same with the darker parts.

6 2 8 1 7 9

5 0 2 8 6 4

3 8 6 7 2 0

6 1 8 4 2 0

2× 2 Max pooling

Filter/Kernel 6 8 9

8 8 2
2

2

Figure 2. An example of Max pooling’s functionality [14].

2.3.2. Fractional Max Pooling

Fractional Max Pooling (FMP) [15] is, as its name suggests, a variant of Max pooling,
but the reduction ratio can be a fraction as well, instead of an integer. The most important
parameter is the scaling factor a by which the input image will be downscaled, with
1 < a < 2. Considering an input of size Nin × Nin, we select two sequences of integers
ai, bi that start at 1, and they are incremented by 1 or 2 and end at Nin. These sequences
can be either completely random or pseudorandom when they follow the equation ai =
ceil(a ∗ (i + u)), where a is the scaling factor and u is a number in the range (0, 1). Then,
the input is split into pooling regions, either disjoint or overlapping using the respective
variant of Formula (1), and the Max value for each region is retained.

Pi,j = [ai−1, ai − 1]× [bj−1, bj − 1] or Pi,j = [ai−1, ai]× [bj−1, bj] (1)

where

P : the pooling region
ai, bi : integer sequences according to the FMP algorithm

According to the writers’ experiments, overlapping FMP seems to have better results
than the disjoint alternative, while a random choice of the sequences ai, bi distorts the
image, in contrast with the pseudorandom ones. Overall, FMP’s performance appears to
be better than that of Max pooling.

2.3.3. Row-Wise Max-Pooling

Row-wise Max pooling is referred to alongside a deep panoramic representation for
3D shape classification and recognition called DeepPano [16]. A panoramic view is created
from the projection of the 3D model as a cylinder to its principle axis. The pooling layer
is placed after the last convolution layer and uses the highest value of each row in the
input map. The suggested methodology appears to be rotation-invariant according to the
experiments, since its output is not affected by the rotation of the 3D shape input.

Algorithms 2022, 15, 391 4 of 19

2.3.4. Average Pooling

Average pooling has a similar function as Max pooling, but it calculates the average
value of the pooled area [17], as seen in Figure 3.

6 2 8 1 7 9

5 0 2 8 6 4

3 8 6 7 2 0

6 1 8 4 2 0

2× 2 avg pooling

Filter/kernel 3.25 4.75 6.5

4.5 6.25 1
2

2

Figure 3. An example of Average pooling’s functionality [14].

Average pooling, in contrast to Max pooling, which seeks the top features, extracts a
patch of features, makes some calculations based on them, and returns a smoother result.
This may lead to lower accuracy. In general, it depends on the density of the features
(pixels) and the use of the output product.

2.3.5. Rank-Based Pooling

The rank-based pooling methods [18] are an alternative to Max pooling, with three
variants: rank-based Average pooling (RAP), rank-based weighted pooling (RWP), and
rank-based stochastic pooling (RSP). The most-important characteristics of these meth-
ods are:

• The top features can be easily identified by their ranks.
• Ranks remain slightly unchanged from the activation values.
• Ranking can avoid scaling across value-based methods.

Before applying any of the three methods, the ranking process takes place, where an
activation function is applied to the individual elements, and they are sorted in descending
order according to that function’s value.

RAP attempts to resolve the main issues of Max and Average pooling, which are the
information loss of non-Max values in Max pooling and the information being downgraded
due to near-zero negative activations in Average pooling. It does so by using an average of
the top t important features, where t is a predefined downsizing threshold—if we want to
downsize, for instance, by a factor of 2 and the kernel has a size of 2 × 2, t will have the
value of 2 as well. Then, we set weights for all the elements within the kernel, with the top
t having a weight of 1/t, whereas all other weights are set to 0, and the output is calculated
from Equation (2).

sj =
1
t ∑

i∈Rj,ri≤t
ai (2)

where a is the activation function value and t is the rank threshold that determines which
activation affects the averaging.

RWP takes into consideration that each region in an image might not be equally
important, thus setting rank-based weights for each activation. Thus, the pooling output
now changes to Equation (3).

sj =
1
t ∑

i∈Rj

piai (3)

Algorithms 2022, 15, 391 5 of 19

where a is the activation value and the probability p that is used for each weight is given
by the ranking Equation (4) where b is a hyper-parameter, r is the rank of activations, and
n is the size of the pooling area.

pr = b(1− b)r−1, r = 1, . . . n (4)

Lastly, Equation (5) is used for RSP in a very similar way to RWP.

sj = αi, where i ∼ Multinomial(p1, . . . , pn) (5)

where α is the activation value for each element in the pooled region. Then, the final activa-
tion values are sampled based on probabilities p calculated by a multinomial distribution,
based on Formula (4).

2.3.6. Mixed, Gated, and Tree Pooling

Mixed pooling [19] combines Max and Average pooling, selecting one of these two
methods, outperforming both of them when used separately. Lee et al. proposed two
different variants along with the base one: mixed Max–Average pooling, and gated Max–
Average pooling, along with an alternative method for tree pooling. An overview of the
three methods can be seen in Figure 4.

(a) (b)
(c)

Figure 4. A schematic comparison of the three proposed operations in [19]: (a) mixed Max–Average
pooling, (b) gated Max–Average pooling and (c) tree pooling with 3-level binary tree.

In mixed Max–Average pooling, a parameter a is learned and can be different per the
whole network, per layer, or per pooling region. Then, the output of the pooling layer is
computed by Equation (6):

f mix(x) = a f Max(x) + (1− a) f avg(x) (6)

where:

x : the input to be pooled;
a : a learned parameter;
σ(wTx) : a sigmoid function, 1/(1 + exp(−wTx)).

In gated Max–Average pooling, a mask of weights is learned and the inner product
of that mask with the pooled region passed through a sigmoid function is used to decide
whether to use Max or Average pooling. This mask can differ per network, layer, or
region. The output is then calculated as described in Equation (7). According to the
method’s paper [19], in a comparison between this method and mixed Max–Average
pooling, it appears that the gated variant performs consistently better.

fgate(x) = σ(wTx) fMax(x) + (1− σ(wTx)) favg(x) (7)

where:

Algorithms 2022, 15, 391 6 of 19

x : the input to be pooled;
w : the learned mask of weights;
T : the transpose operator;
σ(wTx) : a sigmoid function, 1/(1 + exp(−wTx)).

A third alternative was proposed in the same paper for tree pooling, where a binary
tree is used and the pooling filters are learned. The tree level is a pre-defined parameter,
and each node holds a learned pooling filter. Furthermore, gating masks are used in a
similar way as described for gated pooling previously. Thus, the pooling result for each
node is described by the function (8), and the output of the pooling method is the calculated
output for the root node.

fm(x) =

{
νT

m if leaf node

σ(wT
mx) fm,le f t(x) + (1− σ(wT

mx)) fm,right(x) if internal node
(8)

where:

ν : the learned filter for each node;
w : the learned mask of weights;
m : the tree node index;
T : the transpose operator;
σ(wT

mx) : a sigmoid function, 1/(1 + exp(−wT
mx)).

2.3.7. LP Pooling

Sermanet et al. [20] proposed LP pooling as part of an architecture to recognize house
numbers. It is essentially another alternative to the Average and Max pooling methods,
closer to the one or the other depending on the value of P, a predefined parameter chosen
during the setup of the layer. This method is a sort of weighted function ending up with
higher weights for more important features and lower for the lesser ones, which can be
applied by using Formula (9).

O = (∑ ∑ I(i, j)P × G(i, j))1/P (9)

where O is the output, I is the input, and G is a Gaussian kernel. We should also note that
when P = 1, it is essentially Gaussian averaging, while when P = ∞, it is similar to Max
pooling. Using this type of pooling, the authors managed to achieve an average of about 4%
better accuracy than Average pooling for the Street View House Numbers (SVHN) dataset.

2.3.8. Weighted Pooling

Weighted pooling [21] is a pooling strategy that aims to use the weighted average
number of matches in a particular match. This is achieved by assigning different weights
to different activation methods based on common information. Three main features of
weighted pooling are, firstly, the amount of information of the pooling area is quantified by
information theory for the first time. Second, each activation’s benefaction is quantified for
the first time, and these contributions reduce the uncertainty of the pooling area in which it
is placed. Last, for selecting a senator in this pooling area, the weight of each activation
clearly overtakes the value of activation.

2.3.9. Stochastic Pooling

Stochastic pooling [22] attempts to improve the commonly used Max and Average
pooling and their previously mentioned drawbacks, by selecting the pooled values of the
input based on probabilities. According to this suggestion, a probability pi is calculated
for each of the elements inside the pooling region using Formula (10), and then, one of the
elements with a probability greater than zero is chosen randomly. This method though
does appear to have a drawback similar to that of Max pooling, since important parts of the

Algorithms 2022, 15, 391 7 of 19

input might be ignored in favor of other parts with non-zero probabilities. The stochastic
pooling strategy can be joined with any other forms of regulation such as dropout, data
augmentation, weight decay, and others to avoid overfitting in deep convolutional network
training.

pi, j =
ai

∑k∈Rj
ak

(10)

where:

a : the applied activation function;
R : the pooled region;
j : the index of the pooled region.

2.3.10. Spatial Pyramid Pooling

Spatial Pyramid Pooling (SPP) was inspired by the bag-of-words model [23], which
is one of the best-known representation algorithms for object categorization. The fully
connected layers at the end of the CNNs require a fixed length input. Spatial pyramid
pooling [24] attempts to fix that by converting the input of any size into a predefined
fixed length, essentially removing that fixed-size constraint, which might be problematic.
Basically, a fixed-size window with a constant stride makes the output be relative to the
input. On SPP layers the stride, and the pooling window are proportional to the input
image, so the output can be a fixed size. The name came from the ability of the layers to
apply more than one pooling operation and combining the outcome prior to moving on to
the next layer, as described in Figure 5.

Figure 5. A network structure with a spatial pyramid pooling layer [25].

2.3.11. Per-Pixel Pyramid Pooling

The largest pooling window used in per-pixel pyramid pooling [26] differs from the
original spatial pyramid pooling method, in order to manage obtaining the desired size
of the receptive field. This may have as a result the loss of some of the finer details. For
that reason, more than one pooling layer with different window sizes is applied, and the
outputs are combined to create new feature maps. This pooling task is executed for every
pixel without strides. The output is calculated by Equation (11).

P4P(F, s) = [P(F, s1), . . . , P(F, sM)] (11)

where s is a vector with M elements, F is the pooling function applied, and P(F,si) is the
pooling operation with an si-sized kernel and stride 1.

Algorithms 2022, 15, 391 8 of 19

2.3.12. Fuzzy Pooling

The Type-1 fuzzy pooling [27] is achieved by combining the fuzzification, aggregation,
and defuzzification of feature map neighborhoods. The method is applied using the
following steps:

1. The input of depth n is sampled with a kernel of size k × k and a specific stride σ to
obtain a set of patches p.

2. For each patch, we apply a set of ν membership functions µν, obtaining a set of fuzzy
patches πn

ν = µν(pn).
3. Each fuzzy patch is summed, resulting in a sum sn

πν
.

4. For each patch, the fuzzy patch with the highest sum of the previous step is selected
out of the total set of ν fuzzy patches (π′).

5. Finally, the dimensionality is reduced using Equation (12):

p′n =
∑k

i=1 ∑k
j=1 (π

′n
i,j · pn

i,j)

∑k
i=1 ∑k

j=1 π′ni,j
(12)

2.3.13. Overlapping Pooling

Overlapping pooling was proposed as part of a paper with the suggestion of an
architecture that classifies the ImageNet LSVRC-2010 dataset [28]. The idea behind it that
can be applied to most—if not all—pooling methods is setting a smaller stride than the
kernel size, so that there is overlap between neighboring pooled regions. The experiments
with the proposed architecture showed that the top 1 and top 5 error rates were reduced
by 0.4% and 0.3%, respectively for the case of Max pooling, while the model seemed to
overfit slightly less when using overlapping—while that was rather an observation, and no
specific evidence was presented.

2.3.14. Superpixel Pooling

Superpixel is a term for 2D image segments. Essentially, superpixel pooling [29], just
like overlapping pooling, is not a pooling method itself, but a method of applying a pooling
function such as the Max or Average. The difference is that, instead of using a standard
square sliding kernel as in other methods, the 2D image is already segmented—usually
based on edges. Then, the selected pooling function is applied in each segment. This
process reduces the computational cost significantly, while preserving a high accuracy in
the models used.

2.3.15. Spectral Pooling

While most other methods process the input in the spatial domain, spectral pooling [30]
takes it to the frequency domain, pools the input, and then, returns the output back to
the spatial domain. One of the main advantages is that information is preserved better—
compared to other common methods such as Max pooling—since lower frequencies tend
to contain that information and higher frequencies usually contain noise.

The application of this type of pooling is rather straightforward, applying a Discrete
Fourier Transform (DFT) to the input, cropping a predefined size window from the center,
and returning it back to the spatial domain by using the inverse DFT.

Obviously, a significant issue is the computational cost, since the DFT is required—
both forward and inverse. That overhead though can be minimized when the FFT is used
for the calculation of the convolution in the previous layer, thus limiting its use only to
such scenarios. Zhang et al. [31] suggested an alternative implementation based on the
Hartley transform, which might require less computational power while retaining the same
amount of information.

2.3.16. Wavelet Pooling

The wavelet pooling method [32] features a completely different approach compared
to the previously mentioned ones that use neighboring inputs, attempting to minimize the

Algorithms 2022, 15, 391 9 of 19

artifacts produced during the process of pooling. It is based on the Fast Wavelet Transform
(FWT), a transformation that is applied twice on the input, once on the rows, and once again
on the columns. Then, the input features are reconstructed using only the second-order
wavelet sub-bands by applying the Inverse FWT (IFWT), reducing by half the total image
features.

Unfortunately, though on the MNIST dataset, the wavelet pooling managed to outper-
form other competitors, on other datasets (CFAR-10, SHVN, KDEF), simpler methods such
as Average or Max pooling performed better. Furthermore, as one can see in Table 1, the
computational power required appears to be 110 K mathematical operations for the simpler
MNIST dataset, which goes up to a tremendous total of 6.2 M for the KDEF dataset, com-
pared to 3.5 K and 29 K—200-times less—operations required by the much simpler-to-apply
Average pooling.

Table 1. A comparison of the total mathematical operations required per method [32].

MNIST CIFAR-10 SHVN KDEF

Max 6.2 K 13 K 26 K 50 K
Avg 3.5 K 7.4 K 15 K 29 K
Mixed 4.8 K 10 K 20 K 40 K
Stochastic 10.6 K 22 K 45 K 86 K
Wavelet 110 K 405 K 810 K 6.2 M

2.3.17. Intermap Pooling

To achieve an increase in robustness for spectral variations of audio signals and
acoustic features, Intermap Pooling (IMP) was introduced [33]. This was accomplished
by the addition of a convolution maxout layer (IMP), which groups the feature maps, and
then the Max activation function at each position is chosen.

2.3.18. Strided Convolution Pooling

Ayachi et al. [34] proposed strided convolution as a drop-in replacement for Max
pooling layers with the same stride and kernel size, attempting to make the CNNs more
memory efficient. The convolution function that is applied is:

ci,j,n(f) = σ(∑k
h=0 ∑k

w=0 ∑m
u=0 θh,w,u,n fg(h, w, i, j, u)) (13)

where σ is the activation function, n ∈ [0, m] is the total number of output feature maps
of the previous convolution layer, k is the kernel size, (w, h, n) are the width, height, and
number of channels, and finally, θ is the kernel of the convolution weights, and it is θ = 1 if
n = u, or θ = 0 otherwise.

In Table 2, one can easily see that the replacement of the pooling layer with the strided
convolution does seem promising, since it actually reduces the total memory required by
each model while also increasing the overall accuracy.

Table 2. Model size and top 5 error reduction before and after replacing the Max pooling layer with
strided convolution for the ILSVRC2012 classification challenge [34].

VGG Net Google Net Squeeze Net

Original 528 MB 51.1 MB 4.7 MB
Strided Conv 493 MB 42.6 MB 3.2 MB
Original top 5 error (%) 8.1 9.2 19.7
Strided Conv top 5 error (%) 6.6 8.7 17.8

2.3.19. Center Pooling

Center pooling [35] is a pooling method used for object detection and intends to
identify distinct and more recognizable visual patterns. In an output feature map, we

Algorithms 2022, 15, 391 10 of 19

obtain the maximum values for a pixel in it is vertical and horizontal axis and add them—
which will show us if that pixel is a center keypoint, which is the center of a detected object
within an image.

2.3.20. Corner Pooling

On the other hand, corners usually are located outside the objects, which do not
have local relative features. Therefore, corner pooling [36] was introduced to solve this
problem. Corner pooling finds the maximum values on the boundary directions and, in this
way, identifies the corners. This has an effect on making the corners sensitiveto the edges.
Addressing this issue, in order to let corners identify the visual patterns of the objects if
needed, we use the cascade corner pooling method. Detecting the corners of an object can
help define the edges of an object itself better.

2.3.21. Cascade Corner Pooling

Cascade corner pooling [37] looks like a combination of center and corner pooling, by
taking the maximum values in both the boundary directions and internal directions of the
objects. Initially, from each boundary, it finds a boundary maximum value, then proceeds
to look inside the location of the boundary maximum value to obtain an internal maximum
value, and finally, it adds them together. As a result, the corners obtain both the boundary
information and the visual patterns of objects.

2.3.22. Adaptive Feature Pooling

Adaptive feature pooling [38] is used to gather features from all layers for each object
detection proposition and merges them for the upcoming prediction. For each one, they
are mapped at other feature levels. It is usually used to pool grids of features from each
level. A fusion function (maximum or sum of elements) is then used to secure the grids of
features from different levels.

2.3.23. Local-Importance-Based Pooling

Local-Importance-based Pooling (LIP) [39] is a pooling layer that can increase discreet
features during the downsampling process by learning adaptive weightings based on
inputs. Using this kind of didactic network, the importance function now is not limited
to manual forms and has the ability to recognize the criterion for the discriminativeness
of features. Furthermore, the size of the LIP window is limited to a minimum dimension,
so that it is not less than the step of making full use of the feature map and avoiding the
issue of a defined sampling interval. More specifically, the importance function in LIP is
implemented by a tiny fully convergent network, which learns to generate the importance
map based on end-to-end inputs [40].

2.3.24. Soft Pooling

Soft Pooling (SoftPool) [41] is a quick and effective kernel-based process that aggre-
gates exponentially weighted activations, as described in Formula (14). In comparison
with a number of other methods, SoftPool holds more information in the downsampled
activation maps, so by having a more sophisticated downsampling process, the result
returns better classification accuracy. It can be used to downsample 2D images and 3D
video activation maps.

wi =
eai

∑j∈R eaj
(14)

where:

a : the activation value;
i, j : the pooled region index.

Algorithms 2022, 15, 391 11 of 19

3. Putting the Methods to the Test
3.1. The Benchmark Setup

In order to choose the optimal architecture and datasets to use for our benchmark,
Table 3 was compiled. which summarizes what was used for each method in the corre-
sponding paper.

Table 3. A cumulative table of models and datasets used in each method’s publication.

Method Model(s) Datasets

Fractional Max [15] Custom CNN CIFAR-10, CIFAR-100, MNIST, CASIA-OLHWDB1.1
Row-wise Max [16] Custom CNN ModelNet-10, ModelNet-40
Rank-based [18] Custom CNN MNIST, CIFAR-10, CIFAR-100, NORB
Mixed [19] Custom CNN MNIST, CIFAR-10, CIFAR-100, SVHN
Gated [19] Custom CNN MNIST, CIFAR-10, CIFAR-100, SVHN
Tree [19] Custom CNN MNIST, CIFAR-10, CIFAR-100, SVHN
LP [20] Custom CNN SVHN
Stochastic [22] Custom CNN MNIST, CIFAR-10, CIFAR-100, SVHN
Spatial pyramid [24] ZF-5, Convnet-5, Overfeat-5/7 VOC 2007, Caltech 101, ILSVRC 2014, ImageNet 2012
Per-pixel pyramid [26] Custom CNN Middlebury benchmark “training dense” [42]
Fuzzy [27] LeNet MNIST, Fashion-MNIST, CIFAR-10
Overlapping [28] Custom CNN ILSVRC 2010, ILSVRC 2012/2013, ImageNet2012
Super-pixel [29] VoxResNet IBSR, Cityscapes
Spectral [30] Custom CNN CIFAR-10, CIFAR-100
Wavelet [32] MatConvNet [43] MNIST, CIFAR-10, SVHN, KDEF
Weighted [21] Custom CNN CIFAR-10, MNIST, PASCAL VOC 2007
Intermap [33] Custom CNN Switchboard-I Release 2

Strided convolution [34] VGG11-19, GoogleNet,
SqueezeNet ILSVRC 2014, ILSVRC 2012

Center [35] CenterNet MS-COCO
Corner [36] CornerNet MS-COCO
Cascade corner [35] Cascade R-CNN MS-COCO
Adaptive feature [38] Mask R-CNN (/w Caffe) MS-COCO, Cityscapes, MVD
Local-importance-based [39] ResNet, DenseNet MS-COCO, ImageNet 1K

Soft [41] ResNet, DenseNet, ResNeXt, In-
ceptionV1

ImageNet 1K, DIV2K, Urban 100, Manga 109, Flicker 2K, Ima-
geNet 1K, HACS, Kinetics-700, UCF-101

It seems that less-potent architectures are preferred in most cases. This is probably
because they usually achieve a lower overall performance, but that also means that the
impact of changing the pooling layer will be better highlighted. Thus, a similar model
was chosen, a LeNet5 architecture with 2 convolution layers, 2 respective interchangeable
pooling layers, and 2 fully connected layers, as shown in Figure 6.

Convolution

Pooling Convolution

Pooling

Input

C1

P2 P4

C3 FC5
FC6 Output

Figure 6. The CNN architecture used for the tests.

Regarding the datasets, the MNIST, CIFAR10, and CIFAR100 were used, since it seems
from Table 3 that these are commonly used in the reviewed papers. They are also ideal since
we had to make sure they were interchangeable for the exact same architecture without
changes to the fully connected layer(s), just by modifying the total output class parameter.

Algorithms 2022, 15, 391 12 of 19

Lastly, we focused on testing pooling methods that can be used as a direct drop-in
replacement for the Max pooling layer, with a kernel size and stride of size 2, in order to
reduce each dimension by half—applying parameters that would provide similar results
wherever required (like a 0.5 scaling factor, for instance, for the spectral pooling layer).
Stochastic gradient descent was used as an optimizer, with a learning rate of 0.01 and
momentum of 0.9 over 300 epochs.

3.2. Performance Evaluation

For the performance comparison, we used the standard top 1 and top 5 testing accuracy
(higher is better); for the computational complexity, we used the time required per epoch
(lower is better), while also including three indicators, which can provide better insight
into how well the details of the original image are maintained—for all three (higher values
are better):

Root-Mean-Squared Contrast (RMSC) [44], as defined in Formula (15) for a M× N
image:

RMSC =

√√√√ 1
M× N

M−1

∑
i=0

N−1

∑
j=0

(xij − x)2 (15)

where
xij : each pixel of the image;
x : (∑M−1

i=0 ∑N−1
j=0 xij)/(M× N).

Peak-Noise-to-Signal Ratio (PSNR) [45], as defined in Formula (16) for a M × N
image:

PSNR = 20log10

(MAX f√
MSE

)
(16)

where:

MSE : (Mean-Squared Error) = (∑M−1
i=0 ∑N−1

j=0 ‖ f (i, j)− g(i, j)‖2)/(M× N);
f : the data of the original image;
g : the data of the pooled image;
MAX f : the maximum signal value of the original image.

Structural Similarity Index (SSIM) [46], which is defined by three combined metrics
for luminance, contrast, and structure and can be simplified for two signals x, y in the form
seen in Formula (17):

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y)(σ
2
x + σ2

y + C2)
(17)

where:
µx, µy : the pixel mean µx = ∑N

i=1 xi/N;

σx, σy : standard deviation σx =
√

∑N
i=1 (xi − µx)2/(N − 1);

σxy : ∑N
i=1 (xi − µx)(yi − µy)/(N − 1);

C1 : (k1L)2;
C2 : (k2L)2;
L : the dynamic range of pixels, 255 for 8-bit grayscale images;
k1 : A small constant <1, 0.01 used in the paper experiments;
k2 : A small constant <1, 0.03 used in the paper experiments.

All tests were performed using a PyTorch implementation of the methods, on an
Nvidia GTX1080 GPU.

Algorithms 2022, 15, 391 13 of 19

4. Results
4.1. Details Retention

As previously described, three metrics were used as a means of comparison for how
well details are preserved after pooling the original input. The first one is the Root-Mean-
Squared Contrast (RMSC) [44], which is the standard deviation of the pixel intensities,
which indicates how well the contrast levels are maintained between the input and output.
The second, the Peak-Noise-to-Signal Ratio (PSNR) [45], shows how strong the original
image signal is compared to the introduced noise due to pooling. Lastly, the Structural
Similarity Index (SSIM) [46] can range from−1 to 1 and shows the actual similarity between
the input and output of the pooling layer.

In Table 4, Average pooling appears to be the best choice, since it shows the best SSIM
values across all dataset tests. Furthermore, it achieved a top ranking PSNR as well for
two out of the three datasets—which can be interpreted as a low level of introduced noise.
When it comes to the RMSC, though other methods achieved better values, Average pooling
kept up, and as we can see in the pooling layers’ output examples, higher contrast is not
always good, at least when it comes to comparing similarities with the original image.

Table 4. The details’ retention indicators of our benchmark. The best value for each metric in each
separate dataset is highlighted.

MNIST CIFAR10 CIFAR100
RMSC PSNR SSIM RMSC PSNR SSIM RMSC PSNR SSIM

Max 0.35 65.66 0.76 0.17 68.69 0.82 0.26 66.84 0.80
Adaptive Max 0.35 65.66 0.76 0.17 68.69 0.82 0.26 66.84 0.80
Fractional Max 0.35 65.66 0.76 0.17 68.69 0.82 0.26 66.84 0.80
Average 0.28 69.47 0.89 0.15 75.52 0.86 0.26 70.80 0.84
Mixed 0.16 70.54 0.85 0.16 70.54 0.85 0.26 69.03 0.82
Gated 0.30 68.49 0.83 0.14 72.24 0.85 0.26 69.22 0.82
Tree (Level 2) 0.53 60.57 0.69 0.33 53.74 0.62 0.46 54.84 0.73
LP (L2) 0.57 58.66 0.61 0.29 55.02 0.66 0.52 52.43 0.66
Stochastic 0.15 70.67 0.83 0.15 70.66 0.83 0.26 68.91 0.81
Fuzzy 0.55 59.95 0.68 0.29 55.20 0.67 0.52 52.58 0.66
Overlapping Max 0.40 60.46 0.56 0.18 64.92 0.70 0.25 62.01 0.58
Spectral 0.58 58.72 0.66 0.30 55.08 0.61 0.53 52.53 0.57
Wavelet 0.26 69.47 0.89 0.15 72.52 0.86 0.26 70.80 0.84
Local Importance 0.31 67.76 0.81 0.15 71.51 0.86 0.26 70.01 0.84
Soft 0.29 62.92 0.65 0.15 67.87 0.67 0.27 65.91 0.63

In Figures 7–9, a sample input of each dataset is presented, as well as the respective
output for each pooling layer. Each method might have a tendency to favor higher or lower
values of the input pixels, while some increase the contrast significantly.

Combined with the results of Table 4, it seems that Average pooling indeed achieved
a result that was very close to the original image. On the other hand, tree, l2, fuzzy, and
spectral pooling introduced a much higher contrast to the image, generating an output that
was very different from the original input.

Algorithms 2022, 15, 391 14 of 19

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)
Figure 7. The MNIST “5” original image (a) and the respective results of the first pass of pooling for
the methods Max (b), adaptive Max (c), fractional (d), Average (e), mixed (f), gated (g), tree (h), l2 (i),
stochastic (j), fuzzy (k), overlapping Max (l), spectral (m), wavelet (n), LIP (o), and SoftPool (p).

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)
Figure 8. The CIFAR10 frog original image (a) and the respective results of the first pass of pooling
for the methods Max (b), adaptive Max (c), fractional (d), Average (e), mixed (f), gated (g), tree (h), l2
(i), stochastic (j), fuzzy (k), overlapping Max (l), spectral (m), wavelet (n), LIP (o), and SoftPool (p).

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)
Figure 9. The CIFAR100 horse original image (a) and the respective results of the first pass of pooling
for the methods Max (b), adaptive Max (c), fractional (d), Average (e), mixed (f), gated (g), tree (h), l2
(i), stochastic (j), fuzzy (k), overlapping Max (l), spectral (m), wavelet (n), LIP (o) and SoftPool (p).

4.2. Model Performance

In Table 5, the accuracy of the individual pooling methods is presented, along with
the time required per epoch. It appears that for the MNIST, perhaps due to the ease of the
dataset, the results were almost identical. Though, in the previous section, Average pooling
appeared to “win the battle” of details’ retention, here, it is obvious that Max pooling and
its variants—especially overlapping Max pooling—seemed to perform much better.

Algorithms 2022, 15, 391 15 of 19

Table 5. The top 1/top 5 validation accuracy and time required per epoch for each model.

MNIST CIFAR10 CIFAR100
TOP-1 TOP-5 Time TOP-1 TOP-5 Time TOP-1 TOP-5 Time

Max 0.99 1.00 8 s 0.60 0.95 8 s 0.31 0.60 8 s
Adaptive Max 0.99 1.00 7 s 0.65 0.97 8 s 0.31 0.59 8 s
Fractional Max 0.99 1.00 8 s 0.64 0.97 8 s 0.32 0.61 8 s
Average 0.99 1.00 8 s 0.59 0.95 8 s 0.27 0.55 8 s
Mixed 0.99 1.00 8 s 0.61 0.96 8 s 0.30 0.58 8 s
Gated 0.99 1.00 10 s 0.61 0.96 10 s 0.31 0.60 10 s
Tree (Level 2) 0.99 1.00 11 s 0.58 0.95 11 s 0.28 0.56 11 s
LP (L2) 0.99 1.00 8 s 0.63 0.96 8 s 0.30 0.59 8 s
Stochastic 0.99 1.00 9 s 0.60 0.95 9 s 0.31 0.59 9 s
Fuzzy 0.97 1.00 14 s 0.57 0.95 13 s 0.19 0.44 13 s
Overlapping Max 0.99 1.00 8 s 0.65 0.97 8 s 0.34 0.63 8s
Spectral 0.99 1.00 8 s 0.60 0.95 8 s 0.29 0.57 8 s
Wavelet 0.99 1.00 10 s 0.59 0.95 10 s 0.29 0.56 10 s
Local Importance 0.99 1.00 10 s 0.58 0.95 9 s 0.28 0.56 9 s
Soft 0.99 1.00 8 s 0.57 0.95 8 s 0.28 0.57 8 s

Figures 10–12 show the top 1 accuracy of the model over the 300 training epochs
of the benchmark. In Figure 12, it is clear that overlapping Max pooling is the overall
better-performing method for CIFAR100, significantly outperforming the rest—though the
difference is not that obvious for the other two datasets.

When it comes to complexity, most methods required about 8 s per epoch, with some
requiring a much increased time—which might perhaps perform much better with a C++
implementation. Overlapping Max pooling had one of the lowest times required per epoch,
giving it yet another advantage. On the other hand, some methods managed to converge
much more quickly. For instance, tree, l2, spectral, and Average pooling seemed to require
far less than 100 epochs to obtain the highest possible accuracy. Thus, l2 might be a better
choice after all, since it achieved a high accuracy in fewer epochs and one of the lowest
processing times per epoch.

Figure 10. The top 1 accuracy of the models for the MNIST dataset over the epochs.

Algorithms 2022, 15, 391 16 of 19

Figure 11. The top 1 accuracy of the models for the CIFAR10 dataset over the epochs.

Figure 12. The top 1 accuracy of the models for the CIFAR100 dataset over the epochs.

On a closing note, the overall selected amount of 300 epochs might be a bit higher
than required since most methods achieved their peak accuracy at less than 100–150 epochs.
The high amount of epochs though did make sure that there were enough for each method
to achieve the best performance possible.

5. Discussion

As expected, there is no “absolute best” for the pooling layer—one that may work
great for one application might not even be viable for another. Though overlapping Max
pooling seemed to be the “winner” of this benchmark, there may be different scenarios
where other commonly used methods may be more suitable—such as, for instance, when
detail retention is important, Average pooling is a better choice and easy to implement and
has similar performance. Therefore, the choice of the proper pooling layer is not always
that simple and straightforward.

Algorithms 2022, 15, 391 17 of 19

One of the most important factors is probably the overall computational power re-
quired. Since the convolution layer itself is resource-heavy and the pooling layer’s role is to
“relieve” part of that load, it would be expected for the added overhead to be as minimal as
possible.

Other factors that one should keep in mind are the level of invariance required—
usually when the input is a video or highly variable images of similar objects—and the
overall detail retention that is required. Of course, a combination of two or even more
pooling methods could be applied to further improve the overall accuracy of the output.
Some might even prefer simpler methods due to their ease of implementation—in the case
where a rapid prototype would be adequate as a proof of concept. Taking into consideration
all the model’s requirements and even the personal favorites of the development team is
what usually drives the final selection of the pooling layer.

6. Conclusions

CNNs are an important part of computer vision, and pooling can significantly reduce
their overall processing, allowing the implementation of models and architectures with
far fewer resources than would normally be required. We created a roundup of many of
the pooling methods that have been proposed so far—though it might not be exhaustive—
summarizing each approach and a benchmark for a practical comparison.

Overlapping Max pooling appeared to perform better than the rest, at least for the
selected datasets. Even though it might be next to impossible to pinpoint and test every
single variation for all existing pooling methods, hopefully, it will be more than enough
to function as a starting point for every researcher and machine learning scientist in
order to help choose the one that is more appropriate or even inspire new approaches or
improvements for current implementations.

Author Contributions: Conceptualization, G.A.P.; methodology, N.-I.G., P.V. and K.-G.M; software
N.-I.G., P.V. and K.-G.M.; validation N.-I.G.; formal analysis, N.-I.G., P.V. and K.-G.M; investigation,
N.-I.G., P.V. and K.-G.M; resources, N.-I.G., P.V. and K.-G.M; data curation, N.-I.G.; writing—original
draft preparation, N.-I.G., P.V. and K.-G.M; writing—review and editing, N.-I.G.; visualization,
N.-I.G., P.V.; supervision, G.A.P.; project administration, N.-I.G.; funding acquisition, G.A.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The source code of this study is available via https://github.com/
MLV-RG/cnn-pooling-layers-benchmark/, (accessed on 8 September 2022).

Acknowledgments: This work was supported by the MPhil program “Advanced Technologies in
Informatics and Computers”, hosted by the Department of Computer Science, International Hellenic
University, Kavala, Greece.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Forsyth, D.A.; Ponce, J. Computer Vision: A Modern Approach; Prentice Hall: Upper Saddle River, NJ, USA, 2002
2. Carandini, M. What simple and complex cells compute. J. Physiol. 2006, 577, 463–466. [CrossRef]
3. Movshon, J.A.; Thompson, I.D.; Tolhurst, D.J. Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J.

Physiol. 1978, 283, 53–77. [CrossRef] [PubMed]
4. Fukushima, K.; Miyake, S. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition.

In Competition and Cooperation in Neural Nets; Springer: Berlin/Heidelberg, Germany, 1982; pp. 267–285.
5. Lin, Y.; Lv, F.; Zhu, S.; Yang, M.; Cour, T.; Yu, K.; Cao, L.; Huang, T. Large-scale image classification: Fast feature extraction and

svm training. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1689–1696.
6. Zhang, H.; Berg, A.C.; Maire, M.; Malik, J. SVM-KNN: Discriminative nearest neighbor classification for visual category

recognition. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 2, pp. 2126–2136.

7. Akhtar, N.; Ragavendran, U. Interpretation of intelligence in CNN-pooling processes: A methodological survey. Neural Comput.
Appl. 2020, 32, 879–898. [CrossRef]

https://github.com/MLV-RG/cnn-pooling-layers-benchmark/
https://github.com/MLV-RG/cnn-pooling-layers-benchmark/
http://doi.org/10.1113/jphysiol.2006.118976
http://dx.doi.org/10.1113/jphysiol.1978.sp012488
http://www.ncbi.nlm.nih.gov/pubmed/722589
http://dx.doi.org/10.1007/s00521-019-04296-5

Algorithms 2022, 15, 391 18 of 19

8. Sharma, S.; Mehra, R. Implications of pooling strategies in convolutional neural networks: A deep insight. Found. Comput. Decis.
Sci. 2019, 44, 303–330. [CrossRef]

9. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.
Intell. Rev. 2020, 53, 5455–5516. [CrossRef]

10. Gholamalinezhad, H.; Khosravi, H. Pooling Methods in Deep Neural Networks, a Review. arXiv 2020, arXiv:2009.07485.
11. Nirthika, R.; Manivannan, S.; Ramanan, A.; Wang, R. Pooling in convolutional neural networks for medical image analysis: A

survey and an empirical study. Neural Comput. Appl. 2022, 34, 5321–5347. [CrossRef] [PubMed]
12. Yamaguchi, K.; Sakamoto, K.; Akabane, T.; Fujimoto, Y. A neural network for speaker-independent isolated word recognition.

In Proceedings of the First International Conference on Spoken Language Processing, Kobe, Japan, 18–22 November 1990.
13. Murray, N.; Perronnin, F. Generalized Max pooling. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2473–2480.
14. Thoma, M. LaTeX Examples. 2012. Available online: https://github.com/MartinThoma/LaTeX-examples (accessed on 8

September 2022).
15. Graham, B. Fractional Max-pooling. arXiv 2014, arXiv:1412.6071.
16. Shi, B.; Bai, S.; Zhou, Z.; Bai, X. Deeppano: Deep panoramic representation for 3-d shape recognition. IEEE Signal Process. Lett.

2015, 22, 2339–2343. [CrossRef]
17. Zubair, S.; Yan, F.; Wang, W. Dictionary learning based sparse coefficients for audio classification with Max and Average pooling.

Digit. Signal Process. 2013, 23, 960–970.
18. Shi, Z.; Ye, Y.; Wu, Y. Rank-based pooling for deep convolutional neural networks. Neural Netw. 2016, 83, 21–31. [CrossRef]

[PubMed]
19. Lee, C.Y.; Gallagher, P.W.; Tu, Z. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree.

In Proceedings of the Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 464–472.
20. Sermanet, P.; Chintala, S.; LeCun, Y. Convolutional neural networks applied to house numbers digit classification. In Proceedings

of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 3288–3291.
21. Zhu, X.; Meng, Q.; Ding, B.; Gu, L.; Yang, Y. Weighted pooling for image recognition of deep convolutional neural networks.

Clust. Comput. 2019, 22, 9371–9383. [CrossRef]
22. Zeiler, M.D.; Fergus, R. Stochastic pooling for regularization of deep convolutional neural networks. arXiv 2013, arXiv:1301.3557.
23. Zhang, Y.; Jin, R.; Zhou, Z.H. Understanding bag-of-words model: A statistical framework. Int. J. Mach. Learn. Cybern. 2010,

1, 43–52. [CrossRef]
24. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]
25. ResearchGate. Available online: https://tinyurl.com/researchgateSPPfigure (accessed on 14 May 2021).
26. Park, H.; Lee, K.M. Look wider to match image patches with convolutional neural networks. IEEE Signal Process. Lett. 2016,

24, 1788–1792. [CrossRef]
27. Diamantis, D.; Iakovidis, D. Fuzzy Pooling. IEEE Trans. Fuzzy Syst. 2020, 29, 3481–3488. [CrossRef]
28. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
29. Schuurmans, M.; Berman, M.; Blaschko, M.B. Efficient semantic image segmentation with superpixel pooling. arXiv 2018,

arXiv:cs.CV/1806.02705.
30. Rippel, O.; Snoek, J.; Adams, R.P. Spectral representations for convolutional neural networks. arXiv 2015, arXiv:1506.03767.
31. Zhang, H.; Ma, J. Hartley Spectral Pooling for Deep Learning. arXiv 2018, arXiv:1810.04028.
32. Williams, T.; Li, R. Wavelet pooling for convolutional neural networks. In Proceedings of the International Conference on

Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
33. Lee, H.; Kim, G.; Kim, H.G.; Oh, S.H.; Lee, S.Y. Deep CNNs Along the Time Axis with Intermap Pooling for Robustness to

Spectral Variations. IEEE Signal Process. Lett. 2016, 23, 1310–1314. [CrossRef]
34. Ayachi, R.; Afif, M.; Said, Y.; Atri, M. Strided convolution instead of Max pooling for memory efficiency of convolutional

neural networks. In Proceedings of the International Conference on the Sciences of Electronics, Technologies of Information and
Telecommunications, Genoa, Italy and Hammammet, Tunisia, 18–20 December 2018; Springer: Berlin/Heidelberg, Germany,
2018; pp. 234–243.

35. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6569–6578.

36. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

37. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution
representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [CrossRef] [PubMed]

38. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768.

39. Gao, Z.; Wang, L.; Wu, G. Lip: Local importance-based pooling. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3355–3364.

http://dx.doi.org/10.2478/fcds-2019-0016
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1007/s00521-022-06953-8
http://www.ncbi.nlm.nih.gov/pubmed/35125669
https://github.com/MartinThoma/LaTeX-examples
http://dx.doi.org/10.1109/LSP.2015.2480802
http://dx.doi.org/10.1016/j.neunet.2016.07.003
http://www.ncbi.nlm.nih.gov/pubmed/27543927
http://dx.doi.org/10.1007/s10586-018-2165-4
http://dx.doi.org/10.1007/s13042-010-0001-0
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
https://tinyurl.com/researchgateSPPfigure
http://dx.doi.org/10.1109/LSP.2016.2637355
http://dx.doi.org/10.1109/TFUZZ.2020.3024023
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/LSP.2016.2589962
http://dx.doi.org/10.1109/TPAMI.2020.2983686
http://www.ncbi.nlm.nih.gov/pubmed/32248092

Algorithms 2022, 15, 391 19 of 19

40. Hyun, J.; Seong, H.; Kim, E. Universal pooling—A new pooling method for convolutional neural networks. Expert Syst. Appl.
2021, 180, 115084. [CrossRef]

41. Stergiou, A.; Poppe, R.; Kalliatakis, G. Refining activation downsampling with SoftPool. arXiv 2021, arXiv:2101.00440.
42. Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis.

2002, 47, 7–42. [CrossRef]
43. Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM International

Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 689–692.
44. Peli, E. Contrast in complex images. JOSA A 1990, 7, 2032–2040. [CrossRef]
45. Instruments, N. Peak Signal-To-Noise Ratio as an Image Quality Metric. 2013. Available online: https://www.ni.com/en-us/

innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html (accessed on 8 September 2022).
46. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2021.115084
http://dx.doi.org/10.1023/A:1014573219977
http://dx.doi.org/10.1364/JOSAA.7.002032
https://www.ni.com/en-us/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html
https://www.ni.com/en-us/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html
http://dx.doi.org/10.1109/TIP.2003.819861

	Introduction
	Materials and Methods
	Related Work
	Pooling the Literature
	Let the Pooling Begin
	Max and Min Pooling
	Fractional Max Pooling
	Row-Wise Max-Pooling
	Average Pooling
	Rank-Based Pooling
	Mixed, Gated, and Tree Pooling
	LP Pooling
	Weighted Pooling
	Stochastic Pooling
	Spatial Pyramid Pooling
	Per-Pixel Pyramid Pooling
	Fuzzy Pooling
	Overlapping Pooling
	Superpixel Pooling
	Spectral Pooling
	Wavelet Pooling
	Intermap Pooling
	Strided Convolution Pooling
	Center Pooling
	Corner Pooling
	Cascade Corner Pooling
	Adaptive Feature Pooling
	Local-Importance-Based Pooling
	Soft Pooling

	Putting the Methods to the Test
	The Benchmark Setup
	Performance Evaluation

	Results
	Details Retention
	Model Performance

	Discussion
	Conclusions
	References

