
Citation: Ahmed, A.A. An

Actor-Based Formal Model and

Runtime Environment for

Resource-Bounded IoT Services.

Algorithms 2022, 15, 390. https://

doi.org/10.3390/a15110390

Academic Editor: Arun Kumar

Sangaiah

Received: 24 September 2022

Accepted: 20 October 2022

Published: 23 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

An Actor-Based Formal Model and Runtime Environment for
Resource-Bounded IoT Services †

Ahmed Abdelmoamen Ahmed

Department of Computer Science, Prairie View A&M University, Prairie View, TX 77446, USA;
amahmed@pvamu.edu
† This paper is an extended version of our paper “A Model for Representing Mobile Distributed Sensing-Based

Services” published in the proceedings of the IEEE International Conference on Services Computing (SCC
2018), San Francisco, CA, USA, 2–7 July 2018.

Abstract: With sensors becoming increasingly ubiquitous, there is tremendous potential for Internet
of Things (IoT) services that can take advantage of the data collected by these sensors. Although there
are a growing number of technologies focused on IoT services, there is relatively limited foundational
work on them. This is partly because of the lack of precise understanding, specification, and analysis
of such services, and, consequently, there is limited platform support for programming them. In this
paper, we present a formal model for understanding and enabling reasoning about distributed IoT
services. The paper first studies the key properties of the IoT services profoundly, and then develops
an approach for fine-grained resource coordination and control for such services. The resource
model identifies the core mechanisms underlying IoT services, informing design and implementation
decisions about them if implemented over a middleware or a platform. We took a multi-agent systems
approach to represent IoT services, broadly founded in the actors model of concurrency. Actor-based
services can be built by composing simpler services. Furthermore, we created a proximity model to
represent an appropriate notion of IoT proximity. This model represents the dynamically evolving
relationship between the service’s sensing and acting capabilities and the environments in which
these capabilities are exercised. The paper also presents the design of a runtime environment to
support the implementation of IoT services. Key mechanisms required by such services will be
implemented in a distributed middleware.

Keywords: Internet of Things (IoT); actors; formal model; runtime environment; resource-bounded;
IoT services

1. Introduction

An Internet of Things (IoT) system is an engineered system that integrates computa-
tional algorithms with physical sensing components and processes. The computational
algorithms coordinate and communicate with sensors that monitor cyber and physical
indicators, along with actuators that modify the cyber and physical environment [1]. Such
smart IoT systems use sensors to connect all distributed intelligence in the environment to
gain a more in-depth knowledge of the environment, which enables more accurate actions
and tasks. IoT systems can scale to billions of end-devices (i.e., sensors and actuators)
connected to gateways, which act as the aggregation points for a group of sensors and
actuators to coordinate the connectivity of these devices to each other and to an external
network [2].

IoT systems open up an opportunity to offer innovative IoT services that can take
advantage of the data collected by different sensors across a wide variety of domains,
including health-care, agriculture, entertainment, environmental monitoring, and trans-
portation, etc. [3]. Consider a livestock-monitoring IoT service that utilizes a set of in-situ
sensors mounted in a livestock farm to collect data regarding the location, well-being,
and health of cattle. This information would help farmers identify diseased animals to be

Algorithms 2022, 15, 390. https://doi.org/10.3390/a15110390 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15110390
https://doi.org/10.3390/a15110390
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9736-5353
https://doi.org/10.3390/a15110390
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15110390?type=check_update&version=2

Algorithms 2022, 15, 390 2 of 19

separated from the herd, thereby preventing the spread of diseases. IoT services could also
help coordinate rescue efforts following natural disasters, such as the hurricanes Harvey
and Irma in 2017 in Texas and Florida, respectively. Emergency agencies could use such
services to gain insight into the situation on the ground. IoT services have a communication
pattern in which contextual data offered by a number of contributors become the basis for
services [4]. Increasingly, sensed data could inform decisions to activate actuators to carry
out tasks automatically. A growing number of IoT-based home automation technologies
offer good examples of such capability.

Although there is growing body of work on different aspects of IoT services (e.g., [5–7]),
research in each of these areas so far has been largely focused on either technology address-
ing specific challenges [8,9] or particular applications [3,10]. Moreover, the technologies
developed in one area do not readily migrate to the other because of the differences in the
applications and device specifications involved in each area. Furthermore, developing such
services is highly labor-intensive, where significant parts of the code have to be written
from scratch. This is, in part, because of the lack of high-level language support for such
services. In addition, IoT services often require complex communication and coordination
mechanisms, which are not adequately supported by existing ones [11].

This paper proposes a formal model for representing resource-bounded IoT services,
broadly founded in the actors model of concurrency [12]. The model allows key principles
of IoT services to be rigorously studied. It provides a mechanism for specifying the creation
and manipulation of IoT services. The model also identifies core mechanisms underlying
IoT services, which inform design and implementation decisions about them if they are
implemented over an IoT programming platform. The model also studies some important
properties and propositions of IoT services and develops mechanisms for fine-grained
resource coordination and control for such services. First, we precisely describe the syntax
and operational semantics of the various types of distributed IoT services, and then develop
a unifying model to better support them.

We present a runtime environment, which implements the formal model, which is
most readily applicable to resource-bounded IoT services. It offers high-level primitives
supported using a middleware to implement key mechanisms required by such services,
allowing service designers to focus on application-specific concerns. The proposed dis-
tributed runtime environment supports the deployment and execution of IoT services. The
distributed runtime environment will consist of connected runtime environments, which
support the execution of individual service components and manage their communication.

The contributions of this paper are threefold. First, we present the syntax and opera-
tional semantics of a formal model for representing resource-bounded IoT services. The
syntax defines the model configuration, and the semantics represents the meaning of IoT
operations, including communication, computations, and resource acquisition operations.
The proposed model can be used to understand and define the complex communication
and coordination requirements of a broader class of sensor-based systems. We also present
the syntax and operational semantics of a proximity model which enables reasoning about
the dynamic and evolving relationship between IoT services. Third, the paper presents the
design of a runtime environment which implements the actor-based model with artificial-
intelligence (AI) capabilities.

The rest of the paper is organized as follows: Section 2 presents related work. Section 3
presents the properties and definition of an IoT service. Sections 4 and 5 present the
operational semantics of the actor-based model for representing IoT services and the
proximity model, respectively. Section 6 presents the design of the runtime environment
for supporting IoT services. Finally, Section 7 summarizes the results of this work.

2. Related Work

Although there are some existing technologies focused on sensor-based systems [5–7,9],
there is relatively limited foundational work. This is in part because of the lack of precise
understanding, specification, and analysis of such systems, and consequently, there is

Algorithms 2022, 15, 390 3 of 19

limited platform support for programming them. Compared to the traditional design
approach [13–15], which focuses mainly on an application-specific point design which
allows little compelling heritage, the proposed model enables design reuse at different
levels of abstraction, including middleware libraries. It creates a stable and unified runtime
environment that can be rapidly extended and customized for a range of different sensors.

The programming required for offering a new IoT service can be significant if carried
out from scratch. However, there is an opportunity created by the similarity in the patterns
of communication required for IoT services where contextual data offered by a number of
contributors become the basis for the application. We defined this pattern of communication
in [11] as multi-origin communication. Multi-origin coordination mechanisms can be
provided on a platform over which such a class of IoT applications could be implemented
relatively easily. We also interpreted and implemented these mechanisms for the domain
of crowd-sourced services [4,16] by implementing CSSWare, a middleware which provides
domain-specific mechanisms to support initiating new services.

Harjula et al., presented a decentralized IoT edge nanoservice architecture [17] for
future gadget-free computing, called nanoEdge. The proposed model enables on-demand
service composition based on the hardware and software resources available at the ser-
vice location. The IoT nodes contribute to nanoservices based on their hardware capac-
ity, storage, security, and privacy services without relying on centralized entities. The
nodes with more resources can participate more in service provisioning than those with
fewer resources.

The architecture of distributed IoT systems involves a large number of end devices
connected to gateways. In many cases, both end devices and gateways operate in resource-
constrained concurrent environments with limited memory and power, and require real-
time capabilities in some scenarios. To accommodate such requirements, small operating
systems, called IoT OSs, are specially designed to manage the device’s resources efficiently.
Over the last decade, several OSs for IoT applications have emerged, such as TinyOS,
FreeRTOS, RIOT and Android Things.

The runtime environment of IoT applications, which runs over the OS, is responsible
for providing all necessary services and support for the execution of applications. There are
a few related works in the literature which provide such support, such as PatRICIA [14],
RapIoT [15], and Eclipse Kura [18]. PatRICIA is a framework for developing and deploying
IoT applications on cloud platforms. However, this framework does not enable IoT applica-
tions to utilize the edge of the network because of the lack of code distribution mechanisms.
RapIoT is a toolkit which supports rapid prototyping of IoT applications by non-expert
developers. Unlike PatRICIA and RapIoT, the proposed approach supports the distributed
execution of IoT applications over a large number of devices at the edge of the network.

Compared to the traditional design approach [7,9,13,17,19], which focuses mainly on
an application-specific point-design which allows little compelling heritage, the proposed
approach offers the following salient advantages: (I) It provides a generic model for
developing an efficient sensor-data processing system. Basing designs on a standard
integration platform architecture with AI libraries of pre-proven components will provide
a solid foundation and streamline the development and validation processes. (II) It enables
the design reuse at different levels of abstraction, including middleware libraries. It creates
a stable and unified framework which can be rapidly extended and customized for a range
of different sensors.

3. IoT Service Definition

As illustrated in Figure 1, distributed IoT services perform three things: they sense
interesting environments, they perform computation, and they act in some way to serve a
purpose. This is not different from a classical view of computations where there is an input,
required processing, and an output of the processing. What is, however, very different is
the context in which these things happen. The application context is different because IoT
applications are fundamentally distributed, requiring complex types of communication.

Algorithms 2022, 15, 390 4 of 19

The execution environment is also different because of the distributed resources required
and their characteristics.

Figure 1. IoT service properties.

3.1. Communication

In addition to simple synchronous or asynchronous communication, distributed IoT
applications often involve different types of group communications, with both multiple
recipients as well as multiple senders. For example, consider a number of sensors au-
tonomously sending their sensing feeds to a server to be used in aggregate form as the
basis for a service. What is required to support this is high-level communication primitives,
which do not mix functional concerns of services with complex communication concerns.

3.2. Resources

The resources required for distributed sensor-based services include processor, mem-
ory and network resources, as are typical of most distributed computations; in addition,
also required are sensor and possibly actuator resources, where the latter can be more
generally defined to include any resources required for producing the desired output.
Some of these resources can be used in parallel by different services. For example, different
parts of memory can simultaneously hold the states of different services, different cores of a
multi-core processor can be simultaneously serving different services. However, all of these
resources can be used concurrently by interweaving steps of the different services, in a
time-multiplexed manner. In other words, schedulers can be used to periodically schedule
the use of resources over a period of time. There are, however, three challenging aspects of
resources that one must be contended with when dealing with distributed sensor-based
services: ownership, distribution and mobility. We discuss them below, in turn.

3.2.1. Resource Ownership

Some of the most exciting opportunities for large-scale distributed sensor-based ser-
vices come from the prospect of the bringing together of networked computational devices
with embedded sensors, which already exist on people’s persons, in their homes, and in
social spaces, in the form of smartphones and wearable devices. However, these devices
are typically owned by people, who pay to keep them charged and connected, and rely on
them. They also hold private data, and serve their owners as their primary purpose. What
is required, then, is a potent way for applications to negotiate usage rights for these devices
with their owners.

3.2.2. Resource Distribution

Resources needed by IoT services are typically physically distributed in geographic
space. This distribution does not just present a connectivity challenge; it actually is the
leading enabler of various services that require the sensing of live data in different (or the

Algorithms 2022, 15, 390 5 of 19

same) geographic locations to create a coherent view of an interesting world. For example,
significant computational resources may need to be located in close network proximity to
high-fidelity sensors to pre-process data before being transmitted to a central server. Such
requirements present challenges in determining which specific resources—from a variety
of available ones—should be utilized for an application at a particular time.

3.2.3. Resource Mobility

The resources involved in distributed IoT services—the computing devices, the sensors,
and the actuators acting on behaf of services—are all potentially mobile. Resources could
be moving to be in optimal locations to serve a service (such as sensors actively pursuing
their sensing goals), but more often, they are mobile because their wider service tasks
are secondary to their primary use of serving the device’s owner’s own needs, such as
computational, sensing, or connectivity. A resource that is stationary with respect to
the device it is located on, which in turn is also stationary with respect to the owner
of the device, could be mobile with respect to the physical surroundings because of the
owner’s movements.

Similarly, the phenomena or situations of interest to an application may also be mobile.
Consider, for instance, a herd of endangered wild animals on the move in a forest, requiring
tracking by scientists. What this means is that the observer–observee relationship between
IoT services and what they are sensing is highly dynamic. As a result, an IoT service must
dynamically evolve the mapping between the processing/sensing/acting tasks which need
to be carried out and the physical placement of those tasks in execution environments that
can sustain them.

3.3. IoT Service Definition

A service receives input contributions from some contributing source, processes them,
and creates output contributions for some clients. We call these contributions service feeds.
In a system of IoT services, we treat every client and contributor as a service: they are
called the client service and the contributing service of the particular IoT service. In other
words, the client service could simply be an end user receiving a feed from a service, but
not necessarily producing a derivative service for another service; a contributing service,
similarly, could be just a sensor without any service contributing to it.

We model an IoT service by a set of ports and a set of agents. Ports can be one of two
types: input or output. A service receives input feeds from contributing services through
its input ports and sends output feeds to client services through its output ports. Agents
implement the service’s logic and convert the feeds arriving from contributing services into
the feeds required by client services. Our definition for an IoT service is as follows:

Definition 1 (Service). An IoT service has one or more input ports, which receive feeds from
contributing services, and one or more output ports, which send feeds to client services, and a set of
agents, which are responsible for implementing the service’s logic.

From this definition, a service has two types of components: ports and agents. Both
ports and agents are active objects. Consequently, a service can be defined as a set of active
objects. Input ports are receptionists of data. Therefore, contributing services must know
the names of input ports of client services in order to send data messages—through their
output ports—to them.

In a system of services, each service could be either a contributing or consuming
service, or both at the same time. We consider each client and contributor in the system as a
service, as they all fit Definition 1. A client is deemed a service because it has a non-empty
finite set of input ports, at least one output port, and a non-empty finite set of agents.
Similarly, a contributor, which has at least one input port, a non-empty finite set of output
ports, and a non-empty finite set of agents, can also be considered as a service for the
same reason. Furthermore, a single sensor can also be considered as a particular case of a

Algorithms 2022, 15, 390 6 of 19

contributing service because it has an empty set of input ports, a single output port, and a
single agent, which is responsible for sampling sensor data at a particular sampling rate.

In a system of IoT services, the required communication between services is carried
out by sending and receiving asynchronous messages. Messages can be of one of two types:
control messages or data messages. Control messages (also called inter-service messages)
are communicated between services for administrative purposes. In contrast, the data
messages are used to send service feeds from contributing services to client services. Each
service has a dedicated agent called the service coordinator, which is responsible for handling
control messages between its home service and other services in the system. When a control
message is sent to a service, the message is received by its coordinator agent. The rest of
the agents implement the service logic and process the received data messages.

Figure 2 illustrates the interaction between services. A rectangle represents a service’s
boundary. Each service has a set of ports using which it could communicate with other
services in the system. The figure also illustrates the components of a service. Ovals are
agents serving the service, white circles are input ports, black circles are output ports, and
the lines with arrows represent message flows; the service encapsulates a set of agents
implementing its logic. These agents are invisible to other services. To interact with a
service, both contributing and client services have to be connected to the service’s ports:
to send messages to the service, contributing services are connected to its input ports; to
receive messages from the service, client services are connected to its output ports.

input port output port

message flow

…

…

…
...…

…
...…

agent

…

…

…
…

…

…

…

…

…
…

service’s boundary

Figure 2. Communication between services.

4. Operational Semantics

This section presents the operational semantics for the proposed model. We define the
state of an IoT service as follows:

Definition 2 (Service State). A service is denoted as s and is written as:

[[I : α : O]]s (1)

where s is the service’s unique name, I is a set of input ports of the service, α is a set of agents of the
service, and O is a set of output ports of the service.

Here, we are only interested in modeling the interactions between services, so we do
not show data messages with local recipients within a service. As agents are modeled as
actors, α can be considered as an actor map which maps a finite set of actor addresses to
their behaviors. A coordinator actor of a service s, written as as ∈ α, receives all messages
sent to s. Note that there is a one-to-one mapping between s and as (i.e., for each service s,
there is exactly one coordinator agent).

Algorithms 2022, 15, 390 7 of 19

Definition 3 (Model Configuration). The instantaneous snapshot of a system of services is called
a service model configuration. This configuration represents the state of a finite set of long-lived IoT
services, a finite set of contracts between services which define how services are connected to each
other, and a finite set of control messages between services. A contract is negotiated between two
services when one of them wants to consume service feeds produced by the other.

The model configuration can be represented by a 3-tuple:

〈S | C | M〉 (2)

S is a set of services. C is the set of contracts between the services, where each contract
c ∈ C has the form (s1, s2, map), where s1 is the name of the first service, s2 is the name
of the second service, and map is a name table which says which output ports of the first
service are connected to which input ports of the second service. The connections are
represented using (o ; i) pairs where o ∈ O is an output port of s1 and i ∈ I is an input port
of s2. The contracts involving a service s ∈ S can be written as co(s) ⊂ C. M is a finite set
of control (inter-service) messages in the system which are communicated between services
and are handled by coordinator actors of the communicating services.

Our model assumes that there is a special service, called the directory service, which has
up-to-date information about the capabilities of all contributing IoT services in the system.
For example, the service capability of a sensor service is determined by the maximum
sampling rate of that sensor. The directory service fits the service definition (Definition 1)
because it has non-empty finite sets of input ports, output ports and agents. The directory
service can be implemented as a federated hierarchy of directory services, which can be
distinguished by different metrics such as geographical locations, type of services, etc. Each
contributing service in the system must be registered with the directory service in order to
participate in serving client services. Note that the names and capabilities of all contributing
services registered with the directory service are all part of the directory service’s state.

4.1. Service Request

One way to represent the requirements of an IoT service is to represent them as sets of
timed data feeds. For each of these feeds, the service needs to secure appropriate sensor
data feeds and carry out the required aggregations and customizations for different clients.
This representation of a service request gives a client the ability to represent their service
requirements without being too rigid. If the client is too rigid in defining their request, the
service request is likely to be rejected if the directory service is too busy at these points
of time.

A service request is represented by ρ and is defined as follows:

Definition 4 (Service Request). A service request ρ is a set of sets of timed service data feeds.
Each set ρi ∈ ρ has a sufficient number of service feeds for serving that request.

A service request is represented formally as follows:

ρ = {ρ1, . . . , ρn} , ρi = 〈ζ1, . . . , ζm〉 (3)

where n ≥ 0 is the number of sets in ρ, m ≥ 0 is the number of service feeds in ρi, and ζ
represents a single timed service feed.

Only one set ρselected out of ρ needs to be served. The selection of this ρselected can be
said to be carried out by a function f as follows:

ρselected = f (ρ) (4)

The necessary and sufficient condition for accepting a service request is stated in Axiom
1, as follows:

Algorithms 2022, 15, 390 8 of 19

Axiom 1: Accepting a service request. A service request ρ can be accepted in the
system if and only if at least one member of ρ, ρselected ∈ ρ, can be served by a set of
contributing services, Sρselected ⊂ S.

We consider a continuous-time model for representing services. This continuous-time
modeling approach provides more flexibility in describing IoT services because of their
real-time requirements, represented as sets of temporally defined feeds. These feeds are
constructed by aggregating sensor events —such as user activities, change in a geographical
location, etc., which occur at particular points in time and lead to a change in the state of
interest of an IoT service.

4.2. Transition Rules

We use transition rules to describe the progress of a system of IoT services. Next, we
present transition rules of the proposed actor-based model for representing IoT services.

4.2.1. Sending a Service Request

An IoT service is initiated by a client service which sends a service request ρ to the
directory service to create a new service. The client’s requirements are expressed in that
request, ρ. The same service request can also be used to subscribe to an existing service.

The following transition shows how a client service sends a service request to the
directory service:

〈[[I : [R[send(sd, (ρ, s))]]as , α : O]]s, S | C | M〉 −→
〈[[I : [R[nil]]as , α : O]]s, S | C | 〈sd ⇐ (ρ, s)〉, M〉

(5)

where s is a client service, sd is the directory service, ρ is a service request, as is s’s coordina-
tor actor, and send(sd, (ρ, s)) sends message (ρ, s) containing the received ρ and the client’s
name to the directory service sd. This leads to the creation of message 〈sd ⇐ (ρ, s)〉 on the
right hand side, and actor as continues execution.

4.2.2. Search Function

For convenience, we define a function search which is used by the directory service to
determine the opportunity to serve a new service request ρ by selecting one existing service
matching the requirements of ρ, or a set of contributing services which could collectively
contribute to serving ρ. The search function takes as parameters a service request ρ and the
name of the client service s requesting ρ, and returns one of three pairs: (1) ({sm}, c), a pair
of the name of an existing service sm which matches ρ’s requirements and a new contract c
created between sm and s; (2) (Sρ, ∅), a pair of a set of potential contributing services Sρ

which could collectively contribute to serving ρ based on their capabilities and an empty
set ∅ indicating that no contract is created at this point; or (3) (∅, ∅) to indicate that there
is no way of serving ρ. The search function is defined as follows:

search(ρ, s) = ({sm}, c) | (Sρ, ∅) | (∅, ∅) (6)

4.2.3. Receiving a Service Request

On receiving a service request ρ, the directory service uses the search function to
determine the opportunity to serve ρ. This transition is written as:

〈[[I : [R[ready(search)]]asd
, α : O]]sd , S | C | 〈sd ⇐ (ρ, s)〉,

M〉 −→ 〈[[I : [search(ρ, s)]asd
, α : O]]sd , S | C | M〉

(7)

where sd is the directory service, asd is sd’s coordinator actor, s is the name of the client
service which sent ρ, 〈sd ⇐ (ρ, s)〉 is a service request message sent to sd, and ρ is the
service request. As a result of delivery of this message to actor asd , asd uses the search

Algorithms 2022, 15, 390 9 of 19

function to first search for an existing service matching the requirements of ρ, or a set of
contributing services which could collectively contribute to serving ρ.

4.2.4. Subscribing to an Existing Service

If a matching service is found, then the directory service tells the client service about
this service, and a new contract is signed between the client service and the found service.

If search(ρ, s) evaluates to ({sm}, c), then the transition rule for subscribing to an
existing service is as follows:

search(ρ, s) λ−→X ({sm}, c)⇒
〈[[I : [R[search(ρ, s)]]asd

, α : O]]sd , S | C | M〉 −→

〈[[I : [R[({sm}, c)]]asd
, α : O]]sd , S | C′ | 〈s⇐ sm〉, M〉

(8)

where X = {asd} is the context in which search(ρ, s) is reduced to ({sm}, c); sd is the direc-
tory service; asd is sd’s coordinator actor; ρ is the service request; s is the name of the client
service which sent ρ; sm is the name of an existing service sm which matches ρ’s require-
ments; c is a new contract created between sm and s, which has the form (sm, s, (osm ; is))
where osm ∈ Osm is an output port of sm and is ∈ Is is an input port of s; and C′ = C ∪ {c}.
This transition happens if and only if search(ρ, s) is evaluated to ({sm}, c). This leads to the
creation of message 〈s ⇐ sm〉 containing sm which is sent to s, and the creation of a new
contract c created between sm and s on the right hand side.

4.2.5. Creating a New Service

Here, we present the composition of running contributing services to create a new
service based on the definition of ρ.

Consider a function create: When providing as parameters a service request ρ; a set of
contributing services, Sρ, which could collectively contribute to serving ρ; and the name of
the client service s requesting ρ, create creates a new service which satisfies ρ’s requirements.
Then, the create function returns the name of the newly created service s′, and a set of
contracts Cρ between s′ and Sρ. The create function is defined as follows:

create(ρ, Sρ, s) = ({s′}, Cρ, c) (9)

If there exist contributing services whose feeds are sufficient for generating ρ, then the
service request is accepted. This operation is shown in the following:

search(ρ, s) λ−→X (Sρ, ∅)⇒
〈[[I : [R[search(ρ, s)]]asd

, α : O]]sd , S | C | M〉 −→

〈[[I : [R[(Sρ, ∅)]]asd
, α : O]]sd , S | C | M〉

(10)

where X = {asd} is the context in which search(ρ, s) is reduced to (Sρ, ∅), sd is the directory
service, asd is sd’s coordinator actor, ρ is the service request, and s is the name of the client
service which sent ρ. This transition happens if and only if search(ρ, s) is evaluated to
(Sρ, ∅).

The directory service then uses the create function to create a new service utilizing the
contributing services. The transition rule for creating a new service is as follows:

create(ρ, Sρ, s) λ−→X ({s′}, Cρ, c)⇒
〈[[I : [R[create(ρ, Sρ, s)]]asd

, α : O]]sd , S | C | M〉 −→

〈[[I : [R[({s′}, Cρ, c)]]asd
, α : O]]sd , S′ | C′ | 〈s⇐ s′〉, M〉

(11)

{s′} , Cρ and c are fresh

Algorithms 2022, 15, 390 10 of 19

where X = {asd} is the context in which create(ρ, Sρ, s) is reduced to ({s′}, Cρ, c); sd is the
directory service; asd is sd’s coordinator actor; s is the client service which sent the service
request ρ; s′ is the newly created service producing ρ from Cρ’s contributions; Cρ is a new
set of contracts created between s′ and Sρ; c is a new contract created between s′ and s,
which has the form (s′, s, (os′ ; is)) where os′ ∈ Os′ is an output port of s′ and is ∈ Is is
an input port of s; C′ = C ∪ Cρ ∪ {c}; and S′ = S ∪ {s′}. This transition happens if and
only if search(ρ, s) is evaluated to (Sρ, ∅). This leads to the creation of message 〈s ⇐ s′〉
containing the name of the new service s′, the creation of new sets of contracts Cρ and {c},
and the creation of a new service s′ on the right hand side.

4.2.6. Rejecting a Service Request

A service request is rejected if none of the existing services match the target service’s
requirements expressed in ρ, and there do not exist sufficient contributing services for
serving ρ (i.e., there are no sufficient contributing services for serving any member of ρ). If
these two conditions hold, a request rejection message is sent to the client service which
sent ρ.

If search(ρ, s) evaluates (∅, ∅), then the transition rule for rejecting a service request
is as follows:

search(ρ, s) λ−→X (∅, ∅)

〈[[I : [R[search(ρ, s)]]asd
, α : O]]sd , S | C | M〉 −→

〈[[I : [R[(∅, ∅)]]asd
, α : O]]sd , S | C | 〈s⇐ ∅〉, M〉

(12)

where X = {asd} is the context in which search(ρ, s) is reduced to (∅, ∅), sd is the directory
service, asd is sd’s coordinator actor, and s is the client service which sent service request ρ.
This transition happens if and only if search(ρ, s) is evaluated to (∅, ∅). This leads to the
creation of message 〈s⇐ ∅〉 which is a rejection message sent to s indicating that there is
no way of serving ρ.

5. The Proximity Model

In this section, we study some important properties and propositions of IoT services.
We also present a proximity model to represent an appropriate notion of proximity for IoT
services. Developing such a model requires more than simply representing geographic
locations and specifications of sensors and actuators. Particularly, proximity may be
geographical or logical, and is often dependent on the context. For example, consider a
camera capable of capturing high-quality images in good lighting, but limited in its range
and resolution in dark or foggy conditions. In this paper, we address these challenges by
representing a sufficiently rich and context-sensitive notion of proximity.

5.1. Properties and Propositions

The necessary and sufficient condition for serving an IoT service request is stated in
Axiom 2, as follows:

Axiom 2: Serving a service request. A service request set to ρi ∈ ρ can be served by a
set of contributors Cρi ∈ C if and only if each member of ρi can be served by a subset of Cρi .

The necessary and sufficient condition for serving a client tuple is stated in Axiom 3,
as follows:

Axiom 3: Serving a client tuple. A client tuple ζ ∈ ρi can be served by a set of
contributors Cζ if and only if Cζ has the sensing capabilities to serve the requirements of ζ,
and ζ can be accommodated in Cζ ’s sensing schedules.

There are two types of deadlines set by the directory service in each contributor’s
request to serve ρi: (i) the offer response’s deadline by which a contributor has to respond
to the directory service’s request; and (ii) the offer acceptance’s deadline by which the
directory service has to accept the contributor’s response to its request.

The following axiom describes the conditional contributor commitment to contribute
in serving the service request:

Algorithms 2022, 15, 390 11 of 19

Axiom 4: Conditional contributor commitment. A contributor c ∈ Cρi conditionally
commits to serving its part, Zc

ρ ∈ ρ, if it indicates its capability to serve Zc
ρ to the directory

service, and Zc
ρ can be accommodated in c’s sensing schedule, with the condition that the

directory service accepts the assignment of Zc
ρ to c by a deadline dZc

ρ
.

We assume that the directory service guarantees to send a confirmation message to the
contributor service before the deadline dZc

ρi
if the directory service has accepted c’s offer.

The following axiom describes the unconditional contributor commitment to con-
tribute in serving the service request:

Axiom 5: Unconditional contributor commitment. A contributor c’s conditional
commitment to serve Zc

ρi
becomes unconditional when the server accepts c’s offer by the

deadline dZc
ρi

.

Theorem 1. If the directory service accepts a request ρ, it is served.

Proof. According to Axiom 1, if a request ρ is accepted in the system, there must be at least
one set ρi ∈ ρ which can be served by the directory service, and the service can schedule the
processing time required to serve ρi. According to Axioms 2 and 5, if ρi can be served by
the directory service, the directory service must have received unconditional offers from a set
of contributors Cρi ∈ C to participate in serving ρi. To obtain an unconditional commitment
from a contributor c ∈ Cρi , according to Axiom 4, c must have checked its sensing schedule
and temporarily reserved a time slot for serving its part in ρi. c would have sent an offer
to the server by the deadline, and this offer would have been accepted by the server by
c’s deadline. The directory service would have sent a confirmation message to c. Then, c
would have, finally, sent a message to the directory service conforming that c has scheduled
its part in ρi for execution. If all members in Cρi have sent a confirmation message to the
directory service, this means each member c ∈ Cρi must have scheduled its part, Zc

ρi
∈ ρi,

for execution. In other words, Cρi has unconditionally committed to collectively serve a set
of client tuples Zρi which covers all members in ρi. Therefore, ρ has a commitment to be
served by both a set of contributors and the directory service. This means that a request ρ is
served if the directory service accepts it, which proves Theorem 1.

There are two types of delay set by the client in this request, which tell the directory
service about the following requirements: (i) the freshness of the sensed data; and (ii) the
time ranges of receiving service updates from the server.

The following definition describes the compatible delay tolerance of the sensing
requests served by a single contributor service.

Definition 5 (Compatible delay tolerance). The delay tolerances of multiple sensing requests,
which are parts of contributor tuples, are compatible if the hosting contributor can opportunistically
merge these requests to form one sensing group so that one optimal sampling instance would satisfy
them all.

Axiom 6: Tolerant sensor sampling. If multiple sensing requests have compatible
delay tolerances at a contributor c, then c can opportunistically merge these requests to
form one sensing group so that one optimal sampling instance would satisfy all of them.

Axiom 6 serves as the foundation for our ShareSens approach [20]. It is used when
the optimized sensing option has been selected. ShareSens assumes that requests pick
from a limited number of sampling rates available, selected both to increase opportunity
for sharing sampled data as well as to enhance the performance of the scheduling mecha-
nism, which implicitly encourages selecting a delay tolerance when submitting a sensing
request. The quality of service determines the cost/price of the service in our pricing
model. ShareSens provides two options of quality of service for serving a sensing request
when dealing with tolerant sensor sampling: (i) the same time lag delays all samples; or
(ii) samples are provided within a range, but there is no promise to have an equal time
distance between them.

Algorithms 2022, 15, 390 12 of 19

Definition 6 (Contributor service ability). A contributor c indicates its ability to serve its part
in ρi, Zc

ρi
, if c has the sensing capabilities to serve the requirements of Zc

ρi
, and the sensing requests

in Zc
ρi

can be served using a mix of the following options:

1. Some sensing requests in Zc
ρi

can join some of the sensing groups already being served at c if
the sensing schedule of those groups is not altered after the arrival of the incoming requests;

2. Some sensing requests in Zc
ρi

can be merged with some of the sensing groups already being
served at c if they have compatible delay tolerances with those groups so that the existing
sensing schedule at c is altered in order to accommodate the incoming requests;

3. Some sensing requests in Zc
ρi

are separately scheduled in a new sensing group.

Choosing between the above options depends on the complexity of the reasoning
process for accommodating the incoming requests. If the reasoning cost of option 2 is high,
then it may be more efficient to use option number 3 directly. In other words, there should
be a balance between cost effectiveness and the expected benefits. Therefore, optimizing
the schedule has to be weighed against the benefits of the optimal schedule, which may
depend on the duration of the sensing request.

Axiom 7: Opportunistic merging of sampling requests. An incoming sensing re-
quest can partially or completely share the same sampling stream with a sensing group
already being served at a contributor c if and only if it has a delay tolerance which is
compatible with that group.

Definition 7 (Client tuple). A client tuple ζ represents a single timed service feed, which is
formally represented as:

ζ = 〈Y, s, td, dζ〉 (13)

where Y denotes an expression that is evaluated by the server to obtain the sensing task (i.e., the
sensing parameters) which is carried out by the contributors. s represents the client service, td is the
delivery time, and dζ is the maximum time delay between the sensing time and the delivery time. If
the sensed data is a result of aggregating multiple sensing feeds, then dζ becomes the maximum time
delay between the oldest feed and the delivery time of the aggregate.

Contributor tuples are created using a function fΞ as follows:

fΞ(ρi, Sρi)→ Ξρi = {ξ1, . . . , ξk} (14)

where Ξρi denotes the set of all contributor tuples which are sufficient to serve ρi, Sρi is the
set of contributors who collectively participate in serving ρi, ξi is a single contributor tuple
generated from a contributor si, and k is the size of the Ξρi set.

A contributor tuple ξi is represented as follows:

ξi = 〈s, si, τ, dξ , ω〉 (15)

where s denotes a contributing service’s unique name (i.e., actor name), si represents the
sensing instructions, τ is the sensing time, dξ is the maximum time delay between the
sensing time and sending data to the service coordinator, and ω represents the sensing data.
Note that ω is empty before filling the sensing data by the contributor service.

The following transition rule shows the process of assigning the sensing tasks repre-
sented in the contributor tuples Ξρi to Sρi :

〈[[I : [R[multicast(Sρi , Ξρi)]]asd
, α : O]]sd , S | C | M〉

−→ 〈[[I : [R[nil]]sd , α : O]]sd , S | C | 〈Sρi ⇐ MΞ〉, M〉
(16)

where sd is a directory service; Sρi is a set of contributing services which will participate in
serving ρi, Ξρi is the set of the contributor tuples (i.e., sensing tasks); MΞ is a set of actor

Algorithms 2022, 15, 390 13 of 19

messages where each m ∈ MΞ is a message sent to sj ∈ Sρi , where m = 〈sj ⇐ Ξsj〉; and
Ξsj ⊂ Ξρi such that Ξsj is sj’s sensing assignment.

On receiving its assigned set of contributor tuples Ξc, a contributor c adds them to its
schedule, as follows:

〈s | {(recieve)c, C} | Θ | P|m, µ|t〉 −→
〈s | [add_to_schedule(Ξc, st)c]c, C | Θ | P | µ|t〉

(17)

where m = 〈c ⇐ Ξc〉 is a schedule message, Ξc is the contributor tuples assigned to
contributor c, and stc is the contributor’s state.

Each contributor c senses/executes the tuples that have a sensing time equals to t.
After the sensing computation in ξτ is executed, d is filled in with the sensing data, and a
serve-next message is sent to the contributor itself in order to serve the next message or
sensing task. The contributor then sends the sensed data d to the server when t ≥ τ + δ, as
described by the following transition rule:

〈[I : [sense(ξ)]a, α : µ : O]s1 , S|C|µ|t〉 −→
〈[I : (receive)a, α : µ : O]s1 , S|C|m, µ|t〉

(18)

where s1 is a contributing service, s2 is a consuming service, ξ = 〈s2, si, τ, dξ , nil〉, ξ ′ =
〈s2, si, τ, dξ , ω〉, and m = 〈s2 ⇐ ω〉 is a data contribution message.

On receiving a contribution message m = 〈s ⇐ ω〉, the server actor proceeds to
aggregate the message and update the request’s state, as follows:

〈(receive)s|C|Θ|{〈θ, σ, td, π〉, P}|m, µ|t〉 −→
〈[aggr(d, θ)]s|C|Θ|P|µ|t〉

(19)

where m = 〈s⇐ d〉 is a contribution message, where θ is the current state of the request ρs.
If the aggregation condition is met and td ≥ t + dξ , the server notifies a service update

to the client:
〈[aggr(d, θ)]s|C|Θ|{〈θ, σ, td, π〉, P}|µ|t〉 −→
〈(receive)s|C|Θ|{〈θ′, σ, td, π〉, P}|m, µ|t〉

(20)

where m = 〈σ ⇐ θ′〉, θ is the current state of the request ρs, and θ′ is the new state of the
request.

If the aggregation condition is not met, the server updates the request’s state:

〈[aggr(d, θ)]s|C|Θ|{〈θ, σ, td, π〉, P}|µ|t〉 −→
〈(receive)s|C|Θ|{〈θ′, σ, td, π〉, P}|µ|t〉

(21)

Theorem 2. If there is a delay which can be tolerated to a group of sensing requests at a contributor
c, one sampling instance is carried out for all of them.

Proof. According to Axiom 6, if the delay in sampling can be tolerated to a group of
sampling requests at a contributor c, c can adjust their sampling rates within a predefined
delay so that they all can share the same sampling instance. In this case, there must be a
set of contributors Cρi ∈ C that have conditionally committed to collectively serve a set of
client tuples Zρi , which is a superset of ρi. According to Axiom 3, if a contributor c ∈ Cρi

conditionally commits to serve its part ξc ∈ ρi, this means c has indicated its ability to serve
ξc to the server, and xic can be accommodated in c’s sensing schedule.

• c can determine the lowest sensing rate that would satisfy all sensing requests;
• All requests have compatible delay tolerances with those of requests already being served.

Algorithms 2022, 15, 390 14 of 19

5.2. Fine-Grained Resource Model for IoT Services

Our model assumes that IoT services are owned by their initiator. This capability can
also inform the pricing of using services. The directory service can set the price of creating
a new service, and the initiator service can charge the cost of using its services.

Property 1. For an accepted request ρ, the time delay to send any aggregated update θ in ξ to a
client σ does not exceed the max-delay of the client tuple, dξ , specified by σ.

Proof. For the same client tuple ξ, the max delay of the contributor tuples Ξξ mean it is
limited by the oldest tuple in the aggregate. This is assuming that the sensed data in any
contributor tuple ξ, including the oldest feed, must be collected and sent to the server no
later than dξ − δ, where δ is the maximum time delay between the sensing time and sending
data to the server. Therefore, θ is sent to σ no later than dξ . This proves the property.

Property 2. There are no wasted contributions in the system.

Proof. Assume that a request ρ is accepted in the system. According to Axiom 1, if a
request ρ is accepted in the system, there must be at least one set ρi ∈ ρ that can be served
by the server. According to Axioms 2 and 5, there must be a set of contributors C(ρs) which
have unconditionally committed to serve a set of client tuples, Z(ρi)

, which is exactly equal
to the set ρi so that each and every member in Z(ρi)

is a member in ρi. Therefore, there are
no wasted contributions in the system. This proves the property.

A contributor context sampling is a process of obtaining a contributor context by the
mobile device. To quantitatively describe the consumption of resources, particularly the
energy consumed by sensors involved in the sampling, in the proposed IoT system, we
adopt the following energy model. Each of the sampling methods supported by the mobile
device is associated with a resource cost ω required for its invocation for context sampling
and is determined by the following function:

ω = fcost(E, s) (22)

A total cost of the IoT system functioning is determined by costs of the individual
contributor context samplings and is represented as the sum of their individual costs:

Ωsampling =
|c|

∑
i=0

ωi (23)

Given a service list, the goal of the IoT system is to define the function fsampling that
maximizes the number of IoT services that are hosted at the contributor’s device, and
minimizes the total cost Ω of consumed resources.

We use a sliding-window concept to aggregate the most recently collected sensor data
from contributors as input to the aggregation function. We collect a series of sensor feeds
from different contributors at the same time, denoted as Ξ = {ξ1, ξ2, . . . ξn}. Each service
consumes ε computational resource units from each contributor during data acquisition.
The total computation cost can be expressed by:

Ωcomp =
Θs

∑
i=0

εi (24)

We define β to denote the communication cost of unit data, and the total communica-
tion cost can be expressed by:

Ωcomm = β
Θs

∑
i=0

di (25)

where di is the size of the sensing data.

Algorithms 2022, 15, 390 15 of 19

We consider three types of overhead costs in the IoT system: context sampling, com-
putation, and communication. The total cost within a long time period [1, T] can be
calculated by:

Ωtotal =
T

∑
t=1

Ωsampling(t) + Ωcomp(t) + Ωcomm(t) (26)

Our objective is to calculate the amount of resources Ωtotal a service uses.
We represent the availability of each resource (e.g., sensor sampling, CPU cycles,

network utilization, etc.) in a system of services by a resource term ε = [r, lr]λτ , where:

• 〈r, lr〉 denotes the located type of the specified resource. It contains both the type of
the resource r and the relative location (locality) of the resource lr. The locality could
be relative or absolute based on the type of the service. Note that the location where
the resource is residing is dynamic, as we deal with mobile resources.

• λ represents the rate of availability of the resource, in quantity or time. For example,
if the specified resource is a contributor’s sensor, then this parameter represents the
sampling rate of that sensor which is the time between any two consecutive context
samplings. The higher its value, the more frequent the context is sampled. In addition,
this parameter adjusts the required accuracy when sampling the context. The higher
its value, the more precise the sampled context is.

• τ is the time interval during which the resource exists, where τ = 〈tstart, tend〉
For example, consider that a GPS sensor at a contributor is sampled at rate 10 Hz and

available at a time interval 〈0, 5〉, and can be represented as [GPS, lGPS]
10
〈0,5〉.

As each resource term is associated with a time interval τ, relationships between time
intervals must be defined before we can discuss the operations on resource terms. We use
interval algebra to formalize relations between two time intervals, as shown in Figure 3.

Relation Illustration Interpretation

𝜏𝜏1 < 𝜏𝜏2

 𝜏𝜏1 takes place before 𝜏𝜏2

𝜏𝜏1 m 𝜏𝜏2

 𝜏𝜏1 meets 𝜏𝜏2

𝜏𝜏1 o 𝜏𝜏2

 𝜏𝜏1 overlaps 𝜏𝜏2

𝜏𝜏1 s 𝜏𝜏2

 𝜏𝜏1 starts 𝜏𝜏2

𝜏𝜏1 d 𝜏𝜏2

 𝜏𝜏1 during 𝜏𝜏2

𝜏𝜏1 f 𝜏𝜏2

 𝜏𝜏1 finishes 𝜏𝜏2

𝜏𝜏1 = 𝜏𝜏2

 𝜏𝜏1 equals 𝜏𝜏2

𝜏𝜏1 𝜏𝜏2

𝜏𝜏1
𝜏𝜏2

𝜏𝜏2 𝜏𝜏1

𝜏𝜏1

𝜏𝜏1

𝜏𝜏1

𝜏𝜏1

𝜏𝜏2

𝜏𝜏2

𝜏𝜏2

𝜏𝜏2

Figure 3. Possible relations between two time intervals.

If two resource terms in a resource set have the same located types and overlapping
time intervals, they can be combined as follows:

ε1 ∪ ε2 = [r, lr]
λ1
τ1 ∪ [r, lr]

λ2
τ2 = {[r, lr]

λ1
τ1\τ2

, [r, lr]
λ2
τ2\τ1

, [r, lr]
λ2+λ2
τ2∩τ1

} (27)

where for any interval for which they overlap, their rates are added, and for remaining in-
tervals, they are represented separately in the set, and \ is a relative complement operation.

Algorithms 2022, 15, 390 16 of 19

Resource requirements of service requests: A service request consumes resources at
every step of its execution. We represent request’s computations in terms of the resources
they consume. Request’s computations in our model can be divided into three categories:
sensing computation at a contributor device, CPU processing at the server side, and
network utilization.

We represent the resource requirements for a contributor tuple ξ as follows:

[R](s,d)
ξ = Φ(ξ, s, d), R = {r1, . . . , rn}, ri = [q]〈r,l〉 (28)

where Φ is a function which takes a contributor tuple ξ as a parameter and returns a set of
resource amounts representing the required resources for serving that tuple, s is the earliest
start time of executing ξ (i.e., sensing time), d is the deadline by which the sensing task
must be completed, and q is the quantity of resource required. For example:

Φ(ξ, 5, 8) = [R](5,8)
ξ = [{[20k]〈CPU,lC PU〉, [100]〈GPS,lG PS〉

, [1k]〉Acc,lAcc〉, [100ms]〈net,lnet〉]
(5,8)

(29)

Consider a function f , which, when a resource set E and the resource requirement of a
contributor tuple [R](s,d)

ξ are provided as parameters, returns a Boolean value true or false,
indicating whether or not the contributor tuple can be served given the available set of
resources:

f (E, Φ(ξ, s, d)) = (
d⋃
s

E ≥ Φ(ξ)) = true| f alse (30)

where
⋃d

s E gives the union of all resources in E = {ε1, . . . , εn} which exist in the interval
(s, d). For each member r in R, f searches in the set of available resources E for the amount
of resources required to service r.

Axiom 8: Single contributor tuple accommodation. A contributor tuple ξ can be
accommodated by a system if, by time s, the system satisfies the resource requirement
Φ(ξ, s, d), i.e., (E, Φ(ξ, s, d)) = true, where E is the available resources of the system.

Axiom 9: Sequential contributor tuples accommodation. A system with resources E
can accommodate a sequential contributor tuples, represented in a single client tuple ξ, if
the system can satisfy the simple resource requirements for each contributor tuple in ξ.

We represent the requirements of a set of contributor tuples in ξ sequentially, as follows:

Φ(ξ, s, d) ::= Φ(ξ1, s, t1) ∪Φ(ξ2, t1, t2) ∪ . . . ∪Φ(ξm, tm−1, d) (31)

where s ≤ t1 ≤ t2 ≤ . . . ≤ tm−1 ≤ d.
A concurrent computation consists multiple actors (e.g., contributors). Resource

requirements of a concurrent computation Φ(ρi, s, d) can be satisfied by satisfying resource
requirements of the individual actors, as follows:

Φ(ρi, s, d) = Φ(ςc1 , s, d) ∪Φ(ςc2 , s, d) ∪ . . . ∪Φ(ςcn , s, d) (32)

where ςcn represents computations carried out by actor cn.

6. A Distributed Runtime Environment for IoT Services

To narrow the gap between the generation of sensor data and its interpretation, novel
artificial-intelligence (AI) methods are critically needed to smartly analyze and process the
vast amount of sensor data on the network’s edge. This section presents the design of an
AI-powered runtime environment for smart sensing to support the programmability of IoT
services.

The proposed runtime environment offers an adaptable, configurable, highly reliable,
and reuse-driven sensing platform that can be easily reused in the development of IoT
services. This platform will open new opportunities to explore various sensor fusion

Algorithms 2022, 15, 390 17 of 19

architectures, including sensory front end, read-out electronics, power systems with respect
to volume, mass, and power consumption. Figure 4 illustrates the software stack of the
proposed AI-power platform for smart sensing, which will include three layers:

Figure 4. The proposed AI-power platform for smart sensing.

Hardware abstraction layer (HAL): HAL is a software layer which enables access to
the hardware components of IoT devices such as random-access memory (RAM), read-only
memory (ROM), and serial interfaces, etc. This layer provides an innovative hardware
building block with computation, storage, communication, and re-programmability, as
well as various heterogeneous computing elements of a GPU, a central processing unit
(CPU), digital signal processing (DSP), field programmable gate arrays (FPGAs), and a
tensor processing unit (TPU) to meet various IoT sensing requirements. It also includes
real-time operating systems (RTOS) and IoT firmware that are particularly suited for small
and constrained devices, and that can provide IoT-specific capabilities.

AI-powered runtime environment: The AI-enabled runtime environment will run
over the HAL layer. It hosts several sensor modules which can interact with the ML
models through a senor bus over the network. This layer also provides a register-transfer-
level (RTL) intellectual property (IP) cores library. The RTL/IP core implements a set of
parameterizable DSP algorithms commonly used by IoT sensors and other communication
IP cores for building a complete sensor-data processing system.

Smart sensing platform: IoT applications are deployed on top of the runtime envi-
ronment. Applications are defined as a workflow of functions, where each function can
provide data generation (e.g., in-situ sensors), processing, and data consumption (e.g.,
actuators). Function-code execution is triggered by specific events such as receiving new
sensing data from a sensor locally or remotely, or detecting a change in the state of a
sensor. Furthermore, this layer includes an IoT benchmark for performance validation and
resource usage estimation, and a collection of test procedures, scripts, test benches, and
other monitoring and debugging utilities that can be reused for algorithm development
and the IoT ecosystem implementation. In addition, we developed an integrated IoT
toolchain which will provide a complete design flow starting from dataflow architectural
exploration, model development, resource optimization to physical implementation based
on the platform components.

The runtime environment enables programmers to write a single actor program which
will automatically become distributed to run on many devices at the edge of the network.
Actors are the building blocks for an application which will be deployed on the top the
runtime environment. The actors are connected in a dataflow to form the application.
This simplifies actor migration between runtimes and the matching of actor requirements

Algorithms 2022, 15, 390 18 of 19

with runtime capabilities. If the runtime does not meet the requirements posed by a
deployed actor, then the actor will be automatically migrated to a runtime that can satisfy
the requirements.

7. Summary

This paper presents a formal model for representing resource-bounded IoT services.
The model relies on the actor model to define services. We precisely described the syntax
and operational semantics of the model, in which it represents the requirements of an IoT
service as sets of temporally defined feeds, each with its currency and contextual constraints.
For each feed, the service provider secures appropriate sensor data feeds and carries out the
required aggregations and customizations for different clients or client groups. The paper
also presented a proximity model which enables the representation of and reasoning and
decision making about the dynamically evolving relationship between a service’s sensing
and acting capabilities and the environments in which these capabilities are exercised. The
decision-making capability, in essence, will be used to drive mobility. Furthermore, we
present the design of an innovative runtime environment for implementing IoT services
with AI capabilities. The proposed runtime environment offers high-level primitives
supported by a middleware implementing key mechanisms required by IoT services,
allowing application developers to focus on application-specific concerns. The presented
model and runtime environment aims to support the implementation of innovative sensor-
based IoT services involving distributed and mobile devices of various types by providing
high-level programming constructs.

In on-going work, we are working on evaluating the developed runtime environment
experimentally to assess its performance and scalability. In addition, we will implement
deep-learning models into the IoT runtime environment to enable the intelligence of
sampling, processing, analyzing and communications of sensor data. Finally, we plan
to apply an AI-guided system-level optimization to this new IoT system to dynamically
allocate the resources and adjust parameters based on the application scenarios.

Funding: This research work is supported in part by the National Science Foundation (NSF) under
grant # 2011330. Any opinions, findings, and conclusions expressed in this paper are those of the
authors and do not necessarily reflect NSF’s views.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and source code are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abdelmoamen, A.; Jamali, N. A Model for Representing Mobile Distributed Sensing-Based Services. In Proceedings of the IEEE

International Conference on Services Computing, SCC’18, San Francisco, CA, USA, 2–7 July 2018; pp. 282–286.
2. Moamen, A.A.; Jamali, N. Opportunistic Sharing of Continuous Mobile Sensing Data for Energy and Power Conservation. IEEE

Trans. Serv. Comput. 2020, 13, 503–514. [CrossRef]
3. Ahmed, A.A.; Echi, M. Hawk-Eye: An AI-Powered Threat Detector for Intelligent Surveillance Cameras. IEEE Access 2021,

9, 63283–63293. [CrossRef]
4. Moamen, A.A.; Jamali, N. An Actor-Based Middleware for Crowd-Sourced Services. EAI Endorsed Trans. Mob. Commun. Appl.

2017, 3, e1. [CrossRef]
5. Hwang, J.; Aziz, A.; Sung, N.; Ahmad, A.; Le Gall, F.; Song, J. AUTOCON-IoT: Automated and Scalable Online Conformance

Testing for IoT Applications. IEEE Access 2020, 8, 43111–43121. [CrossRef]
6. Hwang, J.; Nkenyereye, L.; Sung, N.; Kim, J.; Song, J. IoT Service Slicing and Task Offloading for Edge Computing. IEEE Internet

Things J. 2021, 8, 11526–11547. [CrossRef]
7. Li, Y.; Zhuang, Y.; Hu, X.; Gao, Z.; Hu, J.; Chen, L.; He, Z.; Pei, L.; Chen, K.; Wang, M.; et al. Toward Location-Enabled IoT

(LE-IoT): IoT Positioning Techniques, Error Sources, and Error Mitigation. IEEE Internet Things J. 2021, 8, 4035–4062. [CrossRef]
8. Ahmed, A.A.; Reddy, G.H. A Mobile-Based System for Detecting Plant Leaf Diseases Using Deep Learning. AgriEngineering 2021,

3, 478–493. [CrossRef]

http://doi.org/10.1109/TSC.2017.2705685
http://dx.doi.org/10.1109/ACCESS.2021.3074319
http://dx.doi.org/10.4108/eai.13-9-2017.153070
http://dx.doi.org/10.1109/ACCESS.2020.2976718
http://dx.doi.org/10.1109/JIOT.2021.3052498
http://dx.doi.org/10.1109/JIOT.2020.3019199
http://dx.doi.org/10.3390/agriengineering3030032

Algorithms 2022, 15, 390 19 of 19

9. lv, H.; Ge, X.; Zhu, H.; Wang, C.; Yuan, Z.; Zhu, Y. Design and Implementation of Reactive Distributed Internet of Things Platform
based on Actor Model. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), Chengdu, China, 15–17 March 2019; pp. 1993–1996. [CrossRef]

10. Ahmed, A.A.; Olumide, A.; Akinwa, A.; Chouikha, M. Constructing 3D Maps for Dynamic Environments using Autonomous
UAVs. In Proceedings of the 2019 EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services (Mobiquitous’19), Houston, TX, USA, 12–14 November 2019; pp. 504–513.

11. Moamen, A.A.; Jamali, N. Coordinating Crowd-Sourced Services. In Proceedings of the 2014 IEEE International Conference on
Mobile Services, Anchorage, AK, USA, 27 June–2 July 2014; pp. 92–99.

12. Agha, G. Actors: A Model of Concurrent Computation in Distributed Systems; MIT Press: Cambridge, MA, USA, 1986.
13. Tan, W.; Fan, Y.; Zhou, M.; Tian, Z. Data-Driven Service Composition in Enterprise SOA Solutions: A Petri Net Approach. IEEE

Trans. Autom. Sci. Eng. 2010, 7, 686–694. [CrossRef]
14. Nastic, S.; Sehic, S.; Vögler, M.; Truong, H.L.; Dustdar, S. PatRICIA—A Novel Programming Model for IoT Applications on Cloud

Platforms. In Proceedings of the 2013 IEEE 6th International Conference on Service-Oriented Computing and Applications,
Koloa, HI, USA, 16–18 December 2013; pp. 53–60. [CrossRef]

15. Mora, S.; Gianni, F.; Divitini, M. RapIoT Toolkit: Rapid Prototyping of Collaborative Internet of Things Applications. In
Proceedings of the 2016 International Conference on Collaboration Technologies and Systems (CTS), Orlando, FL, USA, 31
October–4 November 2016; pp. 438–445. [CrossRef]

16. Moamen, A.A.; Jamali, N. An Actor-Based Approach to Coordinating Crowd-Sourced Services. Int. J. Serv. Comput. (IJSC) 2014,
2, 43–55. [CrossRef]

17. Harjula, E.; Karhula, P.; Islam, J.; Leppänen, T.; Manzoor, A.; Liyanage, M.; Chauhan, J.; Kumar, T.; Ahmad, I.; Ylianttila, M.
Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing. IEEE Access 2019, 7, 119856–119872.
[CrossRef]

18. Kura. Eclipse IoT Framework. 2022. Available online: https://www.eclipse.org/kura/ (accessed on 10 October 2022).
19. Mayer, J.; Pampana, V.; Bernard, M.; Bytschkow, D.; Stohl, T.; Gupta, P.; Duchon, M. Holonic architectures for IoT-empowered

energy management in districts. In Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans,
LA, USA, 14 June–31 July 2021; pp. 189–194. [CrossRef]

20. Moamen, A.A.; Jamali, N. ShareSens: An Approach to Optimizing Energy Consumption of Continuous Mobile Sensing Workloads.
In Proceedings of the 2015 IEEE International Conference on Mobile Services (MS’15), New York, NY, USA, 27 June–2 July 2015;
pp. 89–96.

http://dx.doi.org/10.1109/ITNEC.2019.8729169
http://dx.doi.org/10.1109/TASE.2009.2034016
http://dx.doi.org/10.1109/SOCA.2013.48
http://dx.doi.org/10.1109/CTS.2016.0083
http://dx.doi.org/10.29268/stsc.2014.2.3.4
http://dx.doi.org/10.1109/ACCESS.2019.2936714
https://www.eclipse.org/kura/
http://dx.doi.org/10.1109/WF-IoT51360.2021.9595252

	Introduction
	Related Work
	IoT Service Definition
	Communication
	Resources
	Resource Ownership
	Resource Distribution
	Resource Mobility

	IoT Service Definition

	Operational Semantics
	Service Request
	Transition Rules
	Sending a Service Request
	Search Function
	Receiving a Service Request
	Subscribing to an Existing Service
	Creating a New Service
	Rejecting a Service Request

	The Proximity Model
	Properties and Propositions
	Fine-Grained Resource Model for IoT Services

	A Distributed Runtime Environment for IoT Services
	Summary
	References

