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Abstract: We develop a numerical method for solving three-dimensional problems of fluid filtration
and absorption in a piecewise homogeneous medium by means of boundary integral equations. This
method is applied to a simulation of the lymph flow in a lymph node. The lymph node is considered
as a piecewise homogeneous domain containing porous media. The lymph flow is described by
Darcy’s law. Taking into account the lymph absorption, we propose an integral representation for
the velocity and pressure fields, where the lymph absorption imitates the lymph outflow from a
lymph node through a system of capillaries. The original problem is reduced to a system of boundary
integral equations, and a numerical algorithm for solving this system is provided. We simulate the
lymph velocity and pressure as well as the total lymph flux. The method is verified by comparison
with experimental data.

Keywords: boundary integral equations; potential theory; filtration flow; collocation method

1. Introduction

In this paper, we develop a mathematical model of the filtration flow of a liquid in a
piecewise homogeneous porous medium and apply it to the simulation of lymph flow in a
lymph node.

The classical model of filtration flow relies on Darcy’s law, which is valid in a linear
porous medium. The numerical methods for solving problems of natural convection in
porous media go back to the work of Chan et al. [1], where the finite difference method
(FDM) was applied. Hickox and Gartling [2,3] used the finite element method (FEM),
and Prasad and Kulacki [4] applied the finite volume method (FVM). The finite element
and finite volume methods have been widely developed for solving various problems,
including those in complex inhomogeneous regions (see, for example, [5–8]).

The traditional application of the filtration flows models is to the problem of fluid
flow in different soils. The typical examples are the water intake problem and the oil
flow to oil wells. On the other hand, modeling the fluid convection in living organisms
and, in particular, the modeling of the lymph flow has its own specifics. There are just
a few works that have considered the lymph flow in the lymph node by means of direct
numerical simulations. The fluid flow description by Darcy’s law in inhomogeneous
regions (hydraulic conductivity is not constant) is due to Rose et al. [9]. In Moore et al. [10],
a filtration domain was piecewise homogeneous, and the filtration flow was viscous,
described by the Darcy–Brinkman law. The absorption of lymph into the blood in both
papers was characterized by Starling’s law, which relates the divergence of the velocity
field to the fluid pressure. In all these models, the FEM approach was used.

If the domain consists of several homogeneous subdomains, then the boundary inte-
gral equations method is preferable, and the main goal of this work is to apply this method
to the lymph filtration problem. In fact, this method is effective if an integral representation
for a solution over domain and subdomains boundaries exists. If the latter is true, then
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the approach has a number of advantages over the finite difference and finite element
methods applied directly in the spatial domain. First, the dimension of the problem being
solved is actually reduced. Two-dimensional integral equations (two-dimensional grids)
are used instead of three-dimensional grids. Moreover, the differential equations outside
the boundary surfaces and conservation laws for the numerical solutions are fulfilled.
Finally, the integral representations of unknown functions allow us to calculate derivatives
and various functionals without a significant loss of accuracy compared to the accuracy of
numerical approximation of the functions themselves.

We can single out a number of papers in which the boundary element method was
applied to the modeling of flows in porous media governed by Darcy’s law or the Darcy–
Brinkman law [11]. The solution of a viscous fluid filtration problem governed by the Darcy–
Brinkman law using the boundary elements method (BEM) was constructed in [12,13].
However, these papers only considered two-dimensional problems in a homogeneous
domain with the boundary condition set only on the outer boundary. The method of
fundamental solutions (MFS) was presented in [14–16] for two-dimensional problems.
This method was similar to the boundary element method, except that the solution was a
superposition of partial solutions, the functions of source points located outside the flow
area. That allowed avoiding singularity in the boundary condition. In this case, the method
of boundary integral equations was applied to flows in one homogeneous region.

The application of the boundary integral equations method to the filtration prob-
lems in piecewise homogeneous domains was developed in the works of Piven et al.,
where two-dimensional flows were studied. A systematic presentation of these results
can be found in [17]. A three-dimensional model of the fluid filtration was developed by
Lifanov et al. [18]. The authors considered the filtration flows in a piecewise homogeneous
domain with different types of external and internal boundaries and with the conjugation
conditions at the interfaces between media with different properties. However, in all these
works the flows with viscosity and absorption were not considered. The latter is important
for the correct modeling of lymph flows in a lymph node.

In this paper, we use a simplified lymph node model consisting of two homogeneous
domains: the outer one is the subcapsular sinus, the inner one is the T-cell and medullary
zones. The inner region is characterized by a significantly higher hydraulic resistance and
the presence of blood vessels absorbing lymph [19–22]. In the lymph nodes, the lymphatic
and circulatory systems are conjugated. The overall fluid balance in the lymph node is
determined by the pressure field, permeability, and location of blood vessels, in particular,
high endothelial venules [20,22]. The structure of the lymph node is shown schematically
in Figure 1.

Subcapsular sinus

Cortex and medulla
zone

Blood vascular
network

Afferent vessel

Efferent vessel

Figure 1. Simplified schematic representation of the lymph nodes: an external subdomain with low
hydraulic resistance and an internal subdomain where lymph is absorbed into the blood vessels.
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In the previous works of the authors [23,24], a solution to the problem of fluid filtration
in a piecewise homogeneous porous medium governed by the Darcy–Brinkman law was
developed. In [23], we implemented the reduction in the boundary value problem in partial
derivatives to a system of boundary integral equations and also proved the equivalence
of the boundary value problem and a system of boundary integral equations. In [24], we
constructed and verified a numerical scheme for solving a system of boundary integral
equations with piecewise constant approximations and collocations.

In this paper, we consider the problem of a stationary three-dimensional filtration
flow with absorption in a piecewise homogeneous medium. The filtration is described
by Darcy’s law, and the absorption is described by Starling’s law. A characteristic feature
of such a flow is a nonzero divergence. We propose an integral representation for the
velocity and pressure fields of the filtration flow. We also develop numerical schemes and
verify the numerical results by comparison with experimental data of the filtration in the
lymph node.

2. Mathematical Model

We denote Ω = Ω1
⋃

Ω̄2 the filtration domain, bounded on the outside by a closed
smooth surface Σ1. Σ2–boundary between the more permeable external subdomain Ω1 and
the less permeable internal subdomain Ω2. An example of the computational domain is
shown in Figure 1 (on the right).

Fluid filtration in both subdomains is described by Darcy’s law for unknown fields of
velocity v and pressure p. In the external subdomain, the velocity satisfies the continuity
equation. In the internal subdomain, Starling’s law describes the absorption of fluid in
capillaries. This model is similar to one given in paper [9]. Thus, the filtration–absorption
problem can be written as a system of partial differential equations (1).

v(x) = −κi
µ
∇p(x) x ∈ Ωi, i = 1, 2,

∇ · v(x) = 0, x ∈ Ω1,

∇ · v(x) = −Lb A(p(x)− pb + σ · ∆π), x ∈ Ω2;

(1)

The model parameters are κi—the coefficients of hydraulic conductivity in subdomains
Ωi, i = 1, 2, µ—the lymph dynamic viscosity, Lb—the blood vessels’ absorption coefficient,
A—the surface area of the blood vessels, pb—the blood pressure, ∆π—the mean difference
in the oncotic pressure of blood and lymph, and σ—the oncotic reflectance.

The outer boundary is divided into three parts: the openings of the afferent (inlet)
vessels with the given lymph inflow (Σq), the openings of the efferent (output) vessels with
the given pressure (Σp), and the impenetrable outer border with zero lymph flow (Σ0).
Σ1 = Σ0 ⋃Σq ⋃Σp. The inner boundary Σ2 is homogeneous. The pressure and the normal
component of the velocity vector must be continuous on this boundary.

We assume that each of the surfaces Σm, m = 1, 2 is oriented so that the outer side
is considered positive. Let n = n(x), x ∈ Σm, m = 1, 2, be the unit vector of the outer
(positive) normal to the surface Σm at the point x. The following boundary conditions are
set on the boundaries of the domains:

n(x) · v−(x)− ξ(x) = f0(x), x ∈ Σ1; (2)

p−(x) = ψ(x), x ∈ Σp; (3)

n(x) · (v+(x)− v−(x)) = 0, x ∈ Σ2; (4)

p+(x)− p−(x) = 0, x ∈ Σ2. (5)

Here, f0(x) is the known lymph flux, f0(x) ≡ 0, x 6∈ Σq. ψ(x) is the known pressure
on Σp. An additional variable is introduced into the system of boundary conditions: ξ(x) is
the unknown lymph flux on the surface Σp, ξ(x) ≡ 0, x 6∈ Σp.
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For simplicity, we introduce the notation:

αi =
µ

κi
, L = Lb A, pv = pb − σ · ∆π

We exclude the variable v from the system (1) by applying the ∇· operator to the first
equation of system (1) and substituting the second and third equations.

The pressure in the external subdomain Ω1 satisfies the Laplace equation.

∆p(x) = 0, x ∈ Ω1. (6)

In the internal subdomain Ω2, the pressure satisfies the Helmholtz equation:

∆p(x)− λ2 p(x) = λ2 pv, x ∈ Ω2, λ =
√

Lα2. (7)

If p = p̃ + pv, then ∆ p̃− λ2 p̃ = 0.

2.1. Simple and Double Layer Potentials

The particular solutions of the Laplace and Helmholtz equations in the domain are
the potentials of a simple and double layer on the boundary of the domain. The simple
layer potential for the Helmholtz equation placed on the surface Σ is the function

Wλ[Σ, h](x) =
∫

Σ
h(y)Fλ(x− y)dσy, F(x− y) =

exp{−λ|x− y|}
4π|x− y| , (8)

with x ∈ R3 \ Σ, and h is the density of a simple layer potential, which is a function given
on the surface Σ.

If h ∈ C(Σ), then the simple layer potential W[Σ, h](x) is defined by Formula (8) even
for x ∈ Σ (see [25]).

Wλ[Σ, h]±(x) = Wλ[Σ, h](x), x ∈ Σ. (9)

Moreover, under certain smoothness conditions of the density h(x), the following
formula is valid for the boundary values of the gradient of the simple layer potential [25]:

∇Wλ[Σ, h]±(x) = ∇Wλ[Σ, h](x)∓ 1
2

h(x)n(x) x ∈ Σ, (10)

where ∇Wλ[Σ, h](x) is the so-called direct value of the gradient of a simple layer potential,
determined by the formula

∇Wλ[Σ, h](x) =
∫

Σ
h(y)∇xFλ(x− y)dσy, x ∈ Σ,

where the integral is considered in the sense of a principal value.
The double layer potential for the Helmholtz equation Uλ[Σ, g] with density g set on

the surface Σ is the following integral operator:

Uλ[Σ, g](x) =
∫

Σ
g(y)

∂Fλ(x− y)
∂ny

dσy, x ∈ R3 \ Σ. (11)

The double layer potential with density g ∈ C(Σ), defined by Expression (11) at the
points of the space R3 \ Σ, is a harmonic function on this set. The double layer potential can
be extended on the surface Σ from the external and internal domains Ω1 and Ω2 (see [25]).
The boundary values of the function Uλ[Σ, g] on the surface Σ are given by the expression:

Uλ[Σ, g](x)± = Uλ[Σ, g](x)± g(x)
2

x ∈ Σ, (12)
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with Uλ[Σ, g](x) being the direct value of the double layer potential obtained directly from
Expression (11) at point x ∈ Σ.

If the double layer potential density g(x) satisfies a certain smoothness condition, then
the vector field ∇Uλ[Σ, h] can be continued onto the surface Σ from each of the domains
Ω1 and Ω2. For the boundary values of the gradient of the function Uλ[Σ, h], the formula
is valid [25]:

∇Uλ[Σ, g]±(x) = ∇Uλ[Σ, g](x)± 1
2

Grad g(x), x ∈ Σ. (13)

The direct value of the double layer potential’s gradient at the boundary of a closed
surface is the following expression:

∇Uλ[Σ, g](x) =
∫

Σ
[Grad g(y)× n(y)]×∇xF(x− y)dσy. (14)

The simple or double layer potential for the Laplace equation is a particular case of
the Helmholtz potential with λ = 0.

2.2. Boundary Integral Equations

Following the reasoning given in [23], we put a simple layer potential on the outer
surface Σ1 and a simple layer and double layer potentials on the inner boundary Σ2. Thus,
the field of velocities and pressures in the regions Ω1, Ω2 are sought in the following form:

v = ∇Wλi [Σ1, h] +∇Uλi [Σ2, g] +∇Wλi [Σ2, h], (15)

p = −αi
(
Wλi [Σ1, h] + Uλi [Σ2, g] + Wλi [Σ2, h]

)
+ χΩ2 pv. (16)

Here, λ1 = 0 in Ω1, λ2 =
√

Lα2 in Ω2, and χΩ2 is the domain indicator function for Ω2.
The advantage of this representation is that the velocity and pressures are expressed by the
same operators in different domains.

The velocity and pressure in the integral representations (15) and (16) satisfy sys-
tem (1). The integral representations (15) and (16) are substituted into the boundary
conditions (2)–(5). We construct a system of integral equations for the unknown densities
of the simple and double layer potentials h, g in which each equation corresponds to one of
the boundary conditions (2)–(5).

h
2
+ n · ∇W0[Σ1, h] + n · ∇U0[Σ2, h] + n · ∇W0[Σ2, h]− ξ = f0, x ∈ Σ1, (17)

W0[Σ1, h] + U0[Σ2, h] + W0[Σ2, h] = − ψ

α1
, x ∈ Σ1, (18)

α1W0[Σ1, h]− α2Wλ2 [Σ1, h] +
α1 + α2

2
g+

+ α1U0[Σ2, h]− α2Uλ2 [Σ2, h] + α1W0[Σ2, h]− α2Wλ2 [Σ2, h] = −pv, x ∈ Σ2, (19)

n ·
(
∇W0[Σ1, h]−∇Wλ2 [Σ1, h]

)
+ n ·

(
∇U0[Σ2, h]−∇Uλ2 [Σ2, h]

)
−

− h + n ·
(
∇W0[Σ2, h]−∇Wλ2 [Σ2, h]

)
= 0, x ∈ Σ2, (20)

The solution functions h, g of the boundary integral equation system allow calculation
of the velocity and pressure fields in integral form (15) and (16) in the filtration domain Ω.

3. Numerical Method

We use the method of piecewise constant approximations and collocations for the
numerical solution of the system of integral equations. This method has a low order of
accuracy, but it also has such advantages as versatility, simplicity of implementation, and
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reliability. This is why the method is convenient for conducting computational experiments
to test new mathematical models.

The surfaces Σm, m = 1, 2, are approximated by a system of triangular and rectangular
cells with all the cells’ vertices lying on the surface being approximated.

Σ1 ' Σ̃1 = {σk}, k = 1, ..., N1, Σ2 ' Σ̃2 = {σk}, k = N1 + 1, ..., N.

Each cell has its local basis consisting of a normal vector nk and two tangential vectors
τ1

k , τ2
k . We also set a collocation point xk on each cell σk, k = 1, ..., N. The example of surface

approximation is given in papers [24,26].
We approximate unknown functions h, g by piecewise constant functions h̃, g̃ set on

the approximate surfaces Σ̃m, m = 1, 2. We set

h̃(x) = hk, g̃(x) = gk, x ∈ σk \ ∂σk, (21)

k = 1, ..., N for function h, and k = N1 + 1, ..., N for function g̃. These qualities are satisfied
at the internal points of the cells. The ∂σk is the cell edge.

3.1. Approximation of the Integral Operators

Let S be one of the surfaces Σn, n = 1, 2, and S̃ is its approximation. We approximate
the direct values of the integral operators Wλm [S̃, h̃], Uλm [S̃, g̃], ∇Wλm [S̃, h̃] in collocation
points xi ∈ Σn, n = 1, 2, and the following formulas:

Wλm [S̃, h̃](xi) = ∑
σk∈S̃

hkWλm
ik , Wλm

ik =
1

4π

∫
σk

e−λmri

ri
dσy,

Uλm [S̃, g̃](xi) = ∑
σk∈S̃

gkUλm
ik , Uλm

ik =
1

4π

∫
σk

(xi − y, nk)
e−λmri (λmri + 1)

r3
i

dσy,

∇Wλm [S̃, h̃](xi) = ∑
σk∈S̃

hkwλm
ik , wλm

ik =
−1
4π

∫
σk

(xi − y)
e−λmri (λmri + 1)

r3
i

dσy.

Here, ri = |xi − y|, and m is the number of subdomains where the direct value of the
potentials are calculated. Note that if i = k, the integrals Wλm

ik are improper absolutely
convergent, and Uλm

ik , wλm
ik are singular considered as the principal value.

The direct values of the double layer potential gradient∇Uλ[S, g] in collocation points
xi ∈ Σm are approximated the following way:

∇Uλm [S, g] = ∑
σk∈S̃

gkuλm
ik , uλm

ik = ∇
∫

σk

∂Fλm(xi − y)
∂ny

To calulate the integral uλ
ik, we separate the singularity and integrate it analytically.

We decompose the function Fλ(x− y) into

Fλ(x− y) = F0(x− y) + F̃λ(x− y), F0(r) =
1

4πr
, F̃λ(r) =

e−λr − 1
4πr

.

with r = |x− y|. So, the integral is decomposed the following way:

uλ
ik = u0

ik + ũλ
ik, u0

ik = ∇
∫

σk

∂F0(xi − y)
∂ny

dσy, ũλ
ik = ∇

∫
σk

∂F̃λ(xi − y)
∂ny

dσy.

To caluclate u0
ik, we use the Biot–Savart law [27,28], and integral ũλ

ik is improper convergent.
The integrals in expressions Wλ

ik, Uλ
ik, wλ

ik, and ũλ
ik are calculated approximately by the

rectangular method. Such a scheme for improper and singular integrals was described in
the paper [24].
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3.2. Approximation of the Boundary Equations

To calculate the approximate solution, we use the collocation method.
Equations (17)–(20) must be fulfilled at collocation points xi, i = 1, ..., N.

hi
2
+

N

∑
k=1

hk(ni ·w0
ik) +

N

∑
k=N1+1

gj(ni, u0
ik)− ξi = f0,i, i = 1, ..., N1, (22)

N

∑
k=1

hkW0
ik +

N

∑
k=N1+1

gjU0
ik = −

ψi
α1

, i = 1, ..., N1, (23)

N

∑
k=1

hk(α1W0
ik − α2Wλ2

ik ) +
α1 + α2

2
gi+

+
N

∑
k=N1+1

gk(α1U0
ik − α2Uλ2

ik ) = −pv, i = N1 + 1, ..., N, (24)

− hi +
N

∑
k=1

hkni · (w0
ik −wλ2

ik ) +
N

∑
k=1

gk(ni · ũλ2
ik ) = 0, i = N1 + 1, ..., N. (25)

After solving the system of linear Equations (22)–(25), we calculate the velocity and pres-
sure fields in point x ∈ Ωm, m = 1, ..., Nd by the approximations of Formulas (15) and (16):

v =
N

∑
k=1

hk∇Wλm [σk, e] +
N

∑
k=N1+1

gk∇Uλm [σk, e], (26)

p = χΩ2 pv − αm

(
N

∑
k=1

hkWλm [σk, e] +
N

∑
k=N1+1

gkUλm [σk, e]

)
, (27)

with e ≡ 1. The integrals in the expressions Wλm [σk, e], Uλm [σk, e], ∇Wλm [σk, e], and
∇Uλm [σk, e] are proper in the inner points of the domains Ω1, Ω2. These integrals are
also calculated by the rectangle method.

4. Results

The papers [29–31] contained the measurements of the lymph flow, pressure, and
protein concentration in the popliteal lymph nodes of dogs. To verify the model, we used
the experimental data given in these papers. We constructed a geometrical model approx-
imating the lymph node and set the boundary conditions according to the experimental
data. Then, we solved the parametrical optimization problem to fit the experiment.

The fluid exchange between the lymph node and the circulatory system is described
by Starling’s law (1), the third equation. The value of parameter σ was set at 0.88, according
to [10]. The experimental data presented in [31] contained the blood pressure pb and the
protein concentration in the blood Cb and the lymph Cl . The oncotic pressure was calculated
by the formula ∆π = Cb−Cl

M R T, with M = 67.2 kg/mol as the molar mass of proteins,
R = 8.31 as the universal gas constant, and T = 301 K as the absolute temperature. Given
these data, we calculated pv = pb − σ ∆π.

The experiment was carried out on the lymph node with one inlet opening Σq with
a fixed flow Q1 and one outlet opening Σp with fixed pressure P2 (see Figure 1 on the
right). The external subdomain Ω1 was ellipsoid with radii Rx = Rz = 0.35 mm, and
Ry = 0.5 mm. The internal subdomain Ω2 was ellipsoid with radii Rx = Rz = 0.315 mm,
and Ry = 0.45 mm. The afferent and efferent lymphatic vessels were considered to be
cylindrical with the radius r = 0.075 mm and the centers zq and zp located on the upper
and bottom poles of Σ1, respectively.
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The surfaces Σq and Σp were approximated as follows:

Σ̃q = {σi : |xi − zq| < r}, Σ̃p = {σi : |xi − zp| < r}.

We approximated the velocity functions f0 and ξ on the parts of the boundary Σq and
Σp, so that the flow through the openings had a parabolic profile. The pressure on the
outlet was assumed to be constant.

f0,i = Q1
r2 − |xi − zq|2

∑k:σk∈Σ̃q(r2 − |xk − zq|2)sk
, ψ = P2. (28)

The function ξ on part of surface Σ̃p was approximated in a similar way.
The known experiment did not contain the complete description of all the parameters

that arise in the mathematical formulation of the problem, since it is extremely difficult to
calculate such measurements. Therefore we used the following approach: part of the experi-
mental data were used as the initial parameters of model, and the other part of the data were
used for validation of the model. We denoted the model parameters θ = {L, α1, α2}. We ap-
proximated the boundary integral Equations (17)–(20) by a numerical scheme (22)–(25) and
solved the corresponding linear system with parameters θ and boundary conditions (28)
with the values Q1 and P2 taken from paper [31] (Table 1).

To compare the mathematical model prediction with the experimental data values of
the outlet flow Q2 and inlet pressure P1, we calculated the pressure P̄1 on Σ̃q

1 and the flow
Q̄2 on Σ̃p

1 using the following formulas:

Q̄2 = ∑
σi∈Σ̃p

1

ni · v−i · si, P̄1 =
∑σi∈Σ̃q

1
p−i · si

∑σi∈Σ̃q
1

si

The article [31] provided data on several animals (greyhound dogs) with a number
of experimental values for each animal. Assuming that different animals corresponded to
different values of the θ parameters, we calculated the optimal values of the parameters
that minimized the functional Φerr for all experiments for each animal.

Φerr(θ) =

(Nexp

∑
i=1

(Qi
2 − Q̄i

2(θ))
2

Qavg
+

(Pi
1 − P̄i

1(θ))
2

Pavg

) 1
2

,

Qavg =
Nexp

∑
i=1

(Qi
2)

2

Nexp
, Pavg =

Nexp

∑
i=1

(Pi
1)

2

Nexp
. (29)

Here, Qi
2 and Pi

1 were the i-th experiment data values, and Q̄i
2 and P̄i

1 were calculated
by the numerical model for the i-th experiment boundary condition values. To solve the
optimization problem, we used the Nelder–Mead method.

The values of the functional as well as the optimal values of the parameters are given
in Table 1. In the experiment, the value of P2 varied, while pv had a small variation, and Q1
was constant. So, the comparison of the simulation results with the experimental data can
be represented as the dependence of P1 and Q2 on P2 (see Figures 2 and 3).

Table 1. Parameters providing optimal approximation to the experimental data.

Dog Φerr L α1 α2

1 0.16 6.22 1.2 ·10−3 3.08
2 0.26 8.42 0.7 ·10−3 4.46
3 0.24 7.94 0.6 ·10−3 3.67
4 0.19 6.17 0.7 ·10−3 3.49
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Figure 2. Pressure values P1 at the inlet opening depending on pressure P2 at the outlet opening.
IE—integral equation model, Exp—experimental data.

Figure 3. Flow values Q2 at the outlet opening depending on pressure P2 at the outlet opening.
IE—integral equation model, Exp—experimental data.

The value of the deviation of the results from the experiment Φerr demonstrates that
the model accurately approximated the data for four animals.

5. Discussion

In this paper, we proposed a model of the fluid filtration flow in a piecewise ho-
mogeneous domain containing porous medium and applied it to the simulation of the
lymph flow in the lymph node. We also assumed that the fluid was absorbed in the inner
subdomain. A mixed boundary condition was set on the outer boundary of the domain
(the pressure was set on the outlet opening, the flow was set on the inlet opening, and
the impermeability condition was set on the remaining part of the boundary). At the
interface between the media, the conjugation conditions were set (the continuity of the
pressure and the normal component of the fluid velocity). An integral representation of the
velocity and pressure fields in terms of the potentials of a simple layer and double layer
at the domain boundary was proposed. The boundary value problem was reduced to a
system of boundary integral equations for unknown densities of simple layer and double
layer potentials.

A numerical solution scheme based on the method of piecewise constant approxima-
tions and collocations was constructed for the system of integral equations. The solution of
the approximated system of boundary integral equations allowed calculation of the velocity
and pressure fields in any inner point of the domain.

The model predictions were also compared with the existing experimental data on
lymph filtration in the lymph node. An agreement between the values of the total flow
characteristics obtained by numerical simulation and the experimental data was reached.
The analysis of the obtained test results, in particular, showed the applicability of the
developed numerical model for the simulation of the considered class of filtration flows.

The results of this work were used for the development of an artificial neural network
model describing the lymph node drainage function, which was described in [32].
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