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Abstract: It is well known that biomedical imaging analysis plays a crucial role in the healthcare
sector and produces a huge quantity of data. These data can be exploited to study diseases and their
evolution in a deeper way or to predict their onsets. In particular, image classification represents one
of the main problems in the biomedical imaging context. Due to the data complexity, biomedical
image classification can be carried out by trainable mathematical models, such as artificial neural
networks. When employing a neural network, one of the main challenges is to determine the optimal
duration of the training phase to achieve the best performance. This paper introduces a new adaptive
early stopping technique to set the optimal training time based on dynamic selection strategies to fix
the learning rate and the mini-batch size of the stochastic gradient method exploited as the optimizer.
The numerical experiments, carried out on different artificial neural networks for image classification,
show that the developed adaptive early stopping procedure leads to the same literature performance
while finalizing the training in fewer epochs. The numerical examples have been performed on the
CIFAR100 dataset and on two distinct MedMNIST2D datasets which are the large-scale lightweight
benchmark for biomedical image classification.

Keywords: image classification; biomedical imaging; early stopping; artificial neural network;
GreenAI; health care; machine learning in healthcare

1. Introduction

In recent years, the healthcare field has experienced a massive growth in the acquisition
of digital biomedical images due to a pervasive increase in ordinary and preventive medical
exams. In view of this amount of medical data, new methods based on machine learning
(ML) and deep learning (DL) have therefore become necessary. The application of ML
and DL techniques to the biomedical imaging field can promote the development of new
diagnostics and treatments, making it a challenging area of investigation. In particular,
image classification represents one of the main problems in the biomedical imaging context.
Its aim is to arrange medical images into different classes to help physicians in disease
diagnosis. ML and DL methods are employed to predict the class membership of the
unknown data instance, based on the class membership of the training set data, which
is known. If the learning procedure performs a good classification, a proper automatic
diagnosis of a disease can be achieved, starting only from the medical image.

From a mathematical point of view, given a training set of n instances, a learning
approach to the image classification involves the solution of a minimization problem of
the form

min
x∈Rd

F(x) ≡ 1
n

n

∑
i=1

fi(x) (1)
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where F is the so-called loss function and it computes the difference between the actual
ground-truth and predicted values, n is the cardinality of the training set and d is the
number of features. Each fi : Rd → R denotes the loss function related to the i-th instance
of the training set. Because n can be a very large number, it is prohibitively expensive to
compute all the terms of the objective function F(x) or its gradient. Moreover, the whole
dataset may be too large to be completely stored in memory. Finally, in the online learning
setting, where the dataset is not available from the beginning in its completeness but is
acquired during the learning process, it is impossible to work with F(x). In all these cases,
the minimization problem is faced by exploiting stochastic approximations of the gradient
that lead to the use of stochastic gradient (SG) methods [1]. Given at each iteration k a
sample Sk of size nk << n randomly and uniformly chosen from N = {1, . . . , n}, the SG
algorithm to solve problem (1) can be written as

xk+1 = xk − ηkg(xk) (2)

where ηk is a positive parameter called the learning rate (LR) and the stochastic direction
g(xk) is computed as

g(xk) :=
1
nk

∑
i∈Sk

∇ fi(xk).

The sample Sk is the mini-batch at the k-th iteration and its cardinality nk is the mini-
batch size (MBS). In order to accelerate the convergence rate of the SG method, a momentum
term [2] can be added to the iteration (2). In more detail, chosen β ∈ [0, 1) and setting
m0 = 0, the momentum version of the SG scheme has the following form:{

mk+1 = βmk + g(xk)

xk+1 = xk − ηkmk+1
(3)

where ηk is the positive LR.
In general, to design efficient and accurate ML or DL methodologies, it is needed

to properly set the hyperparameters connected to the algorithm chosen for the training
phase, particularly the LR and the MBS. We define the hyperparameters of a learning
method as those parameters which are not trained during the learning process but are set a
priori as the input data. In the literature, there are different philosophies to approach the
problem of setting the hyperparameters. One of these is related to the Neural Architecture
Search (NAS) area [3], which explores the best configurations related to the optimization
hyperparameters before the beginning of the training. However, there also exist techniques
that directly address the search during the training phase, including static rules, i.e., rules
that do not depend on the training phase, and dynamic rules, which only operate under
certain conditions connected to the training phase itself. Regarding the LR and the MBS,
the class of dynamic rules is preferable. Indeed, a variable LR strategy allows starting the
iterative process with higher LR values than those employed close to the local minimum.
As for the MBS, a standard approach is to dynamically increase it along the iterations,
without however reaching the whole dataset in order to comply with the architectural
constraints and control the possible data redundancy. There also exist techniques for
decreasing the LR while the MBS is increasing.

Together with suitable choices of both the LR and the MBS, the training phase can be
optimized by means of an early stopping technique. Given a validation set (VS), namely a
subset of examples held back from training the model, standard early stopping procedures
are based on the so-called patience parameter criterion. In more detail, if, after a number of
epochs equal to the value of the patience, the loss function computed on the VS has not been
reduced, the training is stopped even if the maximum number of epochs is not reached.

The aim of this paper is twofold. First, we combine the previously described strategies
to reduce the training time. Indeed, we suggest a dynamic combined technique to select
the LR and the MBS by modifying classical early stopping procedures. In particular, if a
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decrease in the loss function on the validation set is not achieved after the patience time,
the patience value itself can be reduced, the learning rate is decreased and/or the mini-batch
size is increased and the training is allowed to continue until the values of the learning rate
and the mini-batch are acceptable from a practical point of view. Secondly, we test the SG
algorithm with momentum, equipped with a such developed rule for the selection of the LR
and MBS hyperparameters, in training an artificial neural network (ANN) for biomedical
image classification problems. We remark that the dynamical early stopping procedure we
describe in this paper can be adopted for general image classification problems. Moreover,
it is worth highlighting that the suggested approach does not belong to the class of NAS
hyperparameters procedures. Indeed, unlike the proposed scheme, NAS techniques aim to
set good hyperparameters values at the beginning of the training phase and to keep them
fixed until convergence. On the other hand, the hyperparameters selection rule developed
in this work is adaptive because the hyperparameters connected to the optimizer can
be conveniently changed during the training phase. This can have benefits in terms of
both the performance and computational and energy savings from a GreenAI (Artificial
Intelligence) perspective.

The paper is organized as follows. In Section 2, we present a brief survey about the
state-of-the-art approaches to fix both the LR and the MBS hyperparameters. Section 3 is
devoted to describing a novel technique to dynamically adjust the LR and/or the MBS,
using the VS. Section 4 reports the results of the numerical experiments on standard
and biomedical image classification problems, aimed to evaluate the effectiveness of the
proposed approach. In Section 5, in addition to the conclusions, the current directions of
research that we are pursuing to expand and complete the work carried out are illustrated.

2. Related Works

The aim of this section is to recall the standard techniques to select the LR and the
MBS in stochastic gradient methods typically employed for ML and DL methodologies.

2.1. Standard LR Selection Rules

Properly setting the LR in stochastic gradient algorithms is an important issue and
there exist many attempts in the literature to address it. Indeed, inappropriate values for
the LR can lead to two different scenarios: a too small fixed value often implies a very slow
learning process, while a too high fixed value can make the method divergent. In general,
choosing a fixed LR along the iterative process is not suitable, also because the convergence
of standard first-order stochastic schemes is ensured if the LR is properly bounded by the
Lipschitz constant of the gradient of the objective function [1]. Unfortunately, this constant
is often not known.

As for a variable LR rule, several works in the literature show that, from a practical
point of view, modifying the LR during the learning process can bring benefits for both ML
and DL applications [4,5]. In order to guarantee convergence, the SG schemes require the
LR to be chosen as a value of a diminishing sequence, i.e., αk = O( 1

k ). However, this choice
would practically lead to a too rapid reduction in the LR by giving rise to the interruption of
the learning process in a few iterates. For this reason, in practice, the so-called LR annealing
can be adopted: with this strategy, the LR is decreased along the iterations but with a much
slower speed. The basic idea of the LR annealing is to diminish the LR after some iterations
from the beginning of the learning process, in an automatic and non-adaptive way. This
technique is widely used in the most recent ANN for segmentation and other tasks [6–8].
For example, in [7], the authors use the LR annealing technique, with a YOLO architecture,
for the detection and the localization of lung nodules from low-dose CT scans. Even in
biomedical contexts, where the dataset size is often limited, LR annealing techniques have
been shown to be effective. In [9], the authors demonstrate that the suggested LR annealing
strategy improves the image classifiers performance, in terms of both the accuracy and
training time, on a set of dermatological diagnostic images with an unbalanced nature.
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2.2. Standard MBS Selection Rules

In [10], Masters and Luschi point out that modern DL training is typically based on
mini-batch SG optimization. While the use of large mini-batches increases the available
computational parallelism, small-batch training has been shown to provide a better gener-
alization performance and allows a significantly smaller memory footprint, which might
also be exploited to improve machine throughput. For this reason, the authors stress that,
for the learning process, it is crucial to choose a proper MBS selection technique that allows
the method to achieve a high accuracy while reducing the time spent on the learning phase
as much as possible.

In the context of standard ML, several authors suggest a linear growth of the MBS
to allow the process of reaching the entire dataset, while others (see, e.g., [11]) propose a
hybrid approach. The hybrid approach consists of starting the iterative process with an
SG method (by exploiting its property of decreasing the objective function especially in
the first iterations) and then moving onto a deterministic scheme (by taking advantage of
its stability and avoiding an oscillating behavior around the minimum point). Obviously,
these techniques cannot be applied to every setting, but only to offline learning frameworks
and/or datasets of limited size.

For the DL approaches, the MBS is often selected as powers of 2 (commonly 32, 64
and 128) with the aim of facilitating the use of internal memories of accelerators, such as a
Graphics Processing Unit (GPU) and Field-Programmable Gate Array (FPGA). However,
besides static MBS selection strategies, simply driven by heuristics or hardware constraints,
there exist other adaptive ones driven by the learning process itself [12,13]. For example,
in [12], the authors design a practical SG method capable of learning the optimal batch
size adaptively throughout its iterations for strongly convex and smooth functions. On the
other hand, in [13], the authors propose a method to dynamically use the VS to set the
MBS. The impact of a suitable MBS selection procedure on the effectiveness of DL schemes
has been also analyzed in the field of medical applications. In [14], the authors studied
the effect of the MBS on the performance of CNNs employed to classify histopathology
images. They empirically found that when the LR values are high, a large MBS performs
better than with a small LR. Moreover, lowering the learning rate and decreasing the batch
size allow the network to train better, especially in the case of fine-tuning. About the high
correlation between the LR and the MBS selection rules, there exist different works [15,16]
in the literature. For this reason, effective strategies to set these hyperparameters should
consider their mutual interaction.

The techniques described above could assist other types of application, such as those
reported in [17–19], in addition to those already mentioned.

3. A New Dynamic Early Stopping Technique

The previous section has shown that the LR and the MBS need to be properly selected
in order to have robust and efficient learning methodologies and that many efforts have
been made in the literature in this regard. In this section, we propose a novel adaptive
strategy to fix both these hyperparameters by exploiting and modifying the standard early
stopping procedure. The resulting approach can be seen as a new dynamic early stopping
strategy able to combine the advantages of both the early stopping and the dynamic
strategies to define the LR and the MBS.

In all the methodologies involving learning from examples, it is important to avoid
the phenomenon of overfitting. To this end, it is effective to adopt the early stopping
technique [20] which interrupts the learning process by allowing to possibly use a number
of epochs lower than the prefixed maximum, also from a GreenAI perspective [21]. The
early stopping technique is based on the idea of periodically evaluating, during the mini-
mization process, the error that the network commits on the auxiliary VS by evaluating the
performance obtained on the VS itself. In general, in the first iterations, the error on the
VS decreases with the objective function, while it can increase if the error which occurs on
the training set (TS) (the training set is a set of examples used to fit the parameters of the
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model, e.g., the weights of an ANN) becomes “sufficiently small”. In particular, the training
process ends when the error on the VS starts to increase, because this might correspond
to the point in which the network begins to overfit the information provided by the TS
and loses its ability to generalize to data other than those of the TS. In order to practically
implement the early stopping procedure, it is typical to define a patience parameter, i.e., the
number of epochs to wait before early stopping the training process if no progress on the
VS is achieved. Fixing the value of the patience is not obvious: it really depends on the
dataset and the network. The suggested early stopping strategy aims to also overcome
this difficulty.

3.1. The Proposal

In this section, we detail the new early stopping technique we are proposing. The main
steps of this technique can be summarized as follows.

• We borrow the basic idea of the standard early stopping in order to avoid overfitting
the information related to the TS.

• We introduce a patience parameter which can be adaptively modified along the
training process.

• We dynamically adjust both the LR and the MBS hyperparameters along the iterations,
according to the progress on the VS.

The complete scheme is described in Algorithm 1. The main features are reported below.

3.1.1. Lines 4–9—Update of the Iterates for One Epoch

The iterates are updated by means of a stochastic gradient algorithm (Algorithm 1
line 8) for an entire epoch. In particular, a stochastic estimate of the gradient of the
objective function is computed by means of the current mini-batch Si of cardinality nk
chosen randomly and uniformly from N (lines 6–7). Examples of the stochastic gradient
estimations are provided in (2) and (3).

3.1.2. Line 10—Evaluation of the Model

The model is evaluated on the VS, namely the accuracy is computed on the VS and
saved in the variable AccValk.

3.1.3. Lines 11–15—Check for Accuracy Improvement

The current accuracy computed on the VS is compared to the one computed at the
previous epoch and saved in the variable BestAcc.

3.1.4. Lines 17–29—Dynamic Early Stopping

If the accuracy on the VS is not improved, a counter is increased (line 17). Subsequently
(line 18), the value of the counter is compared to the prefixed value p of the patience.
In standard early stopping strategies, if the counter is greater than the value of p, then
the training phase is stopped. On the contrary, in the suggested dynamic early stopping
technique, the training phase is not immediately stopped, but it is allowed to continue
with different hyperparameters. In particular, the LR is decreased by a factor c1 ∈ (0, 1)
(line 20) and/or the MBS is increased by a proper rule (line 22) depending on c2 ∈ [1, M]
and dim ∈ {0, · · ·, M}, where M is a constant related to hardware or memory limitations,
for example, it can be the maximum number of samples which can be stored in the GPU.
Finally (line 23), the value of the patience is divided by a factor γ > 1. Thanks to a smaller
LR and/or a mini-batch of a larger size, the optimizer employed in the training phase
should stabilize and provide new iterates closer to the minimum point. However, if the
LR becomes too small and the MBS reaches the hardware limitations, then the ending of
the training process is forced. In particular, if the patience is reduced more than a prefixed
value p, then the training is stopped (lines 27–29).

To summarize, different from the standard early stopping, the proposed one avoids a
sharp ending of the training process and the difficult tuning of a fixed value of the patience.
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Moreover, it allows to really exploit the nature of the dynamic selection rules for the LR and
MBS, thus ensuring a more efficient learning phase. Finally, we remark that the possibility
to refine the values for the LR and the MBS along the iterative process allows to make their
initial setting less crucial than in the static approaches where the hyperparameters are kept
fixed during the training.

Algorithm 1: A stochastic gradient method with dynamical early stopping

1 Choose maxepochs, x0, η0, S0 ⊂ N of cardinality n0, c1 ∈ (0, 1), c2 ∈ [1, M],
dim ∈ {0, . . . , M}, γ ≥ 1, p, p ∈ N

2 Initialize BestAcc = 0, pred = 0
3 for k = 0, . . . , maxepochs do
4 while i ≤ n

nk
do

5 i = i + 1
6 Select a mini-batch Si randomly and uniformly from N of cardinality nk
7 Compute a stochastic direction di on the mini-batch Si
8 Compute xi+1 = xi − ηi · di
9 end

10 Save the parameters of the final model: xk = xi+1 and evaluate the model on
the VS: AccValk

11 if AccValk > BestAcc then
12 counter = 0
13 pred = 0
14 BestAcc = AccValk
15 Save the parameters of the best model: xbest = xk
16 else
17 counter = counter + 1
18 if counter > p then
19 counter = 0
20 Learning rate decreasing: ηk+1 = c1ηk
21 and/or
22 Mini-batch size increasing: nk+1 = c2nk + dim or

nk+1 = max{dim, c2nk}
23 p =

p
γ

24 pred = pred + 1
25 end
26 end
27 if pred > p then
28 return
29 end
30 end

4. Numerical Experiments

In this section, we investigate the effectiveness of the developed early stopping pro-
cedure combined with the SG method with momentum on image classification problems.
More in detail, we consider Algorithm 1 where the stochastic direction (line 7) and the
update of the iterates (line 8) are performed by means of the scheme defined in (3) with
β = 0.9. The loss function in (1) is the cross entropy; hence, fi(x) = −ti log(si(x)) where
si(x) is the probability of the Softmax function of the class i and ti is the true label. We
consider both a standard database for image classification tasks as the CIFAR-100 [22]
and two different biomedical databases of 2D images obtained by computed tomography
tools [23–27].
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4.1. Image Classification on CIFAR-100 Dataset

We present the results for three different CNNs for 100-classes classification on the
CIFAR-100 dataset: ResNet18 [28], VGG16 [29] and MobileNet [30]. The numerical ex-
periments have been performed on an Intel i9-9900KF coupled with an NVIDIA RTX
2080Ti. The code has been developed starting from an established framework to train sev-
eral CNNs on the CIFAR-100 dataset (https://github.com/weiaicunzai/pytorch-cifar100,
accessed on 1 October 2022) and has been made public for the sake of reproducibility
(https://github.com/mive93/pytorch-cifar100, accessed on 1 October 2022). In the consid-
ered framework, the CIFAR-100 dataset was divided into training and test sets. We used
10% of the training set to create the validation set. The optimizer employed for the reference
training of the CNNs is the SG with momentum; it uses a starting LR of 0.1 and schedules
its annealing at epochs [60, 120, 160], multiplying it by 0.2 in those so-called milestones.

The performance of the optimization method employed for the CNNs reference train-
ing has been compared with the performance of two different versions of Algorithm 1 (with
an SG with momentum at lines 7–8). In particular, we consider the possibility of either
reducing the LR while the MBS is such that nk+1 = n0 or decreasing the LR and increasing
the MBS. Both versions of Algorithm 1 have been implemented by setting maxepochs = 200,
η0 = 0.1, n0 = 2, c1 = 0.2, nk+1 = max{maxmemory = 1000, c2 ∗ nk}, where maxmemory ∈ N
is the maximum number of samples that can be stored in the GPU, and c2 = 2. Moreover,
in order to understand how the patience values affect the performance, we consider three
different values for p—8, 15 and 20—and two different values for γ—2 and 4. Finally, p has
been fixed either equal to 6 if both the LR is reduced and the MBS is increased or equal to 3
if only the LR is decreased but the MBS is not changed along the iterations. In the results,
the name of the different considered algorithms for the training reports:

• LR if only the LR is changed along the iterative process or LRBS if both the hyperpa-
rameters are variable;

• p followed by its value;
• γ followed by its value.

For example, LRBS_p20_γ2 points out that the selection rules for the LR and the MBS
are both dynamic and the values for p and γ are 20 and 2, respectively.

All the tests have been performed five times, and the average accuracy on the test
set and the number of epochs are reported, knowing that the standard deviation on the
accuracy is at most equal to 0.0145. As usual, the best result obtained with the check on the
VS is verified on the test set.

Figure 1 shows the results of all the experiments carried out on the MobileNet CNN.
In this case, the reference training achieves an accuracy of 65.39% in 200 epochs. From the
chart, it can be seen that all the trainings that follow the methodology proposed in this
paper achieve similar results in terms of accuracy while needing less than half the epochs of
the original one. Moreover, some configurations outperform the original, such as, e.g., the
LRBS version with patience equal to 15 or 20. Table 1 reports all the results for the three
CNNs for the LRBS configurations. From the last two columns of Table 1, it is possible
to conclude that the accuracy results obtained by the proposed method are in line with
those of the original version, sometimes slightly lower and sometimes higher. What is truly
remarkable is the number of epochs required to obtain such a performance, which is at
least halved compared to the original method.

https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/mive93/pytorch-cifar100
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Figure 1. Performance of the various training for MobileNet on CIFAR-100. The blue bars represent
the accuracy on the test set (left axis), the yellow squares report the number of epochs needed
(right axis) and the red dotted line is the accuracy provided by the reference training.

Table 1. Results obtained on the three CNN models on the CIFAR-100 dataset.

CNN Model Configuration p p Decay Test Accuracy (%) # Epochs

MobileNet Original - - 65.39 200.00
MobileNet LRBS 15 2 65.73 80.60
MobileNet LRBS 15 4 65.14 81.00
MobileNet LRBS 20 2 65.63 91.80
MobileNet LRBS 20 4 65.76 98.20
ResNet18 Original - - 74.86 200.00
ResNet18 LRBS 15 2 73.96 73.00
ResNet18 LRBS 15 4 74.03 67.40
ResNet18 LRBS 20 2 74.30 90.20
ResNet18 LRBS 20 4 74.16 85.00
VGG16 Original - - 71.24 200.00
VGG16 LRBS 15 2 70.37 90.40
VGG16 LRBS 15 4 69.63 72.40
VGG16 LRBS 20 2 70.54 88.40
VGG16 LRBS 20 4 70.55 101.20

4.2. Biomedical Image Classification

The second part of the numerical experiments involved two types of bidimensional
biomedical image datasets for multi-class classification: MedMNIST2D OrganSMNIST
(https://medmnist.com/, accessed on 1 October 2022) and MedMNIST OCTMNIST (https:
//medmnist.com/, accessed on 1 October 2022) [26,27]. The former is composed of
25,221 abdominal CT images (the first panel of Figure 2) with labels from 0 to 10, each one
corresponding to an organ or a bone of the abdomen. Each image is 28× 28 pixels and the
original dataset is split up into training, validation and test sets whose dimensions corre-
spond to 70%, 9% and 21% of the total number of samples, respectively. The second one is
made up of 109309 optical coherence tomography (OCT) images for retinal diseases (the
second panel of Figure 2) and there are four labels of which three correspond to different
diseases and one is related to normal health conditions. Each image is 28× 28 pixels and
the original dataset is divided similarly to the previous case.

https://medmnist.com/
https://medmnist.com/
https://medmnist.com/
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Figure 2. Some examples from MedMNIST2D OrganSMNIST (left half) and OCTMNIST (right half).

These two applications have been processed on MSI Sword 15 A11UC-630XIT with
a GPU NVIDIA GeForce RTX 3050 Laptop, CPU i7-11800H, 8 GB of RAM, Windows
11 and Python 3.10.2. We opportunely modified the official code (https://github.com/
MedMNIST/MedMNIST, accessed on 1 October 2022) which implements various artificial
neural networks, from the data splitting point of view. In particular, we divided the dataset
into the following disjointed subsets: the 70% of the total examples gives the TS, the 9%
is employed for the VS and the remaining 21% of the data forms the test set. Our code is
publicly available (https://github.com/AmbraCatozzi/ResNet18_Biomedical.git, accessed
on 1 October 2022) for the sake of reproducibility.

For all the experiments, we compared the performance of the ResNet18 model trained
by means of:

• The SG optimizer (3) with β = 0.9 (hereafter denoted by Original);
• The same optimizer but equipped with a classical early stopping technique (hereafter

denoted by ES);
• Algorithm 1 (hereafter denoted by LRBS).

The hyperparameters setting for all the three optimization techniques are discussed in
the following section.

4.2.1. Hyperparameters Setting

Because the performance of a stochastic gradient method is strictly related to the
configuration of its hyperparameters, this section aims to fix the best hyperparameters
setting for the algorithms employed to train the ResNet18. This preliminary study is carried
out on the MedMNIST2D OrganSMNIST dataset and the best found hyperparameters
configurations will be used for all the other experiments.

Setting p for the ES Method

First of all, we compare the performance of the ES method for different values of
the patience p. In particular, given η0 = 10−3 and n0 = 128, we report in Table 2 the
values of the accuracy reached by ES with p equal to 5, 20 and 30. In the same table, the
results corresponding to the Original optimizer are also reported (for the same setting of η0
and n0).

https://github.com/MedMNIST/MedMNIST
https://github.com/MedMNIST/MedMNIST
https://github.com/AmbraCatozzi/ResNet18_Biomedical.git
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Table 2. Results on MedMNIST2D OrganSMNIST dataset in a maximum of 50 epochs. σ is the
standard deviation and each result is the mean of five trials.

Configuration Test Accuracy (%) σ (%) # Epochs

Original 88.14 0.20 50

ES (p = 5) 88.22 0.03 3.4

ES (p = 20) 88.51 0.53 21

ES (p = 30) 87.84 0.51 27.6

The value of p, which ensures the best accuracy on the test set, is 20. In the following,
p is always set to this value for the ES method.

Setting η0 and n0 for the Original and the ES Methods

In order to properly tune the LR and the MBS for both the Original and the ES schemes,
we performed several experiments with different settings, illustrated in Table 3.

Table 3. Hyperparameters analysis on MedMNIST2D OrganSMNIST dataset in a maximum of
50 epochs. σ is the standard deviation and each result is the mean of five trials.

Hyperparameters Configuration Test Accuracy (%) σ (%) # Epochs

η0 = 10−2, n0 = dim = 64
Original 92.80 0.22 50
ES 92.68 0.36 23.2

η0 = 10−2, n0 = dim = 128
Original 92.49 0.31 50
ES 92.58 0.33 16.2

η0 = 10−2, n0 = dim = 256
Original 91.54 0.53 50
ES 91.51 0.42 13.6

η0 = 10−3, n0 = dim = 64
Original 91.05 0.82 50
ES 91.08 0.72 19.8

η0 = 10−3, n0 = dim = 128
Original 88.61 0.60 50
ES 88.62 0.59 18.8

η0 = 10−3, n0 = dim = 256
Original 86.89 0.41 50
ES 86.86 0.37 24.6

η0 = 10−4, n0 = dim = 64
Original 86.06 0.48 50
ES 86.19 0.50 17.8

η0 = 10−4, n0 = dim = 128
Original 84.84 0.89 50
ES 85.48 0.28 38.4

η0 = 10−4, n0 = dim = 256
Original 83.16 0.52 50
ES 84.55 0.67 38

From the results of Table 3, the best hyperparameters setting for both the Original and
the ES approaches is η0 = 10−2 and n0 = 64. We remark that to find this setting was very
demanding in terms of computational costs.

Robustness of the LRBS Method against Hyperparameters

The proposed method aims to get rid of the dependence on its intrinsic hyperparame-
ters while maintaining a high performance. In this section, we investigate the response of
the LRBS method to the variation in the values of the hyperparameters used in Algorithm 1.
In particular, we consider different values for: c1, c2, dim and γ. It is worth highlighting that
we do not need to also properly tune the values for the patience, the LR and the MBS as
performed for the Original and the ES schemes. Indeed, the LRBS algorithm automatically
adjusts the values of these hyperparameters along the epochs. For this reason, we just
consider p = 20, η0 = 10−2 and n0 = 64: we select a quite large value for both the patience
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and the initial LR and a quite small value for the initial MBS by allowing the procedure
to adapt them (by increasing the former ones and decreasing the latter one). To confirm
this thesis, in the next section (see Table 7), we show that the LRBS algorithm is much less
sensitive to the selection of the hyperparameters than the other two methods in training
the ResNet18 for the MedMNIST2D OrganSMNIST dataset. In Table 4, we present the
values of the accuracy for different configurations. We run each experiment five times with
different seeds and we report the means and standard deviations in the table.

Table 4. Mean and std. of the values of the accuracy obtained on MedMNIST2D OrganSMNIST
dataset by the LRBS approach in a maximum of 50 epochs and different values of the hyperparameters.
The initial mini-batch size is n0 = 64 and the initial learning rate is η0 = 10−2.

γ = 2 γ = 4

c1 = 1/4 c1 = 1/2 c1 = 1/4 c1 = 1/2

c2 = 2, dim = 0 92.46%± 0.43 92.88%± 0.3 92.46%± 0.34 93.33%± 0.24

c2 = 1, dim = 64 93.11%± 0.35 93.18%± 0.39 92.78%± 0.37 92.93%± 0.37

Table 4 allows to conclude that the LRBS method is very stable with respect to the
reasonable choices of the hyperparameters involved; particularly, both the mean and
variance over the 5 trials are very good in all cases.

A Comparison with the AdaM Optimizer

Finally, for the sake of completeness, we show that to employ the AdaM optimizer [31],
instead of the SG one with momentum, leads to analogous results. Table 5 reports the
values of the accuracy reached by the considered approaches equipped by AdaM with
η0 = 10−3 and n0 = dim = 64. The value of p is 20 for both the ES and LRBS. The LRBS
method improves the accuracy obtained with the Original ResNet18 by one percentage
point, with the lowest number of epochs.

Table 5. Results on MedMNIST2D OrganSMNIST dataset in a maximum number of 50 epochs.
The AdaM optimizer is employed with η0 = 10−3 and n0 = dim = 64.

Configuration Test Accuracy (%) σ (%) # Epochs

Original 91.43 1.03 50
Early Stopping 92.52 0.57 19
LRBS 92.40 0.24 17.8

4.2.2. Numerical Results

In this section, we perform three different experiments. We firstly summarize the
hyperparameters setting for the three compared approaches in view of the considerations
made in the previous section. For the Original, ES and LRBS, we fixed η0 = 10−2 and
n0 = 64. The value of p is 20 for both the ES and LRBS. Moreover, the other hyperparameters
defining the LRBS are set as c1 = 0.5, c2 = 1, dim = 64, γ = 2, p = 20 and p = 6. In the
following paragraphs, we present the results obtained by fixing the maximum number of
epochs, maxepochs, to both 50 and 100.

Results for OrganSMNIST in a Maximum Number of 50 Epochs

In Table 6, we show the numerical results for the abdominal CT dataset: each column
reports the mean accuracy on the test set, the standard deviation and the mean number of
epochs obtained in five runs for the OrganSMNIST. The proposed method outperforms
both the ResNet18 model and the early stopped one in terms of accuracy with the same
number of epochs needed by the classical early stopping implementation.
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Table 6. Results on MedMNIST2D OrganSMNIST dataset in maximum 50 epochs.

Configuration Test Accuracy (%) σ (%) # Epochs

Original 92.80 0.22 50
ES 92.68 0.36 23.2
LRBS 92.81 0.37 23.2

We also observed that if we left fixed the value for the MBS but we increase the initial
learning rate by either one or two orders of magnitude, the LRBS method outperforms
both the standard model and the early stopped version (see Table 7) by confirming the less
dependence on the hyperparameters setting of the LRBS approach.

Table 7. Results on MedMNIST2D OrganSMNIST dataset in a maximum of 50 epochs.

Learning Rate Configuration Test Accuracy (%) σ (%) # Epochs

η0 = 10−1
Original 93.02 0.20 50
ES 93.12 0.17 23.2
LRBS 93.21 0.30 11.8

η0 = 1
Original 89.57 0.73 50
ES 90.73 0.84 31.4
LRBS 91.68 0.42 21.4

Results for OCTMNIST Dataset in a Maximum Number of 50 Epochs

The results related to the MedMNIST2D OCTMNIST dataset are illustrated in the
same vein, but the means are calculated on the best five values of each configuration chosen
from 20 runs; the numerical outcomes are presented in Table 8. It can be seen that the
proposed method slightly improves the accuracy, but it reaches this value in half of the
time with respect to the standard early stopping procedure.

Table 8. Results on MedMNIST2D OCTMNIST dataset in maximum 50 epochs.

Configuration Test Accuracy (%) σ (%) # Epochs

Original 93.72 0.17 50
ES 93.80 0.12 21.8
LRBS 93.89 0.13 11.2

Results for OCTMNIST in a Maximum Number of 100 Epochs

To highlight the effectiveness of Algorithm 1, another experiment has been conducted.
We trained the same models presented in the previous section for a maximum number of
100 epochs by considering the dataset OCTMNIST (see Table 9).

Table 9. Results on MedMNIST2D OCTMNIST dataset in maximum 100 epochs.

Configuration Test Accuracy (%) σ (%) # Epochs

Original 93.65 0.14 100
ES 93.69 0.16 10.4
LRBS 93.68 0.15 17.2

As in the previous experiments, comparable values for the accuracy can be obtained
by all the considered strategies; however, the number of epochs related to the early stopped
models is less than the 20% of the total number of epochs. However, we remark that the
LRBS does not suffer from the computational expensive phase of the hyperparameters tuning.
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5. Conclusions and Future Works

In this paper, we propose a dynamic early stopping technique for the training of a
neural network, based on variable selection strategies to fix both the learning rate and
the mini-batch size in SG methods. The suggested scheme is able to avoid the overfitting
phenomena and reduce the training phase. The numerical experiments carried out on
biomedical image classification problems show the benefits of employing the proposed
dynamic early stopping procedure: performances comparable to those of the reference net-
work can be achieved in a significantly lower number of epochs. Moreover, the suggested
approach avoids the computational expensive setting of the best hyperparameters values
needed by standard training techniques.
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