
����������
�������

Citation: Guo, Z.; Chen, S.; Huang,

X.; Qian, Z.; Yu, C.; Xu, Y.; Ding, F.

Fair Benchmark for Unsupervised

Node Representation Learning.

Algorithms 2022, 15, 379. https://

doi.org/10.3390/a15100379

Academic Editors: Javier Del Ser

Lorente and Frank Werner

Received: 9 August 2022

Accepted: 13 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Fair Benchmark for Unsupervised Node
Representation Learning
Zhihao Guo 1 , Shengyuan Chen 1, Xiao Huang 1,* , Zhiqiang Qian 1, Chunsing Yu 1, Yan Xu 2 and Fang Ding 3

1 Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR, China
2 Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
3 State Information Center, Beijing 100045, China
* Correspondence: xiaohuang@comp.polyu.edu.hk

Abstract: Most machine-learning algorithms assume that instances are independent of each other.
This does not hold for networked data. Node representation learning (NRL) aims to learn low-
dimensional vectors to represent nodes in a network, such that all actionable patterns in topological
structures and side information can be preserved. The widespread availability of networked data, e.g.,
social media, biological networks, and traffic networks, along with plentiful applications, facilitate the
development of NRL. However, it has become challenging for researchers and practitioners to track
the state-of-the-art NRL algorithms, given that they were evaluated using different experimental
settings and datasets. To this end, in this paper, we focus on unsupervised NRL and propose a fair
and comprehensive evaluation framework to systematically evaluate state-of-the-art unsupervised
NRL algorithms. We comprehensively evaluate each algorithm by applying it to three evaluation
tasks, i.e., classification fine tuned via a validation set, link prediction fine-tuned in the first run, and
classification fine tuned via link prediction. In each task and each dataset, all NRL algorithms were
fine-tuned using a random search within a fixed amount of time. Based on the results for three tasks
and eight datasets, we evaluate and rank thirteen unsupervised NRL algorithms.

Keywords: network embedding; benchmark; hyperparameter tuning; attributed networks; graph
neural networks

1. Introduction

Networks are widely adopted to represent relations between objects in various disci-
plines. For instance, we leverage networks to study social ties [1], financial transactions [2],
word co-occurrence [3], and protein–protein interactions [4]. When the network is small,
traditional algorithms in graph theory can be used to analyze the network. Examples
include clustering based on normalized cuts and node classification on the basis of label
propagation. However, learning and prediction tasks in real-world networked systems
have been incredibly complex, such as recommendations and advertising on large so-
cial networks with multifarious user-generated content [5], the completion of knowledge
graphs with millions of entities [6], and fraud detection in financial transaction networks [7].
Hence, traditional graph theory cannot directly satisfy the demands of real-world network
analysis tasks.

To fill this gap and utilize off-the-shelf machine-learning algorithms in large and sophis-
ticated networks, node representation learning (NRL) [1,8] has been extensively investigated.
Machine-learning algorithms often make default assumptions that instances are independent
of each other, and their features exist in the Euclidean space. However, these are not applicable
to networked data, because, usually, networks depict node-to-node dependencies and exist
in non-Euclidean space. The goal of NRL is to learn a low-dimensional vector to represent
each node, such that actionable patterns in the original networks and side information can be
well-preserved in the learned vectors [9,10]. Furthermore, these low-dimensional representa-
tions can be directly leveraged by common machine-learning algorithms as feature vectors, or

Algorithms 2022, 15, 379. https://doi.org/10.3390/a15100379 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15100379
https://doi.org/10.3390/a15100379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-8315-5152
https://orcid.org/0000-0002-3867-900X
https://doi.org/10.3390/a15100379
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15100379?type=check_update&version=1

Algorithms 2022, 15, 379 2 of 20

hidden layers can perform a wide variety of tasks, such as node classification [11,12], anomaly
detection [13], community detection [14], and link prediction [15,16].

In the early 2000s, as illustrated in Figure 1, NRL was known as graph embedding [17–19],
which was mainly used to perform dimensionality reduction for feature vectors. Its core
idea can be summarized as two steps. First, given a set of instances, such as documents
or images of faces, associated with feature vectors, we construct a new graph to connect
all instances. Its (i, j)th edge weight is set as the shortest path distance [18], reconstruction
coefficient [20,21], or similarity [17] between nodes i and j in the feature vector space. Second,
we apply multidimensional scaling [18] or eigen decomposition to the adjacency matrix or its
variation [17,20]. In such a way, the learned node representations can be employed as the latent
features of instances. It has been proven that most dimensionality reduction techniques, such
as principal component analysis and linear discriminant analysis, could be reformulated as
graph-embedding processes with constraints [19]. Meanwhile, efforts have also been devoted
to utilizing NRL as an intermediate process to conduct clustering [22–24], known as spectral
clustering. Its key idea is similar to graph embedding [19]. Based on feature vectors, we construct
a new network depicting similarities between instances, and then calculate the eigenvectors of
the graph Laplacian matrix of this new network. The learned eigenvectors serve as the latent
representations of instances. To predict the clusters, a traditional clustering algorithm such as
k-means is applied to the eigenvectors.

Later, since mid 2000s, with the rapid development of the web, especially social-
networking sites, there has been an increase in the types and numbers of real-world
networks available, such as Facebook, Flickr, and Twitter. NRL has been employed as an
intermediate step when performing node classification [12,25,26] and visualizations [27] in
real-world networks, including online social networks such as Flickr [26] and BlogCata-
log [28], academic networks [25], molecule structures [27], and linked web pages [12]. With
the boom in web-based networks and prediction tasks performed on them, node represen-
tation learning, also known as network embedding, was formally defined [1,10,29] in 2014
and has attracted intensive attention in recent years [30,31]. Since real-world networks
are often large, alongside the major goal, i.e., preserving the topological structure infor-
mation, scalability is another common objective of NRL algorithms [8,32]. The availability
of networked data boosts the development of various NRL algorithms [33–35], because
it is significant for different practical scenarios which need distinct and appropriate NRL
solutions.

Spectral Graph Theory
[Fan R. K. Chung, 97]

Graph Embedding:
Isomap [Tenenbaum et al., 00]
Locally Linear Embedding
[Roweis and Saul, 00]

Spectral Clustering
[Ng et al., 02]

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Knowledge Graphs:
TransE [Bordes et al., 13]

Attributed Networks / GNN:
Graph Convolution [Kipf and Welling, 17]
Inductive NRL [Hamilton et al., 17]
Attributed NRL [Huang et al., 17]

Graph Attention Networks
[Velickovic et al., 18]

Node Representation Learning
as Intermediate:
Social Dimensions [Tang and Liu,
09]

Network Embedding (NE):
DeepWalk [Perozzi et al., 14]
Large-scale NE [Tang et al., 15]

2022

Deep Graph Infomax
[Velickovic et al., 19]

Open Graph Benchmark

Figure 1. The availability of real-world networks facilitates the development of node representation
learning (NRL). We highlight several representative works.

However, it has become challenging to track the state-of-the-art node representation
learning algorithms, given that numerous methods are available in the literature. When
an NRL algorithm is proposed, only a few baseline methods and datasets are included in
the empirical evaluation. Moreover, different NRL studies may use different experimental
settings, such as evaluation tasks, hardware environments, and ways of hyperparameter
tuning. Therefore, the lack of fair and comprehensive evaluation of state-of-the-art NRL

Algorithms 2022, 15, 379 3 of 20

algorithms is preventing researchers and practitioners from tracking the effective NRL
algorithms for specific scenarios.

In this paper, we focus on unsupervised node representation learning. There are
three major challenges in developing a fair and comprehensive evaluation framework for
unsupervised NRL. First, it is difficult to guarantee fair comparisons. The running times of
different NRL algorithms vary significantly. These algorithms also have different numbers
of hyper-parameters and search spaces. A fair evaluation framework should take the
running time and hyperparameter tuning into consideration. Second, tailored evaluation
tasks are needed to comprehensively assess each NRL algorithm. Node classification
and link prediction are two widely adopted downstream tasks when evaluating NRL
algorithms. However, for each task, there are many ways to tune hyperparameters. Third,
as different NRL algorithms are originally implemented in distinct systems, it is not easy to
integrate them into a unified environment for a fair comparison.

To bridge this gap, in this paper, we develop a fair and comprehensive evaluation
framework for unsupervised node representation learning (FURL). Through the develop-
ment of FURL, we aim to answer two research questions. (1) How can we fairly evaluate
state-of-the-art unsupervised NRL algorithms, given that they have different efficiencies
and distinct search spaces for hyperparameters? (2) On the basis of a fair evaluation pro-
tocol, how can we comprehensively evaluate each unsupervised NRL algorithm? Our
contributions can be summarized as follows.

• We develop a novel evaluation framework—FURL, which could fairly and compre-
hensively evaluate unsupervised NRL algorithms.

• We enable fair comparisons by performing a random search and allowing a fixed
amount of time to fine-tune each algorithm.

• We enable comprehensiveness by using three tailored evaluation tasks, i.e., classifi-
cation fine tuned via a validation set, link prediction fine-tuned in the first run, and
classification fine tuned via link prediction.

• We perform empirical studies by utilizing eight datasets and thirteen state-of-the-
art unsupervised NRL algorithms. It is straightforward to extend these to more
unsupervised NRL algorithms and datasets. Based on the systematic results from
three tasks and eight datasets, we assess the overall rank of all thirteen algorithms.

2. Fair and Comprehensive Evaluation Algorithm—FURL

To help researchers and practitioners track the state-of-the-art unsupervised node
representation learning methods, an ideal solution would have two properties. First, fair-
ness. Existing methods are implemented using different experimental settings, including
cross-validation settings, hyperparameter tuning methods, and total running time. It is
important to design a mechanism to fairly compare these methods under the same set-
ting. Second, comprehensiveness. The learned embedding representations are designed
for different downstream tasks in general. It is desirable to evaluate all NRL algorithms
comprehensively from multiple aspects. Additionally, when integrating these multiple
evaluation results into an overall rank, the integration schema should be in line with
human prior experience. For example, it is expected that an NRL algorithm with ranks
{2, 3, 4} (evaluated from three aspects) should rank higher than an NRL algorithm with
ranks {3, 3, 3}. This is because the former NRL algorithm ranks second in the first aspects,
indicating a significant potential.

We propose a fair and comprehensive evaluation framework—FURL. Its core idea
is illustrated in Figure 2. To systematically evaluate an NRL method, we apply it to
performing three tasks. To make the comparisons fair, on each task, the total amount
of hyperparameter tuning time and running time is the same for all methods. We now
introduce the three tasks in detail. We design a tailored integration schema to combine
evaluation results in three tasks. It would assess a comprehensive rank for each given NRL
algorithm. We now introduce the three tasks in detail.

Algorithms 2022, 15, 379 4 of 20

Method A

FURL

Task1 Task2 Task3
Net1
Net2
Net3
…

Overall
Rank : 3

T
as
k1

Link Prediction
?

Classification on
Test Set

T
as
k2

Tune Hyperparameters Link Prediction in
Other Ten Runs

?

Net1

Net1

T
as
k3

Classification on
Validation Set

Classification w/o
Validation Set

Net1

Results based on Fair
Parameter Tunning

Tune Hyperparameters

Tune Hyperparameters

?
Fine-tune in First Run

Figure 2. Given a node representation learning method (e.g., Method A), FURL could fairly and
comprehensively evaluate it based on its performance on three tasks and many real-world net-
works/datasets. The three tasks are classification fine tuned via a validation set, link prediction
fine-tuned in the first run, and classification fine tuned via link prediction. In each task, the hyperpa-
rameters of Method A are fine-tuned based on a random search.

2.1. Task 1—Classification Fine Tuned via a Validation Set

Node classification has been widely used to evaluate embedding models [36,37]. As
illustrated in Figure 2, Task 1 consists of three steps. First, given an NRL method, e.g.,
Method A, we apply it to embed the entire network, e.g., Net1, and learn embedding
representations for all nodes. We use k-fold cross-validation to separate all the nodes into a
training set and a test set. Second, we tune the hyperparameters of Method A in the first
round (k rounds in total, corresponding to k folds), and then fix the hyperparameters for all
k rounds. Specifically, in the first round, we employ 1/10 of the training set as a validation
set to tune hyperparameters. We leverage the embedding representations of the remaining
training nodes (9/10) and their labels to train support vector machines (SVMs). Then, we
use the trained SVMs to predict the classes of nodes in the validation set. Based on the
classification performance on the validation set, we select the best hyperparameters for the
embedding model, i.e., Method A. Third, after we have selected the best hyperparameters,
we add the validation set back into the training set. Given the embedding representations
learned by fine tuning model (with the best hyperparameters), we conduct k-fold cross-
validation ten times, named as ten runs. In each run, there are k rounds. In each round, we
use the labels of the training nodes to train SVMs, and use them to predict the classes of test
nodes. The average of all 10k results on the test sets is employed as the final performance
of Method A in Task 1.

In summary, we employ a simple process, i.e., using a validation set in the first round,
to fine tune the embedding model. This is because efficiency is important for hyperparam-
eter searching. After we have identified the best hyperparameters, we evaluate Method
A by performing k-fold cross-validation ten times. This is because comprehensiveness is
essential to the final evaluation result. It should be noted that the validation set is generated
from the training set in the first round, so test data is not leaked in the hyperparameter
tuning. Task 1 is not end-to-end.

2.2. Task 2—Link Prediction Fine Tuned in the First Run

Link prediction has also been widely used to evaluate embedding models. In this task,
we evaluate the effectiveness of each NRL algorithm in preserving network patterns by

Algorithms 2022, 15, 379 5 of 20

applying the learned representations to recover unseen links. As illustrated in Figure 2, Task
2 consists of three steps. First, given a network, e.g., Net1, we randomly select B/2 node
pairs that are connected as positive samples, and B/2 node pairs that are not connected
as negative samples, where B denotes the total number of node pairs to be predicted. We
remove the B/2 edges of the B/2 positive samples from the original network. Then, we
apply the given NRL model, e.g., Method A, to embed the new network. We will employ
the learned node representations to perform link prediction. Second, in the first run, we
tune the hyperparameters of Method A. In particular, we mix the B/2 positive samples
and B/2 negative samples and obtain a set with B node pairs. For each pair in the B node
pairs, we denote its two nodes as i and j. We compute the inner product of the embedding
representations of nodes i and j, and employ the inner product to indicate the probability
of having a link between nodes i and j. After obtaining the inner products of all B pairs, we
rank them and compute the average precision (AP) and area under the receiver operating
characteristic curve (ROC AUC), indicating the performance of link prediction. Based on
this link-prediction performance, we select the best hyperparameters for the embedding
model, i.e., Method A. Third, we employ the selected best hyperparameters to conduct
another ten runs. In each run, we randomly select B/2 positive samples and B/2 negative
samples from the original network. We remove the B/2 edges of positive samples from
the original network, and obtain a new network. We apply Method A with the selected
best hyperparameters to embed the new network. We calculate the inner products of all B
pairs, and we compute the AP and ROC AUC. The average of the results of the ten runs is
employed as the final performance of Method A in Task 2.

In summary, we fine tune Method A in the first run and obtain the best hyperparame-
ters. We employ the selected hyperparameters to perform another ten runs. In each run, a
different set of B samples are utilized to conduct the evaluation, that is, a different network
(after removing B/2 edges) is used to conduct embedding. Both the hyperparameter tuning
and final evaluation are conducted in an unsupervised manner.

2.3. Task 3—Classification Fine Tuned via Link Prediction

One of the core purposes of learning embedding representations is to have low-
dimensional representations ready, such that we can directly apply them to downstream
tasks if needed. To simulate such a scenario, we propose Task 3, in which we fine tune
the NRL model in an unsupervised manner, and then apply the learned unsupervised
embedding representations to perform classification. In this task, the hyperparameter-
tuning process is the same as the one in Task 2. The final evaluation process is also the same
as the one in Task 1. As illustrated in Figure 2, Task 3 consists of four steps. First, given a
network, we randomly select B/2 node pairs that are connected as positive samples, and
B/2 node pairs that are not connected as negative samples. We remove the B/2 edges of
the B/2 positive samples from the original network. We apply the given NRL model, e.g.,
Method A, to embed the new network. Second, we tune the hyperparameters of Method A
based on link prediction. For each node pair in the B node pairs (B/2 negative samples
and B/2 positive samples), we denote its two nodes as i and j. We compute the inner
product of the embedding representations of nodes i and j, and employ the inner product
to indicate the probability of having a link between nodes i and j. After obtaining the inner
products of all the B pairs, we compute the AP and ROC AUC. Based on this link-prediction
performance, we select the best hyperparameters for the embedding model, i.e., Method A.
We apply the fine-tuned model (with the best hyperparameters) to the original network,
and learn embedding representations. Third, we use k-fold cross-validation to separate all
nodes into a training set and a test set. We use the representations of training nodes to train
SVMs, and use them to predict the classes of test nodes. Fourth, we repeat step three ten
times, i.e., conducting k-fold cross-validation ten times. The average of all 10k results of the
test sets is employed as the final performance of Method A in Task 3.

Algorithms 2022, 15, 379 6 of 20

2.4. Integration Schema for Overall Rank

FURL enables comprehensive evaluations of unsupervised NRL methods. It involves
not only two prediction tasks, but also different ways of hyperparameter tuning. Although
unsupervised NRL methods are generally trained without labels, the hyperparameter
searching can be conducted with or without labeled data. In Task 1, we use labels to tune
hyperparameters. In Tasks 2 and 3, we tune hyperparameters without using labels.

We apply each unsupervised NRL algorithm to perform the aforementioned three
tasks on all datasets. In each task and each dataset, all algorithms are assigned a fixed
amount of time to conduct hyperparameter tuning. They all use random search to tune
hyperparameters. Thus, we can perform the evaluation in a fair way.

Let D denote the total number of datasets used in the evaluation. Let C denote the
total number of unsupervised NRL algorithms that we have included in the experiments.
Let Rij denote the rank of an algorithm, e.g., Method A, among all C algorithms, based on
their performance in the ith task on the jth dataset. We collect the ranks of Method A as
a matrix R ∈ R3×D. Then, the overall rank of Method A can be calculated by computing
the rank product over all datasets and three tasks as follows. The rank product is a widely
used approach to combine ranked lists.

Soverallrank = frank

 3

√√√√√ 3

∏
i=1

frank

 D

√√√√ D

∏
j=1

Rij


, (1)

which can be simplified as follows,

Soverallrank = frank(
3

∑
i=1

log(frank(
D

∑
j=1

log Rij))), (2)

where frank() takes the result of Method A as input, compares it with the corresponding
results of all other C− 1 algorithms, and returns the rank of Method A as output. Equa-
tion (1) is simplified into Equation (2) by applying a logarithmic function to the output of
rank products before computing ranks using frank(). Since the logarithmic operation is
monotonic, this transformation does not affect the final ranks. As illustrated in Equation (2),
our schema integrates the rank matrix R in two steps. First, we sum up the logarithm of
the ranks of Method A on all D datasets. Then, frank() can help us find the rank of Method
A on the ith task. Second, we sum up the logarithm of the ranks of Method A on all three
tasks. Finally, frank() can return the overall rank of Method A.

In each step, we follow a map-and-aggregate policy. The ranks are first mapped using
a logarithmic function, then aggregated by summing up. The mapping function needs to
be monotone, aiming to maintain the order of algorithms after mapping. The simplified
rank product indicates that an algorithm that ranks 2th, 3th, and 4th in the three tasks has a
higher potential than an algorithm that ranks 3th, 3th, and 3th.

3. Unsupervised Node Representation Learning Algorithms and Datasets

We included nine unsupervised NRL algorithms that are designed for pure networks,
and four unsupervised NRL algorithms that are designed for attributed networks.

3.1. Unsupervised Node Representation Learning Methods Used in FURL

For a fair comparison, we separate the existing unsupervised NRL methods into two
categories based on whether associated attribute information is exploited for learning node
representations. We carefully select nine methods dedicated to pure networks, and four
methods for attributed network embedding. We present a detailed introduction of each
method as follows. We also list the hyperparameters and their corresponding search space
for each method in Table 1.

Algorithms 2022, 15, 379 7 of 20

Table 1. Hyperparameter search space of unsupervised NRL algorithms.

Algorithms Hyperparameters & Search Space Type

DeepWalk
number_walks: [5, 80] int
walk_length: [5, 80] int
window_size: [2, 40] int

metapath2vec

window_size: [1, 20] int
min_count: [1, 10] int
walk_length: [5, 80] int
walk_num: [5, 80] int

node2vec

p: {0.25, 0.5, 1, 2, 4} discrete
q: {0.25, 0.5, 1, 2, 4} discrete
walks: [5, 120] int
length: [5, 120] int
window: [5, 15] int

NetMF window: [5, 15] int

ProNE
step: [5, 20] int
theta: [0,1] float
mu: [0,1] float

NetSMF window: [5, 15] int

HOPE lr: {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005} discrete

SDNE

nu1: {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005} discrete
nu2: {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005} discrete
alpha: {0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005} discrete
beta: {0, 0.1, 0.5, 5, 10, 15, 20, 30} discrete

LINE
walk_length: [1, 100] int
walk_num: [1, 100] int
alpha: {0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005} discrete

GAE

lr: {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005} discrete
nb_epochs: [100, 1500] int
dropout: {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} discrete
hid_dim: {64, 128, 256} discrete
weight_decay: {0, 5× 10−4, 10−3} discrete

CAN
lr: {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005} discrete
nb_epochs: [100, 1500] int
dropout: {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} discrete

DGI lr: {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005} discrete
nb_epochs: [100, 1500] int

FeatWalk

alpha: [0, 1] float
num_paths: [10, 50] int
path_length: [5, 50] int
win_size: [5, 15] int

3.1.1. Node Representation Learning for Pure Networks

We roughly categorize the existing NRL algorithms for pure networks into three
classes, i.e., negative-sampling-based, matrix-factorization-based, and spectral-embedding-
based. First, typical negative-sampling-based NRL algorithms includes DeepWalk [1],
node2vec [31], and LINE [10]. Second, the typical matrix-factorization-based NRL algo-
rithms include NetMF [38] and ProNE [39]. The key idea is to construct a proximity matrix
and use singular value decomposition or other matrix-factorization algorithms to obtain
the graph embedding. Third, the key idea of spectral embedding [22] is to compute the
eigendecomposition of a normalized Laplacian matrix of the network. Spectral embedding
based on NRL algorithms is not scalable, since the time complexity of eigendecomposition
is O(N2), where N denotes the total number of nodes.

Algorithms 2022, 15, 379 8 of 20

• DeepWalk [1]: It first performs random walks on the network to convert it into a
series of truncated node sequences. Then, it considers the recorded node sequences as
a “corpus”, i.e., each node as a word and each sequence as a sentence, and applies a
wording embedding technique to embed this “corpus”. In this way, we could learn
a low-dimensional representation for each word (node), by using efficient wording
embedding techniques.

• metapath2vec [40]: It formalizes meta-path-based random walks to construct the
heterogeneous neighborhood of a node and then leverages a heterogeneous skip-gram
model to learn node embedding representations.

• node2vec [31]: It performs balanced random walks to smoothly interpolate between
breadth first sampling and depth first sampling.

• NetMF [38]: It proves that the existing negative sampling based on NRL algorithms
could be considered as the variations of matrix factorization. Based on this theoretical
analysis, it proposes an advanced matrix factorization for graphs.

• ProNE [39]: It first leverages sparse matrix factorization to learn the initial node
representations. Then, it uses the high-order Cheeger’s inequality to modulate the
spectral space of the graph and plot the initial representations on the adjusted graph.
In this way, it can integrate the local smoothing information and the global clustering
information.

• NetSMF [41]: It makes NetMF scalable by applying sparsification.
• HOPE [42]: It proposes to preserve asymmetric transitivity by approximating high-

order proximity.
• SDNE [43]: It is a semi-supervised deep model with multiple layers of non-linear

functions, aiming to preserve both the global and local network structures.
• LINE [10]: It can scale up to networks with millions of vertices and billions of edges.

It has carefully designed objective functions that preserve both the first-order and
second-order proximities, which are complementary to each other. An efficient and
effective edge-sampling method is proposed for model inference, which solved the
limitation of stochastic gradient descent on weighted edges without compromising
efficiency.

3.1.2. Node Representation Learning for Attributed Networks

Definition 1 (Attributed Network). We refer the textual, image, numerical, or categorial data
associated with each node as node attributes. A network with node attributes is defined as an
attributed network. Examples include social networks with user-generated content, paper citation
networks with abstracts, and protein–protein interaction networks with property descriptions.

In this paper, we select four typical unsupervised NRL algorithms for attributed
networks, as follows.

• GAE [44]: It learns node embedding representations by reconstructing the network
structure using autoencoders. A two-layer graph convolutional network is employed
to conduct encoding.

• CAN [45]: It learns an embedding representation for each node and for each node
attribute category. These two types of representations, i.e., node representations and
attribute-category representations, are learned by variational autoencoders, and are in
the same space.

• DGI [36]: It learns node embeddings by maximizing the mutual information between
the local patch representation and the global graph representation.

• FeatWalk [46]: It advances random walks by introducing an attribute-enhanced walk-
ing strategy. In addition to random walks on the original network, it also allows
walking from one node to another node through their shared node attribute categories.
The joint truncated node sequences thus become more diverse.

To handle networks with node attributes, the field of graph neural networks (GNNs)
has expanded rapidly in recent years [47–50]. Existing GNN models belong to the fam-

Algorithms 2022, 15, 379 9 of 20

ily of message passing frameworks [51,52], which update information for each node by
recursively aggregating messages from its immediate neighbors in the graph. GNNs are
generally classified into two categories, as follows.

The first class is spectral-based approaches [53–59], which generalize convolution
operators on the grid-like data to graphs based on spectral graph theory [60]. GCN [56]
employs the first-order Chebyshev polynomial approximation for graph convolution. In a
follow-up, Xu et al. [59] analyze the expression power of GNNs according to the Weisfeiler–
Lehman test for graph isomorphism. SGC [61] further simplifies GCN by removing the
inner transformation matrices and non-linear activation functions. Although effective, they
could struggle with modeling long-range dependencies because of a recursive message-
passing restriction. APPNP [58] suggests replacing the original graph convolution matrix
with a graph diffusion [62]. MixHop [63], N-GCN, [64] and Truncated Krylov [65] attempt
to exploit multi-scale information in each layer [66]. The second line of research is spatial-
based approaches [9,34,67,68], which stem from the vector domain and focus on using
the graph structure directly for message propagation. One characteristic of these is to
adopt the learnable aggregation function to aggregate neighbors. GraphSage [9] introduces
mean/max/LSTM pooled aggregation functions to integrate neighborhood information.
GAT [69] learns to assign different attention weights at each layer based on node features.
Attention-based GNN models have achieved state-of-the-art results on several graph
learning tasks [68,70,71].

However, most GNN models are dedicated to end-to-end classification. There is an
issue when converting GNN models into unsupervised NRL methods. For example, if we
directly employ one of the hidden layers as the learned embedding representations, GNN
models would perform badly in Tasks 1, 2, and 3.

3.2. Real-World Datasets Used in FURL

We included eight publicly available real-world attributed networks in the experi-
ments. Their statistical information is summarized in Table 2. We will include more datasets
in the future.

Table 2. Statistics of all real-world datasets used in the experiments.

Nodes # Edges Dimension of
Node Attributes # Labels

Cora 2708 5278 1433 7
Flickr 7564 246,929 12,047 9

BlogCatalog 5196 171,743 8189 6
Citeseer 3327 4676 3703 6
Pubmed 19,717 44,327 500 3

Chameleon 2277 31,421 2325 5
Film 7600 26,752 932 5

Squirrel 5201 198,493 2089 5

Cora, Citeseer, and Pubmed [72]. These are citation networks. Nodes correspond to
papers and edges correspond to citations. Each node has a bag-of-words feature vector
according to the paper abstract. Labels are defined as the academic topics.

Flickr [73]. It is a social-network dataset collected from Flickr. Node attributes denote
the tags that reflect the users’ interests. Labels represent the groups that users have joined.

BlogCatalog [73]. It is a social network collected from a blog community. Nodes are
web users and edges indicate the user interactions. Node attributes are generated from
keywords of their blogs. Each user can register his/her blogs into six different predefined
classes, which are considered as class labels for node classification.

Chameleon and Squirrel [74]. They are page–page networks collected from Wikipedia
(December 2018), based on a given topic (either chameleons or squirrels). Nodes represent
articles from the English Wikipedia. Edges reflect mutual links between articles. Node

Algorithms 2022, 15, 379 10 of 20

features indicate the presence of particular nouns in the articles and the average monthly
traffic from October 2017 to November 2018.

Film [58]. This dataset is the actor-only induced subgraph of the film–director–actor–
writer network [75]. Each node corresponds to an actor, and the edge between two nodes
denotes co-occurrence on the same Wikipedia page. Node features correspond to some
keywords in the Wikipedia pages. The nodes are classified into five categories in terms of
the words of an actor’s Wikipedia.

4. Results

We now introduce the evaluation results returned by our proposed algorithm—FURL.

4.1. Experimental Settings and Environment Configuration

To make it fair, for each dataset, the total given hyperparameter tuning time is
fixed. When there are N nodes and X edges in a network, the total given time would
be max{αN, βX} seconds, where α and β are coefficients related to the hardware configu-
ration and software environment. We set α = 1.5 and β = 0.1 for balancing the efficiency
and reliability of results. By default, we employ a random search to tune hyperparameters.
In Task 1 and Task 3, we use a radial basis function (RBF) kernel SVM as the classifier.
The performance of classification is evaluated by macro-averaged F1 and micro-averaged
F1. In Task 2, the performance is measured by two standard metrics, i.e., area under the
ROC curve (AUC) and average precision (AP) scores. In Tasks 2 and 3, we set B as 25% of
the total number of edges. This means that, in each run of Task 2, we randomly remove
12.5% of edges. We integrate all of the thirteen unsupervised NRL algorithms into a unified
software package. We perform all experiments in the same environment, i.e., a server with
Intel Xeon Silver 4214R CPU @2.4GHz processors. The GPUs are GeForce RTX 3090 with
24 GB memory.

4.2. Overall Rank of Node Representation Learning Methods for Pure Networks

The overall ranks of unsupervised NRL methods for pure networks are summarized
in Figure 3, which are computed based on Equation (2). Node attributes are not used in
this evaluation. Their results in Tasks 1, 2, and 3, are summarized in Tables 3–5.

ProNE
NetSMF

DeepWalk

Metapath2Vec
HOPE

Node2Vec
NetMF

LINE
SDNE

0

2

4

6

8

10

R
an

ks

1

2

4

3

7

5

8

6

9

1

7

2

9

3

8

4

5

6

1

2

8

3

5

4

6

7

9Task1
Task2
Task3

Figure 3. Overall rank of unsupervised NRL algorithms for pure networks, evaluated by FURL.
We visualize the ranks of each selected pure network embedding algorithm using a bar chart. The
algorithms are sorted by their overall ranks in ascending order, from left to right.

Algorithms 2022, 15, 379 11 of 20

Table 3. Results in Task 1, i.e., classification fine tuned via validation set, on pure networks, using random search to tune hyperparameters. Best results are shown in
bold.

Cora Flickr BlogCatalog Citeseer Pubmed Chameleon Film Squirrel

Macro-
averaged
F1

DeepWalk 0.8066± 0.0205 0.6269± 0.0102 0.7661 ± 0.0089 0.6187± 0.0160 0.8022± 0.0054 0.6932± 0.0249 0.1612± 0.0070 0.5527± 0.0152
metapath2vec 0.8462± 0.0177 0.6164± 0.0115 0.7198± 0.0096 0.6558± 0.0170 0.8282 ± 0.0062 0.6378± 0.0220 0.1769± 0.0065 0.5944 ±0.0144
node2vec 0.8473± 0.0178 0.5922± 0.0109 0.7201± 0.0115 0.6551± 0.0168 0.8264± 0.0061 0.6659± 0.0217 0.1708± 0.0060 0.5435± 0.0163
NetMF 0.8363± 0.0166 0.5941± 0.0098 0.6909± 0.0131 0.5693± 0.0147 0.8246± 0.0056 0.6544± 0.0188 0.1767± 0.0092 0.5163± 0.0139
ProNE 0.8387± 0.0172 0.6405± 0.0095 0.7156± 0.0103 0.6664± 0.0144 0.8185± 0.0061 0.6914± 0.0199 0.1769 ± 0.0070 0.5616± 0.0144
NetSMF 0.8260± 0.0184 0.6661± 0.0098 0.7136± 0.0111 0.6037± 0.0154 0.8239± 0.0053 0.7004 ± 0.0202 0.1703± 0.0066 0.5813± 0.0139
HOPE 0.7929± 0.0191 0.7045 ± 0.0097 0.7488± 0.0110 0.5221± 0.0168 0.7827± 0.0065 0.6485± 0.0226 0.1708± 0.0065 0.5387± 0.0153
SDNE 0.3479± 0.0214 0.3738± 0.0112 0.5506± 0.0143 0.2362± 0.0087 0.4442± 0.0058 0.5994± 0.0230 0.0851± 0.0028 0.3661± 0.0191
LINE 0.8510 ± 0.0168 0.6142± 0.0090 0.7476± 0.0119 0.6697 ± 0.0152 0.8246± 0.0056 0.5962± 0.0218 0.1709± 0.0064 0.5279± 0.0136

Micro-
averaged
F1

DeepWalk 0.8201± 0.0172 0.6315± 0.0107 0.7696 ± 0.0090 0.6673± 0.0146 0.8156± 0.0053 0.6902± 0.0249 0.2493± 0.0091 0.5521± 0.0156
metapath2vec 0.8554± 0.0154 0.6226± 0.0109 0.7249± 0.0098 0.6999± 0.0155 0.8384 ± 0.0057 0.6372± 0.0223 0.2440± 0.0078 0.5959 ± 0.0146
node2vec 0.8604 ± 0.0146 0.5957± 0.0116 0.7254± 0.0114 0.6950± 0.0155 0.8366± 0.0058 0.6642± 0.0223 0.2471± 0.0078 0.5486± 0.0164
NetMF 0.8459± 0.0146 0.5977± 0.0101 0.6998± 0.0125 0.6084± 0.0150 0.8354± 0.0052 0.6530± 0.0196 0.2460± 0.0107 0.5210± 0.0140
ProNE 0.8503± 0.0150 0.6450± 0.0093 0.7234± 0.0099 0.7083± 0.0137 0.8294± 0.0055 0.6893± 0.0202 0.2443± 0.0094 0.5630± 0.0143
NetSMF 0.8361± 0.0167 0.6689± 0.0099 0.7230± 0.0103 0.6450± 0.0140 0.8337± 0.0050 0.6978 ± 0.0211 0.2437± 0.0099 0.5828± 0.0137
HOPE 0.8049± 0.0164 0.7071 ± 0.0101 0.7566± 0.0105 0.5803± 0.0154 0.7963± 0.0059 0.6493± 0.0215 0.2438± 0.0094 0.5402± 0.0155
SDNE 0.4586± 0.0219 0.3852± 0.0113 0.5638± 0.0144 0.3535± 0.0169 0.5827± 0.0078 0.5960± 0.0225 0.2594 ± 0.0105 0.3776± 0.0185
LINE 0.8601± 0.0137 0.6217± 0.0091 0.7550± 0.0121 0.7113 ± 0.0137 0.8351± 0.0053 0.5971± 0.0224 0.2474± 0.0086 0.5317± 0.0133

Algorithms 2022, 15, 379 12 of 20

Table 4. Results in Task 2, i.e., link prediction fine-tuned in the first run, on pure networks, using random search to tune hyperparameters. Best results are shown in
bold.

Cora Flickr BlogCatalog Citeseer Pubmed Chameleon Film Squirrel

ROC
AUC

DeepWalk 0.8275± 0.0027 0.9086± 0.0001 0.8400± 0.0002 0.7148± 0.0020 0.8160± 0.0009 0.9811 ± 0.0010 0.8215± 0.0013 0.9299± 0.0011
metapath2vec 0.7848± 0.0077 0.5778± 0.0043 0.7374± 0.0023 0.6654± 0.0025 0.7551± 0.0054 0.9093± 0.0008 0.6549± 0.0009 0.5977± 0.0026
node2vec 0.7716± 0.0014 0.6028± 0.0026 0.7401± 0.0019 0.6511± 0.0156 0.7401± 0.0047 0.9152± 0.0016 0.6696± 0.0036 0.7022± 0.0023
NetMF 0.8635± 0.0063 0.7257± 0.0001 0.8233± 0.0018 0.7734± 0.0022 0.8403± 0.0020 0.8525± 0.0009 0.7496± 0.0025 0.8525± 0.0002
ProNE 0.8635± 0.0063 0.7257± 0.0001 0.8707 ± 0.0012 0.7734± 0.0022 0.8403± 0.0020 0.9744± 0.0003 0.7120± 0.0035 0.9697 ± 0.0004
NetSMF 0.8215 ± 0.0080 0.6887± 0.0016 0.7521± 0.0009 0.7563± 0.0140 0.8025± 0.0014 0.8623± 0.0039 0.6757± 0.0072 0.8438± 0.0010
HOPE 0.8367± 0.0087 0.8787± 0.0005 0.8189± 0.0011 0.7554± 0.0088 0.8051± 0.0031 0.9367± 0.0022 0.7428± 0.0063 0.8762± 0.0010
SDNE 0.6586± 0.0037 0.9271 ± 0.0007 0.7567± 0.0117 0.6015± 0.0365 0.8540 ± 0.0029 0.9057± 0.0050 0.8216 ± 0.0045 0.9348± 0.0004
LINE 0.8497± 0.0030 0.6999± 0.0016 0.8213± 0.0003 0.7854 ± 0.0064 0.8324± 0.0030 0.9496± 0.0012 0.6938± 0.0035 0.8555± 0.0009

AP

DeepWalk 0.8724± 0.0037 0.9023± 0.0004 0.8439± 0.0003 0.7980± 0.0017 0.8670± 0.0009 0.9805 ± 0.0012 0.8578 ± 0.0021 0.9408± 0.0014
metapath2vec 0.8518± 0.0047 0.5634± 0.0032 0.7450± 0.0030 0.7855± 0.0037 0.8452± 0.0030 0.8830± 0.0025 0.6565± 0.0018 0.5797± 0.0031
node2vec 0.8356± 0.0014 0.6194± 0.0028 0.7507± 0.0019 0.6791± 0.0059 0.8240± 0.0039 0.9034± 0.0008 0.8215± 0.0013 0.6460± 0.0017
NetMF 0.9002 ± 0.0019 0.7056± 0.0003 0.8334± 0.0019 0.8116± 0.0017 0.8786 ± 0.0009 0.9359± 0.0023 0.7760± 0.0020 0.8041± 0.0002
ProNE 0.8596± 0.0020 0.8441± 0.0003 0.8682 ± 0.0008 0.8108± 0.0061 0.8493± 0.0011 0.9647± 0.0021 0.7391± 0.0039 0.9595 ± 0.0010
NetSMF 0.8717± 0.0059 0.6461± 0.0017 0.7798± 0.0011 0.8102± 0.0133 0.8470± 0.0010 0.8398± 0.0059 0.6867± 0.0046 0.8002± 0.0015
HOPE 0.8797± 0.0069 0.8686± 0.0002 0.8247± 0.0015 0.8216± 0.0102 0.8461± 0.0015 0.9214± 0.0047 0.7303± 0.0053 0.8740± 0.0010
SDNE 0.6971± 0.0031 0.9263 ± 0.0009 0.7408± 0.0259 0.6655± 0.0273 0.8482± 0.0011 0.9205± 0.0040 0.8416± 0.0008 0.9472± 0.0004
LINE 0.8893± 0.0043 0.7222± 0.0014 0.8133± 0.0003 0.8468 ± 0.0029 0.8770± 0.0020 0.9479± 0.0015 0.7225± 0.0019 0.8769± 0.0004

Algorithms 2022, 15, 379 13 of 20

Table 5. Results in Task 3, i.e., classification fined-tuned via link prediction, on pure networks, using random search to tune hyperparameters. Best results are shown
in bold.

Cora Flickr BlogCatalog Citeseer Pubmed Chameleon Film Squirrel

Macro-
averaged
F1

DeepWalk 0.7831± 0.0192 0.2378± 0.0109 0.7387± 0.0095 0.5926± 0.0183 0.7101± 0.0061 0.6458± 0.0228 0.1593± 0.0086 0.3230± 0.0131
metapath2vec 0.8083± 0.0198 0.5724± 0.0112 0.7084± 0.0110 0.6103± 0.0152 0.7967± 0.0059 0.6381± 0.0232 0.1786± 0.0072 0.4703± 0.0127
node2vec 0.8279 ± 0.0166 0.5297± 0.0096 0.6887± 0.0113 0.6283± 0.0143 0.7990 ± 0.0064 0.5991± 0.0187 0.1750± 0.0070 0.4761± 0.0159
NetMF 0.8205± 0.0166 0.5677± 0.0113 0.6864± 0.0133 0.5336± 0.0167 0.7887± 0.0061 0.6495± 0.0206 0.1755± 0.0066 0.4900± 0.0129
ProNE 0.8203± 0.0177 0.6080± 0.0123 0.7123± 0.0102 0.6355 ± 0.0172 0.7947± 0.0050 0.6728± 0.0173 0.1806 ± 0.0065 0.5487± 0.0139
NetSMF 0.8042± 0.0192 0.6231± 0.0104 0.7058± 0.0110 0.5809± 0.0173 0.7928± 0.0059 0.6791 ± 0.0178 0.1734± 0.0074 0.5570 ± 0.0139
HOPE 0.7843± 0.0185 0.6668 ± 0.0113 0.7200± 0.0118 0.5094± 0.0133 0.7595± 0.0061 0.6164± 0.0218 0.1708± 0.0069 0.4882± 0.0146
SDNE 0.1929± 0.0170 0.2634± 0.0099 0.3809± 0.0147 0.1805± 0.0125 0.3410± 0.0069 0.5515± 0.0213 0.0848± 0.0031 0.2992± 0.0180
LINE 0.7818± 0.0193 0.5059± 0.0120 0.7459 ± 0.0103 0.6307± 0.0145 0.7966± 0.0062 0.5775± 0.0210 0.1712± 0.0064 0.3828± 0.0140

Micro-
averaged
F1

DeepWalk 0.7932± 0.0172 0.2973± 0.0120 0.7416± 0.0094 0.6386± 0.0175 0.7333± 0.0062 0.6454± 0.0231 0.2561± 0.0104 0.3488± 0.0137
metapath2vec 0.8178± 0.0176 0.5786± 0.0114 0.7146± 0.0110 0.6532± 0.0157 0.8073± 0.0053 0.6378± 0.0228 0.2488± 0.0087 0.4735± 0.0124
node2vec 0.8392 ± 0.0166 0.5363± 0.0096 0.6969± 0.0112 0.6772± 0.0141 0.8095 ± 0.0059 0.6001± 0.0188 0.2444± 0.0083 0.4800± 0.0152
NetMF 0.8276± 0.0145 0.5716± 0.0115 0.6956± 0.0129 0.5799± 0.0179 0.8016± 0.0054 0.6481± 0.0215 0.2416± 0.0078 0.4942± 0.0131
ProNE 0.8303± 0.0151 0.6127± 0.0122 0.7194± 0.0100 0.6777 ± 0.0160 0.8063± 0.0046 0.6752± 0.0173 0.2439± 0.0081 0.5508± 0.0137
NetSMF 0.8113± 0.0183 0.6268± 0.0110 0.7152± 0.0100 0.6263± 0.0179 0.8033± 0.0057 0.6759 ± 0.0185 0.2426± 0.0084 0.5586 ± 0.0139
HOPE 0.7913± 0.0166 0.6701 ± 0.0114 0.7284± 0.0110 0.5638± 0.0151 0.7745± 0.0060 0.6150± 0.0223 0.2437± 0.0095 0.4900± 0.0148
SDNE 0.3690± 0.0213 0.2882± 0.0092 0.3887± 0.0147 0.3004± 0.0186 0.4629± 0.0088 0.5442± 0.0231 0.2588 ± 0.0106 0.3294± 0.0170
LINE 0.7936± 0.0156 0.5143± 0.0117 0.7541 ± 0.0100 0.6721± 0.0138 0.8075± 0.0055 0.5790± 0.0214 0.2471± 0.0078 0.3858± 0.0134

Algorithms 2022, 15, 379 14 of 20

4.3. Overall Rank of Node Representation Learning Methods for Attributed Networks

The overall ranks of all four unsupervised NRL methods for attributed networks are
summarized in Figure 4, which are computed based on Equation (2). Their results in Task
1, Task 2, and Task 3, are summarized in Tables 6–8.

CAN
Featwalk DGI

GAE
0

2

4

6

8

10

R
an

ks

2
1

3
4

1
2

4
3

1
2

3
4

Task1
Task2
Task3

Figure 4. Overall ranks of unsupervised NRL algorithms for attributed networks, evaluated by FURL.
We visualize the ranks of each selected pure network embedding algorithm using a bar chart. The
algorithms are sorted by their overall ranks in ascending order, from left to right.

4.4. Research Observations

Based on the results in Figures 3 and 4, and Tables 3–8, we have made five major
research observations, as follows.

1. ProNE [39] ranks first in unsupervised NRL methods for pure networks, while
CAN [45] ranks first in unsupervised NRL methods for attributed networks.

2. The performance of an NRL method generally shows consistency across different
tasks. Methods with high overall ranks often rank high in all of the three tasks. For
example, ProNE ranks first in Tasks 1 and 3. CAN ranks first in Tasks 2 and 3, and
ranks second in Task 1. LINE ranks sixth in Task 1, fifth in Task 2, and seventh in Task
3. However, there is a special case, in which, NetSMF ranks second in Tasks 1 and 3,
and seventh in Task 2.

3. Efficient methods benefit from more rounds of tuning, and have a relatively high
performance. For each dataset, the total given time for tuning hyperparameters is
fixed as N × α seconds. If a method is more efficient, it performs more rounds of
hyperparameter tuning. We summarize the hyperparameter-tuning counts of all
the methods in Task 1 in Table 9. We observe that efficient methods such as ProNE
and DeepWalk, have tuned hyperparameters for many rounds on most datasets,
while ProNE ranks first among methods for pure networks. FeatWalk has tuned
hyperparameters for 338 rounds on BlogCatalog. GAE and LINE are hindered by
their inefficiency. Although some methods are efficient, e.g., SDNE, NetMF, DGI, and
have tuned hyperparameters for many rounds, their performances are limited by their
effectiveness.

4. By comparing the results in Tables 3 and 5, we observe that most methods have higher
performance when the hyperparameters are tuned based on labels, i.e., the validation
set in Task 1. This is because of the consistency between the hyperparameter-tuning
task and the evaluation task, i.e., link prediction in Task 3.

5. SDNE is dedicated to link prediction. It performs badly in Tasks 1 and 3.
6. We observe that some methods (e.g., NetsMF, metapath2vec) perform badly in Task 2,

while their performance is high in Tasks 1 and 3. This is because these algorithms are
more capable of preserving node information, but perform badly in preserving link
information.

Algorithms 2022, 15, 379 15 of 20

Table 6. Results in Task 1, i.e., classification fine tuned via validation set, on attributed networks, using random search to tune hyperparameters. Best results are
shown in bold.

Cora Flickr BlogCatalog Citeseer Pubmed Chameleon Film Squirrel

Macro-
averaged
F1

GAE 0.8061± 0.0195 0.4455± 0.0114 0.7012± 0.0136 0.6593± 0.0143 0.8016± 0.0059 0.5900± 0.0201 0.2804± 0.0104 0.3868± 0.0138
CAN 0.8608 ± 0.0173 0.7728± 0.0095 0.8057± 0.0103 0.7112 ± 0.0146 0.8330± 0.0058 0.6538 ± 0.0213 0.2659± 0.0082 0.5090 ± 0.0156
DGI 0.8376± 0.0155 0.4520± 0.0092 0.7348± 0.0116 0.7041± 0.0125 0.8626 ± 0.0048 0.5798± 0.0214 0.2252± 0.0076 0.3729± 0.0162
FeatWalk 0.8453± 0.0178 0.9359 ± 0.0061 0.9623 ± 0.0047 0.6966± 0.0143 0.8604± 0.0055 0.6419± 0.0236 0.3133 ± 0.0122 0.4944± 0.0148

Micro-
averaged
F1

GAE 0.8174± 0.0176 0.4562± 0.0114 0.7160± 0.0126 0.7067± 0.0132 0.8051± 0.0058 0.5946± 0.0192 0.2804± 0.0104 0.3990± 0.0135
CAN 0.8707 ± 0.0161 0.7749± 0.0095 0.8086± 0.0102 0.7579± 0.0127 0.8392± 0.0057 0.6534 ± 0.0216 0.3289± 0.0100 0.5140 ± 0.0155
DGI 0.8551± 0.0126 0.4643± 0.0105 0.7396± 0.0119 0.7589 ± 0.0112 0.8651 ± 0.0047 0.5839± 0.0212 0.2800± 0.0084 0.3900± 0.0157
FeatWalk 0.8589± 0.0161 0.9367 ± 0.0057 0.9631 ± 0.0045 0.7402± 0.0121 0.8631± 0.0054 0.6398± 0.0236 0.3546 ± 0.0118 0.4965± 0.0154

Table 7. Results in Task 2, i.e., link prediction fine-tuned in the first run, on attributed networks, by using random search algorithm to tune hyperparameters. Best
results are shown in bold.

Cora Flickr BlogCatalog Citeseer Pubmed Chameleon Film Squirrel

ROC
AUC

GAE 0.8839± 0.0151 0.8474± 0.0185 0.7315± 0.1053 0.8532± 0.0158 0.8885± 0.0049 0.9787± 0.0034 0.8054± 0.0039 0.9113± 0.0133
CAN 0.9465 ± 0.0079 0.9037± 0.0013 0.8588± 0.0036 0.9487± 0.0045 0.9562± 0.0014 0.9880 ± 0.0012 0.8163± 0.0048 0.9756 ± 0.0006
DGI 0.8897± 0.0089 0.9215 ± 0.0043 0.7903± 0.0012 0.7139± 0.1227 0.9482± 0.0084 0.9160± 0.0058 0.8169± 0.0042 0.8825± 0.0001
FeatWalk 0.9337± 0.0019 0.8699± 0.0247 0.8608 ± 0.0007 0.9612 ± 0.0031 0.9622 ± 0.0007 0.9781± 0.0007 0.8216 ± 0.0014 0.93± 0.0012

AP

GAE 0.8873± 0.0181 0.8554± 0.0188 0.7303± 0.1008 0.8653± 0.0118 0.8800± 0.0051 0.9779± 0.0031 0.8175± 0.0048 0.9160± 0.0138
CAN 0.9565 ± 0.0054 0.9113± 0.0017 0.8672 ± 0.0032 0.9589± 0.0034 0.9573± 0.0011 0.9881 ± 0.0011 0.8275± 0.0057 0.9811 ± 0.0002
DGI 0.8917± 0.0063 0.9181 ± 0.0047 0.7828± 0.0015 0.7377± 0.1120 0.9401± 0.0099 0.8964± 0.0062 0.8296± 0.0049 0.8556± 0.0008
FeatWalk 0.9297± 0.0031 0.8879± 0.0124 0.8628± 0.0011 0.9627 ± 0.0035 0.9651 ± 0.0009 0.9780± 0.0006 0.8579 ± 0.0022 0.9409± 0.0014

Table 8. Results in Task 3, i.e., classification fined-tuned via link prediction, on attributed networks, using random search to tune hyperparameters.

Cora Flickr BlogCatalog Citeseer Pubmed Chameleon Film Squirrel

Macro-
averaged
F1

GAE 0.7914± 0.0203 0.1323± 0.0093 0.3187± 0.0143 0.5472± 0.0139 0.7715± 0.0066 0.5175± 0.0177 0.1701± 0.0058 0.1964± 0.0194
CAN 0.8551 ± 0.0160 0.6833 ± 0.0092 0.8078± 0.0102 0.7203 ± 0.0138 0.8342± 0.0063 0.6485 ± 0.0214 0.1998 ± 0.0103 0.5014 ± 0.0158
DGI 0.8441± 0.0192 0.3316± 0.0113 0.7174± 0.0113 0.7000± 0.0145 0.8425 ± 0.0057 0.4831± 0.0235 0.1446± 0.0110 0.3454± 0.0142
FeatWalk 0.8135± 0.0173 0.2657± 0.0109 0.8935 ± 0.0080 0.7014± 0.0150 0.8402± 0.0059 0.5569± 0.0226 0.1838± 0.0070 0.3707± 0.0123

Micro-
averaged
F1

GAE 0.8086± 0.0170 0.1769± 0.0104 0.3598± 0.0149 0.6265± 0.0166 0.7785± 0.0063 0.5264± 0.0182 0.2585± 0.0084 0.2446± 0.0138
CAN 0.8661 ± 0.0149 0.6878 ± 0.0090 0.8107± 0.0099 0.7609 ± 0.0135 0.8399± 0.0061 0.6474 ± 0.0222 0.2981 ± 0.0109 0.5067 ± 0.0154
DGI 0.8610± 0.0156 0.3635± 0.0122 0.7231± 0.0110 0.7503± 0.0129 0.8444 ± 0.0057 0.5021± 0.0220 0.2733± 0.0114 0.3641± 0.0142
FeatWalk 0.8269± 0.0154 0.3157± 0.0126 0.8957 ± 0.0080 0.7509± 0.0138 0.8440± 0.0057 0.5615± 0.0229 0.2700± 0.0096 0.3746± 0.0122

Algorithms 2022, 15, 379 16 of 20

Table 9. Total rounds of hyperparameter tuning of each method on each dataset. The results are
obtained under the constraint of a constant time shared by all methods.

Cora Flickr BlogCatalog Citeseer Pubmed Chameleon Film Squirrel

DeepWalk 176 238 285 186 119 134 119 316
metapath2vec 23 27 29 27 20 21 20 28
node2vec 7 6 13 15 6 8 10 9
NetMF 1055 161 238 1935 126 483 175 319
ProNE 5239 1687 1891 4949 1307 1769 1794 1851
NetSMF 60 9 9 99 44 10 33 10
HOPE 1323 679 1020 981 103 1365 341 1171
SDNE 412 538 916 585 202 491 455 1154
LINE 17 18 14 16 10 13 8 34

GAE 184 152 156 183 26 181 92 206
CAN 22 9 7 12 7 9 12 8
DGI 676 1,330 1890 1280 1271 1181 1191 3406
FeatWalk 149 262 338 194 130 199 150 237

Total Tuning Time in sec 4062 24,693 17,174 4991 29,576 3416 11,400 19,849

4.5. Analysis of Hyperparameter-Tuning Methods

By default, we employ a random search to tune hyperparameters. We now replace it with
Tree-structured Parzen Estimator (TPE) [76]. We apply TPE to several selected methods and
datasets. The results in the three tasks using TPE to tune hyperparameters are summarized in
Tables 10–12. We observe that the results achieved by TPE, i.e., Tables 10–12, are similar to the
results achieved by random search, i.e., Tables 3–8. Thus, we employ random search in FURL
by default.

Table 10. Results in Task 1 using TPE to tune hyperparameters, in terms of macro-averaged F1.

Cora Flickr BlogCatalog Citeseer Pubmed

DeepWalk 0.8462 0.6472 0.7639 0.6159 0.8087
metapath2vec 0.8472 0.6103 0.7164 0.6605 0.8254
node2vec 0.8533 0.6029 0.7070 0.6303 0.8261
NetMF 0.9377 0.5933 0.6876 0.5690 0.8234
ProNE 0.8429 0.6428 0.7095 0.6623 0.8198

GAE 0.8519 0.4472 0.5655 0.6384 0.8220
CAN 0.8721 0.7764 0.7671 0.7183 0.8198
DGI 0.8464 0.4950 0.7293 0.6852 0.8611
FeatWalk 0.8557 0.9370 0.9577 0.7006 0.8579

Table 11. Results in Task 2 using TPE to tune hyperparameters, in terms of ROC AUC.

Cora Flickr BlogCatalog Citeseer Pubmed

DeepWalk 0.8226 0.9185 0.8418 0.7017 0.8149
metapath2vec 0.8089 0.5775 0.7375 0.6802 0.7544
node2vec 0.7449 0.6287 0.7491 0.6421 0.7282
NetMF 0.8537 0.7271 0.8220 0.7657 0.8333
ProNE 0.8110 0.8618 0.8710 0.7491 0.8119

GAE 0.8637 0.8412 0.7764 0.8747 0.9262
CAN 0.9372 0.9188 0.8547 0.9407 0.9655
DGI 0.9170 0.9232 0.7912 0.8878 0.9587
FeatWalk 0.9302 0.8391 0.8570 0.9564 0.9614

Algorithms 2022, 15, 379 17 of 20

Table 12. Results in Task 3 using TPE to tune hyperparameters, in terms of macro-averaged F1.

Cora Flickr BlogCatalog Citeseer Pubmed

DeepWalk 0.8011 0.1018 0.7496 0.5797 0.7328
metapath2vec 0.8199 0.5643 0.7325 0.6382 0.7937
node2vec 0.8518 0.5246 0.6982 0.6276 0.8239
NetMF 0.8408 0.5822 0.6902 0.5734 0.8230
ProNE 0.8459 0.6323 0.7133 0.6639 0.8194

GAE 0.7858 0.0961 0.4425 0.5669 0.8144
CAN 0.8737 0.3979 0.7871 0.7126 0.8399
DGI 0.8399 0.2267 0.7167 0.7116 0.8545
FeatWalk 0.8413 0.5947 0.9122 0.6994 0.8488

5. Discussions

For hardware, it is challenging to ensure absolute fairness because NRL methods may
or may not employ GPU. We can roughly categorize NRL methods into two groups, i.e.,
CPU only and GPU involved. For methods in the first group, the same number of threads is
allocated to each method, while different methods will use it in different ways. If a method
does not have multiprocessing or multithreading functions, it will only occupy one thread
even though we have allocated more resources. For methods in the second group, we can
provide the same resources, though they may not make full use of them. There is a gap
between the performance of the CPU and GPU. However, it should be considered as an
advantage of a method, if it could fully utilize the resources or accelerate computing by
GPU.

Another problem is the search space of hyperparameters. For most hyperparameters,
the search space is continuous. It is impossible and impractical to fine tune precisely within
a constrained time. Meanwhile, the parameter sensitiveness is non-uniform, e.g., learning
rate and final task performance do not show a linear correlation. Therefore, for the most
frequently used parameters, such as learning rate and dropout, we restrict the search
space to a set of discrete values within the commonly used parameter range. In this way,
we introduce prior results into hyperparameter searching and significantly improve the
searching efficiency. Moreover, when a method runs out of the total given tuning time, we
will not interrupt the hyperparameter tuning immediately. Instead, we will wait until the
current trial ends.

6. Conclusions

We propose a fair and comprehensive framework—FURL—to evaluate and rank
existing unsupervised node representation learning methods. We design three tasks with
different applications and hyperparameter-tuning settings. An integration schema is
proposed to compute an overall rank based on the results in the three tasks. Currently,
FURL has covered thirteen unsupervised NRL algorithms and eight datasets.

In the future, we plan to include more NRL methods and datasets. We will extend this
work by adding (1) more classical and state-of-the-art unsupervised node representation
learning algorithms and (2) larger networks. The extended work will be dedicated to not
only comparing the performance results on tasks, but also considering the efficiency (e.g.,
parameter efficiency, memory efficiency, learning efficiency) of unsupervised NRL methods.
We will also explore to analyze the trend of performance while scaling the graph size, which
will enable us to obtain deeper insight into the generalization ability of the algorithm.

Author Contributions: Conceptualization, X.H. and Y.X.; methodology, software, Z.G.; formal
analysis, writing—original draft preparation, S.C.; validation, Z.Q. and C.Y.; writing—review and
editing, X.H. and F.D.; supervision, X.H. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded in full by the Hong Kong Polytechnic University, Start-up Fund
(project number: P0033934).

Algorithms 2022, 15, 379 18 of 20

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in research are publicly available. The codes of this
research could be found at https://github.com/DEEP-PolyU/NetBenchmark (accessed on 1 August
2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online Learning of Social Representations. In Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.
2. Kyriakopoulos, F.; Thurner, S.; Puhr, C.; Schmitz, S.W. Network and Eigenvalue Analysis of Financial Transaction Networks. Eur.

Phys. J. B 2009, 71, 523–531.
3. Liu, H.; Cong, J. Language Clustering with Word Co-Occurrence Networks Based on Parallel Texts. Chin. Sci. Bull. 2013,

58, 1139–1144.
4. Tsuda, K.; Shin, H.; Schölkopf, B. Fast Protein Classification with Multiple Networks. Bioinformatics 2005, 21, ii59–ii65.
5. Xu, Y.; Yin, J. Collaborative Recommendation with User Generated Content. Eng. Appl. Artif. Intell. 2015, 45, 281–294.
6. Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning Entity and Relation Embeddings for Knowledge Graph Completion. In

Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 2181–2187.
7. Elliott, A.; Cucuringu, M.; Luaces, M.M.; Reidy, P.; Reinert, G. Anomaly Detection in Networks with Application to Financial

Transaction Networks. arXiv 2019, arXiv:1901.00402.
8. Huang, X.; Li, J.; Hu, X. Accelerated Attributed Network Embedding. In Proceedings of the SIAM International Conference on

Data Mining, Houston, TX, USA, 27–29 April 2017; pp. 633–641.
9. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the Conference on

Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.
10. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. LINE: Large-Scale Information Network Embedding. In Proceedings of the

International World Wide Web Conference, Florence, Italy, 18–22 May 2015; pp. 1067–1077.
11. Tang, J.; Aggarwal, C.; Liu, H. Node Classification in Signed Social Networks. In Proceedings of the SIAM International

Conference on Data Mining, Miami, FL, USA, 5–7 May 2016; pp. 54–62.
12. Zhu, S.; Yu, K.; Chi, Y.; Gong, Y. Combining Content and Link for Classification Using Matrix Factorization. In Proceedings of the

30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The
Netherlands, 23–27 July 2007; pp. 487–494.

13. Liu, N.; Huang, X.; Hu, X. Accelerated Local Anomaly Detection via Resolving Attributed Networks. In Proceedings of the
International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 2337–2343.

14. Wang, X.; Cui, P.; Wang, J.; Pei, J.; Zhu, W.; Yang, S. Community Preserving Network Embedding. In Proceedings of the AAAI
Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 203–209.

15. Eyal, R.; Rosenfeld, A.; Sina, S.; Kraus, S. Predicting and Identifying Missing Node Information in Social Networks. ACM Trans.
Knowl. Discov. Data 2014, 8, 1–35.

16. Huo, Z.; Huang, X.; Hu, X. Link Prediction with Personalized Social Influence. In Proceedings of the AAAI Conference on
Artificial Intelligence, Edmonton, AB, Canada, 13–17 November 2018.

17. Belkin, M.; Niyogi, P. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In Proceedings of the
Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 3–8 December 2001.

18. Tenenbaum, J.; Silva, V.; Langford, J. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000,
290, 2319–2323.

19. Yan, S.; Xu, D.; Zhang, B.; Zhang, HJ.; Yang, Q.; Lin, S. Graph Embedding and Extensions: A General Framework for
Dimensionality Reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 40–51

20. Roweis, S.T.; Saul, L.K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290, 2323–2326.
21. Teh, Y.W.; Roweis, S.T. Automatic Alignment of Local Representations. In Proceedings of the Conference on Neural Information

Processing Systems, Vancouver, BC, Canada, 8–11 December 2003.
22. von Luxburg, U. A Tutorial on Spectral Clustering. Stat. Comput. 2007, 17, 395–416.
23. Ng, A.Y.; Jordan, M.I.; Weiss, Y. On Spectral Clustering: Analysis and An Algorithm. In Proceedings of the Conference on Neural

Information Processing Systems, Vancouver, BC, Canada, 9–14 December 2002.
24. Shi, J.; Malik, J. Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905.
25. Jacob, Y.; Denoyer, L.; Gallinari, P. Learning Latent Representations of Nodes for Classifying in Heterogeneous Social Networks.

In Proceedings of the ACM International Conference on Web Search and Data Mining, New York, NY, USA, 24–28 February 2014.
26. Tang, L.; Liu, H. Relational Learning via Latent Social Dimensions. In Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 817–825.

https://github.com/DEEP-PolyU/NetBenchmark

Algorithms 2022, 15, 379 19 of 20

27. Shaw, B.; Jebara, T. Structure Preserving Embedding. In Proceedings of the International Conference on Machine Learning,
Clearwater Beach, FL, USA, 16–18 April 2009.

28. Tang, L.; Liu, H. Leveraging Social Media Networks for Classification. Data Min. Knowl. Discov. 2011, 23, 447–478.
29. Le, T.M.V.; Lauw, H.W. Probabilistic Latent Document Network Embedding. In Proceedings of the IEEE International Conference

on Data Mining, Shenzhen, China, 14–17 December 2014; pp. 270–279.
30. Cui, P.; Wang, X.; Pei, J.; Zhu, W. A Survey on Network Embedding. IEEE Trans. Knowl. Data Eng. 2018, 5, 833–852.
31. Grover, A.; Leskovec, J. node2vec: Scalable Feature Learning for Networks. In Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.
32. Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph Convolutional Neural Networks for Web-Scale

Recommender Systems. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, London, UK, 19–23 August 2018; pp. 974–983.

33. Chang, S.; Han, W.; Tang, J.; Qi, G.J.; Aggarwal, C.C.; Huang, T.S. Heterogeneous Network Embedding via Deep Architectures.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia,
10–13 August 2015; pp. 119–128.

34. Chen, J.; Ma, T.; Xiao, C. FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. In Proceedings
of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

35. Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Trans.
Knowl. Data Eng. 2017, 29, 2724–2743.

36. Velickovic, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

37. Huang, X.; Song, Q.; Li, Y.; Hu, X. Graph Recurrent Networks with Attributed Random Walks. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019;
pp. 732–740.

38. Qiu, J.; Dong, Y.; Ma, H.; Li, J.; Wang, K.; Tang, J. Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,
and node2vec. In Proceedings of the ACM International Conference on Web Search and Data Mining, Marina Del Rey, CA, USA,
5–9 February 2018; pp. 459–467.

39. Zhang, J.; Dong, Y.; Wang, Y.; Tang, J.; Ding, M. ProNE: Fast and Scalable Network Representation Learning. In Proceedings of
the International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 4278–4284.

40. Dong, Y.; Chawla, N.V.; Swami, A. metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17
August 2017; pp. 135–144.

41. Qiu, J.; Dong, Y.; Ma, H.; Li, J.; Wang, C.; Wang, K.; Tang, J. Netsmf: Large-scale network embedding as sparse matrix factorization.
In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 1509–1520.

42. Ou, M.; Cui, P.; Pei, J.; Zhang, Z.; Zhu, W. Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016;
pp. 1105–1114.

43. Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234.

44. Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. arXiv 2016, arXiv:1611.07308.
45. Meng, Z.; Liang, S.; Bao, H.; Zhang, X. Co-Embedding Attributed Networks. In Proceedings of the ACM International Conference

on Web Search and Data Mining, Melbourne, VIC, Australia, 11–15 February 2019; pp. 393–401.
46. Huang, X.; Song, Q.; Yang, F.; Hu, X. Large-Scale Heterogeneous Feature Embedding. In Proceedings of the AAAI Conference on

Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 3878–3885.
47. Battaglia, P.W.; Hamrick, J.B.; Bapst, V.; Sanchez-Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro,

A.; Faulkner, R.; et al. Relational inductive biases, deep learning, and graph networks. arXiv 2018, arXiv:1806.01261.
48. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and

applications. AI Open 2020, 1, 57–81.
49. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural

Netw. Learn. Syst. 2020, 32, 4–24.
50. Zhang, Z.; Cui, P.; Zhu, W. Deep learning on graphs: A survey. IEEE Trans. Knowl. Data Eng. 2022, 34, 249–270.
51. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of

the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1263–1272.
52. Li, X.; Cheng, Y. Understanding the Message Passing in Graph Neural Networks via Power Iteration. arXiv 2020, arXiv:2006.00144.
53. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. In Proceedings of the

International Conference on Machine Learning, Beijing, China, 21–26 June 2014.
54. Henaff, M.; Bruna, J.; LeCun, Y. Deep convolutional networks on graph-structured data. arXiv 2015, arXiv:1506.05163.
55. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In

Proceedings of the Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016.

Algorithms 2022, 15, 379 20 of 20

56. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the International
Conference on Learning Representations, Toulon, France, 24–26 April 2017.

57. Li, R.; Wang, S.; Zhu, F.; Huang, J. Adaptive graph convolutional neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, Edmonton, AB, Canada, 13–17 November 2018; Volume 32.

58. Pei, H.; Wei, B.; Chang, K.C.C.; Lei, Y.; Yang, B. Geom-gcn: Geometric graph convolutional networks. In Proceedings of the
International Conference on Learning Representations, Addis Ababa, BC, Canada, 30 April–3 May 2020.

59. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826.
60. Chung, F.R.; Graham, F.C. Spectral Graph Theory. Am. Math. Soc. 1997, 92, 1–212.
61. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the

International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871.
62. Gasteiger, J.; Weißenberger, S.; Günnemann, S. Diffusion improves graph learning. In Proceedings of the Conference on Neural

Information Processing Systems, Vancouver, BC, Canada, 8–14 Dec 2019.
63. Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.; Lerman, K.; Harutyunyan, H.; Ver Steeg, G.; Galstyan, A. Mixhop:

Higher-order graph convolutional architectures via sparsified neighborhood mixing. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 21–29.

64. Abu-El-Haija, S.; Kapoor, A.; Perozzi, B.; Lee, J. N-gcn: Multi-scale graph convolution for semi-supervised node classification. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence, Tel Aviv, Israel, 22-25 July 2019; pp. 841–851.

65. Luan, S.; Zhao, M.; Chang, X.W.; Precup, D. Break the ceiling: Stronger multi-scale deep graph convolutional networks. In
Proceedings of the Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 Dec 2019.

66. Xu, B.; Shen, H.; Cao, Q.; Cen, K.; Cheng, X. Graph convolutional networks using heat kernel for semi-supervised learning. In
Proceedings of the International Joint Conference on Artificial Intelligence, Macao, China, 10-16 August 2019; pp. 1928–1934.

67. Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neural networks for graphs. In Proceedings of the International
Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 2014–2023.

68. Thekumparampil, K.K.; Wang, C.; Oh, S.; Li, L.J. Attention-based graph neural network for semi-supervised learning. arXiv 2018,
arXiv:1803.03735.

69. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

70. Zhang, J.; Shi, X.; Xie, J.; Ma, H.; King, I.; Yeung, D.Y. Gaan: Gated attention networks for learning on large and spatiotemporal
graphs. In Proceedings of the Uncertainty in Artificial Intelligence, Monterey, CA, USA, 6–10 August 2018; pp. 339–349.

71. Kampffmeyer, M.; Chen, Y.; Liang, X.; Wang, H.; Zhang, Y.; Xing, E.P. Rethinking knowledge graph propagation for zero-shot
learning. In Proceedings of the Computer Vision and Pattern Recognition Conferenc, Long Beach, CA, USA, 15–20 June 2019;
pp. 11487–11496.

72. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective Classification in Network Data. AI Mag. 2008,
29, 93–93.

73. Huang, X.; Li, J.; Hu, X. Label Informed Attributed Network Embedding. In Proceedings of the ACM International Conference
on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017; pp. 731–739.

74. Rozemberczki, B.; Allen, C.; Sarkar, R. Multi-scale attributed node embedding. J. Complex Netw. 2021, 9, cnab014.
75. Tang, J.; Sun, J.; Wang, C.; Yang, Z. Social influence analysis in large-scale networks. In Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 807–816.
76. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the Conference on

Neural Information Processing Systems, Granada, Spain, 12–14 December 2011.

	Introduction
	Fair and Comprehensive Evaluation Algorithm—FURL
	Task 1—Classification Fine Tuned via a Validation Set
	Task 2—Link Prediction Fine Tuned in the First Run
	Task 3—Classification Fine Tuned via Link Prediction
	Integration Schema for Overall Rank

	Unsupervised Node Representation Learning Algorithms and Datasets
	Unsupervised Node Representation Learning Methods Used in FURL
	Node Representation Learning for Pure Networks
	Node Representation Learning for Attributed Networks

	Real-World Datasets Used in FURL

	Results
	Experimental Settings and Environment Configuration
	Overall Rank of Node Representation Learning Methods for Pure Networks
	Overall Rank of Node Representation Learning Methods for Attributed Networks
	Research Observations
	Analysis of Hyperparameter-Tuning Methods

	Discussions
	Conclusions
	References

