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Abstract: The assignment problem is a problem that takes many forms in optimization and graph
theory, and by changing some of the constraints or interpreting them differently and adding other
constraints, it can be converted to routing, distribution, and scheduling problems. Showing such
correlations is one of the aims of this paper. For some of the derived problems having exponential
time complexity, the question arises of their solvability for larger instances. Instead of the traditional
approach based on the use of approximate or stochastic heuristic methods, we focus here on the
direct use of mixed integer programming models in the GAMS environment, which is now capable
of solving instances much larger than in the past and does not require complex parameter settings or
statistical evaluation of the results as in the case of stochastic heuristics because the computational
core of software tools, nested in GAMS, is deterministic in nature. The source codes presented may be
an aid because this tool is not yet as well known as the MATLAB Optimisation Toolbox. Benchmarks
of the permutation flow shop scheduling problem with the informally derived MIP model and the
traveling salesman problem are used to present the limits of the software’s applicability.

Keywords: assignment problem; traveling salesman problem; vehicle routing problem; flow shop
scheduling problem; GAMS, genetic algorithm

1. Introduction

The Assignment Problem (abbreviated to AP) [1] and its mathematical model is a
problem that is the basis of the field of combinatorial optimization [2,3]. The problem in its
basic form has been successfully handled by the discovery of Harold Kuhn, who proved
that his method [4], derived from the results of the theoretical work of the Hungarian
mathematicians Dénes König and Jenö Egerváry and dubbed the Hungarian method in their
honor, finds a solution in polynomial time O(n3) [5] in an efficient implementation.

However, this does not make the assignment problem less interesting because it has
many analogs in bipartite graph matching problems of the graph theory [5,6].

The assignment problem is most extensively addressed in [5,7], where we find theo-
retical foundations for the existence of perfect matching, implementation details for the
Hungarian method, and a number of other related problems such as the k-cardinality
assignment problem, the semi-assignment problem, the bottleneck assignment problem,
the algebraic assignment problem, quadratic assignment problems, and multi-index assign-
ment problems.

These are still variants closely related in meaning to the basic version of the matching
problem, although the time complexity may no longer be polynomial, and, in the case of
the quadratic matching problem, it is a non-linear problem.

In this paper, however, we focus on similarities of a different kind, namely in the
mathematical model, where a completely different relationship to the underlying problem
may be found because it allows, often with small modifications, for expressing problems
from a different application domain, to switch between linear, mixed integer, and even
non-linear problem classes, thus changing its computational complexity and solvability.

Perhaps the most well-known combinatorial optimization problem, the Travelling
Salesman Problem [8], is a slight modification of this, with the Vehicle Routing Problem [9]
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also stemming from this. On the other hand, from the assignment problem, with other
modifications, we can easily move to logistic distribution operations [10], agricultural
applications [11], set covering problems [12] with many interesting applications in telecom-
munications [13], and scheduling problems [14].

Concerning two selected problems of exponential complexity, the Travelling Salesman
Problem (TSP) and the Permutation Flow Shop Scheduling Problem (PFSSP) [15], we will
also deal with their solvability. We have very good experience in solving sets covering
problems of O(2n) complexity [13] using GAMS (General Algebraic Modelling System),
where it is possible to find the optimal solution in the available time even for instances
with matrices of hundreds of rows and thousands of columns, and it has also proven itself
in solving the problem of finding the Steiner minimum tree in networks, which also has
exponential time complexity.

Since the two problems mentioned above are permutational in nature with the factorial
time complexity, they are more challenging than the set covering problems.

For extremely large TSP instances (many hundreds of cities), heuristics must be used,
e.g., differential evolution [16], genetic algorithm [17–20], memetic search [21], simulated an-
nealing [22], neural network [23], and improved neighbourhood search algorithms [24,25].

Many stochastic heuristics are inspired by the behaviour of animals in nature, e.g.,
deer [26], spider monkey [27], hyena [28], wolf [29], cuckoo [30,31], sparrow [32], frog [33],
and ant colony [34].

On the other hand, stochastic heuristic methods are not suitable for TSP instances up
to 100 cities because they may not find the optimal solution and the convergence time is
often unsure, as, e.g., shown in the comparison of different methods in [28].

However, there are also approaches based on deterministic methods such as cutting
plane [35], branch and bound [36] and branch and cut [37,38].

According to listings in the GAMS environment, the latter method is in some way
incorporated into GAMS and, therefore, it makes sense to explore its limits of applicability.
These, together with the GAMS source code, are discussed in detail in Section 6.

Scheduling problems seem far from the assignment problem. But one of them, the PF-
SSP, shares with the assignment problem a permutational nature in the ordering of jobs,
where each job (with its operations) is assigned to exactly one position and each position
can contain only one job (with its operations), which corresponds in the assignment prob-
lem to the fact that each task is assigned to a single worker and each worker solves only
one task. There are additional constraints, and the aim is to minimize the total schedul-
ing time (makespan), but we can still say that the derived PFSSP model is related to the
assignment problem.

As in the case of the TSP, heuristic methods are used for large instances of different
variants of flow shop scheduling problems, e.g., differential evolution [39], genetic algo-
rithm [40,41], genetic programming [42], memetic algorithm [43], tabu-search [44], harmony
search [45], iterated greedy algorithms [46–48], multi-local search [49], hybrid metaheuris-
tics [50,51], reinforcement learning [52], fireworks algorithm [53], and also nature-inspired
algorithms, e.g., ant colony optimization [54], firefly particle swarm optimization [55],
migrating birds optimization [56] and whale swarm algorithm [57].

However, the exact methods [58,59], linear programming approach [60] and branch
and bound [61], are also applicable so we will again focus on the usability of the GAMS tool.

2. The Assignment Problem Model

In most common problem formulation, we have n workers who need to be assigned n
tasks in such a way that each worker is assigned a single task and each task is solved by a
single worker.

For each worker-task pair, we know the time it takes the worker to complete the task.
The task is to find an assignment that minimizes the total time to complete all tasks.
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Let cij denote the time taken by the ith worker for the jth task. The decision variables
are binary, xij = 1 if the ith worker is assigned the jth task, xij = 0 in the opposite case.
Then, the problem can be formulated as follows:

z =
n

∑
i=1

n

∑
j=1

cijxij → min (1)

subject to
n

∑
i=1

xij = 1, j = 1, . . . , n (2)

n

∑
j=1

xij = 1, i = 1, . . . , n (3)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n (4)

Equation (2) ensures that each task is assigned to a single worker, and Equation (3)
ensures that each worker is assigned a single task.

The assignment problem can also be viewed as a problem of finding a permutation(
1 2 ... n

π1 π2 ... πn

)
,

where ith worker is assigned to task πi and

z =
n

∑
i=1

ciπi → min

Since the number of different permutations of n elements is n!, it is not possible to find
the optimal solution for large instances in the available time by enumerating all possibilities.
However, due to the Hungarian method mentioned above, we no longer use this approach.

3. Routing Problems

With a different interpretation of the variables and a possible extension of the con-
straints, the assignment problem changes into a series of other problems. In this section,
we consider two routing problems.

3.1. Travelling Salesman Problem

The Travelling Salesman Problem (TSP) [8,62] is mathematically similar to the assignment
problem model, differing only in one additional constraint, but the meaning of the decision
variables xij = 0 is different. It is formulated as follows: Given n cities and distances
among them, the objective is to find a round trip through all cities with a minimum length
(alternatively, with a minimum total transportation cost).

Since the starting city 1 is fixed, the number of routes is given by the permutations
of cities 2, 3, . . ., n, and is therefore equal to (n− 1)!. If there are no one-way segments
anywhere in the transportation between cities, routes in reverse order of cities do not affect
the length, and then we can reduce the number of routes to (n− 1)!/2, but still the time
complexity of exploring all routes is O(n!).

If we denote by cij the distance between cities i and j (alternatively, the price of
transportation between cities i and j), xij a binary decision variable that takes the value 1
when city j on the route immediately follows city i, otherwise it takes the value 0, δi is the
order of city i on the route, then the Travelling Salesman Problem can be formulated as
follows:

z =
n

∑
i=1

n

∑
j=1

cijxij → min (5)
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subject to
n

∑
i=1

xij = 1, j = 1, . . . , n (6)

n

∑
j=1

xij = 1, i = 1, . . . , n (7)

δi − δj + nxij ≤ n− 1, i 6= j, i = 2, . . . , n, j = 2, . . . , n (8)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n (9)

Constraints (6) and (7) ensure that each city (vertex of the graph) is traversed exactly
once (entered and left exactly once); the system of subtour elimination constraints (8),
referred to in the English literature by Miller, Tucker, and Zemlin as MTZ constraints,
prevents the formation of subtours, as we will show below in Theorem 1.

Equation (8) follows from the following reasoning:
(i) If xij = 1, then j is the immediate successor of i, and if δi = t, then δj = t + 1. Hence,
δi − δj + nxij = t− (t + 1) + n = n− 1.
(ii) If xij = 0, then δi − δj + nxij = δi − δj and this difference in the order of the cities in the
route for i 6= j can be at most equal to n− 1.

From (i) and (ii), a common conclusion δi − δj + nxij ≤ n− 1 already follows, which,
for all combinations of feasible values of i and j, is expressed by inequality (8).

Without the constraint (8), constraints (6) and (7) are satisfied by splitting the route
into several subtours, e.g., for 15 vertices, the two conditions mentioned above are satisfied
by the subtours 1− 3− 7− 9− 12− 1, 2− 4− 10− 11− 13− 15− 2 and 5− 6− 8− 14− 5.

Theorem 1. (Miller, Tucker, Zemlin) The variables xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n
satisfying constraints (6) and (7) form a Hamiltonian circle if and only if the subtour elimination
constraints (8) are satisfied.

Proof. Suppose that xij satisfies the subtour elimination constraints but does not form a
Hamiltonian circle. Then xij due to (6) and (7) form at least two subtours, one containing
the initial vertex 1 and another without it. Let S be a subtour that does not contain vertex
1 and let E(S) be the set of edges in S. Summing the conditions over the edges of E(S)
we get:

∑
(i,j)∈E(S)

(δi − δj + nxij) ≤ (n− 1)|E(S)|,

since the values of δi and δj eliminate each other in this subtour, we get

n|E(S)| ≤ (n− 1)|E(S)|,

which is a contradiction.
Assume now that xij forms a Hamiltonian circle. If 1 is the initial vertex of this circle,

and for each vertex i 6= 1, δi = k, if i is the kth vertex of the Hamiltonian circle, then it is
clear that the conditions (8) are satisfied.

3.2. Vehicle Routing Problem

A generalization of the Travelling Salesman Problem is the Vehicle Routing Problem
(VRP) [9,63–66] where a desired quantity of goods needs to be delivered from a central
depot to customers by vehicles of a certain capacity.

We are looking for closed routes of individual vehicles that start and end at the
depot, each customer is served exactly once by exactly one vehicle, the requirements of all
customers are met and the total transport costs are minimal.

Consider the following notation:
n . . . number of customers
0 . . . depot (start and end of each vehicle’s route)
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K . . . number of (identical) vehicles
dj ≥ 0 . . . request of the jth customer (for depot d0 = 0)
Q . . . vehicle capacity (KQ ≥ ∑n

j=1 dj)
cij . . . the cost of transport from i to j (cii = 0)
xij . . . binary decision variable equal to 1 if j is immediately followed by i on the route,
xij = 0 otherwise
δi . . . the load left in the vehicle after visiting customer i.

z =
n

∑
i=0

n

∑
j=0

cijxij → min (10)

subject to
n

∑
i=0

xij = 1, j = 1, . . . , n (11)

n

∑
j=0

xij = 1, i = 1, . . . , n (12)

n

∑
i=1

xi0 = K (13)

n

∑
j=1

x0j = K (14)

0 ≤ δi ≤ Q− di, i = 1, . . . , n (15)

δi − δj + Qxij ≤ Q− dj, i 6= j, i = 1, . . . , n, j = 1, . . . , n, such that di + dj ≤ Q (16)

xij ∈ {0, 1}, i = 0, . . . , n, j = 0, . . . , n (17)

In the model, (11) and (12) ensure that exactly one vehicle arrives at each customer (11)
and exactly one vehicle leaves it (12). Equations (13) and (14) ensure that all K vehicles
return to the depot (13) and all K vehicles leave the depot (14).

Equation (16) is analogous to the MTZ constraints in the Travelling Salesman Prob-
lem preventing the formation of partial circuits and at the same time ensuring that the
requirements of customers i and j can be met when traveling from i to j [67].

The Vehicle Routing Problem has many other specific formulations, e.g., there may be
a larger number of depots available, and customers are only ready to receive delivery of
goods at certain time intervals. For more details, see the sources listed at the beginning of
this section.

4. Distribution Problems

Distribution problems have many different formulations, first, we consider the classi-
cal Hitchcock’s Transportation/Transshipment Problem with m suppliers (sources, warehouses)
and n customers (consumers), where we assume the transportation of a single type of mate-
rial (goods) with an objective to minimize the total cost of transporting the material [68].

Assume the following notation:
ai, i = 1, . . . , m ... capacity (stocks) of suppliers,
bj, j = 1, . . . , n ... customer requirements,
cij, i = 1, . . . , m, j = 1, . . . , n ... the matrix of rates for the transport of a unit quantity
between the ith supplier and the jth customer,
xij, i = 1, . . . , m, j = 1, . . . , n ...the sought quantity transported between the ith supplier
and the jth customer.
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If total stocks are equal to total requirements, this means:

m

∑
i=1

ai =
n

∑
j=1

bj, (18)

we are talking about a balanced distribution problem, where all stocks are exhausted and all
demands are met, and the following mathematical model corresponds to this:

z =
m

∑
i=1

n

∑
j=1

cijxij → min (19)

subject to
n

∑
j=1

xij = ai, i = 1, . . . , m (20)

m

∑
i=1

xij = bj, j = 1, . . . , n (21)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (22)

Equation (20) corresponds to the stock drawdown, and Equation (21) expresses the
fulfillment of requirements.

Obviously, the assignment problem is a special case of the balanced transportation
problem, where:

m = n

ai = 1, i = 1, . . . , m

bj = 1, j = 1, . . . , n

xij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n

However, the balanced case is rare in practice, usually, total stocks exceed total require-
ments, i.e.,

m

∑
i=1

ai >
n

∑
j=1

bj (23)

In this case, all requirements can be met, but not every stock will be used up. The model
then changes as follows:

z =
m

∑
i=1

n

∑
j=1

cijxij → min (24)

subject to
n

∑
j=1

xij ≤ ai, i = 1, . . . , m (25)

m

∑
i=1

xij = bj, j = 1, . . . , n (26)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (27)

In the case of material shortages, the opposite situation may occur, where the total
stock is insufficient for the total requirements, i.e.,

m

∑
i=1

ai <
n

∑
j=1

bj (28)
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This means that stocks are used up but not all requirements can be met. The model
must then be modified as follows:

z =
m

∑
i=1

n

∑
j=1

cijxij → min (29)

subject to
n

∑
j=1

xij = ai, i = 1, . . . , m (30)

m

∑
i=1

xij ≤ bj, j = 1, . . . , n (31)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (32)

4.1. Container Transportation Problem

The Container Transportation Problem is a special case of Hitchcock’s transportation
problem, where we assume that materials from suppliers to customers are transported only
in containers of a certain capacity. Instead of rates per unit of material transported, there
are prices per container transported, being fixed even if the container is not completely full.

From the previous three possibilities for the sum of all stocks and the sum of all
requirement relations, the case of the stocks being sufficient to meet all the requirements is
given here.

Assume that K is the capacity of the container and yij gives the number of containers
needed for the quantity of material xij. Obviously, yij must be integers, the last container to
reach the quantity xij need not be full.

Then, the container transportation problem for all requirements met can be formulated
as the following model:

z =
m

∑
i=1

n

∑
j=1

cijyij → min (33)

subject to
n

∑
j=1

xij ≤ ai, i = 1, . . . , m (34)

m

∑
i=1

xij = bj, j = 1, . . . , n (35)

xij ≤ Kyij, i = 1, . . . , m, j = 1, . . . , n (36)

yij ∈ Z+, i = 1, . . . , m, j = 1, . . . , n (37)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (38)

4.2. Allocation Problem

For the transportation problem described in Section 4, it was possible to provide the
required quantity by composing partial quantities from different suppliers (from different
warehouses) when fulfilling the requirements.

However, in the Allocation Problem, it is required that the required quantity is provided
from a single location so the mathematical model of the transportation problem has to be
modified by [10] to account for this condition. With the same notation used for the symbols,
the meaning of the decision variables xij is now different. They only assume binary values
and xij = 1 if the quantity bj required by the jth customer is sourced from the ith supplier,
if not, xij = 0.

If more than one customer receives the required quantity from the same supplier,
the sum of their requirements must not exceed the capacity of that supplier (stock).
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The model of the allocation problem with these conditions then takes the following
form:

z =
m

∑
i=1

n

∑
j=1

cijxij → min (39)

subject to
m

∑
i=1

xij = 1, j = 1, . . . , n (40)

n

∑
j=1

bjxij ≤ ai, i = 1, . . . , m (41)

xij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n (42)

4.3. Location Problem

The Location Problem is an extension of the allocation problem [12]. For clarity, let us
first summarize all the symbols used.

Consider m locations with capacities ai, i = 1, . . . , m that can be used to operate
warehouses supplying n customers with demands bj, j = 1, . . . , n. The operation of the
warehouse at the ith location requires a cost fi, i = 1, . . . , m for the given period. Let
cij, i = 1, . . . , m, j = 1, . . . , n be the cost of the jth customer being assigned to get the
required quantity from the ith location.

The aim is to decide in which locations to operate the warehouses and to find the
assignment of customers to the operated warehouses so that the value of the total cost
of operating the system is minimal. Like in the allocation problem, we assume that the
demands of each consumer must be covered from a single warehouse.

Therefore, the meaning of the binary decision variables xij is analogous to the allocation
problem, xij = 1, if the quantity bj required by the jth customer is provided from the
warehouse at the ith location, if not, xij = 0.

In addition, there are other binary decision variables yi, i = 1, . . . , m, where yi = 1
means that the warehouse at the ith location will be operated and, if yi = 0, it will not be
operated there.

The model of the location problem with these conditions has the following form:

z =
m

∑
i=1

n

∑
j=1

cijxij +
m

∑
i=1

fiyi → min (43)

subject to
m

∑
i=1

xij = 1, j = 1, . . . , n (44)

xij ≤ yi, i = 1, . . . , m, j = 1, . . . , n (45)

n

∑
j=1

bjxij ≤ ai, i = 1, . . . , m (46)

xij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n (47)

yi ∈ {0, 1}, i = 1, . . . , m (48)

As in the allocation problem, the condition (44) means that each customer takes the
entire requested quantity from a single location, the condition (46) monitors the non-
overstocking of individual locations by customers receiving the requested quantity from
the same location.

Let us have a look at condition (45). The left and right sides are binary variables
with the inequality satisfied for the combinations 0 ≤ 0, 0 ≤ 1 and 1 ≤ 1, but not for the
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combination 1 ≤ 0. This ensures that no customer can get anything from a location where
the warehouse will not be operated.

It is clear that, for all combinations of indices i and j, (45) represents a system of mn
conditions. Expressing this for the values of the indices j, we get:

xi1 ≤ yi, i = 1, . . . , m

xi2 ≤ yi, i = 1, . . . , m

...

xin ≤ yi, i = 1, . . . , m

Summing up the previous inequalities, we get:

xi1 + xi2 + · · ·+ xin ≤ yi + yi + · · ·+ yi i = 1, . . . , m,

and hence
n

∑
j=1

xij ≤ nyi, i = 1, . . . , m (49)

Equation (49) is equivalent to (45), but is simpler because it represents only m condi-
tions rather than the mn conditions in the original expression (45).

4.4. Capacitated Network Area Coverage

Let us consider two finite sets I and J, where I is the set of service centers 1, 2, . . . , m,
and J is the set of customer locations 1, 2, . . . , n.

Further, aij = 1 means that customer location j is in a reachable distance to service
center i, aij = 0 means that it does not satisfy it, and wi expresses the weights of service
centers (since it is the minimization problem, the greater the weights are, the smaller the
coefficient must be).

Similarly, xi = 1 means that service centre i is selected, while xi = 0 means that it is
not selected.

Finally, ci, i ∈ I—capacity of service centre i, bj, j ∈ J—demand of customer location
j, yij ∈ {0, 1}—customer from location j is assigned or is not assigned to service centre i.

In [13], we derived the following model for a capacitated network area coverage:

z = ∑
i∈I

wixi → min (50)

subject to
∀j ∈ J : ∑

i∈I
aijxi ≥ 1 (51)

∀j ∈ J : ∑
i∈I

aijyij = 1 (52)

∀i ∈ I : cixi ≥ ∑
j∈J

aijyijbj (53)

∀i ∈ I : ∑
j∈J

yij ≤ nxi (54)

∀i ∈ I : xi ∈ {0, 1} (55)

(∀i ∈ I)(∀j ∈ J) : yij ∈ {0, 1}. (56)

A necessary precondition for finding a solution is that the sum of all capacities is suffi-
cient to cover all demands, i.e., ∑m

i=1 ci ≥ ∑j∈J bj, with each customer having a reachable
distance to at least one center, i.e., ∀j ∈ J : ∑i∈I aij > 0.
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In [13], we then modified the previous model for the domain of telecommunication
signals considering signal interference and its nonlinear version linearized as follows:

z =

(
∑
i∈I

wixi

)/
∑
i∈I

wi −
(

∑
i∈I

∑
j∈I

dijhij

)/(
∑
i∈I

∑
j∈I

dij

)
→ min (57)

subject to
(∀i ∈ I)(∀j ∈ I) : hij ≤ xi (58)

(∀i ∈ I)(∀j ∈ I) : hij ≤ xj (59)

(∀i ∈ I)(∀j ∈ I) : hij ≥ (xi + xj − 1) (60)

(∀i ∈ I)(∀j ∈ I) : hij ∈ {0, 1} (61)

∀j ∈ J : ∑
i∈I

aijxi ≥ 1 (62)

∀j ∈ J : ∑
i∈I

aijyij = 1 (63)

∀i ∈ I : cixi ≥ ∑
j∈J

aijyijbj (64)

∀i ∈ I : ∑
j∈J

yij ≤ nxi (65)

(∀i ∈ I)(∀j ∈ I)(i 6= j) : dij ≥ (xi + xj − 1)dmin (66)

∀i ∈ I : xi ∈ {0, 1} (67)

(∀i ∈ I)(∀j ∈ J) : yij ∈ {0, 1}. (68)

Another possible modification of the model is to meet the demand by composing
parts of the capacities of several centers, but with a fragmentation not lower than a certain
threshold. This new approach will be presented in detail in a separate paper.

4.5. Transportation Problem with Supply from Primary Source

Consider now a transportation network where, in addition to locations with warehouse
stocks and customer requirements, there will also be a primary source, which can represent
the location of the transported commodity or a global warehouse, and customers can be
supplied both from local warehouses and directly from the primary source.

Assume the constraints and denotations from the location problem and two types of
transportation equipment, one with a larger capacity k1 from the primary source to local
warehouses and a cost n1 per 1 km of travel, and the other with a smaller capacity k2 to
customers and a cost n2 per 1 km. Denoting the distance from the primary source to the
ith local storage by ei, and the distance from the primary source to the jth customer by
gj, we add binary decision variables zj to indicate whether the jth customer receives the
desired quantity directly from the primary source (in the positive case zj = 1, otherwise
zj = 0), the model with primary source and transportation technique information has the
following form:

z =
n

∑
j=1

bj

k2
gjn2zj +

m

∑
i=1

n

∑
j=1

( bj

k1
ein1 +

bj

k2
dijn2

)
xij +

m

∑
i=1

fiyi → min (69)

subject to

zj +
m

∑
i=1

xij = 1, j = 1, . . . , n (70)
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n

∑
j=1

xij ≤ nyi, i = 1, . . . , m (71)

n

∑
j=1

bjxij ≤ ai, i = 1, . . . , m (72)

xij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n (73)

yi ∈ {0, 1}, i = 1, . . . , m (74)

zj ∈ {0, 1}, j = 1, . . . , n (75)

The fractions in the objective function according to (69) indicate how many times
the distance must be traveled for the customer to receive the required quantity. Since the
fractions may have non-integer values, they must be rounded up to integers, the corre-
sponding capacity may not be fully used for the last trip. The expression with the first
summation in the objective function corresponds to the total cost of moving material from
the primary source directly to customers, and the expression with the double summation
in the objective function corresponds to the total cost of moving material from the primary
source to local warehouses and from there on to the customers.

If, instead of the conditions of the location problem, the simpler conditions of the
allocation problem were assumed (i.e., dropping the decision as to whether or not to use a
location for storage), the previous model would be simplified, the conditions (71) and (74)
would be dropped and yi would be omitted in the last term of the objective function (i.e.,
the fixed costs of all locations would be included).

4.6. Crop Problem

In plant production, an important task is to find a method of sowing the land with
agricultural crops (cultures) in such a way that, given the expected yield of crops on the
land and the profit from the sale of individual crops, the total profit is maximised.

Assume the following notation:
pi, i = 1, . . . , m ... grounds,
ri, j = 1, . . . , m ... area of grounds (plays the role of available capacities),
k j, j = 1, . . . , n ... agricultural crops (cultures),
cij, i = 1, . . . , m, j = 1, . . . , n ... profit from 1 ha of ground pi, sown with culture k j
xij, i = 1, . . . , m, j = 1, . . . , n ...number of hectares of ground pi sown with crop k j.

The mathematical model of the Crop Problem is similar to the basic version of the
transportation problem with unbalanced capacities (the ground areas may not be fully
used), but it lacks a set of constraints corresponding to the fulfillment of the requirements
with the difference that the problem being a maximization one. It takes the following form:

z =
m

∑
i=1

n

∑
j=1

cijxij → max (76)

subject to
n

∑
j=1

xij ≤ ri, i = 1, . . . , m (77)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (78)

Equation (77) expresses the use of grounds, which corresponds to the drawdown of
supplier stocks in the distribution problem.
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If we required each crop j to be sown on some minimum area dj, then the problem
would become an example of the maximization version of the generalized distribution problem
and the model would be modified as follows:

z =
m

∑
i=1

n

∑
j=1

cijxij → max (79)

subject to
n

∑
j=1

xij ≤ ri, i = 1, . . . , m (80)

m

∑
i=1

xij ≥ dj, j = 1, . . . , n (81)

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n (82)

5. Scheduling Problems

Scheduling problems are numerous and varied. They arise in diverse areas such as flex-
ible manufacturing systems, production planning, computer design, logistics, timetabling,
communication, etc. [14].

Here we focus on one of them, the Permutation Flow Shop Scheduling Problem
(PFSSP), which, like the Assignment problem and the Traveling Salesman Problem, is
permutational in nature.

It can be briefly described as follows: There are a set of m machines (processors)
and a set of n jobs. Each job comprises a set of m operations which must be done on
different machines. All jobs have the same processing operation order when passing
through the machines. There are no precedence constraints among operations of different
jobs. Operations cannot be interrupted, and each machine can process only one operation
at a time. The problem is to find the job sequences on the machines which minimizes the
makespan (i.e., the maximum completion times of all operations).

Mathematical Model of PFSSP

Consider three finite sets J, M, O where J is a set of jobs 1, . . . , n, M is a set of machines
1, . . . , m, and O is a set of operations 1, . . . , m.

Denote:

Ji . . . the ith job in the permutation of jobs
pik . . . processing time of the job Ji ∈ J on machine k

(∀i ∈ J)(∀k ∈ M) : vik = waiting time (idle time) on machine k
before starting job Ji

(∀i ∈ J)(∀k ∈ M) : wik = waiting time (idle time) of job Ji
after finishing processing on machine k
while waiting for machine k + 1 to become available

Define the following decision variables:

∀i, j ∈ J : xij =

{
1, if job j is assigned to the ith position in the permutation (Ji = j)
0, otherwise

(83)

Figure 1 illustrates the use of the variables vik and wik on an example with 5 jobs and
3 machines.
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Figure 1. Meaning of the variables vik and wik.

From Figure 1, we can draw some more general conclusions:

• The first task in a permutation can always continue the next operation on the next
machine without delay because it does not wait for the completion of any other
operation.

• It follows from the previous conclusion that waiting times to start the operation of the
first task in the permutation on the second and subsequent machines are given by the
sum of the durations of the operations of that task on the previous machines.

• Equalities of 3 addition terms in Figure 1 can be generalized into a Gantt chart between
all pairs of neighboring machines.

• The duration of the entire schedule (makespan) is given by the sum of the waiting times
for the start of operations on the last machine and the duration of these operations.

All verbal conclusions are expressed formally by the following system of equations:

∀i ∈ J :
n

∑
j=1

xij = 1 (84)

∀j ∈ J :
n

∑
i=1

xij = 1 (85)

∀k ∈ M− {m} : w1k = 0 (86)

∀k ∈ M− {1} : v1k =
k−1

∑
r=1

n

∑
i=1

pirx1i (87)

(∀i ∈ J − {n}) (∀k ∈ M− {m}) :

vi+1,k +
n

∑
j=1

pjkxi+1,j + wi+1,k = wik +
n

∑
j=1

pj,k+1xij + vi+1,k+1 (88)

Cmax =
n

∑
i=1

(vim +
n

∑
j=1

pjmxij) (89)

6. Computational Results

From the above problems, we select two, TSP and PFSSP, that are NP-hard in the
decision versions [69,70].

To give an idea of the cardinality of the search space of these permutation problems,
we present a few factorials as follows:
10! = 3628800 ≈ 3.6 × 106

20! = 2432902008176640000 ≈ 2.4 × 1018

30! = 265252859812191058636308480000000 ≈ 2.6 × 1032

40! = 815915283247897734345611269596115894272000000000 ≈ 8.1 × 1047

50! ≈ 3 × 1064
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...
100! ≈ 9.3 × 10157

The traditional approaches to such problems are based on computations using heuristic
methods [71,72] for large instances such as genetic algorithms, simulated annealing, tabu
search, differential evolution [73], firefly algorithm, particle swarm optimization, and ant
colony optimization. Then, statistical tests are applied to examine at a certain significance
level (e.g., α = 0.05), to what extent the mean value of the results obtained by different
methods and different settings of their parameters at a larger number of runs is the same or
different (and, therefore, one of the methods gives better results). For the t-test, we assume
that the sets of values have a normal distribution. However, this assumption may be false,
and then one of the non-parametric tests, such as the Wilcoxon test, must be used.

Since, given the validity of the No Free Lunch Theorem [74,75], one should not expect
a general conclusion that any of the heuristics for each problem instance gives better results
than other heuristics.

In this paper, we do not explore heuristics using instead a mixed integer programming
model with software tools built as solvers in the GAMS environment [76,77] to find an
exact solution by deterministic computation.

Statistical evaluations are, therefore, meaningless here. What can be said, however,
is that the power of this software today is considerably greater than it was 20 years ago,
when, in our experience, for a problem with a complexity of O(20!), the system ended
up with a runtime error and the message “insufficient space to update U-factor
...”. The performance of GAMS has been steadily increasing over the years, although the
source code of the solvers is not freely available, from [78] it can at least be seen that it
includes, among others, CPLEX, GUROBI, Lindo, and the results of the work of academic
departments of Princeton University, Stanford University, and Zuse Institute Berlin. Today,
GAMS calculates the exact solution for PFSSP with 20 jobs on a laptop with Intel(R)
Core(TM) i5-10210U CPU @ 1.60 GHz 2.11 GHz processor, 8 GB operational memory and
64-bit operating system in less than 3 min, as shown in the following subsection.

Of course, with a computer of better technical parameters for the same time limit we
get results for larger instances of the problem, but it seems to be better to use a heuristic
beyond this boundary, e.g., our GA ’war elimination’ modification [79].

Since PFSSP has a more complex model than TSP, we start with it and include its
complete GAMS code.

6.1. PFSSP Computational Results

For PFSSP with 10 jobs, 6 machines, processing times from the TABLE section (it
corresponds to the first benchmark in Table 1) and the model given by Equations (84)–(89),
the program code in GAMS can be, e.g., as follows:

* Permutation flow shop scheduling problem
$TITLE permutation flow shop scheduling problem
$OFFSYMXREF
$OFFUELLIST
$OFFUELXREF

OPTION ITERLIM=200,000
* ITERLIM number of iterations
OPTION OPTCR=0.00001
*OPTION OPTCR=0.001
* OPTCR stopping in MIP in case the best solution is within the limits
* 100*OPTCR% of the global~extreme

* section defining indexes
SETS

I jobs /1*10/
K machines /1*6/;
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ALIAS(I,J);
* J - position of the job in the permutation

ALIAS(K,R);

* input data section
PARAMETERS

N,M;
N=CARD(I);
M=CARD(K);

TABLE P(I,K)
1 2 3 4 5 6

1 333 991 996 123 145 234
2 333 111 663 456 785 532
3 252 222 222 789 214 586
4 222 204 114 876 752 532
5 255 477 123 543 143 142
6 555 566 456 210 698 573
7 558 899 789 124 532 12
8 888 965 876 537 145 14
9 889 588 543 854 247 527

10 999 889 210 632 451 856;

*variables section (decision variables and objective function)
VARIABLES

X(I,J) is 1 if job j is assigned to position i in the permutation, 0, otherwise
V(I,K) waiting time on machine k before the start of job i in the permutation
W(I,K) waiting time of job i in the permutation after finishing processing

* on machine k, while machine k+1 becomes free
Cmax total processing time for all tasks (makespan);

BINARY VARIABLE X;
NONNEGATIVE VARIABLE V;
NONNEGATIVE VARIABLE W;

*section describing the system of (in)equalities
EQUATIONS

EQ1(I)
EQ2(J)
EQ3(K)
EQ4(K)
EQ5(I,K)
OBJFCE(K);
EQ1(I) .. SUM(J,X(I,J)) =E= 1;
EQ2(J) .. SUM(I,X(I,J)) =E= 1;
EQ3(K)$(ORD(K) LE (M-1)) .. W(‘‘1’’,K) =E= 0;
EQ4(K)$(ORD(K) GE 2)

.. V(‘‘1’’,K) =E= SUM((R,I)$(ORD(R) LE (ORD(K)-1)),P(I,R)*X(‘‘1’’,I));
EQ5(I,K)$((ORD(I) LE (N-1)) AND (ORD(K) LE (M-1)))

.. V(I+1,K)+SUM(J,P(J,K)*X(I+1,J))+W(I+1,K) =E=
W(I,K)+SUM(J,P(J,K+1)*X(I,J))+V(I+1,K+1);

OBJFCE(K)$(ORD(K) EQ M) .. Cmax =E= SUM(I,V(I,K)+SUM(J,P(J,K)*X(I,J)));

*description of the model, running the solver, and displaying the results
MODEL FLOWSHOP /ALL/;
SOLVE FLOWSHOP USING MIP MINIMIZING Cmax;
DISPLAY X.L, V.L, W.L, Cmax.L;

The ability to compute optimal solutions was checked using standard benchmarks
from OR-Library (OR = Operations Research) accessible at Brunel University London [80],
originally described in [81]. The computational results are summarised in Table 1. For
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instances with 30 or more jobs, GAMS does not find the optimal solution in the 1000 s time
limit, but only a “close” approximation, which, however, differs by less than 10% even for
the last instance 75× 20, where the optimal value is unknown due to the huge size of the
search space and is only estimated by the interval. For such cases, we at least suggest a
solution method using the genetic algorithm [82].

Table 1. GAMS computational results (10× 6 corresponds to 10 jobs and 6 machines, etc.; t-l-e = time
limit exceeded).

Benchmark Result/Optimum/Early End Time [S] Iterations

10× 6 7720/7720/no 0.75 31,535
11× 5 7038/7038/no 0.13 243
12× 5 7312/7312/no 0.42 13,095
13× 4 7166/7166/no 0.20 650
14× 4 8003/8003/no 0.13 262

20× 10 1566/1566/no 164.45 2,619,405
30× 10 2120/2093/t-l-e 1000.02 6,398,821
30× 15 2692/2513/t-l-e 1000.02 4,886,367
50× 10 3190/3045/t-l-e 1000.03 3,164,599
75× 20 5372/in [4890, 4951]/t-l-e 1000.03 2,145,971

To do this, we will need a model that builds an appropriate schedule for the per-
mutation. The genetic algorithm will then select a promising part of the search space of
permutations in which a good approximation of the optimum can be found in a reasonable
amount of time.

If we have processing times pij for job i on machine j, and a job permutation J1, J2, . . . , Jn,
then we can calculate the completion times CJi ,j as follows:

CJ1,1 = pJ1,1 (90)

∀i ∈ J − {1} : CJi ,1 = CJi−1,1 + pJi ,1 (91)

∀k ∈ M− {1} : CJ1,k = CJ1,k−1 + pJ1,k (92)

(∀i ∈ J − {1})(∀k ∈ M− {1}) : CJi ,k = max {CJi−1,k , CJi ,k−1}+ pJi ,k (93)

Cmax = CJn ,m (94)

As the genetic algorithms [79] are well known, we only summarise parameter settings
and describe only the problem-specific operators in more detail.

The fitness function is inversely proportional to the makespan, the smaller the makespan,
the higher the value of the fitness function.

The number of individuals in the population was set to 50 and the number of iterations
to 10n2. The initial population was generated randomly, and the parents for the crossover
operation were determined by binary tournament selection.

As to the crossover operation, we cannot use the traditional two-point crossover, be-
cause it would lead to infeasible solutions. If we change the middle parts of the parent
chromosomes P1 and P2 in Figure 2, we will obtain offspring (10,5,2,6,10,4,1,6,3,1) and
(5,8,4,7,8,9,2,6,3,1) that correspond to no permutations, because some jobs are duplicated or
omitted. We used what is called crossover in a partially mapped representation where the genes
in the middle part of one chromosome are ordered in its offspring by their occurrence in
the second parent chromosome.
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Figure 2. Modified two-point crossover.

From the possible mutation operations, we have selected the shift mutation, which
removes a value at one position and puts it at another position), see Figure 3.

Figure 3. Shift mutation.

The offspring of the parents replaced two randomly selected individuals with below-
average fitness function values.

With the above parameter settings, the results for the last 4 instances in Table 1 were
obtained as shown in Table 2. The average values from 30 runs are presented here, as well
as the best values obtained from them, which for these large instances are better than
the values obtained from GAMS when the 1000 s timeout expires. All these results were
achieved in less than 10 s because of the small number of iterations of the genetic algorithm.

Table 2. GA computational results—average and the best result from 30 runs, optimum.

Benchmark Average Result/the Best Result Optimum

30× 10 2126/2099 2093
30× 15 2570/2525 2513
50× 10 3132/3090 3045
75× 20 5261/5203 between 4890 and 4951

6.2. TSP Implementation in GAMS

In describing the source code in GAMS and verifying its computational abilities, we
use three benchmarks from the TSPlib library [83] with 24, 52, and 100 cities, or positions in
the map given by coordinates.

The following code is written for the gr24.tsp benchmark. Since the adjacency
matrix is symmetric, only the data of the lower triangular matrix are entered with the
remaining data calculated. The EQUATIONS section is a rewrite of the TSP model and its
Equations (5)–(8). The xij binary domain, corresponding to Equation (9), is given by the
declaration that precedes this section.

$TITLE Travelling Salesman Problem
OPTION ITERLIM=10000000;
OPTION OPTCR=0;

SETS
I /1*24/;
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ALIAS (I,J);

PARAMETERS
N;
N=CARD(I);

TABLE C(I,J) adjacency matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0
2 257 0
3 87 196 0
4 91 228 158 0
5 150 112 96 120 0
6 80 196 88 77 63 0
7 130 167 59 101 56 25 0
8 134 154 63 105 34 29 22 0
9 243 209 286 159 190 216 229 225 0
10 185 86 124 156 40 124 95 82 207 0
11 214 223 49 185 123 115 86 90 313 151 0
12 70 191 121 27 83 47 64 68 173 119 148 0
13 272 180 315 188 193 245 258 228 29 159 342 209 0
14 219 83 172 149 79 139 134 112 126 62 199 153 97 0
15 293 50 232 264 148 232 203 190 248 122 259 227 219 134 0
16 54 219 92 82 119 31 43 58 238 147 84 53 267 170 255 0
17 211 74 81 182 105 150 121 108 310 37 160 145 196 99 125 173 0
18 290 139 98 261 144 176 164 136 389 116 147 224 275 178 154 190 79 0
19 268 53 138 239 123 207 178 165 367 86 187 202 227 130 68 230 57 86 0
20 261 43 200 232 98 200 171 131 166 90 227 195 137 69 82 223 90 176 90 0
21 175 128 76 146 32 76 47 30 222 56 103 109 225 104 164 99 57 112 114 134 0
22 250 99 89 221 105 189 160 147 349 76 138 184 235 138 114 212 39 40 46 136 96 0
23 192 228 235 108 119 165 178 154 71 136 262 110 74 96 264 187 182 261 239 165 151 221 0
24 121 142 99 84 35 29 42 36 220 70 126 55 249 104 178 60 96 175 153 146 47 135 169 0;

SET C2(I,J);
C2(I,J)$(NOT SAMEAS(I,J)) = yes;
C(C2(I,J)) = MAX(C(I,J),C(J,I));

VARIABLES
X(I,J)
delta(I)
Z;

BINARY VARIABLE X(I,J);

EQUATIONS
EQ1(J) each city is entered exactly once
EQ2(I) each city is left exactly once
EQ3(I,J) subtour elimination constraints
EQ4 objective function;
EQ1(J) .. SUM(I,X(I,J)$(ORD(I) NE ORD(J))) =E= 1;
EQ2(I) .. SUM(J,X(I,J)$(ORD(I) NE ORD(J))) =E= 1;
EQ3(I,J)$((ORD(I) GE 2) AND (ORD(J) GE 2) AND (ORD(I) NE ORD(J)))

.. delta(I)-delta(J)+N*X(I,J) =L= N-1;
EQ4 .. Z =E= SUM((I,J),C(I,J)*X(I,J));

MODEL TSP/ALL/;
SOLVE TSP USING MIP MINIMIZING Z;
DISPLAY X.L, Z.L;

The total length of the route is 1272, the decision variables xi,j have a value of 1 in the
following order: x1,16, x16,11, x11,3, x3,7, x7,6, x6,24, x24,8, x8,21, x21,5, x5,10, x10,17, x17,22, x22,18,
x18,19, x19,15, x15,2, x2,20, x20,14, x14,13, x13,9, x9,23, x23,4, x4,12, x12,1, and, thus, the circuitous
route passes through cities 1, 16, 11, 3, 7, 6, 24, 8, 21, 5, 10, 17, 22, 18, 19, 15, 2, 20, 14, 13,
9, 23, 4, 12, 1, which is in agreement with the published result for the gr24 benchmark.
The calculation time was 0.36 s.

The data for the berlin52.tsp benchmark are entered differently, namely as a matrix
with 52 rows and 2 columns, where the 1st column is the value of the x-coordinate and the
2nd column is the value of the y-coordinate. The adjacency matrix in this case is obtained
by calculating the Euclidean distances between all pairs of positions. This part of the code
takes the following form, the rest is the same as in the previous code.

SETS
I /1*52/;
ALIAS (I,J);

PARAMETERS
N;
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N=CARD(I);

TABLE XY(I,*)
1 2

1 565.0 575.0
2 25.0 185.0
3 345.0 750.0
4 945.0 685.0
5 845.0 655.0
6 880.0 660.0
7 25.0 230.0
8 525.0 1000.0
9 580.0 1175.0
10 650.0 1130.0
11 1605.0 620.0
12 1220.0 580.0
13 1465.0 200.0
14 1530.0 5.0
15 845.0 680.0
16 725.0 370.0
17 145.0 665.0
18 415.0 635.0
19 510.0 875.0
20 560.0 365.0
21 300.0 465.0
22 520.0 585.0
23 480.0 415.0
24 835.0 625.0
25 975.0 580.0
26 1215.0 245.0
27 1320.0 315.0
28 1250.0 400.0
29 660.0 180.0
30 410.0 250.0
31 420.0 555.0
32 575.0 665.0
33 1150.0 1160.0
34 700.0 580.0
35 685.0 595.0
36 685.0 610.0
37 770.0 610.0
38 795.0 645.0
39 720.0 635.0
40 760.0 650.0
41 475.0 960.0
42 95.0 260.0
43 875.0 920.0
44 700.0 500.0
45 555.0 815.0
46 830.0 485.0
47 1170.0 65.0
48 830.0 610.0
49 605.0 625.0
50 595.0 360.0
51 1340.0 725.0
52 1740.0 245.0;

PARAMETERS C(I,J);

SET C2(I,J);
C2(I,J)$(NOT SAMEAS(I,J)) = yes;
C(C2(I,J)) = ROUND(SQRT(SQR(XY(I,’1’)-XY(J,’1’))+SQR(XY(I,’2’)-XY(J,’2’))));

The total length of the route is 7542, the calculation time was 1.45 s and the circuitous
route passes through positions 1, 49, 32, 45, 19, 41, 8, 9, 10, 43, 33, 51, 11, 52, 14, 13, 47, 26,
27, 28, 12, 25, 4, 6, 15, 5, 24, 48, 38, 37, 40, 39, 36, 35, 34, 44, 46, 16, 29, 50, 20, 23, 30, 2, 7, 42,
21, 17, 3, 18, 31, 22, 1. The optimal route can be seen in Figure 4.
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Figure 4. The optimal route for the berlin52.tsp benchmark.

Finally, GAMS for the kroA100.tsp benchmark stopped the computation at 1000.02
s by exceeding the time limit, but the intermediate result of the path length 21282 and its
traversal through positions 1, 47, 93, 28, 67, 58, 61, 51, 87, 25, 81, 69, 64, 40, 54, 2, 44, 50, 73,
68, 85, 82, 95, 13, 76, 33, 37, 5, 52, 78, 96, 39, 30, 48, 100, 41, 71, 14, 3, 43, 46, 29, 34, 83, 55, 7, 9,
57, 20, 12, 27, 86, 35, 62, 60, 77, 23, 98, 91, 45, 32, 11, 15, 17, 59, 74, 21, 72, 10, 84, 36, 99, 38,
24, 18, 79, 53, 88, 16, 94, 22, 70, 66, 26, 65, 4, 97, 56, 80, 31, 89, 42, 8, 92, 75, 19, 90, 49, 6, 63,
1 corresponds to the known optimal solution for this benchmark. The optimal route is in
Figure 5.

Figure 5. The optimal route for the kroA100.tsp benchmark.

For instances with more than 100 positions, it would be necessary to search for an
approximation of the optimum using one of the heuristic methods.

One of the first was the use of the so-called Lin-2-Opt change operator [8], see Figure 6.
Here, two elements are added to the permutation of n cities to visit (into positions 0 and
n + 1), and then the starting city is assigned to those positions to simulate a cyclic tour. Two
’edges’ (pairs of neighbouring elements in permutation) are randomly chosen ((p1, p2) and
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(q1, q2) say), the inner elements p2, q1 are swapped and the elements between p2 and q1
are reversed.

Figure 6. Lin-2-Opt change neighbourhood operation,

Positions 0 and n+ 1 with the fixed value of the starting city can also be used to expand
the individuals in the population of the genetic algorithm and then apply the operations
presented for the PFSSP.

However, we no longer investigate this for extremely large instances of the TSP
problem because heuristics do not guarantee finding an optimal solution, which often is
not even known here, and the aim was to find bounds for which we still obtain the precise
solution in reasonable time using a ’normal’ computer. In the case of GAMS, this bound is
an instance with 100 cities.

6.3. Data, Changes in Time, Uncertainty

Data from OR-Library and TSPLIB are related to a specific point in time, in reality they
may change over time or may not be completely known.

A more general case of the Travelling Salesman Problem is the Canadian Traveller
Problem (CTP) [84,85]. Here, the distance matrix may change over time due to the occurrence
of events that make some parts of the route inaccessible so that an adaptive strategy must
be found. These events are random in nature, which corresponds to the problems of robot
navigation in environments where the distribution of obstacles is only discovered as the
robot moves through the environment; moreover, the obstacles may move, and thus the
locations of potential collisions change dynamically.

In transport tasks, the values of some parameters can change over time, the fuel price
is not constant, and the vehicle consumption can only be estimated because it can change
according to the traffic situation and the season, which will affect, e.g., the calculation of the
objective function (69). Similarly, in the crop problem, we can only estimate crop yields.

In location-based tasks, the problem may arise of adding another center to an existing
network of centers to improve the coverage of an area. An example might be an expansion
of the existing supermarket network of a chain store. Here it is suggested to use one of
the properties of the Voronoi diagram [86,87], a data structure known from computational
geometry: Assume a Voronoi diagram with its sites represented by the current centers.
The point q is the vertex of the Voronoi diagram if and only if the largest empty circle
C(q) contains three (or more in a degenerate case) sites on its boundary and none inside.
Among these circles, we determine the one with the largest diameter, and its center is then
the optimal position for the location of the new center, see Figure 7.

In fact, the calculated position may not be available, the cost of building here may be
too high, thus a suitable nearby location must be found, or the center of one of the other
empty circles must be chosen in descending order of diameters.
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Figure 7. Finding a new location using the largest empty circles.

Another issue is the amount of inventory in logistics operations. The stock changes
over time according to demand and needs to be replenished accordingly. We speak about
inventory management and the resulting sustainability [88–91]. However, demands are
stochastic in nature and, in addition, inventory management must take into account the
cost of maintaining inventory and losses from premature depletion of inventory for unde-
livered goods.

In [92], a new mathematical model is derived, the properties of the profit function
are proved, and the profitability in a two-channel production system considering carbon
emissions and green technology is numerically verified on specific data.

While artificial neural networks (ANN) have very little application in combinatorial
optimization, their main use is in cluster analysis, pattern recognition, image processing
and prediction, in [93] the authors present an efficient implementation of ANNs in an
inventory management model under uncertainty and inflation.

In [94] the unreliability of the supply chain and methods to eliminate this unrelia-
bility are explored, and the required mathematical equations are derived and verified by
numerical experiments, including sensitivity analysis.

However, all these aspects are beyond the scope of this paper and can be the subject of
separate texts as also evidenced by the papers mentioned.

7. Conclusions

This paper studies the assignment problem and its modifications with logistics applica-
tions, in routing, distribution, and scheduling tasks. Its first contribution is the correlation
of the problem models, which are often distant in nature and time complexity.

It has also shown how the described models can be directly transferred to the GAMS
environment. NP-hard Permutation Flow Shop Scheduling Problem (PFSSP) and the
Travelling Salesman Problem are used to show that the optimal solution can be determined
in the available time of a few minutes for instances with 20 jobs on 10 machines in the case
of PFSSP, and for 100 cities in the case of TSP.

Previously, these boundaries were inaccessible with mixed integer programming
solvers, but with the new version of GAMS, they have been significantly extended. This
of course means first to build the appropriate model (and this is not always a simple
matter, as the informal derivation of the PFSSP model in Section 5 showed) and then,
for instance, for benchmark libraries (e.g., OR-Library or TSPLIB), to search individually for
the appropriate bounds. The findings from PFSSP and TSP are not isolated examples of the
successful application of GAMS in solving large instances of optimization versions of NP-
complete/NP-hard problems. We have already validated it in [13] in solving the covering
problem with matrices of hundreds of thousands of elements, and more recently in solving
the Steiner problem in graphs in [95], where first using the terminology of network flows
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a mixed integer programming model was derived, then modified for GAMS, and finally
exact results for a representative class of benchmarks from OR-Library were obtained.

Another goal of this paper was to introduce code generation in GAMS on non-trivial
tasks because in the manuals [76,77] we can find only a description of individual elements of
this tool, but not the codes of complete task models. In MATLAB, running the computation
of an optimization program means writing just a single command (intlinprog or linprog
with the appropriate parameters). Similarly, when solving differential equations, e.g., to cal-
culate the differential equation y′(x) = 4xy+ x3 with initial condition y(4) = 2, it is enough
to enter dsolve(’Dy=4*x*y+x∧3’,’y(4)=2’,’x’). In MATHEMATICA, too, to obtain the
impulse function of the system described by a differential equation, it is enough to rewrite
it in the form of a Laplace transfer and use a single command InverseLaplaceTransform.
In contrast, the code notation in GAMS is similar to code in programming languages with
the definition of constants, the declaration of variables, and the body of the program. Again,
there are assignment statements, conditional statements, and loop statements. For example,
the binary values of the reachability matrix A from the distance matrix D and the defined
reachable distance threshold Dmax are determined in GAMS as follows:

LOOP(I,
LOOP(J,

IF (D(I,J) <= Dmax,
A(I,J)=1;

ELSE
A(I,J)=0;

);
);

);

The only disadvantage of GAMS is that it has no graphical tools, and the results of
the calculations are only in text form. This requires exporting them to a suitable program
and postprocessing. In [13] we used MATLAB, here Figures 4 and 5 are generated in the
MATHEMATICA environment.

Only where for extremely large instances of problems of exponential complexity we
cannot obtain an exact solution using GAMS in a reasonable amount of time (e.g., no more
than in tens of minutes), do we use one of the many heuristic methods. Given the No
Free Lunch Theorem [74,75], none of them can be recommended as the best in the general
case, since finding the optimal solution is not guaranteed and the result is always an
approximation of the optimum, so our modification of the genetic algorithm, implemented
in Java and described in more detail in [79], can be used without loss of generality.

One-point heuristics (hill climbing, tabu search, simulated annealing) in solving
problems where in each iteration the neighborhood operation often generates tens of
infeasible solutions and it is necessary to use a repair operator for them (here it concerns
the coverage problem), and slow down the computation considerably, so in these cases we
prefer, e.g., a genetic algorithm that generates only two new solutions in each iteration.

The model in Section 4.4 is original with another possible modification proposed at
the end. Its model has already been built and verified on smaller-scale instances so far and
will be investigated in more complex cases.

In future research, we expect to focus on the Quadratic Assignment Problem, the Vehi-
cle Routing Problem and its solvability using GAMS, and applications in agriculture with
consideration of data uncertainty using probabilistic models or fuzzy modeling, since yields
can only be estimated. Although the Quadratic Assignment Problem has a non-linear ob-
jective function with quadratic terms, it can be converted to a mixed integer programming
problem using Lawler’s linearization [7] and the MIP solver of GAMS can be used again.
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34. Stodola, P.; Otřísal, P.; Hasilová, K. Adaptive Ant Colony Optimization with Node Clustering Applied to the Travelling Salesman
Problem. Swarm Evol. Comput. 2022, 70, 101056. [CrossRef]

35. Land, A. The Solution of Some 100-City Travelling Salesman Problems. EURO J. Comput. Optim. 2021, 9, 100017. [CrossRef]
36. Dell’Amico, M.; Montemanni, R.; Novellani, S. Algorithms Based on Branch and Bound for the Flying Sidekick Traveling

Salesman Problem. Omega 2021, 104, 102493. [CrossRef]
37. Pereira, A.; Mateus, G.; Urrutia, S. Valid Inequalities and Branch-and-Cut Algorithm for the Pickup and Delivery Traveling

Salesman Problem with Multiple Stacks. Eur. J. Oper. Res. 2022, 300, 207–220. [CrossRef]
38. Yuan, Y.; Cattaruzza, D.; Ogier, M.; Semet, F. A Branch-and-Cut Algorithm for the Generalized Traveling Salesman Problem with

Time Windows. Eur. J. Oper. Res. 2020, 286, 849–866. [CrossRef]
39. Morais, M.; Ribeiro, M.; da Silva, R.; Mariani, V.; Coelho, L. Discrete Differential Evolution Metaheuristics for Permutation Flow

Shop Scheduling Problems. Comput. Ind. Eng. 2022, 166, 107956. [CrossRef]
40. Qiao, Y.; Wu, N.; He, Y.; Li, Z.; Chen, T. Adaptive Genetic Algorithm for Two-Stage Hybrid Flow-Shop Scheduling with

Sequence-Independent Setup Time and No-Interruption Requirement. Expert Syst. Appl. 2022, 208, 118068. [CrossRef]
41. Wu, X.; Cao, Z. An Improved Multi-Objective Evolutionary Algorithm Based on Decomposition for Solving Re-Entrant Hybrid

Flow Shop Scheduling Problem with Batch Processing Machines. Comput. Ind. Eng. 2022, 169, 108236. [CrossRef]
42. Song, H.B.; Lin, J. A Genetic Programming Hyper-Heuristic for the Distributed Assembly Permutation Flow-Shop Scheduling

Problem with Sequence Dependent Setup Times. Swarm Evol. Comput. 2021, 60, 100807. [CrossRef]
43. Wang, J.J.; Wang, L. A Cooperative Memetic Algorithm with Feedback for the Energy-Aware Distributed Flow-Shops with

Flexible Assembly Scheduling. Comput. Ind. Eng. 2022, 168, 108126. [CrossRef]
44. Harbaoui, H.; Khalfallah, S. Tabu-Search Optimization Approach for No-Wait Hybrid Flow-Shop Scheduling with Dedicated

Machines. Procedia Comput. Sci. 2020, 176, 706–712. [CrossRef]
45. Doush, I.; Al-Betar, M.; Awadallah, M.; Alyasseri, Z.; Makhadmeh, S.; El-Abd, M. Island Neighboring Heuristics Harmony Search

Algorithm for Flow Shop Scheduling with Blocking. Swarm Evol. Comput. 2022, 74, 101127. [CrossRef]
46. Brum, A.; Ruiz, R.; Ritt, M. Automatic Generation of Iterated Greedy Algorithms for the Non-Permutation Flow Shop Scheduling

Problem with Total Completion Time Minimization. Comput. Ind. Eng. 2022, 163, 107843. [CrossRef]
47. Miyata, H.; Nagano, M. An Iterated Greedy Algorithm for Distributed Blocking Flow Shop with Setup Times and Maintenance

Operations to Minimize Makespan. Comput. Ind. Eng. 2022, 171, 108366. [CrossRef]
48. Schulz, S.; Neufeld, J.; Buscher, U. Multi-Objective Iterated Local Search Algorithm for Comprehensive Energy-Aware Hybrid

Flow Shop Scheduling. J. Clean. Prod. 2019, 224, 421–434. [CrossRef]
49. Shao, W.; Shao, Z.; Pi, D. Multi-Local Search-Based General Variable Neighborhood Search for Distributed Flow Shop Scheduling

in Heterogeneous Multi-Factories. Appl. Soft Comput. 2022, 125, 109138. [CrossRef]
50. Pereira, M.; Nagano, M. Hybrid Metaheuristics for the Integrated and Detailed Scheduling of Production and Delivery Operations

in No-Wait Flow Shop Systems. Comput. Ind. Eng. 2022, 170, 108255. [CrossRef]
51. Umam, M.; Mustafid, M.; Suryono, S. A Hybrid Genetic Algorithm and Tabu Search for Minimizing Makespan in Flow Shop

Scheduling Problem. J. King Saud Univ. Comput. Inf. Sci. 2022, in press. [CrossRef]
52. Brammer, J.; Lutz, B.; Neumann, D. Permutation Flow Shop Scheduling with Multiple Lines and Demand Plans Using

Reinforcement Learning. Eur. J. Oper. Res. 2022, 299, 75–86. [CrossRef]
53. Pang, X.; Xue, H.; Tseng, M.L.; Lim, M.; Liu, K. Hybrid Flow Shop Scheduling Problems Using Improved Fireworks Algorithm

for Permutation. Appl. Sci. 2020, 10, 1174. [CrossRef]

http://dx.doi.org/10.1016/j.ejco.2022.100029
http://dx.doi.org/10.1016/j.knosys.2021.107199
http://dx.doi.org/10.1016/j.asoc.2019.105887
http://dx.doi.org/10.1016/j.eswa.2021.115353
http://dx.doi.org/10.1016/j.asoc.2021.107298
http://dx.doi.org/10.1016/j.knosys.2022.109290
http://dx.doi.org/10.1016/j.cie.2022.108157
http://dx.doi.org/10.1016/j.asoc.2022.108469
http://dx.doi.org/10.1016/j.asoc.2021.107085
http://dx.doi.org/10.1016/j.swevo.2022.101056
http://dx.doi.org/10.1016/j.ejco.2021.100017
http://dx.doi.org/10.1016/j.omega.2021.102493
http://dx.doi.org/10.1016/j.ejor.2021.07.051
http://dx.doi.org/10.1016/j.ejor.2020.04.024
http://dx.doi.org/10.1016/j.cie.2022.107956
http://dx.doi.org/10.1016/j.eswa.2022.118068
http://dx.doi.org/10.1016/j.cie.2022.108236
http://dx.doi.org/10.1016/j.swevo.2020.100807
http://dx.doi.org/10.1016/j.cie.2022.108126
http://dx.doi.org/10.1016/j.procs.2020.09.043
http://dx.doi.org/10.1016/j.swevo.2022.101127
http://dx.doi.org/10.1016/j.cie.2021.107843
http://dx.doi.org/10.1016/j.cie.2022.108366
http://dx.doi.org/10.1016/j.jclepro.2019.03.155
http://dx.doi.org/10.1016/j.asoc.2022.109138
http://dx.doi.org/10.1016/j.cie.2022.108255
http://dx.doi.org/10.1016/j.jksuci.2021.08.025
http://dx.doi.org/10.1016/j.ejor.2021.08.007
http://dx.doi.org/10.3390/app10031174


Algorithms 2022, 15, 377 26 of 27

54. Engin, O.; Güclü, A. A New Hybrid Ant Colony Optimization Algorithm for Solving the No-Wait Flow Shop Scheduling
Problems. Appl. Soft Comput. 2018, 72, 166–176. [CrossRef]

55. Gümüsçü, A.; Kaya, S.; Tenekeci, M.; Karaçizmeli, I.; Aydilek, I. The Impact of Local Search Strategies on Chaotic Hybrid Firefly
Particle Swarm Optimization Algorithm in Flow-Shop Scheduling. J. King Saud Univ. Comput. Inf. Sci. 2022, in press. [CrossRef]

56. Deng, G.; Xu, M.; Zhang, S.; Jiang, T.; Su, Q. Migrating Birds Optimization with a Diversified Mechanism for Blocking Flow
Shops to Minimize Idle and Blocking Time. Appl. Soft Comput. 2022, 114, 107834. [CrossRef]

57. Zhang, C.; Tan, J.; Peng, K.; Gao, L.; Shen, W.; Lian, K. A Discrete Whale Swarm Algorithm for Hybrid Flow-Shop Scheduling
Problem with Limited Buffers. Robot. Comput.-Integr. Manuf. 2021, 68, 102081. [CrossRef]

58. Croce, F.; Salassa, F.; T’Kindt, V. Exact Solution of the Two-Machine Flow Shop Problem with Three Operations. Comput. Oper.
Res. 2022, 138, 105595. [CrossRef]

59. Ho, M.; Hnaien, F.; Dugardin, F. Exact Method to Optimize the Total Electricity Cost in Two-Machine Permutation Flow Shop
Scheduling Problem under Time-of-Use Tariff. Comput. Oper. Res. 2022, 144, 10578. [CrossRef]

60. Oujana, S.; Yalaoui, F.; Amodeo, L. A Linear Programming Approach for Hybrid Flexible Flow Shop with Sequence-Dependent
Setup Times to Minimise Total Tardiness. IFAC PapersOnLine 2021, 54-1, 1162–1167. [CrossRef]

61. Schaller, J.; Valente, J. Branch-and-Bound Algorithms for Minimizing Total Eearliness and Tardiness in a Two-Machine Permuta-
tion Flow Shop with Unforced Idle Allowed. Comput. Oper. Res. 2019, 109, 1–11. [CrossRef]

62. Liu, M.; Li, Y.; Huo, Q.; Li, A.; Zhu, M.; Qu, N.; Chen, L.; Xia, M. A Two-Way Parallel Slime Mold Algorithm by Flow and
Distance for the Travelling Salesman Problem. Appl. Sci. 2020, 10, 6180. [CrossRef]

63. Golden, B.; Raghavan, S.; Wasil, E. The Vehicle Routing Problem: Latest Advances and New Challenges; Springer: Berlin/Heidelberg,
Germany, 2008.

64. Toth, P.; Vigo, D. The Vehicle Routing Problem; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002.
65. Soto-Mendoza, V.; García-Calvillo, I.; Ruiz-y Ruiz, E.; Pérez-Terrazas, J. Comparison between Single and Multi-Objective

Evolutionary Algorithms to Solve the Knapsack Problem and the Travelling Salesman Problem. Algorithms 2020, 13, 96.
[CrossRef]
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