

 algorithms-15-00366

algorithms-15-00366

Algorithms 2022, 15(10), 366; doi:10.3390/a15100366

Article

Efficient 0/1-Multiple-Knapsack Problem Solving by Hybrid DP Transformation and Robust Unbiased Filtering

Patcharin Buayen *[image: Orcid] and Jeeraporn Werapun

Department of Computer Science, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

*

Correspondence: 56605013@kmitl.ac.th

Academic Editor: Jesper Jansson

Received: 16 August 2022 / Accepted: 27 September 2022 / Published: 30 September 2022

Abstract

:

The multiple knapsack problem (0/1-mKP) is a valuable NP-hard problem involved in many science-and-engineering applications. In current research, there exist two main approaches: 1. the exact algorithms for the optimal solutions (i.e., branch-and-bound, dynamic programming (DP), etc.) and 2. the approximate algorithms in polynomial time (i.e., Genetic algorithm, swarm optimization, etc.). In the past, the exact-DP could find the optimal solutions of the 0/1-KP (one knapsack, n objects) in O(nC). For large n and massive C, the unbiased filtering was incorporated with the exact-DP to solve the 0/1-KP in O(n + C′) with 95% optimal solutions. For the complex 0/1-mKP (m knapsacks) in this study, we propose a novel research track with hybrid integration of DP-transformation (DPT), exact-fit (best) knapsack order (m!-to-m2 reduction), and robust unbiased filtering. First, the efficient DPT algorithm is proposed to find the optimal solutions for each knapsack in O([n2,nC]). Next, all knapsacks are fulfilled by the exact-fit (best) knapsack order in O(m2[n2,nC]) over O(m![n2,nC]) while retaining at least 99% optimal solutions as m! orders. Finally, robust unbiased filtering is incorporated to solve the 0/1-mKP in O(m2n). In experiments, our efficient 0/1-mKP reduction confirmed 99% optimal solutions on random and benchmark datasets (n δ 10,000, m δ 100).

Keywords:

multiple 0/1-knapsack problem (0/1-mKP); efficient NP-hard problem solving; exact-DP transformation; exact-fit (best) knapsack order; robust unbiased filtering

1. Introduction

Presently, a variety of NP-hard problems are involved in many real-world applications and AI computing. Solving specific NP-hard problems (with high performance in efficient time) for those applications is challenging. Some of the interesting NP-hard problems are the 0/1-KP (knapsack problem), the 0/1-mKP (multiple m knapsacks), etc.

Formally, the 0/1-KP is defined as follows: Consider a set of n objects and a knapsack capacity C, where each object j (=0, 1, …, n − 1) has profit pj and weight wj.

The objective of the 0/1-KP is to select some objects for the maximum total profit kept in the knapsack that cannot exceed the knapsack capacity (C), defined in Equations (1)–(3). Recently (2018), unbiased filtering [1] was proposed (for the 0/1-KP) to select outstanding objects (from n objects) before applying the exact DP (dynamic programming) algorithm on small remaining n′ (≤200) in efficient time for most optimal solutions (at least 95%) of regular and irregular datasets.

 Maximize ∑ j = 0 n − 1 p j x j

(1)

 Subject to ∑ j = 0 n − 1 w j x j ≤ C

(2)

and xj ∈ {0, 1}; j = 0, 1, 2, …, n − 1

(3)

For the complex 0/1-mKP (m knapsacks), the objective is to select some objects for multiple knapsacks (each selected object j (xij = 1) in a proper knapsack i) that cannot exceed each of the knapsack capacities (Ci; i = 1, 2, 3, …, m), see Figure 1 (one and m knapsacks), for the maximized total profit, defined in Equations(4)–(6).

 Maximize ∑ i = 1 m ∑ j = 0 n − 1 p j x i j

(4)

 Subject to ∑ j = 0 n − 1 w j x i j ≤ C i ; i = 1 , 2 , … , m ; j = 0 , 1 , 2 , … , n − 1

(5)

 and ∑ i = 1 m x i j ≤ 1 , x i j { 0 , 1 } ; i , j

(6)

The 0/1-KP and 0/1-mKP are constructive for science and engineering applications, such as resource allocation [2,3], capital budgeting [4], production planning [5], multicontainer packing [6], risk balancing and assortment optimization [7], other applications in network systems [8,9,10], etc. However, finding the optimal solution of the 0/1-mKP is much harder than that of the 0/1-KP since each selected object (xij = 1) must specify a proper knapsack (Ki with capacity Ci; i ∈ {1, …, m}) from the available knapsacks.

In popular 0/1-KP research, two approaches are extensively studied: 1. the exact approach for optimal solutions (but in exponential time) and 2. the fast approximate approach (but the optimal solution may not be found). In theory, the optimal solution of the 0/1-KP can be computed by DP (dynamic programming) algorithms in O(nC) [11,12,13,14,15], or BnB (branch-and-bound) [16] and backtracking [17] algorithms in exponential time (O(2n)). In practice, approximate methods (i.e., greedy methods [18,19], kernel search [20,21], genetic algorithms [22,23], swarm optimization [24,25,26,27,28], hybrid methods [29,30,31,32], hyper-heuristic method [33], etc.) can find the good solutions in polynomial time. Recently, the time-space reduction algorithm [1] was proposed to solve the 0/1-KP in O(n + C′) for large n by unbiased filtering to preselect the outstanding objects (from n objects) before applying the exact DP algorithm on remaining n′ and C′ (n′ ≤ 200, C′ << C, and massive C may not be a polynomial bound of n), which could find most optimal solutions (at least 95%) in experiments.

In current KP-researches, a variety of 0/1-KPs have been studied, including the multiple KP (0/1-mKP) [34,35,36], no shared xij in m knapsacks (∑ j = 0 n − 1 w j x i j ≤ C i), the multidimensional KP (0/1-MKP) [37,38,39,40,41], (∑ i = 1 m ∑ j = 0 n − 1 w i j x j ≤ C i shared xj in m knapsacks), and the multidimensional multiple-choice KP (0/1-MMKP) [42]. However, the exact solutions of those complex KPs could not be easily found on large n. Recently, the mathematical HyMKP [34] was proposed in O(mnC) for the 0/1-mKP with most optimal solutions (in τ s) on n ≤ 500. For large n and massive C, the existing meta-heuristic algorithms for the 0/1-KP can be applied to solve the 0/1-mKP in polynomial time (but requiring the proper knapsack orders). For high performance, the exact DP could find the optimal solution of the 0/1-KP in O(nC) and O(m!nC) for the 0/1-mKP (with m! orders, C = max(Ci)) for at least 99% optimal solutions (but for small m, n, and C). In this study, we are interested to solve the 0/1-mKP for large m, n, C with the proper orders in efficient time. Our hypothesis is “For each of m knapsacks, apply unbiased filtering before using the exact DP on remaining n′ and Ci’ can find most optimal solutions in efficient time”.

In this research, we introduce a novel research track (a hybrid approach of time-space reduction) for solving the 0/1-mKP in efficient time with expected 99% optimal solutions. In our hybrid approach, we propose the integration of DP transformation (reducing C to C’), exact-fit (best) knapsack-order (reducing m! to m2), and 3. robust unbiased filtering (for polynomial time). First, we propose the DP transformation (DPT) algorithm to find the optimal solutions of the 0/1-KP (for each of m knapsacks) in O([n2, nC]), or O(n2) in the best case and O(nC) in the worst case, before being applied for m knapsacks. Second, for the 0/1-mKP (m knapsacks), we propose the exact-fit (best) knapsack order (in our multi-DPT) in O(m2[n2, nC]) for achieving the good solutions as m! orders (at least 99% optimal solutions). Third, robust unbiased filtering is incorporated to solve the 0/1-mKP in polynomial time (O(m2n)) while retaining 99% optimal solutions. The correctness and complexity of the DPT and multi-DPT algorithms are analyzed. In experiments, the original multi-DPT and the multi-DPT + robust unbiased filtering are evaluated on random and benchmark datasets (n ≤ 10,000, m ≤ 100).

The main parts of this paper are organized as follows: Section 2 reviews the related work. Section 3 presents the DPT algorithm to find the optimal solutions of the 0/1-KP in O([n2, nC]). Section 4 proposes the multi-DPT algorithm with the exact-fit (best) knapsack order to solve the 0/1-mKP in O(m2[n2, nC]) and reduced to O(m2n) by our robust unbiased filtering. Section 5 provides the algorithm analysis (correctness and complexity). Section 6 performs the experiments to evaluate the performance of our multi-DPT algorithm and robust unbiased filtering. Section 7 concludes this study.

2. Related Work

For 0/1-mKP research, finding most optimal solutions (≥99% optimal performance) in an efficient time is challenging. First, Section 2.1 reviews the exact DP algorithms to find the optimal solutions of the 0/1-KP. Section 2.2 explores the time-space reduction algorithm to solve the 0/1-KP in polynomial time. Section 2.3 reviews the recent QDGWO (quantum-inspired differential evolution with adaptive grey wolf optimizer) for the 0/1-KP. Section 2.4 explores the efficient mathematical HyMKP model for the 0/1-mKP.

2.1. 0/1-KP Solving by Dynamic Programming Algorithm

For 0/1-KP solving, let tp[C] be an array of total profits, soltp be a maximum total-profit, soltw be a total-weight (≤C), and solx[n] be an array of solution X (xj = 0/1). Algorithm 1 presents the basic DP [11] with two functions (preprocessing and X-tracking on a 2D array or a matrix (n × C)) to find the optimal solution (soltp, soltw, solx[n]) in O(nC). For example, consider n = 6, C = 18, P = {42, 39, 38, 37, 35, 38}, and W = {10, 11, 11, 8, 10, 9}, Figure 2 displays the result of preprocessing (soltp = 79) and X-tracking (solx = {1, 4} from soltp = 79) by applying Algorithm 1. However, using the 2D array (n × C) reserves a huge space, which is not practical if C > n2. Thus, the fast DP (Algorithm 2) [11] uses a 1D array (of C elements) to find soltp in O(nC) but without solx[n] since the 1D array of the last tp-result cannot support the X-tracking (for all selected objects). Finally, the complete DP (Algorithm 3) [11] (p. 24) uses a 1D array for the full optimal solution (soltp, soltw, solx[n]) by repeating the fast DP (for k selected objects) in O(knC).

	Algorithm 1: Basic DP with 2D array (for soltp, soltw, solx[n]) in O(nC).

	
	
 for (d = 0 to C) tp [0,d] = 0;

	
 for (j = 1 to n) do         // preprocessing for soltp

	
  for (d = 0 to wj−1) tp[j,d] = tp[j − 1,d];

	
  for (d = wj to C) do

	
   if (tp[j − 1,d-wj] + pj > tp[j − 1,d]) then tp[j,d] = tp[j − 1,d-wj] + pj;

	
   else tp[j,d] = tp[j − 1,d];

	
  end for d;

	
 end for j;

	
 soltp = tp[n,C];

	
 d = C; j = n; solx = ∅;         // X-tracking for solx

	
 do// X-tracking for solx

	
  while (tp[j,d] = tp[j − 1,d]) j = j − 1;      // move up

	
  solx = solx U {j}; pp = tp[j,d]-pj; j = j − 1;

	
  while (tp[j,d − 1] ≥ pp and pp > 0) d = d − 1;   // move left

	
while (pp > 0 and j ≥ 1).

	Algorithm 2: Fast DP with 1D array (for soltp, soltw) in O(nC).

	
	1.

	
 for (d = 0 to C) tp[d] = 0;

	2.

	
 for (j = 1 to n) do   // preprocessing for soltp

	3.

	
   for (d = C down to wj) do

	4.

	
    if (tp[d-wj] + pj > tp[d]) then tp[d] = tp[d-wj] + pj;

	5.

	
  end for d;

	6.

	
 end for j;

soltp = tp[C].

	Algorithm 3: Full DP with 1D array (for soltp, soltw, solx[n]) in O(knC).

	
	
 solx = ∅; C’ = C; n’ = n;

	
 do

	
  for (d = 0 to C’) do tp[d] = 0;

	
  for (j = 1 to n’) do     // preprocessing for soltp

	
   for (d = C’ down to wj) do

	
    if (tp[d-wj] + pj > tp[d]) then

	
     x[d] = j; tp[d] = tp[d-wj] + pj;

	
   end for d;

	
  end for j;

	
  r = x[C’];      // find solx (a selected object)

	
  solx = solx U {r}; k = k + 1;

	
  n’ = r − 1; C’ = C’- wr;

	
 while (C’> 0);     // repeat for k selected objects

	
 soltp = tp[C].

2.2. 0/1-KP Solving by Time-Space Reduction Algorithm

In 2018, time-space reduction (TSReduction) algorithm [1] (p. 198) was proposed to solve the 0/1-KP in O(n + C′) for large n by focusing on unbiased filtering. That reduction method (Algorithm 4) consists of three main steps: 1. find the best three initial solutions; 2. perform object classification and unbiased filtering; and 3. apply the full DP on the remaining objects (n’ ≤ 200); see Equations (7)–(9). The advantages of the TSReduction algorithm are the efficient time complexity O(n + C′) and the good performance (95% optimal solutions). See an example (n = 20, C = 100) of the 0/1-KP solved by the TSReduction algorithm in Figure 3 (soltp = 656 (optimal)).

	Algorithm 4: Time-space reduction for 0/1-KP in O(n + C’).

	
	Step 1:

	
Apply the GH (greedy heuristic) algorithm by sorting 3 features (P/W, P, W) for top 3 initial solutions in O(n).

Note: Sorting (in each GH) relies on the major-minor keys.

	-

	
For P/W-decreasing sort, a major key is P/W and 2 minor keys are P & W.

	-

	
For P-decreasing sort, a major key is P and a minor key is W.

	-

	
For W-increasing sort, a major key is W and a minor key is P.

	Step 2:

	
Object classification and unbiased filtering in O(n).

	2.1

	
Improve 3 initial solutions by the GH+ algorithm.

	2.2

	
Compute dynamic weight (dw) by integrating 3 solutions of GH1+ to GH3+ (to support unbiased selection), where dw = wx1 + wx2 + wx3; wx1 = 5, wx2 = 3, and wx3 = 1 if (xj = 1); otherwise wx = 0 (when xj = 0).

	2.3

	
Classify objects and perform unbiased filtering (Group 1 (dw = 9), Group 2 (dw = 8, 6, 5), Group 3 (dw = 4, 3, 1), and Group 4 (dw = 0)).

	-

	
Filtering in/out (to reduce n’ ≤ 200): Select worth objects (xi = 1) with dw = 9 (selected by all 3-GH policies).

	-

	
Select other objects (xi = 1) with dw = 8, 6, 5, except uncertain α (in Group 2) and do not select worst objects (xi = 0) with dw = 0, except β (in Group 4).

	Step 3:

	
Apply the DP in O(C′) on remaining n′ = α + |Group3| + β.

n’ = α + |Group3| + β ≤ 200

(7)

α = min (0.7 ×|Group2|, 20)

(8)

β = min (0.7 ×|Group4|, 200 − |Group3| − α)

(9)

2.3. 0/1-KP Solving by Quantim-Inspired Differential Evolution Algorithm

Recently, the QDGWO (Quantim-inspired differential evolution with adaptive grey wolf optimizer) algorothm (Figure 4) [43] was proposed in 2021 for solving the 0/1-KP by adopting the quantum computing principles plus mutation and crossover operations. In that study, the adaptive mutation operations, the crossover operations, and the quantum observation are combined to generate new solutions as trial individuals in the solution space. In experiments, the fast convergent of QDGWO (on n = 50 to n = 3000 objects) was compared with the existing quantum-based methods (QEA, AQDE, and QSE) using maximum 1000 iterations. The QDGWO results outperformed those of existing Q-based algorithms. However, the QDGWO algorithm could not guarantee the optimal solutions, especially on the irregular datasets.

2.4. 0/1-mKP Solving by Mathematical HyMKP Algorithm

For solving the 0/1-mKP (m knapsacks, n objects), the mathematical HyMKP model (Algorithm 5) [34] (p. 893) was proposed. That hybrid model includes the MULKNAP (well-known partial BnB) program and the create-reflect-multigraph-MKP (Algorithm 6) [34] (p. 891) and two decomposition methods. Algorithm 6 was modified from the arc-flow model and the reflect model in O(mnC), C = max(Ci), i = 1, 2, …, m, by starting with decreasing weights (of n items/objects) for the good initial-solution (in m knapsacks). Then, that solution was improved by the knapsack-based decomposition with v iterations (in τ secs.). In the past, such mathematical models were used to solve the classical stock problem (CSP: 1999-2017) and the cutting and packing problems (1970–1977). In experiments (on OR-benchmark datasets), the mathematical HyMKP algorithm (with time complexity O(mnC)) yielded 99.9% optimal solutions (in τ secs.) for small n ≤ 500.

	Algorithm 5: Mathematical HyMKP model.

	Step 1: perform the existing preprocessing: Instance reduction, Capacity lifting, and Item dominance.

Step 2: call MULKNAP branch-and-bound (BnB) for τ secs.

if (the solution is optimal) then return.

Step 3: call Create-reflect-multigraph-MKP (Algorithm 6).

Step 4: for (i = 1 to v) do

execute the knapsack-based decomposition.

if (an optimal solution has been obtained) then return.

else add the resulting no-good-cut.

end for i

Step 5: if (the instance is not solved) then

execute the reflect-based decomposition and return.

	Algorithm 6: Create-reflect-multigraph-MKP in O(mnC).

	
	
 N = ∅; As = ∅; Ar = ∅; Ac = ∅; Al = ∅; A = ∅; s = 0; C = max(Ci)i = 1,2,...,m

	
 for (l = 1 to C/2) do T[l] = 0;

	
 T[s] = 1; N = N ∪ {s};

	
 for (j = 1 to n) do

	
  for (l = C/2 − 1 down to 0) do

	
   if (T[l] = 1) then

	
    if (l + wj ≤ C/2) then

	
     As = As∪{l,l + wj,j,0)}; T[l + wj] = 1; N = N ∪ {(l + wj)};

	
    for (i = 1 to m) do

	
     if (l + wj > C/2 and l ≤ Ci-(l + wj)) then

	
      Ar = Ar ∪ {l,Ci-(l + wj),j,i)}; N = N ∪ {(Ci-(l + wj))};

	
    end for i;

	
   end if;

	
  end for l;

	
 end for j;

	
 for (i = 1 to m) do N = N ∪ {Ci/2};

	
 for (i = 1 to m) do Ac = Ac ∪ {(Ci/2,Ci/2,0,i};

	
 for (l∈N) do Al = Al ∪ {(l,l’,0,0): l’ = min(e∈N: e > l)};

	
 A= As ∪ Ar ∪ Ac ∪ Al;

	
 return N, A;

In particular, the arc-flow model was modified to fill a knapsack as a path in a graph, where arcs were items/objects. The looping conditions of Algorithm 6 (Lines 4–15) are similar to the basic DP (Algorithm 1) for each of m knapsacks with time complexity in O(mnC). Let (d, e, j, i) denote an arc in a set A from nodes d to e (Lines 8, 11 and 17–19).

	As =

	
{(d, d + wj, j, 0), 1 ≤ j ≤ n} is the set of standard item arcs.

	Ar =

	
{(d, Ci-(d + wj), j, i), 1 ≤ i ≤ m, 1 ≤ j ≤ n} is the set of reflected item arcs (satisfying d + wj > Ci/2 and d ≤ Ci-wj).

	Ac =

	
{(Ci/2, Ci/2, 0, i)} is the set of reflected connection arcs.

	Al =

	
{(d, e, 0, 0), d < e} is the set of loss arcs.

For solving the 0/1-mKP (in theory), the existing researches were focused on the exact algorithms, such as the branch-and-bound algorithm [35] and the mathematical HyMKP [34], where their performance results were compared to the (known) optimal solutions but those algorithms could execute in reasonable time on small n ≤ 500 only.

For large n (in practice), each of the efficient meta-heuristic algorithms [26,30,32,43] proposed for the 0/1-KP (i.e., GA, swarm optimization, quantum computing, hybrid method, etc.) can be applied to solve the 0/1-mKP (for each of m knapsacks) with proper orders. For example, we can apply the recent QDGWO [43]) for the 0/1-KP (one knapsack) to the 0/1-mKP (m knapsacks). However, that meta-heuristic algorithm cannot guarantee the optimal solution for each knapsack, especially on the irregular datasets, and hence the total profit from many knapsacks (m > 10) may be near-optimal only.

Therefore, to solve the 0/1-mKP (m > 10) for large n, we are interested to find the high optimal performance in efficient time by our hybrid approach. In this study, our proposed algorithms (in the hybrid approach) are

	
Exact DP transformation (DPT) algorithm (in Section 3) to find the optimal solutions of the 0/1-KP (in each knapsack).

	
m!-to-m2 knapsack-order reduction (in Section 4.1.2) to define the exact-fit (best) knapsack order for the 0/1-mKP (m knapsacks).

	
Robust unbiased filtering (in Section 4.2) to improve/reduce time complexity to polynomial time while retaining the high optimal performance.

In this 0/1-mKP research, we propose “a novel research track (a hybrid approach of the exact DPT + robust unbiased filtering) to solve the 0/1-mKP in efficient time with expected at least 99% optimal solutions”. We start with our exact-DP transformation for 0/1-KP in O([n2, nC]) over O(nC) for each knapsack (in Section 3) before being applied to 0/1-mKP (m knapsacks) with the exact-fit (best) knapsack order in O(m2[n2, nC]) over O(m![n2, nC]) in Section 4 and reduce it to O(m2n) by our efficient unbiased filtering.

3. 0/1-KP Solving by DP Transformation to List-Based Time-Space Reduction

First, in our new research track (for solving the 0/1-mKP), we propose the DP transformation to list-based time-space reduction (DPT-ListTSR) algorithm to find the optimal solutions of the 0/1-KP in O(n2) in the best case and O(nC) in the worst case. Our DPT-ListTSR algorithm was renovated from the basic DP (Algorithm 1). That original DP can find the optimal solution of the 0/1-KP in O(nC) by using the 2D-array (n × C) in all (best, average, and worst) cases. In this study, the DPT-ListTSR algorithm can find the optimal solution of the 0/1-KP by introducing the lists of effective nodes (e-nodes) in efficient O([n2, nC]). The contribution of our DPT-ListTSR is the forward reduction (F-reduction) in the preprocessing (for the (original) e-nodes) and the backward reduction (B-reduction) in the X-tracking (for the tight bound of the original e-nodes).

Next, to simplify our DPT-ListTSR process (the preprocessing in Section 3.1 and the X-tracking in Section 3.2), the following data structures and proper functions are predefined. See a corresponding example of our DP transformation in Figure 5 (n = 5, C = 18).

The e-node is an effective node with improved tp (total profit) by object j at capacity d that is more than tp at previous capacity d − 1.

The original e-node is the original improved e-node by object j at capacity d (not by object j + 1 at the same d).

The F-list (forward list) is a list of e-nodes (used in object j − 1 and object j).

The B-list (backward list) is a list of original e-nodes (for X-tracking).

F-reduction is a function used to reduce e-nodes to the original e-nodes.

B-reduction is another function applied after finding xj = 1 in X-tracking (to simplify the remaining X-tracking process).

3.1. Preprocessing of the DPT-ListTSR Algorithm

In our preprocessing (Algorithm 7), two (temporary) F-lists of e-nodes (the previous F-list j − 1 and the current F-list j) must be built first; see Figure 5 (j = 0 to n − 1). Since the previous F-list j − 1 can inherit all e-nodes of object 0 to object j − 1, the current F-list j can be constructed from F-list j − 1 (to inherit the previous e-nodes and fulfill the current F-list j with new e-nodes before keeping only the original e-nodes in another B-list Lj). Our preprocessing can reduce the computing time and the using space on a variety of datasets, such as O(n2) in the best case and O(nC) in the worst case, as proven in Section 5.2. The current F-list j of object j (wj, pj) can be created in two main steps. In Step 1 (Algorithm 7: Line 3), some e-nodes (cn = (tp, d)) from the head of F-list j − 1 are copied to F-list j (while (cn.tp < pj and cn.d < wj)). In Step 2 (Algorithm 7: Lines 4–10 (to fulfill F-list j with new e-nodes)), from each e-node (en) of F-list j − 1 (head to tail) Step 2.0 checks to inherit each remaining e-node (from step 1) to F-list j (in a proper location) if it is worth (see detail in Section 5.1), Step 2.1 computes (d = en.d + wj, tp = en.tp + pj), and Step 2.2 adds new e-node to tails of F-list j and B-list j if (d ≤ C and tp > TP). In this step, the desired TP (at d = en.d + wj) can be decoded (from d and n1 in F-list j − 1).

	Algorithm 7: Preprocessing of the DPT-ListTSR algorithm.

	
	
 create initial F-list j − 1 (for j = 0) with one e-node (tp = 0,d = 0);

	
 for (j = 0 to n − 1) do // to fulfill F-list j of object j

	
  initial copy e-nodes (cn) of F-list j − 1 to F-list j (while (cn.tp < pj & cn.d < wj)); // Step 1

	
  e-node en = head(F-list j − 1);

	
  for (each e-node (en) in F-list j − 1) do (from head to tail)         // Step 2

	
   inherit remaining e-node (if it is worth) to F-list j (in a proper location); // Step 2.0

	
   compute d = en.d + wj; tp = en.tp + pj; n1 = en;               // Step 2.1

	
   n1 = decode(n1,d); n2 = n1.next; TP = n1.tp (if n1.d ≤ d < n2.d);

	
   if (d ≤ C & tp > TP) add new e-node to tails of F-list j and B-list j;    // Step 2.2

	
 end for (F-list j − 1);

	
end for j;

	
soltp = max (ori-en.tp) of original e-node in B-list j;

For example (n = 5, C = 18), P = {4, 10, 6, 9, 8} and W = {8, 15, 4, 5, 12}, Figure 5a shows the B-list reduction (right) of seven original e-nodes (see detail in Figure 5b), compared to total profits = n × C = 90 elements (left) of the basic DP. Figure 5b displays the preprocessing of DPT-ListTSR from j = 0 to 4.

	▪

	
For object j = 0 (w0 = 8, p0 = 4), Step 1 copies the first e-node cn = (tp, d) = (0, 0) of F-list j − 1 to F-list j (since cn.tp < p0 and cn.d < w0). In Step 2 (from head of F-list j − 1), at e-node en = (0, 0), Step 2.1 computes d = en.d + w0 = 8, tp = en.tp + p0 = 4, and decode TP = 0 [(n1.d = 0, n1.tp = 0), (n2.d = C = 18, n2.tp = 0)]. Since d < C and tp = 4 > TP = 0, Step 2.2 adds new e-node = (4, 8) in F-list j = 0 and B-list L0.

	▪

	
For object j = 1 (w1 = 15, p1 = 10), Step 1 copies (0, 0), (4, 8) of F-list j − 1 to F-list j (while cn.tp < p1 and cn.d < w1). In Step 2, at e-node en = (0, 0) of F-list j − 1, compute d = 15, tp = 10, TP = 4 ((n1.d = 8, n1.tp = 4), (n2.d = C = 18, n2.tp = 4)). Since tp = 10 > TP = 4, add new e-node (10, 15) in F-list j = 1 and B-list L1. At en = (4, 8), d = 8 + 15 = 23 > C (no new e-node added).

	▪

	
For object j = 2 (w2 = 4, p2 = 6), Step 1 copies (0, 0) of F-list j − 1 to F-list j. In Step 2, at en = (0, 0) of F-list j − 1, d = 4, tp = 6 > TP = 0, add new e-node (6, 4) in F-list j = 2 and B-list L2. At en = (4, 8) of F-list j − 1, d = 8 + 4 = 12, tp = 4 + 6 = 10 > TP = 4, add new e-node (10, 12). At en = (10, 15), d = 15 + 4 = 19 > C (no new e-node added).

	▪

	
For object j = 3 (w3 = 5, p3 = 9), Step 1 copies (0, 0), (6, 4) of F-list j − 1 to F-list j. In Step 2, at en = (0, 0) of F-list j − 1, d = 5, tp = 9 > TP = 6 (add new e-node (9, 5)). At en = (6, 4) of F-list j − 1, d = 4 + 5 = 9, tp = 6 + 9 = 15 > TP = 6 (add new e-node (15, 9)). At en = (10, 12), d = 17, tp = 19 > TP = 10 (add new e-node (19, 17)).

	▪

	
For object j = 4 (w4 = 12, p4 = 8), Step 1 copies (0, 0), (6, 4) of F-list j − 1 to F-list j. In Step 2, at en = (0, 0) of F-list j − 1, compute d = 12, tp = 8 < TP = 15 (no new e-node added). At en = (6, 4), compute d = 4 + 12 = 16, tp = 6 + 8 = 14 < TP = 15 (no new e-node added). At en = (9, 5), add this remaining (worth) e-node to F-list j and compute d = 5 + 12 = 17, tp = 9 + 8 = 17 < TP = 19 (no new e-node added). At en = (15, 9), add this remaining e-node to F-list j and compute d = 9 + 12 = 21 > C (no new e-node added). At en = (19, 17), add this remaining e-node to F-list j and compute d = 17 + 12 = 29 > C (no new e-node added).

Figure 6 shows another example (n = 15, C = 40), P = {17, 14, 14, 15, 12, 16, 13, 15, 16, 18, 22, 24, 21, 13, 11} and W = {11, 14, 7, 5, 10, 12, 5, 8, 5, 11, 9, 10, 8, 5, 6}. The 223 e-nodes (black + gray) and 103 original e-nodes (black) are reduced over nC = 15 × 40 = 600 cells.

3.2. X-Tracking of the DPT-ListTSR Algorithm

Our X-tracking for solx[n] (Algorithm 8) works on the B-lists (of the original e-nodes), similar to the effective-tps in the 2D array of the basic DP (Algorithm 1: Lines 9–15). On B-list X-tracking, moving left/up (from the B-list Ln−1) is processed by the back pointer in each B-list Lj. Moreover, to simplify the remaining of the X-tracking (after selecting any xj = 1), the B-reduction (Algorithm 8: Line 4) is used to delete some of the original e-nodes of B-lists 0 to j − 1 (if e-node.d ≥ node-j.d) after selecting xj (of node-j(tp, d)).

	Algorithm 8: X-tracking (for solx) on B-lists of the DPT-ListTSR algorithm.

	
	
 start from B-list Ln−1 up to Lj(tp = soltp); tp = Lj.tp; tw = Lj.tw;

	
 while (tp > 0 & j ≥ 0) do

	
  solx = solx∪{j};    // union a select object j (xj = 1) with node-j(tp, d);

	
  call B-reduction (delete e-node(tp, d) of L0 to Lj−1 if e-node.d ≥ node-j.d);

	
  tp = tp-pj; tw = tw-wj; // update remaining (tp, tw);

	
  j = moveLEFT-UP(n, C, j, tp, tw, L); // move to next e-node(tp, d = tw);

	
 end while.

Figure 7a displays an example of X-tracking (n = 5) on B-lists (Figure 5). From list Ln−1, moving starts from n − 1 = 4 with tp = 19 (tw = 17) to select x3 = 1. Next, with tp = 10 (tw = 12) after selecting x2 = 1, B-reduction deletes an unused e-node (tp = 10, d = 15) in list L1 (since e-node.d (= 15) > node-j.d (= 12)) and finally selects x0 = 1. Figure 7b shows a complex example of X-tracking and B-reduction (n = 15) on B-lists (dark color in Figure 6), i.e., after selecting x13 = 1, seven original e-nodes (at j = 0–12, d = 39–40) in B-lists are deleted, after selecting x11 = 1, 14 original e-nodes (at j = 0–10, d = 34–38) in B-lists are deleted, after selecting x10 = 1, 21 original e-nodes (at j = 0–9, d = 24–33) in B-lists are deleted, after selecting x8 = 1, 8 original e-nodes (at j = 0–7, d = 15–23) in B-lists are deleted, etc.

4. 0/1-mKP Solving by Multi-DPT-ListTSR Plus Unbiased Filtering in Efficient Time

To solve the 0/1 mKP, we propose an efficient novel research track (Figure 8a) by starting with the exact DP in exponential time O(m!nC) and ending with polynomial time O(m2n) by our efficient unbiased filtering, while retaining 99% optimal solutions. To solve this complex NP-hard problem (0/1-mKP), we propose three effective algorithms: 1. the multi-DPT-ListTSR algorithm (for m knapsacks) by applying the exact DPT-ListTSR algorithm (in Section 3), 2. the exact-fit (best) knapsack order (with m!-to-m2 reduction by applying the DPT-ListTSR) to achieve the good results as m! orders, and 3. robust unbiased filtering (for polynomial time). Moreover, Figure 8b presents a variety of our parallel reduction models based on medium and coarse grains (p ≤ m processors). First, in Section 4.1, we propose the multi-DPT-ListTSR algorithm to find 99% optimal solutions (of the 0/1-mKP) in O(m2[n2, nC]) and hence O(m[n2, nC]) in parallel (p = m processors). Second, in Section 4.2, robust unbiased filtering is incorporated with our multi-DPT-ListTSR in O(m2(n + C′)) or O(m2n) with C′ (<<C) < large n and O(mn) in parallel (p = m processors).

4.1. Efficient Multi-DPT-ListTSR Algorithm for Solving 0/1-mKP

The 0/1-mKP is one of the hardest KPs since it is difficult to find the optimal solutions in O((m + 1)n) by the BnB algorithm, except on small n. For large n, we study the DPT-ListTSR algorithm (in Section 3) first for the 0/1-KP since its optimal solution can be computed in O([n2, nC]) in each knapsack (or the internal effect for the 0/1-mKP (m knapsacks)). Next, we can use m! orders (m knapsacks) directly (for the external effect) in our multi-DPT-ListTSR algorithm for at least 99% optimal solutions in O(m! [n2, nC]) since the more orders there are, the higher the optimal precision. However, that exponential complexity cannot support large m, n, and C. Thus, we propose two efficient order reductions: 1. the top nine (knapsack) orders in O(m[n2, nC]) for the regular datasets and 2. the exact-fit (best) knapsack order in O(m2[n2, nC]) for the irregular datasets.

4.1.1. Top Nine Knapsack Orders for Regular Datasets

Initially, the top nine (knapsack) orders are introduced in our multi-DPT-ListTSR algorithm, which are good enough to solve the 0/1-mKP with 99% optimal solutions for the regular datasets. Each of the top nine orders is obtained by sorting m capacities (Ci, i = 1, 2, 3, …, m). For example (m = 5), the forward order (F) of capacities C = (66, 26, 80, 96, 70) is (1, 2, 3, 4, 5), and the top three orders are increasing (inc) = (2, 1, 5, 3, 4), decreasing (dec) = (4, 3, 5, 1, 2), and combined inc-dec = (2, 4, 1, 3, 5). In this study, the top nine effective orders include increasing (inc), decreasing (dec), combining inc-dec, combining dec-inc, forward (F), backward (B), odd-even (of F), odd-even (of inc), and odd-even (of dec); see a corresponding example in Figure 9. Moreover, each result of the top nine orders can be improved by the Latin square (LS) of m permutations to achieve at least 99% optimal solutions (for the regular datasets). In practice, the partial LS (first nine permutations) of the top nine orders are used to preserve the complexity in O(m[n2, nC]) for m > 9.

Algorithm 9 (multi-DPT-ListTSR) is proposed to solve the 0/1-mKP for each order (of top nine orders/Latin squares of nine orders) in O(m[n2, nC]). Moreover, in some cases, there are different Xs (in X-tracking from many soltws of max soltp), called the nonunique solution Xs, in each knapsack. For the 0/1-KP, X-tracking can start at (soltp, min soltw) or (soltp, max soltw) for different Xs. For the 0/1-mKP (Algorithm 9: Lines 5–6), knapsack i (≤ m − 1) should start at (soltp, max soltw) to allow the better result for the remaining knapsacks, while the last one (i = m) can start at (soltp, min soltw). For example, given a dataset (n = 25, m = 4, C = (20, 30, 40, 50), P = {17, 10, 14, 18, 14, 15, 27, 11, 12, 16, 24, 13, 22, 26, 15, 16, 18, 22, 19, 24, 21, 13, 14, 11, 28}, and W = {11, 4, 14, 3, 7, 5, 4, 4, 10, 12, 6, 5, 7, 6, 8, 5, 11, 9, 5, 10, 8, 5, 3, 6, 8}). In knapsacks K1 − K2, there are unique X-tracking results, but nonunique X-results occur in knapsack K3 (C3 = 40, n* = 15, j = {0, 2, 4, 5, 8, 9, 11, 14, 15, 16, 17, 19, 20, 21, 23}). Figure 10a shows the result (393) when starting X-tracking at (103, 39), min soltw = 39 in K3. Figure 10b shows the optimal result (398) when starting X-tracking at (103, 40), max soltw = 40 in K3, leading to the better result in knapsack K4 (select j = 0 (w0 = 11, p0 = 17) instead of j = 8 (w8 = 10, p8 = 12) in Figure 10a). Note: In parallel (p = m), we can assign one order per processor for at most m permutation orders (for independent computing for p solutions (at the same time) before selecting the best result).

	Algorithm 9: Multi-DPT-ListTSR for one proper order: O(m[n2,nC]).

	
	
 n* = n;

	
 for (i = 1 to m) do

	
  apply DPT-ListTSR (n* objects) on knapsack i (Ki);

	
   call Algorithm 7; // preprocessing (of DPT-ListTSR)

	
   if (i < m) start X-tracking at (max tp, max tw);

	
   else (i = m) start X-tracking at (max tp, min tw);

	
   call Algorithm 8; // X-tracking (of DPT-ListTSR) for max tp

	
   Total profit = Total profit + max tp;

	
  update n* (exclude ki selected objects of knapsack i);

	
 end for i;

	
 return Total profit.

4.1.2. The Exact-Fit (Best) Knapsack Order for Regular and Irregular Datasets

For the irregular datasets, we may use all possible m! orders to find at least 99% optimal solutions in O(m! [n, nC]) but m! orders work on small m only. Thus, for large m, to achieve the optimal precision as m! orders, we propose the exact-fit (best) knapsack order (Algorithm 10) in O(m2[n2, nC]), where both internal and external effects must be solved by the exact DPT-ListTSR algorithm. For the external effect (among m knapsacks), the DPT-ListTSR algorithm is used for computing the exact (TPi, TWi) in each of available knapsacks before selecting Ki with the best exact-fiti = min(dFiti), where different Fiti (dFiti) = Ci − TWi, ∀i ≤ m. For instance, Figure 11 shows the exact-fit (best) order for m = 5, C = (66, 26, 80, 96, 70), n = 33, P = {18, 44, 7, 21, 22, 29, 42, 24, 36, 17, 13, 23, 12, 25, 15, 41, 15, 19, 33, 5, 8, 18, 28, 25, 12, 30, 19, 14, 48, 25, 16, 23, 25}, and W = {6, 12, 16, 12, 14, 14, 5, 12, 12, 15, 10, 17, 14, 9, 19, 5, 7, 12, 8, 14, 14, 15, 14, 12, 7, 6, 13, 15, 10, 14, 8, 12, 10}. In Figure 11b, the best order (2, 4, 1, 5, 3) is computed in m(m + 1)/2 = 15 steps by our exact DPT-ListTSR algorithm to achieve the optimal result (726).

	▪

	
In the first Ki selection, there are m dFiti-results (in m = 5 steps) with two min(dFits) = 0 (in K2, K3) and K2 (min C2) is selected (see conditions in Step 2 of Algorithm 10).

	▪

	
In the second Ki selection, there are 4 dFiti-results and K4 (min(dFit4) = 0) is selected.

	▪

	
In the third Ki selection, there are 3 dFiti-results and K1 (min(dFit1) = 0) is selected.

	▪

	
In the fourth Ki selection, there are 2 dFiti-results and K5 (min(dFit5) = 0) is selected.

	▪

	
In the fifth Ki selection, the last K3 (min(dFit3) = 0) in the last step is selected.

Moreover, for critical decisions in some datasets, there are equal min(dFiti)s in Ki′ − Ki″. Then, three extra policies (Step 2 in Algorithm 10) are introduced to find the best of the three best results (for the good results as m! orders as much as possible).

	
Algorithm 10: multi-DPT-ListTSR (the exact-fit (best) knapsack order).

	

	Step 1:

	
apply DPT-ListTSR for (TPi,TWi) on each of m knapsacks in O(m[n2, nC]) and O([n2, nC]) in parallel (p = m).

	Step 2:

	
select best Ki with min(dFiti); dFiti = Ci -TWi (i = 1, 2, …, m).

In Step 2, for critical min(dFiti), each of the three policies is applied.

	
   

	
Policy 1: if (there are equal min(dFiti)s), select best Ki with min(Ci);

    if (there are equal min(Ci)s), select best Ki with max(TPi);

	
  

	

	
Policy 2: if (there are equal min(dFiti)s), select best Ki with max(TPi/TWi);

    if (there are equal max(TPi/TWi)s), select best Ki with min(Ci);

    if (there are equal min(Ci)s), select best Ki with max(TPi);

	

	

	
Policy 3: if (there are equal min(dFiti)s), select best Ki with max(TPi);

    if (there are equal max(TPi)s), select best Ki with min(Ci);

	

	

	Step 3:

	
update unselected n* = n − k and m’ = m − 1.

	Step 4:

	
repeat Step 1–3 on n* and m’ until m’ = 1.

In parallel, the multi-DPT-ListTSR (the exact-fit (best) order) can be processed in O(m[n2, nC]) by p = m. However, O(mnC) in the worst case is not efficient for large m, n, and C. Thus, in Section 4.2, robust unbiased filtering (our key contribution) is presented in efficient O(m2n) by p = 1 and O(mn) by p = m while retaining 99% exact precision.

4.2. Efficient Robust Unbiased Filtering for Polynomial Time Reduction

In our novel research track (Figure 8a), the contribution in polynomial time is achieved by robust unbiased filtering in O(m2(n + C′)) or O(m2n) on C′ (<<C) < large n while retaining 99% optimal solutions. Our (fast and efficient) unbiased filtering can select the outstanding objects (from n objects), and only uncertain objects (n’ < 300) are considered by the DPT-ListTSR algorithm (in each knapsack). For the 0/1-mKP, the parameter (γ, α, β)-setting (in Equations (10)–(14)) was our key contribution to retain 99% optimal precision, as in our previous work (Algorithm 4) [1]. Usually, the critical and uncertain objects (γ, α, and β) could not be easily found. In this study, we performed the experiment on a variety of datasets (including the critical datasets) to classify objects into four groups (see Figure 12) before performing the efficient unbiased filtering. Variables (γ, α) refer to some critical objects (in Groups 1–2), another variable β refers to other critical objects (in Group 4), and most uncertain objects (U) are in Group 3.

n′ = γ + α + U + β < 300

(10)

γ = min (10, 0.15 × |Group1|); max γ = 10

(11)

α = min (25, 0.85 × |Group2|); max α = 25

(12)

β = min (50, 0.70 × |Group4|); max β = 50

(13)

U = min (200, |Group3|); max U = 200

(14)

From the four groups of object classification (in Figure 12), the dynamic critical region was studied to limit the critical/uncertain objects (n′ < 300) after filtering while retaining 99% optimal precision. For large n, the variable n′ is γ + α + β + U = 10 + 25 + 50 + 200 = 285 since for large C there are a large number of filtering-in objects (xj = 1) and for small C there are a large number of filtering-out objects (xj = 0). Efficient filtering (in Algorithm 11: Line 3) is required (in each Ki) before applying the DPT-ListTSR algorithm to n′ and Ci’. Note: n′ ((temporary) remaining objects after filtering) and n* (remaining objects for next knapsack) are different. For example, Figure 13 shows the result of object classification for filtering (n = 25, m = 2, C = (30, 40), P = {17, 10, 14, 18, 14, 15, 27, 11, 12, 16, 24, 13, 22, 26, 15, 16, 18, 22, 19, 24, 21, 13, 14, 11, 28}, and W = {11, 4, 14, 3, 7, 5, 4, 4, 10, 12, 6, 5, 7, 6, 8, 5, 11, 9, 5, 10, 8, 5, 3, 6, 8}) with four-group classification (P/W-rank in each group). Figure 14 demonstrates the result of filtering-in three objects (6, 13, 3) in knapsack K1 (C = 30) and (temporary) filtering-out four objects (0, 9, 8, 2). For the remaining n′ = 18 and C′ = 17, the DPT-ListTSR selects three objects (22, 10, 24). Then, there are remaining n* = 19, including (0, 9, 8, 2). For knapsack K2 (C = 40), the filtering selects three objects (18, 12, 15), and the DPT-ListTSR selects five objects (5, 7, 11, 21, 1) from n′ = 14, C2′ = 18. The result of our multi-DPT-ListTSR + robust filtering is 256 (optimal). In addition, for the irregular datasets, our robust unbiased filtering can select some of n objects before packing the remaining n′ (<300) by the DPT-ListTSR in each knapsack. Figure 15 shows the optimal solution (726) by our efficient filtering, similar to Figure 11 (by our original multi-DPT-ListTSR). See the experimental results of regular and irregular datasets in Section 6.

	Algorithm 11: Multi-DPT-ListTSR + robust unbiased filtering.

	
	
 n* = n;

	
 for (i = 1 to m) do

	
  do object classification and unbiased filtering (for Filter-tp) on n*;

	
  apply DPT-ListTSR (n′ < 300) on knapsack i (Ci’);

	
   call Algorithm 7 (preprocessing on remaining n′, Ci’);

	
   if (i < m) start = (max tp,max tw) else start = (max tp,min tw);

	
   call Algorithm 8 (X-tracking on n′ for solx from max tp);

	
   Total profit = Total profit + Filter-tp + max tp;

	
  update n* (exclude ki selected objects of knapsack i);

	
 end for i;

	
 return Total profit.

5. Analysis of Proposed Algorithms

The correctness of the DPT-ListTSR algorithm for solving the 0/1-KP was proven in Section 5.1 and its complexity was analyzed in Section 5.2. For solving the 0/1-mKP, the high (optimal) precision (as m! orders) of the exact-fit (best) knapsack order was presented in Section 5.3. Finally, the 99% optimal precision of the robust unbiased filtering for solving the 0/1-KP and the 0/1-mKP were analyzed in Section 5.4.

5.1. Correctness of the DPT-ListTSR Algorithm

The DPT-ListTSR algorithm (in Section 3) was designed to solve the 0/1-KP in O([n2, nC]) on the efficient lists, which can find the optimal solutions as the best DP (Algorithm 1: O(nC) on a 2D-array (n × C)) before being applied in each of m knapsacks.

Our DPT-ListTSR algorithm can reduce not only the redundant computing time but also the space consumption (of the basic DP: Algorithm 1) while retaining the correctness. Our focus is the DP transformation of the 2D array (nxC) to the efficient lists of e-nodes. Our preprocessing (Algorithm 7) employs two (temporary) F-lists (of objects j − 1 and j) to inherit all worth e-nodes (of objects 0 to j − 1) and compute new e-nodes (improved tp values by the current object j) before saving only the original e-nodes in B-list j.

To clarify our correct transformation, Figure 16 shows the construction of e-nodes (of F-lists j) in Figure 5 (n = 5). For object j = 1 (p1 = 10, w1 = 15), Figure 16a displays the F-list j construction. After the initial copy of two e-nodes (cn = (tp, d) = (0, 0) and (4, 8)) from F-list j − 1 (while cn.tp < p1 and cn.d < w1) to F-list j, the rest of F-list j is fulfilled. For the first e-node en = (0, 0) of F-list j − 1, a new e-node (10, 15) with d = 15 < C and tp = 10 > TP = 4 is added to the end of F-list j. For the next en = (4, 8), compute d = 8 + 15 = 23 > C (no new e-node is added). For object j = 3 (p3 = 9, w3 = 5), Figure 16b shows the F-list j construction in three steps. After the initial copy of two e-nodes (cn = (0, 0) and (6, 4)) from F-list j − 1 (while cn.tp < p3 and cn.d < w3) to F-list j, the rest of F-list j is fulfilled. For en = (0, 0), a new e-node (9, 5) is added to F-list j. Second, for en = (6, 4), a new e-node (6 + 9, 4 + 5) = (15, 9) is added to F-list j. Third, for en = (10, 12), this remaining e-node is not inherited, whereas a new e-node (10 + 9, 12 + 5) = (19, 17) is added to F-list j. Note: Function “inherit remaining e-node” (in Algorithm 7: Line 6) is presented in Figure 16b; see the complex inherited results in Figure 6 (n = 15). Finally, our X-tracking (Algorithm 8) can find solx[n] from the original e-nodes (on the B-lists in Figure 7), similar to the basic DP (on the 2D-array).

5.2. Complexity Analysis of the DPT-ListTSR Algorithm

The time complexity of our DPT-ListTSR algorithm for solving the 0/1-KP is O([n2, nC]), according to the efficient reduction of computing time and using space; see Figure 17 (our efficient time-space reduction). Our time complexity depends on the number of e-nodes of the (temporary) F-list j for all j = 0, 1, 2, 3, …, n − 1, where |F-list j| ≤ 2|F-list j − 1|; see a simple example (n = 5) in Figure 5. The (initial) F-list j contains one e-node (tp, d) = (0, 0). For object j = 0, there are at most two e-nodes (≤2 nodes). For object j = 1 (≤ 4 nodes) and for any j (≤ 2 × 2j−1 nodes), the time complexity of our DPT-ListTSR algorithm can be the best, average, or worst cases, depending on the datasets. Figure 5 displays one of the best cases (n = 5, C = 18, e-nodes = 19, and original e-nodes = 7, reduced from nC = 90 elements). Thus, in this analysis, the best and worst cases can be derived as follows:

	-

	
Best case: Total steps (n objects (j = 0 to n − 1)) are approximately 1 + 2 + 4 +…+ 2(j + 1) +…+ 2n ≈ n(n + 1) = O(n2).

	-

	
Worst case (rarely occurs): Total steps are approximately 1 + 2 + (≤4) + (≤8) +…+ (≤2 × 2j) +…+ (≈n × C/2) = O(nC).

The worst case (the e-nodes of F-listn−1 = |F-listn−1| ≈ C) hardly occurs due to some remaining e-nodes of F-list j − 1 are not inherited to F-list j (see a clarified example in Figure 16b) and no additional new e-nodes in F-list j when considering some (worst) objects j (such as large wj or tiny profit pj) by two conditions: 1. node.tp + pj < tp[d] (no improved tp) and 2. node.d + wj > C (at d + wj, object j cannot be packed in the knapsack), such as no additional new e-node for object j = 4 (in Figure 5). Figure 6 shows an example of a regular/average case (n = 15, C = 40, nC = 600, e-nodes = 223, and original e-nodes = 103). The time complexity of the average case arises in most datasets (≈(best + worst)/2 < nC/2). Since a weight wj of object j can be 1 ≤ wj < C, the average wj is approximately C/n. For wj ≥ C/n, usually no e-node is added (because of the condition node.d + wj > C).

For m knapsacks, the time complexity of our multi-DPT-listTSR algorithm for solving the 0/1-mKP is O(m[n2, nC]) with any effective knapsack order (including top nine orders) and O(m2[n2, nC]) for the exact-fit (best) order in m(m + 1)/2 steps; see Section 5.3.

For space complexity, Figure 17 illustrates our three steps of space reduction: 1. e-nodes (<nC), 2. original e-nodes, and 3. tight bound of e-nodes; see Figure 5 (n = 5, C = 18) and Figure 7b (n = 15, C = 40). In our experiment, Section 6.1, displays the observed results (n ≤ 3000), where after F-reduction the original e-nodes are a function of cn2 (<n3, c = a constant) and hence after B-reduction the original e-nodes are less than n2.

5.3. High (Optimal) Precision (as m! Orders) of the Exact-Fit (Best) Knapsack Order

In our novel research track (Figure 8), we study by starting with the exact DP for the optimal solution in one knapsack to m knapsacks. In Section 3, we propose the DPT-ListTSR algorithm to find the optimal solution in O([n2, nC]) for each knapsack. In Section 4, we propose the efficient order reduction for m knapsacks (over m! orders), which are 1. the top nine effective orders in our multi-DPT-ListTSR algorithm in O(m[n2, nC]) for the regular datasets, and 2. the exact-fit (best) order in our multi-DPT-ListTSR algorithm in O(m2[n2, nC]) for the irregular datasets, where the DPT-ListTSR algorithm is applied in the internal and external effects (in each knapsack and among m knapsacks).

For the regular datasets, an effective order is increasing Ci; see Figure 18 (selecting k candidates (objects), 0 ≤ j ≤ n − 1, for m positions (knapsacks with capacity Ci, i = 1, 2, …, m) in a company/organization, the profit pj (knowledge), and the weight wj (negative attitude/greedy weight)). For large m, the (fast) top nine effective orders (in Section 4.1.1) are presented and later improved by the LS of m permutations, where the partial LS (first nine permutations of each order) is concerned in O(m[n2, nC]), see Table 1 (the proposed reduction orders and all possible m! orders (for 5 ≤ m ≤ 100)).

For the irregular datasets, we can use m! orders to achieve at least 99% optimal solutions but in exponential time O(m! [n2, nC]). To reduce the time complexity and retain 99% optimal precision, the exact DPT-ListTSR algorithm is applied for not only the internal effect (for the optimal solution in each knapsack) but also the external effect (for the best order among m knapsacks). For the external effect, the DPT-ListTSR algorithm is used to find all exact-fit knapsacks before selecting the best knapsack and repeating the same process for the remaining objects and knapsacks. The exact-fit (best) order (Algorithm 10) is determined in m(m + 1)/2 steps in O(m2[n2, nC]). In particular, the best knapsack Ki is selected by the best exact-fiti = min(dFiti); dFiti = Ci − TWi, where the exact TPi and TWi are computed by the DPT-ListTSR algorithm in each of the available knapsacks; see Figure 11 (n = 33, m = 5). Moreover, if there are equal min(dFiti)s in more than one Ki (in the critical decision) in step 2 of Algorithm 10, then three proper policies are used to find the best of three best solutions. See the confirmed results (99% optimal solutions) in Section 6.3.

5.4. High (Optimal) Precision of the Robust Unbiased Filtering

The exact DP + unbiased filtering [1] can solve the 0/1-KP in O(n + C′), C′ << C with at least 95% optimal precision. Thus, we can adopt the process of unbiased filtering for the 0/1-mKP. Initially, all objects are classified (into four groups) by dynamic weighting (dw), integrated from three effective ranks (P/W, P, W); see Figure 19a, where two parameters (α, β)) were defined to handle special objects (called outliers) in unbiased filtering [1] for the 0/1-KP with 95% optimal solutions. In this study, to achieve 99% optimal solutions for the 0/1-mKP, the (γ, α, β) parameters are introduced by studying all datasets (i.e., most datasets are regular (≈90%) and irregular datasets are ≈10%). In our robust unbiased filtering, the (γ, α, β, U) parameters are determined in Equations (10)–(14), where the critical objects are in low rank in Group 1 (γ) and Group 2 (α) and in top rank in Group 4 (β), and most uncertain objects (U) are in Group 3. Figure 19a shows that some objects (around the critical points in the three ranks (P/W, P, or W)) are the critical objects (γ, α, β). All uncertain/critical objects (n′< 300) can be solved by the DPT-ListTSR algorithm in O(n + C′). Figure 19b shows the idea of 99% optimal precision (due to our robust unbiased filtering) in each knapsack of the 0/1-mKP; see in the observed results (in Section 6).

6. Experimental Results

Experiments were conducted to evaluate the DPT-ListTSR algorithm and robust unbiased filtering for the 0/1-KP (Section 6.1) to ensure at least 99% optimal precision (in each knapsack) before applying to the 0/1-mKP (Section 6.2 and Section 6.3) by the multi-DPT-ListTSR algorithm (the best knapsack-order for m knapsacks) and robust unbiased filtering.

6.1. Results of the DPT-ListTSR (One Knapsack) and Robust Unbiased Filtering

For solving the 0/1-KP, we generated a variety of random datasets (dynamic seeds) with a number of uniform distributions to obtain the profits and weights of n objects (n ≤ 10,000). The experiment was conducted to evaluate the performance of robust unbiased filtering. In the experimental results, our DPT-ListTSR + robust unbiased filtering could find the exact solutions in each of the datasets (n ≤ 10,000), while there were 223 (of 10,000) datasets for which the recent TSReduction + unbiased filtering [1] could not find the optimal solutions. Table 2 shows the empirical results of the first 23 of 223 special datasets (or irregular datasets), n = 12, 14, 21, 26, 39, …, 385 (observed on n = 5, 6, 7, …, 9999, 10,000).

Table 3 presents the optimal performance of our DPT-ListTSR + robust unbiased filtering for at least 99% optimal solutions (on n ≤ 10,000) compared to our previous work [1]. In this experiment, there exist irregular datasets ≈10% (from all 10,000 random datasets), where unbiased filtering (in TSReduction) [1] could handle ≈5% and our robust unbiased filtering (in DPT-ListTSR) could handle ≈9.9%. Table 4 displays our space reduction, observed on n ≤ 3000 (with runtime < 1 min per n). Our F-reduction can save space 69–92%, and our B-reduction can save space 84–93%.

6.2. Results of the Multi-DPT-ListTSR (m Knapsacks) and Robust Unbiased Filtering

For solving the 0/1-mKP, the optimal performance of our multi-DPT-ListTSR algorithm with the proper (knapsack) orders (i.e., top nine orders, Latin squares, the exact-fit (best) order) was evaluated by comparison to the optimal solutions. In practice, the fast response time of our multi-DPT-ListTSR with robust unbiased filtering was observed, while retaining the high performance. In this experiment, a number of random datasets were generated for n (≤10,000) objects and m (≤100) knapsacks with a variation of capacities (i.e., Ci ± 10, Ci ± 15, Ci ± 20, etc.). In addition, the benchmark datasets [34] were observed and the empirical results were compared to the optimal solutions.

In performance (total profit) evaluation, we focus on the investigation of 1. the exact-fit best (knapsack) order in our multi-DPT-List algorithm (for 99% optimal solutions in theory) and 2. the robust unbiased filtering (in polynomial time) to confirm 99% optimal solutions. We implemented our multi-DPT-List (the exact-fit best order) and the fast multi-DPT-List + robust filtering compared to the optimal solutions. For the practical polynomial-time evaluation, the fast response time of our multi-DPT-List + robust filtering was compared to the quick multi-GH+ (a well-known heuristic algorithm).

For the performance comparison, the (known) optimal solutions of the 0/1-mKP (in Column 2 of Table 5, Table 6, Table 7, Table 8, Table 9 and Table 10) can be computed by using a large knapsack (Cs = ∑ i = 1 m C i) by the exact DP or our DPT-List in the (regular and irregular) datasets.

The implemented programs of three main approaches (in this experiment) are

	Exact
	1.1 Multi-DPT-List (exact-fit best order)
	O(m2[n2,nC])

	Exact + Filtering
	2.1 Fast multi-DPT-List + filtering (exact-fit best order)

2.2 Fast multi-DPT-List + filtering (top 9 orders + partial LSs)

2.3 Fast multi-DPT-List + filtering (top 9 orders)
	O(m2n)

O(mn)

O(mn)

	Heuristic
	3.1 Quick multi-GH (P/W rank) (top 9 orders)

3.2 Improved multi-GH+ (P/W rank) (top 9 orders)

3.3 Improved multi-GH+ (P/W rank) (top 9 + full LS orders)
	O(mn)

O(mn)

O(m2n)

First, we evaluated the performance of our mDPT-List and fast mDPT-List + filtering with m! orders (for small m = 2, 3, 4), compared to the optimal solutions. For m ≤ 4, our approach can find the optimal solutions in most datasets; see Columns 3 and 4 in Table 5, Table 6 and Table 7. For m > 4, we investigated the effect of robust filtering plus the top nine effective orders and partial Latin squares (Columns 4 and 5 in Table 8 and Table 9). For the regular datasets (n ≤ 10,000, m ≤ 100), our mDPT-List + filtering (top nine orders) yielded 99% optimal solutions.

Second, we aimed to compare among the fast polynomial-time algorithms (O(mn) − O(m2n)) by observing the effect of the top nine effective orders; see Columns 4–7 in Table 8 and Table 9. For m ≤ 100 and n ≤ 10,000, the results (total profits) of our mDPT-List + filtering (in Column 5) were compared to those of the quick mGH+ (P/W rank) in Columns 6–7 (response time < 1 s). For the regular datasets, our fast mDPT-List + filtering (in Column 5) yielded most optimal solutions, while the results of the quick mGH+ (in Column 6) and its improvement with LS of 9 m orders (in Column 7) were far from the optimal solutions, especially when using many knapsacks (m > 10). Note: GH (P/W rank) is frequently used in many meta-heuristic algorithms (i.e., GA, swarm, etc.) for the good initial solutions to solve the 0/1-KP and GH+ is used in unbiased filtering [1] (p. 199) and in robust unbiased filtering (in this study). In the comparison, we use the improved mGH+ with the Latin squares of top nine orders (for 9 m orders/iterations to emulate the evolution process of GA/swarm optimization). For most datasets, the mGH+ (9m orders) could not find the optimal solutions in each knapsack since it included uncertain object(s) in the solution. However, it is not the problem in our robust unbiased filtering since all uncertain objects (n′ < 300) were considered by the exact DPT-List with 99% optimal precision.

In our initial observation and analysis, for m = 2 (n ≤ 10,000), the mDPT-List + filtering (m! orders) in Table 5 yielded 100% optimal solutions. For m = 3, 4 (n ≤ 10,000), our approach (m! orders) in Table 6 and Table 7 yielded 99.9% optimal solutions. Next, we found that (for the irregular datasets) the top nine orders were not sufficient to find the optimal solutions ≥99%, especially m ≥ 5. Then, we investigated the effect of the LS of the top nine orders (see Column 4 in Table 8, Table 9 and Table 10). Moreover, Table 10 and Table 11 report the irregular datasets found during the execution of each dataset (n ≤ 10,000), where any dataset is called “irregular” when the top nine orders could not find the optimal solution. For m ≥ 5, we performed an intensive study and experiment to observe each of n ≤ 10,000 (m ≤ 100) and found that a number of irregular datasets increased when m increased (see Column 6 in Table 11). Hence, the exact-fit (best) knapsack order is applied to solve this problem.

After performing the intensive study and comparison (on large n ≤ 10,000), we found that for the irregular datasets, our mDPT-List + robust unbiased filtering (the exact-fit (best) order in O(m2n)) could find at least 99% optimal solutions as those of the original mDPT-List (O(m2[n2,nC])); see a report of observed frequency of nonoptimal solutions (0%) of our approach in Table 11 (Column 4).

Finally, we performed an extra experiment to evaluate the performance of our mDPT-List on the benchmark datasets [34] available at http://or.dei.unibo.it/library (accessed on 13 June 2020). Table 12 and Table 13 show the empirical results of our mDPT-List (the best knapsack order in O(m2[n2, nC])) and our fast mDPT-List + robust filtering (the best knapsack order in O(m2n)), compared to the regular mDP (O(m2nC)) and the optimal solutions.

For (n:m = 100:10) 10 datasets [34], the results (in Table 12) showed that our mDPT-List (without/with filtering (the best order, LS orders, top nine orders)) could find the optimal solutions (Columns 4–7), while the results (Column 8) of the quick mGH+ (9 m orders in 9 m iterations) were not optimal.

For (n:m = 200:20, 300:30, 500:50) 20 datasets [34], most optimal solutions of these critical datasets were unknown (see Table 13) since the DP-packing in one large knapsack (Cs = ∑ i = 1 m C i) may be overpacking. Figure 20a shows an example of overpacking, when some objects in the critical datasets (such as some valuable objects j (high pj/wj) but large wj) cannot be packed in any knapsack i with capacity Ci, except in the extra space of one knapsack of large capacity Cs. In these critical datasets, our mDPT-List with the best order (in Columns 5 and 6) yielded good results, which were close to or equal to the optimal solutions and outperformed those of LSs (9m) of top nine orders (in Columns 7–8).

In our contribution, we focus on large n. The fast mDPT-List + filtering (top nine orders) in O(mn) is good for the regular datasets with 99% optimal solutions (Table 5, Table 6, Table 7, Table 8, Table 9 and Table 12). For the irregular datasets (Table 11), our fast mDPT-List (the best order) + filtering in O(m2n) can find 99% optimal solutions similar to our original mDPT-List (the best order). Thus, for the regular and irregular datasets, our fast mDPT-List + filtering (the best order) is sufficient to achieve 99% optimal solutions in polynomial time O(m2n). Moreover, for the critical/special benchmark datasets, we have intensively studied by the experiment (in Section 6.3) to improve the solutions (Column 4 in Table 13).

6.3. Extra Experiment and Additional Improvement on Critical Datasets

To improve the results of the critical datasets (benchmark datasets [34]), we have to find all possible critical decisions, such as 1. nonunique Xs (in X-tracking (see an example in Figure 10) in Section 4.1.1) and 2. equal min(dFits) in more than one knapsacks (in the exact-fit (best) order (see an example in Figure 11) in Section 4.1.2) and provide the right policies to handle them. Clearly, if there is only one min(dFiti), dFiti = Ci–TWi, we can select the best knapsack Ki directly for the best order. By the DP-packing, there may be many equal min(dFiti)s in Ki′–Ki″ but only one Ki is selected (at a time), and this decision may cause the local optimal problem. To handle this problem, the top three effective policies are introduced in Algorithm 10, and the best of three best results is our final solution. However, to achieve the better results of these critical/special datasets, we add the other effective policies 4–8 in Algorithm 10 (step 2) to cover the other critical decisions; see an example in Figure 20b, i.e., select Ki with min(dFiti) at the first, last, second, before last, and mid policies (in policies 4–8). Figure 20b shows the detail of selecting the best Ki (m = 10 knapsacks, Ci = (10, 20, 15, 18, 12, 25, 5, 19, 9, 24)) with eight critical decisions (i.e., assume there are six min(dFiti)s = 0 in Ki, i = 1, 3, 6, 7, 9, 10) for selecting the best Ki (in the best order) with one policy for one result (solTP). In this experiment, the improved results (max (solTPi=1–8)) in Column 4 (Table 13) were stable under these eight policies. In each critical dataset, the results (Column 4) were improved due to the exact DPT-List packing plus the proper critical handling (by our eight policies for the best knapsack order).

In the regular comparison of our mDPT-List + robust unbiased filtering (the best knapsack order) on 20 critical datasets (in Table 13), our robust unbiased filtering (using top three policies) yielded (9 of 20) best results (Column 6), which outperformed the results (Column 7) of using LSs of top nine orders (9 m). In the superior improvement of our eight effective policies (in the extra experiment), the extra mDPT-List yielded (16 of 20) best results (Column 4), while the other 4 of 20 best results (Column 3) were fulfilled by robust filtering due to the (unbiased) preselecting and the less problem of nonunique Xs in the X-tracking by DPT-List (on small n′ < 300) in each knapsack. Obviously, for the unique X, our mDPT-List (with/without filtering) yields the same result.

In addition, the response times of three mDP algorithms (basic mDP, mDPT-List, and mDPT-List + filtering) were compared in this experiment (under the same 99% optimal precision). In theory, three different time complexities of these mDP algorithms are 1. O(m!nC) in the basic mDP (m! orders), 2. O(m2[n2, nC]) in the mDPT-List (the best order), and 3. O(m2n) in the fast mDPT-List + filtering (the best order). Due to our efficient unbiased filtering, the response time of our fast mDPT-List + filtering for n = 20,000 and m = 20 was less than one second, that of the best mDPT-List for n = 20,000 was 10 min, that of the basic mDP for n = 20,000 was more than one hour and so on for other large n.

Next to simplify the comparison and discussion (for the 0/1-mKP solving with the critical datasets), we employ the triple-right rule (right man, right place, and right time). Figure 21 displays the improvement of our multi-DPT-ListTSR algorithm (our novel research track in Figure 8) to reach 99% optimal solutions in efficient time.

In theory, the exact BnB algorithm can find the exact solution of the 0/1-mKP but in O((m + 1)n) with the right man and right place but not the right time. In practice, the multi-GH+ (with 9 m LS-orders) can find the good solutions in polynomial time but those solutions may not be optimal because it only confirms the right time rule. In this study (Figure 21), we study and apply the exact DPT (in theory) and the efficient unbiased filtering (in practice) to achieve triple-right packing (right man (object), right place (knapsack), and right time (O(m2n))). Our contribution is the m!-to-m2 reduction; see the highlight space of our improvement in Figure 21. This tight-bound reduction starts with the exact DPT for one knapsack (selecting the right object), uses the exact-fit (best) order for m knapsacks (putting the right object in the right knapsack), and ends with robust unbiased filtering (putting the right object in the right knapsack at the right time).

The comparison of our multi-DPT-List + robust filtering and the recent HyMKP [34] is demonstrated in Table 14. In practice (with large n (≤10,000 in this experiment)), our multi-DPT-List + robust filtering yielded 99% optimal results in O(m2n); see results in Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11 and Table 12, while the results of quick multi-GH+ in O(m2n) were not optimal. For the HyMKP study [34], there is no available result for n > 500 since for large n the partial BnB (MULKNAP program) in the HyMKP (Algorithm 5) may not find the optimal solution in τ secs. Then, the reflect multi-graph MKP (with increasing n-weights (wj) in Algorithm 6 (O(mnC)) can provide the comparable results to our multi-DPT-List (with top nine orders) in the regular datasets, according to the looping on weights and C, similar to the DP (Algorithm 1) for each of m knapsacks. For the irregular datasets, v-rounds of decompositions of HyMKP are used to improve the initial solution. However, (for large n) the process of Algorithm 6 may take a long time to reach the 99% optimal solutions due to its complexity O(mnC), while our exact-fit best (knapsack) order of multi-DPT-List + efficient filtering in O(m2n) can find 99% optimal solutions as m! orders.

For n ≤ 500 (in the critical datasets), the HyMKP model yielded 99.9% optimal solutions by the partial BnB (MULKNAP) program in τ secs. Thus, for n ≤ 500 we can adopt that MULKNAP program in our approach for achieving 99.9% optimal solutions.

Finally, after achieving the good performance (99% optimal solutions) of our multi-DPT-ListTSR + robust filtering in the efficient time O(m2n), we can improve the time complexity to O(mn) in parallel (by using p = m processors).

Moreover, to handle the critical datasets in parallel, we can achieve the global best result in parallel (by p = m processors), such as Column 3 (in Table 13), by combining the local best result of the parallel multi-DPT-ListTSR in O(m[n2, nC])) in Column 4 and the local best result of the parallel multi-DPT-ListTSR + robust filtering in O(mn) in Column 6 for the best of the best results (in Column 3) in O(m[n2, nC])), which is efficient, especially in average ≈ O(mn3) if C = max(Ci) ≤ n2.

In practical 0/1-mKP applications (for large n), if the fast computing time is the most important factor (in the regular and irregular datasets), our multi-DPT-List + robust filtering in O(m2n) or O(mn) in parallel (p = m) with 99% optimal solutions is good enough. However, if the high optimal performance is the most important factor (in the critical datasets and in the critical 0/1-mKP applications), the integration (of the original multi-DPT-ListTSR and the fast multi-DPT-ListTSR + robust filtering) provides higher precision (i.e., 99.9% optimal solutions) in efficient O(m[n2, nC]) in parallel (p = m) or O(mn2) in the best case and O(mn3) in average if C ≤ n2.

7. Conclusions

In this study, to solve the complex 0/1-mKP (m knapsacks) in polynomial time we introduced a novel research track with hybrid integration of DP transformation (for the optimal solution in each knapsack) and robust unbiased filtering (for polynomial time). First, the efficient DPT-ListTSR algorithm was proposed to find the optimal solutions of the 0/1-KP in O([n2, nC]) over O(nC) before being applied in the 0/1-mKP. Second, for solving the 0/1-mKP we proposed the multi-DPT-ListTSR with the exact-fit (best) knapsack order (m!-to-m2 reduction) with 99% optimal solutions in O(m2[n2, nC]) over O(m![n2, nC]). Third (for large n, massive C), robust unbiased filtering was incorporated into our multi-DPT-ListTSR to solve the 0/1-mKP in efficient O(m2n) over O(mnC) of the recent HyMKP, while retaining 99% optimal solutions. The experiment was conducted to evaluate the performance of our multi-DPT-List + robust unbiased filtering (with 99% optimal solutions) on random and benchmark datasets (n ≤ 10,000, m ≤ 100). Practically (for large m, n, and C), our multi-DPT-ListTSR + robust unbiased filtering (O(m2n)) could find 99% optimal solutions (as the original multi-DPT-ListTSR (O(m2[n2, nC])) in polynomial time.

In our current research, we apply our multi-DPT-ListTSR + robust unbiased filtering to solve the multi-container packing. In the future study, we will modify our unbiased filtering idea to solve another popular NP-hard problem (i.e., traveling salesman and logistic transportation, etc.) in efficient time with expected high optimal performance.

Author Contributions

Conceptualization, P.B. and J.W.; methodology, P.B.; software, P.B.; validation, P.B. and J.W.; formal analysis, J.W.; investigation, P.B.; writing—original draft preparation, P.B.; writing—review and editing, J.W.; visualization, P.B.; supervision, J.W. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the School of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand, grant number [CW-011-2/2562].

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to deeply thank the School of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand for the Ph.D. research grant (CW-011-2/2562) to Patcharin Buayen. In addition, they would like to gratefully thank Phra-phrom Kunaporn (P.A. Pa-yut-tao) with his “Put-ta-tum” Buddhism-handbook for fulfilling their exact understanding and good decision-making. Last, they would like to gloriously honor their beloved King Bhumibol Adulyadej for the great inspiration in the optimistic study through positive thinking plus critical rethinking.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

	

Buayen, P.; Werapun, J. Parallel time-space reduction by unbiased filtering for solving the 0/1-knapsack problem. J. Parallel Distrib. Comput. 2018, 122, 195–208. [Google Scholar] [CrossRef]

	

Aisopos, F.; Tserpes, K.; Varvarigou, T. Resource management in software as a service using the knapsack problem model. Int. J. Prod. Econ. 2013, 141, 465–477. [Google Scholar] [CrossRef]

	

Vanderster, D.C.; Dimopoulos, N.J.; Parra-Hernandez, R.; Sobie, R.J. Resource allocation on computational grids using a utility model and the knapsack problem. Future Gener. Comput. Syst. 2009, 25, 35–50. [Google Scholar] [CrossRef]

	

Bas, E. A capital budgeting problem for preventing workplace mobbing by using analytic hierarchy process and fuzzy 0-1 bidimensional knapsack model. Expert Syst. Appl. 2011, 38, 12415–12422. [Google Scholar] [CrossRef]

	

Camargo, V.C.B.; Mattiolli, L.; Toledo, F.M.B. A knapsack problem as a tool to solve the production planning problem in small foundries. Comput. Oper. Res. 2012, 39, 86–92. [Google Scholar] [CrossRef]

	

Fukunaga, A.S.; Korf, R.E. Bin completion algorithms for multicontainer packing, knapsack, and covering problems. J. Artif. Intell. Res. 2007, 28, 393–429. [Google Scholar] [CrossRef]

	

Rooderkerk, R.P.; van Herrde, H.J. Robust optimization of the 0-1 knapsack problem: Balancing risk and return in assortment optimization. Eur. J. Oper. Res. 2016, 250, 842–854. [Google Scholar] [CrossRef]

	

Ahmad, S.J.; Reddy, V.S.K.; Damodaram, A.; Krishna, P.R. Delay optimization using Knapsack algorithm for multimedia traffic over MANETs. Expert Syst. Appl. 2015, 42, 6819–6827. [Google Scholar] [CrossRef]

	

Wang, E.; Yang, Y.; Wu, J. A Knapsack-based buffer management strategy for delay-tolerant networks. J. Parallel Distrib. Comput. 2015, 86, 1–15. [Google Scholar] [CrossRef]

	

Wedashwara, W.; Mabu, S.; Obayashi, M.; Kuremoto, T. Combination of genetic network programming and knapsack problem to support record clustering on distributed databases. Expert Syst. Appl. 2016, 46, 15–23. [Google Scholar] [CrossRef]

	

Kellerer, H.; Pferschy, U.; Pisinger, D. Dynamic Programming. In Knapsack Problem; Springer: Berlin, Germany; New York, NY, USA, 2004; pp. 20–26. [Google Scholar]

	

Monaci, M.; Pferschy, U.; Serafini, P. Exact solution of the robust knapsack problem. Comput. Oper. Res. 2013, 40, 2625–2631. [Google Scholar] [CrossRef] [PubMed]

	

Rong, A.; Figueira, J.R.; Klamroth, K. Dynamic programming based algorithms for the discounted {0-1} knapsack problem. Appl. Math. Comput. 2012, 218, 6921–6933. [Google Scholar] [CrossRef]

	

Rong, A.; Figueira, J.R.; Pato, M.V. A two state reduction based dynamic programming algorithm for the bi-objective 0-1 knapsack problem. Comput. Math. Appl. 2011, 62, 2913–2930. [Google Scholar] [CrossRef]

	

Rong, A.; Figueira, J.R. Dynamic programming algorithms for the bi-objective integer knapsack problem. Eur. J. Oper. Res. 2014, 236, 85–99. [Google Scholar] [CrossRef]

	

Cunha, A.S.; Bahiense, L.; Lucena, A.; Souza, C.C. A new lagrangian based branch and bound algorithm for the 0-1 knapsack problem. Electron. Notes Discret. Math. 2010, 36, 623–630. [Google Scholar] [CrossRef]

	

Li, X.; Liu, T. On exponential time lower bound of knapsack under backtracking. Theor. Comput. Sci. 2010, 411, 1883–1888. [Google Scholar] [CrossRef]

	

Calvin, J.M.; Leung, J.Y.-T. Average-case analysis of a greedy algorithm for the 0/1 knapsack problem. Oper. Res. Lett. 2003, 31, 202–210. [Google Scholar] [CrossRef]

	

Truong, T.K.; Li, K.; Xu, Y. Chemical reaction optimization with greedy strategy for the 0-1 knapsack problem. Appl. Soft Comput. 2013, 13, 1774–1780. [Google Scholar] [CrossRef]

	

Balas, E.; Zemel, E. An algorithm for large zero-one knapsack problems. Oper. Res. 1980, 28, 1130–1154. [Google Scholar] [CrossRef]

	

Guastaroba, G.; Savelsbergh, M.; Speranza, M.G. Adaptive kernal search: A heuristic for solving mixed integer linear programs. Eur. J. Oper. Res. 2017, 263, 789–804. [Google Scholar] [CrossRef]

	

Lim, T.Y.; Al-Betar, M.A.; Khader, A.T. Taming the 0/1 knapsack problem with monogamous pairs genetic algorithm. Expert Syst. Appl. 2016, 54, 241–250. [Google Scholar] [CrossRef]

	

Sachdeva, C.; Goel, S. An improved approach for solving 0/1 knapsack problem in polynomial time using genetic algorithms. In Proceedings of the IEEE International Conference on Recent Advances and Innovations in Engineering, Jaipur, India, 9–11 May 2014. [Google Scholar]

	

Bansal, J.C.; Deep, K. A modified binary particle swarm optimization for knapsack problems. Appl. Math. Comput. 2012, 218, 11042–11061. [Google Scholar] [CrossRef]

	

Bhattacharjee, K.K.; Sarmah, S.P. Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. Appl. Soft Comput. 2014, 19, 252–263. [Google Scholar] [CrossRef]

	

Moosavian, N. Soccer league competition algorithm for solving knapsack problem. Swarm Evol. Comput. 2015, 20, 14–22. [Google Scholar] [CrossRef]

	

Zhang, J. Comparative study of several intelligent algorithms for knapsack problem. Procedia Environ. Sci. 2011, 11, 163–168. [Google Scholar] [CrossRef]

	

Zou, D.; Gao, L.; Li, S.; Wu, J. Solving 0-1 knapsack problem by novel global harmony search algorithm. Appl. Soft Comput. 2011, 11, 1556–1564. [Google Scholar] [CrossRef]

	

Lv, J.; Wang, X.; Huang, M.; Cheng, H.; Li, F. Solving 0-1 knapsack problem by greedy degree and expectation efficiency. Appl. Soft Comput. 2016, 41, 94–103. [Google Scholar] [CrossRef]

	

Pavithr, R.S. Gursaran, Quantum inspired social evolution (QSE) algorithm for 0-1 knapsack problem. Swarm Evol. Comput. 2016, 29, 33–46. [Google Scholar] [CrossRef]

	

Zhao, J.; Huang, T.; Pang, F.; Liu, Y. Genetic algorithm based on greedy strategy in the 0-1 knapsack problem. In Proceedings of the 2009 Third International Conference on Genetic and Evolutionary Computing, Guilin, China, 14–17 October 2009. [Google Scholar]

	

Zhou, Y.; Chen, X.; Zhou, G. An improved monkey algorithm for 0-1 knapsack problem. Appl. Soft Comput. 2016, 38, 817–830. [Google Scholar] [CrossRef]

	

Sanchez-Diaz, X.; Ortiz-Bayliss, J.C.; Amaya, I.; Cruz-Duarte, J.M.; Conant-Pablos, S.E.; Terashima-Marin, H. A feature-independent hyper-heuristic approach for solving the knapsack problem. Appl. Sci. 2021, 11, 10209. [Google Scholar] [CrossRef]

	

Dell’Amico, M.; Delorme, M.; Iori, M.; Martello, S. Mathematical models and decomposition methods for the multiple knapsack problem. Eur. J. Oper. Res. 2019, 274, 886–899. [Google Scholar] [CrossRef]

	

Fukunaga, A.S. A branch-and-bound algorithm for hard multiple knapsack problems. Ann. Oper. Res. 2011, 184, 97–119. [Google Scholar] [CrossRef]

	

Martello, S.; Monaci, M. Algorithmic approaches to the multiple knapsack assignment problem. Omega 2020, 90, 102004. [Google Scholar] [CrossRef]

	

Angelelli, E.; Mansini, R.; Speranza, M.G. Kernal search: A general heuristic for the multi-dimensional knapsack problem. Comput. Oper. Res. 2010, 37, 2017–2026. [Google Scholar] [CrossRef]

	

Haddar, B.; Khemakhem, M.; Hanafi, S.; Wilbaut, C. A hybrid quantum particle swarm optimization for the multidimensional knapsack problem. Eng. Appl. Artif. Intell. 2016, 55, 1–13. [Google Scholar] [CrossRef]

	

Meng, T.; Pan, Q.-K. An improved fruit fly optimization algorithm for solving the multidimensional knapsack problem. Appl. Soft Comput. 2017, 50, 79–93. [Google Scholar] [CrossRef]

	

Wang, L.; Yang, R.; Ni, H.; Ye, W.; Fei, M.; Pardalos, P.M. A human learning optimization algorithm and its application to multi-dimensional knapsack problems. Appl. Soft Comput. 2015, 34, 736–743. [Google Scholar] [CrossRef]

	

Zhang, X.; Wu, C.; Li, J.; Wang, X.; Yang, Z.; Lee, J.-M.; Jung, K.-H. Binary artificial algae algorithm for multidimensional knapsack problems. Appl. Soft Comput. 2016, 43, 583–595. [Google Scholar] [CrossRef]

	

Gao, C.; Lu, G.; Yao, X.; Li, J. An iterative pseudo-gap enumeration approach for the multidimensional multiple-choice knapsack problem. Eur. J. Oper. Res. 2017, 260, 1–11. [Google Scholar] [CrossRef]

	

Wang, Y.; Wang, W. Quantum-inspired differential evolution with gray wolf optimizer for 0-1 knapsack problem. Mathematics 2021, 9, 1233. [Google Scholar] [CrossRef]

[image: Algorithms 15 00366 g001 550]

Figure 1. Two different 0/1-knapsack problems (n objects): (a) the popular 0/1-KP (one knapsack with capacity C) and (b) the complex 0/1-mKP (m knapsacks with capacity Ci, i = 1, 2, …, m).

Figure 1. Two different 0/1-knapsack problems (n objects): (a) the popular 0/1-KP (one knapsack with capacity C) and (b) the complex 0/1-mKP (m knapsacks with capacity Ci, i = 1, 2, …, m).

[image: Algorithms 15 00366 g001]

[image: Algorithms 15 00366 g002 550]

Figure 2. An example of 0/1-KP solving (n = 6, C = 18) of the basic DP (Algorithm 1): tp-results and soltp = 79 (optimal) in an nxC-matrix and X-tracking for solx = {1, 4}.

Figure 2. An example of 0/1-KP solving (n = 6, C = 18) of the basic DP (Algorithm 1): tp-results and soltp = 79 (optimal) in an nxC-matrix and X-tracking for solx = {1, 4}.

[image: Algorithms 15 00366 g002]

[image: Algorithms 15 00366 g003 550]

Figure 3. An example of 0/1-KP solving (n = 20, C = 100) by TSReduction (Algorithm 4), soltp = 656 (optimal).

Figure 3. An example of 0/1-KP solving (n = 20, C = 100) by TSReduction (Algorithm 4), soltp = 656 (optimal).

[image: Algorithms 15 00366 g003]

[image: Algorithms 15 00366 g004 550]

Figure 4. Framework of QDGWO (Quantum-inspired Differential (QD) evolution with adaptive Grey Wolf Optimizer (GWO)).

Figure 4. Framework of QDGWO (Quantum-inspired Differential (QD) evolution with adaptive Grey Wolf Optimizer (GWO)).

[image: Algorithms 15 00366 g004]

[image: Algorithms 15 00366 g005a 550][image: Algorithms 15 00366 g005b 550]

Figure 5. An example of preprocessing (n = 5, C = 18): (a) nxC array (tp) by the basic DP and (b) two F-lists and n B-lists by DPT-ListTSR for objects j = 0–4.

Figure 5. An example of preprocessing (n = 5, C = 18): (a) nxC array (tp) by the basic DP and (b) two F-lists and n B-lists by DPT-ListTSR for objects j = 0–4.

[image: Algorithms 15 00366 g005a][image: Algorithms 15 00366 g005b]

[image: Algorithms 15 00366 g006 550]

Figure 6. An example (n = 15, C = 40) of initial reduction (15 × 40-array (=600) to e-nodes (=223)) and original e-nodes (=103) after F-reduction.

Figure 6. An example (n = 15, C = 40) of initial reduction (15 × 40-array (=600) to e-nodes (=223)) and original e-nodes (=103) after F-reduction.

[image: Algorithms 15 00366 g006]

[image: Algorithms 15 00366 g007a 550][image: Algorithms 15 00366 g007b 550]

Figure 7. X-tracking and B-reduction: (a) an example (n = 5) of X-tracking for selecting j = 3, 2, 0 and (b) an example(n = 15) of X-tracking and B-reduction for selecting j = 13, 11, 10, 8, 6, 3.

Figure 7. X-tracking and B-reduction: (a) an example (n = 5) of X-tracking for selecting j = 3, 2, 0 and (b) an example(n = 15) of X-tracking and B-reduction for selecting j = 13, 11, 10, 8, 6, 3.

[image: Algorithms 15 00366 g007a][image: Algorithms 15 00366 g007b]

[image: Algorithms 15 00366 g008a 550][image: Algorithms 15 00366 g008b 550]

Figure 8. (a) Our novel research track for solving 0/1-mKP in polynomial time with 99% optimal solutions and (b) our multi-DPT-ListTSR algorithm and efficient parallel models.

Figure 8. (a) Our novel research track for solving 0/1-mKP in polynomial time with 99% optimal solutions and (b) our multi-DPT-ListTSR algorithm and efficient parallel models.

[image: Algorithms 15 00366 g008a][image: Algorithms 15 00366 g008b]

[image: Algorithms 15 00366 g009 550]

Figure 9. An example of the top nine (knapsack) orders and their Latin squares (of m permutations) for m = 5 knapsacks and C = (66, 26, 80, 96, 70).

Figure 9. An example of the top nine (knapsack) orders and their Latin squares (of m permutations) for m = 5 knapsacks and C = (66, 26, 80, 96, 70).

[image: Algorithms 15 00366 g009]

[image: Algorithms 15 00366 g010a 550][image: Algorithms 15 00366 g010b 550]

Figure 10. An example (n = 25, m = 4, C = (20, 30, 40, 50)) of two X-tracking with nonunique solution Xs in K3: (a) start tracking from (soltp, min soltw) and (b) start tracking from (soltp, max soltw).

Figure 10. An example (n = 25, m = 4, C = (20, 30, 40, 50)) of two X-tracking with nonunique solution Xs in K3: (a) start tracking from (soltp, min soltw) and (b) start tracking from (soltp, max soltw).

[image: Algorithms 15 00366 g010a][image: Algorithms 15 00366 g010b]

[image: Algorithms 15 00366 g011 550]

Figure 11. (a) The exact-fit policy for the best knapsack order and (b) an example of n = 33, m = 5, C = (66,26,80,96,70) to find the best order (2,4,1,5,3) in m(m + 1)/2 = 15 steps and the optimal result (726).

Figure 11. (a) The exact-fit policy for the best knapsack order and (b) an example of n = 33, m = 5, C = (66,26,80,96,70) to find the best order (2,4,1,5,3) in m(m + 1)/2 = 15 steps and the optimal result (726).

[image: Algorithms 15 00366 g011]

[image: Algorithms 15 00366 g012 550]

Figure 12. Four groups of object classification and efficient filtering for remaining n′ < 300.

Figure 12. Four groups of object classification and efficient filtering for remaining n′ < 300.

[image: Algorithms 15 00366 g012]

[image: Algorithms 15 00366 g013 550]

Figure 13. An example (n = 25, m = 2, C = (30, 40)) and object classification for knapsack1 (K1).

Figure 13. An example (n = 25, m = 2, C = (30, 40)) and object classification for knapsack1 (K1).

[image: Algorithms 15 00366 g013]

[image: Algorithms 15 00366 g014 550]

Figure 14. An example of robust unbiased filtering before applying DPT-ListTSR on n′ in K1 and K2.

Figure 14. An example of robust unbiased filtering before applying DPT-ListTSR on n′ in K1 and K2.

[image: Algorithms 15 00366 g014]

[image: Algorithms 15 00366 g015 550]

Figure 15. (a) The exact-fit policy plus efficient filtering for the best knapsack order and (b) an example of n = 33, m = 5, C = (66, 26, 80, 96, 70) to find the best order (2, 4, 1, 5, 3) in m(m + 1)/2 = 15 steps and the optimal result (726) by the multi-DPT-ListTSR + robust unbiased filtering.

Figure 15. (a) The exact-fit policy plus efficient filtering for the best knapsack order and (b) an example of n = 33, m = 5, C = (66, 26, 80, 96, 70) to find the best order (2, 4, 1, 5, 3) in m(m + 1)/2 = 15 steps and the optimal result (726) by the multi-DPT-ListTSR + robust unbiased filtering.

[image: Algorithms 15 00366 g015]

[image: Algorithms 15 00366 g016 550]

Figure 16. An example of the correct F-list j construction (n = 5 in Figure 5): (a) F-list j = 1 (add a new e-node to tail of F-list j) and (b) F-list j = 3 (add each of three new e-nodes to tail of F-list j).

Figure 16. An example of the correct F-list j construction (n = 5 in Figure 5): (a) F-list j = 1 (add a new e-node to tail of F-list j) and (b) F-list j = 3 (add each of three new e-nodes to tail of F-list j).

[image: Algorithms 15 00366 g016]

[image: Algorithms 15 00366 g017 550]

Figure 17. Time and space reduction of DPT-ListTSR for the 0/1-KP.

Figure 17. Time and space reduction of DPT-ListTSR for the 0/1-KP.

[image: Algorithms 15 00366 g017]

[image: Algorithms 15 00366 g018 550]

Figure 18. An example of increasing Ci (an effective knapsack order) for the 0/1-mKP.

Figure 18. An example of increasing Ci (an effective knapsack order) for the 0/1-mKP.

[image: Algorithms 15 00366 g018]

[image: Algorithms 15 00366 g019 550]

Figure 19. High (optimal) precision of robust unbiased filtering for each Ki of 0/1-mKP: (a) object classification and (b) robust unbiased filtering and DPT-ListTSR for remaining n′ < 300.

Figure 19. High (optimal) precision of robust unbiased filtering for each Ki of 0/1-mKP: (a) object classification and (b) robust unbiased filtering and DPT-ListTSR for remaining n′ < 300.

[image: Algorithms 15 00366 g019]

[image: Algorithms 15 00366 g020a 550][image: Algorithms 15 00366 g020b 550]

Figure 20. (a) Overpacking (in the extra space of one knapsack with large total-capacity Cs) in critical datasets and (b) an example of eight effective policies (to handle the critical decisions).

Figure 20. (a) Overpacking (in the extra space of one knapsack with large total-capacity Cs) in critical datasets and (b) an example of eight effective policies (to handle the critical decisions).

[image: Algorithms 15 00366 g020a][image: Algorithms 15 00366 g020b]

[image: Algorithms 15 00366 g021 550]

Figure 21. The improvement of our multi-DPTTSR algorithm for solving the 0/1-mKP (m knapsacks) when dealing with the critical datasets.

Figure 21. The improvement of our multi-DPTTSR algorithm for solving the 0/1-mKP (m knapsacks) when dealing with the critical datasets.

[image: Algorithms 15 00366 g021]

[image: Table]

Table 1. All possible (m!) knapsack orders and the proposed effective orders for the 0/1-mKP.

Table 1. All possible (m!) knapsack orders and the proposed effective orders for the 0/1-mKP.

	m Knapsacks
	All Orders (m!)
	Exact-Fit/Best (m(m + 1)/2)
	Top (9) Orders
	Partial LS

Min (9 m, 9 × 9)
	Full LS

(9 m)

	5
	120
	15
	9
	45
	45

	6
	720
	21
	9
	54
	54

	7
	5040
	28
	9
	63
	63

	8
	40,320
	36
	9
	72
	72

	9
	326,880
	45
	9
	81
	81

	10
	3,268,800
	55
	9
	81
	90

	20
	20!
	210
	9
	81
	180

	50
	50!
	1275
	9
	81
	450

	100
	100!
	5050
	9
	81
	900

[image: Table]

Table 2. Experimental results of irregular datasets (23 of 223), observed from n = 5, 6, 7, …, 10,000.

Table 2. Experimental results of irregular datasets (23 of 223), observed from n = 5, 6, 7, …, 10,000.

	

	

	
Total Weight (soltw)

	
Total Profit (soltp)

	
n

	
C

	
DPT-List (Opt.)

	
DPT + rFilter

	
TSR + uFilter

[1]

	
DPT-List (Opt.)

	
DPT + rFilter

	
TSR + uFilter

[1]

	
12

	
96

	
96

	
96

	
92

	
282

	
282

	
280

	
14

	
112

	
111

	
111

	
109

	
365

	
365

	
362

	
21

	
168

	
168

	
168

	
167

	
500

	
500

	
498

	
26

	
208

	
208

	
208

	
203

	
637

	
637

	
636

	
39

	
312

	
312

	
312

	
312

	
868

	
868

	
866

	
45

	
360

	
360

	
360

	
360

	
1177

	
1177

	
1172

	
73

	
510

	
510

	
510

	
509

	
1640

	
1640

	
1639

	
80

	
559

	
559

	
559

	
558

	
1712

	
1712

	
1711

	
81

	
566

	
566

	
566

	
566

	
1888

	
1888

	
1886

	
143

	
1000

	
1000

	
1000

	
1000

	
3084

	
3084

	
3082

	
147

	
1028

	
1028

	
1028

	
1028

	
3250

	
3250

	
3239

	
155

	
1084

	
1084

	
1084

	
1083

	
3440

	
3440

	
3437

	
166

	
1161

	
1161

	
1161

	
1161

	
3617

	
3617

	
3616

	
182

	
1273

	
1273

	
1273

	
1273

	
3967

	
3967

	
3966

	
197

	
1378

	
1378

	
1378

	
1378

	
4534

	
4534

	
4533

	
199

	
1392

	
1392

	
1392

	
1391

	
4561

	
4561

	
4560

	
247

	
1481

	
1481

	
1481

	
1480

	
4822

	
4822

	
4821

	
276

	
1655

	
1655

	
1655

	
1655

	
5446

	
5446

	
5445

	
286

	
1715

	
1715

	
1715

	
1715

	
5889

	
5889

	
5888

	
316

	
1895

	
1895

	
1895

	
1895

	
6266

	
6266

	
6257

	
329

	
1973

	
1973

	
1973

	
1973

	
6484

	
6484

	
6469

	
360

	
2159

	
2159

	
2159

	
2159

	
6985

	
6985

	
6984

	
385

	
2309

	
2309

	
2309

	
2309

	
7710

	
7710

	
7709

[image: Table]

Table 3. Optimal precision of the DPT-ListTSR + robust filtering (n ≤ 10,000).

Table 3. Optimal precision of the DPT-ListTSR + robust filtering (n ≤ 10,000).

	

	
DPT-List + Robust Filtering

	
TSR + Unbiased Filtering [1]

	
n: Datasets

	
not Opt.

	
Optimal

	
Precision

	
not Opt.

	
Optimal

	
Precision

	
5 ≤ n ≤ 100

	
0

	
95

	
99.9%

	
9

	
86

	
90.0%

	
5 ≤ n ≤ 200

	
0

	
195

	
99.9%

	
16

	
179

	
92.0%

	
5 ≤ n ≤ 500

	
0

	
495

	
99.9%

	
23

	
472

	
95.4%

	
5 ≤ n ≤ 2000

	
0

	
1995

	
99.9%

	
28

	
1967

	
98.6%

	
5 ≤ n ≤ 5000

	
0

	
4995

	
99.9%

	
109

	
4886

	
97.8%

	
5 ≤ n ≤ 10,000

	
0

	
9995

	
99.9%

	
223

	
9772

	
97.8%

Note: 99% optimal solutions refer to “For 100 observed datasets, we could find 99 optimal solutions”.

[image: Table]

Table 4. Performance (percentage) of space reduction by the DPT-ListTSR (n ≤ 3000).

Table 4. Performance (percentage) of space reduction by the DPT-ListTSR (n ≤ 3000).

	
n

	
n × C

(Full Space)

	
e-Nodes

(1. Initial Reduction)

	
Original e-Nodes

(2. F-reduction)

	
Tight-Bound e-Nodes

(3. B-Reduction)

	
5

	
90

	
13

	
86%

	
7

	
92%

	
6

	
93%

	
15

	
600

	
223

	
63%

	
103

	
83%

	
50

	
92%

	
50

	
17,450

	
6559

	
62%

	
2465

	
86%

	
1917

	
89%

	
100

	
69,900

	
35,852

	
49%

	
15,263

	
78%

	
10,849

	
84%

	
200

	
239,800

	
150,518

	
37%

	
66,883

	
72%

	
35,932

	
85%

	
500

	
1,250,000

	
915,303

	
27%

	
374,729

	
70%

	
173,786

	
86%

	
1000

	
5,000,000

	
3,832,827

	
23%

	
1,566,414

	
69%

	
692,691

	
86%

	
1500

	
11,250,000

	
8,669,932

	
23%

	
3,364,525

	
70%

	
1,581,133

	
86%

	
2000

	
11,998,000

	
10,322,643

	
14%

	
3,293,641

	
73%

	
1,115,040

	
91%

	
2500

	
18,747,500

	
16,071,768

	
14%

	
5,338,435

	
72%

	
1,752,052

	
91%

	
3000

	
26,997,000

	
23,225,460

	
14%

	
7,497,627

	
72%

	
2,620,552

	
90%

[image: Table]

Table 5. Results (total profits) of datasets with capacities C ± 10 (m = 2).

Table 5. Results (total profits) of datasets with capacities C ± 10 (m = 2).

	m = 2
	Optimal
	mDPT-L

m! O(m[n2, nC])
	mDPT-L + Filter

m! O(mn)
	mGH

m! O(mn)
	mGH+

m! O(mn)

	n
	
	m! = 2
	m! = 2
	m! = 2
	m! = 2

	15
	315
	315
	315
	308
	310

	20
	420
	420
	420
	393
	420

	30
	800
	800
	800
	790
	796

	40
	1050
	1050
	1050
	1022
	1047

	50
	1019
	1019
	1019
	1006
	1013

	100
	2359
	2359
	2359
	2313
	2357

	200
	3878
	3878
	3878
	3860
	3870

	300
	6202
	6202
	6202
	6171
	6196

	400
	7686
	7686
	7686
	7654
	7683

	500
	9074
	9074
	9074
	9045
	9072

	1000
	18,038
	18,038
	18,038
	18,002
	18,031

[image: Table]

Table 6. Results (total profits) of datasets with capacities C ± 15 (m = 3).

Table 6. Results (total profits) of datasets with capacities C ± 15 (m = 3).

	m = 3
	Optimal
	mDPT-L

m! O(m[n2, nC])
	mDPT-L + Filter

m! O(mn)
	mGH

m! O(mn)
	mGH+

m! O(mn)

	n
	
	m! = 6
	m! = 6
	m! = 6
	m! = 6

	15
	327
	327
	327
	320
	322

	20
	466
	466
	466
	454
	466

	30
	840
	840
	840
	829
	839

	40
	1103
	1103
	1103
	1090
	1099

	50
	1067
	1067
	1067
	1031
	1062

	100
	2427
	2427
	2427
	2390
	2426

	200
	3949
	3949
	3949
	3908
	3943

	500
	9150
	9150
	9150
	9133
	9148

	1000
	18,112
	18,112
	18,112
	18,088
	18,110

	2000
	25,547
	25,547
	25,547
	25,524
	25,544

[image: Table]

Table 7. Results (total profits) of datasets with capacities C ± 20 (m = 4).

Table 7. Results (total profits) of datasets with capacities C ± 20 (m = 4).

	m = 4
	Optimal
	mDPT-L

m! O(m[n2, nC])
	mDPT-L + Filter

m! O(mn)
	mGH

m! O(mn)
	mGH+

m! O(mn)

	n
	
	m! = 24
	m! = 24
	m! = 24
	m! = 24

	20
	495
	495
	495
	490
	490

	30
	884
	884
	884
	884
	884

	40
	1200
	1200
	1200
	1187
	1192

	50
	1137
	1137
	1136
	1121
	1136

	60
	1504
	1504
	1504
	1472
	1499

	100
	2548
	2548
	2548
	2534
	2546

	200
	4098
	4098
	4098
	4071
	4088

	500
	9318
	9318
	9318
	9297
	9314

	1000
	18,284
	18,284
	18,284
	18,249
	18,280

	2000
	25,760
	25,760
	25,760
	25,735
	25,752

	3000
	38,941
	38,941
	38,941
	38,899
	38,930

[image: Table]

Table 8. Results (total profits) of datasets (C ± 20), n = 1000–5000 (m = 6–50).

Table 8. Results (total profits) of datasets (C ± 20), n = 1000–5000 (m = 6–50).

	m
	Optimal
	mDPT-L

O(m2[n2, nC])
	mDPT-L + LS

Filter O(m2n)
	mDPT-L +

Filter O(mn)
	mGH+

O(mn)
	mGH+ + LS

O(m2n)

	n = 1000
	
	Best
	9 m
	9
	9
	9 m

	6
	18,541
	18,541
	18,541
	18,541
	18,535
	18,535

	7
	18,703
	18,703
	18,703
	18,703
	18,684
	18,693

	8
	18,889
	18,889
	18,889
	18,889
	18,879
	18,884

	9
	19,079
	19,079
	19,079
	19,079
	19,068
	19,071

	n = 2000
	
	Best
	9 × 9
	9
	9
	9 m

	12
	27,769
	27,769
	27,769
	27,769
	27,742
	27,753

	13
	28,154
	28,154
	28,154
	28,154
	28,127
	28,127

	14
	28,547
	28,547
	28,547
	28,547
	28,498
	28,517

	15
	28,948
	28,948
	28,948
	28,948
	28,900
	28,935

	n = 5000
	
	Best
	9 × 9
	9
	9
	9 m

	20
	54,736
	54,736
	54,736
	54,736
	54,680
	54,695

	30
	62,496
	62,496
	62,496
	62,496
	62,410
	62,450

	40
	72,417
	72,417
	72,417
	72,417
	72,323
	72,331

	50
	84,051
	84,051
	84,051
	84,051
	83,943
	83,963

[image: Table]

Table 9. Results (total profits) of datasets (C ± 10, 20), n = 9000 (m = 40–90).

Table 9. Results (total profits) of datasets (C ± 10, 20), n = 9000 (m = 40–90).

	m
	Optimal
	mDPT-L

O(m2[n2, nC])
	mDPT-L + LS

Filter O(m2n)
	mDPT-L +

Filter O(mn)
	mGH+

O(mn)
	mGH+ + LS

O(m2n)

	Ci ± 10
	
	Best
	9 × 9
	9
	9
	9 m

	40
	53,669
	53,669
	53,669
	53,669
	53,494
	53,520

	50
	54,803
	54,803
	54,803
	54,803
	54,538
	54,655

	60
	58,614
	58,614
	58,614
	58,614
	58,425
	58,450

	70
	64,018
	64,018
	64,018
	64,018
	63,689
	63,784

	Ci ± 20
	
	Best
	9 × 9
	9
	9
	9 m

	40
	85,380
	85,380
	85,380
	85,380
	85,203
	85,286

	50
	100,859
	100,859
	100,859
	100,859
	100,683
	100,724

	60
	118,729
	118,729
	118,729
	118,729
	118,525
	118,616

	70
	138,195
	138,195
	138,195
	138,195
	137,963
	138,038

	80
	158,983
	158,983
	158,983
	158,983
	158,722
	158,857

	90
	180,054
	180,054
	180,054
	180,054
	179,873
	179,981

[image: Table]

Table 10. Results (total profits) of irregular datasets (m = 3–7, n ≤ 10,000).

Table 10. Results (total profits) of irregular datasets (m = 3–7, n ≤ 10,000).

	n ≤ 10,000
	Optimal
	mDPT-L

O(m2[n2, nC])
	mDPT-L + LS

Filter O(m2n)
	mDPT-L +

Filter O(mn)
	mGH+

O(mn)
	mGH+ + LS

O(m2n)

	m:n
	
	m!
	m!
	m!
	m!
	m!

	3:51
	1318
	1318
	1317
	1317
	1315
	1315

	3:73
	1727
	1727
	1725
	1725
	1725
	1725

	4:33
	752
	752
	747
	747
	747
	747

	4:49
	1264
	1264
	1263
	1263
	1254
	1254

	4:50
	1137
	1137
	1136
	1136
	1136
	1136

	4:65
	1565
	1565
	1563
	1563
	1563
	1563

	m:n
	
	Best
	9 m
	9
	9
	9 m

	5:89
	2366
	2366
	2365
	2365
	2359
	2359

	7:77
	1834
	1834
	1833
	1833
	1829
	1830

	7:138
	3263
	3263
	3262
	3262
	3256
	3256

	7:148
	3780
	3780
	3799
	3799
	3773
	3777

[image: Table]

Table 11. Observed frequency of nonoptimal solutions (in n ≤ 10,000 per m), m = 5, 6, 7, …, 53, 54.

Table 11. Observed frequency of nonoptimal solutions (in n ≤ 10,000 per m), m = 5, 6, 7, …, 53, 54.

	
n ≤ 10,000

	
mDPT-L: O(m2[n2, nC])

	
mDPT-L + Filtering: O(m2n)

	
m

	
Best

	
9 m (LS)

	
Best

	
9 m (LS)

	
Top 9

	
5

	
0

	
0

	
0

	
1

	
2

	
6

	
0

	
0

	
0

	
1

	
3

	
7

	
0

	
1

	
0

	
3

	
6

	
8–14

	
0

	
0

	
0

	
2

	
1.6 (ave. per m)

	
15–19

	
0

	
0

	
0

	
0

	
1.6 (ave. per m)

	
20–24

	
0

	
0

	
0

	
0

	
2.6 (ave. per m)

	
25–29

	
0

	
0

	
0

	
0

	
4.8 (ave. per m)

	
30–34

	
0

	
0

	
0

	
0

	
5.4 (ave. per m)

	
35–39

	
0

	
0

	
0

	
0

	
13.8 (ave. per m)

	
40–44

	
0

	
0

	
0

	
0

	
31.4 (ave. per m)

	
45–49

	
0

	
0

	
0

	
0

	
34.8 (ave. per m)

	
50–54

	
0

	
0

	
0

	
0

	
69.2 (ave. per m)

Note: When observing the irregular datasets, using top 9 orders (Column 6) in our mDPT-List + filtering could not find the optimal solutions in approximate 69 datasets (in average) of n ≤ 10,000, m = 54 in the (random) regular and irregular datasets, while using the best order (Column 4) could find all optimal solutions.

[image: Table]

Table 12. Results (total profits) of 10 benchmark datasets (n = 100, m = 10).

Table 12. Results (total profits) of 10 benchmark datasets (n = 100, m = 10).

	
Research Approach

	
Exact

	
Exact + Filtering

	
Heuristic

	

	

	
mDP

	
mDPT-L

	
mDPT-L + Filter: O(m2n)

	
mGH+

	
n:m

	
Optimal

	
Best

	
Best

	
Best

	
9 m

	
9

	
9 m

	
100:10-1

	
26,797

	
26,797

	
26,797

	
26,797

	
26,797

	
26,797

	
26,763

	
100:10-2

	
24,116

	
24,116

	
24,116

	
24,116

	
24,116

	
24,116

	
24,093

	
100:10-3

	
25,828

	
25,828

	
25,828

	
25,828

	
25,828

	
25,828

	
25,812

	
100:10-4

	
24,004

	
24,004

	
24,004

	
24,004

	
24,004

	
24,004

	
23,977

	
100:10-5

	
23,958

	
23,958

	
23,958

	
23,958

	
23,958

	
23,958

	
23,933

	
100:10-6

	
24,650

	
24,650

	
24,650

	
24,650

	
24,650

	
24,650

	
24,614

	
100:10-7

	
23,911

	
23,911

	
23,911

	
23,911

	
23,911

	
23,911

	
23,886

	
100:10-8

	
26,612

	
26,612

	
26,612

	
26,612

	
26,612

	
26,612

	
26,579

	
100:10-9

	
24,588

	
24,588

	
24,588

	
24,588

	
24,588

	
24,588

	
24,565

	
100:10-10

	
24,617

	
24,617

	
24,617

	
24,617

	
24,617

	
24,617

	
24,591

[image: Table]

Table 13. Results (total profits) of 20 benchmark datasets (200 ≤ n ≤ 500, 20 ≤ m ≤ 50).

Table 13. Results (total profits) of 20 benchmark datasets (200 ≤ n ≤ 500, 20 ≤ m ≤ 50).

	
Research Approach

	
Exact

	
Exact + Filtering

	
Heuristic

	

	
Over

Packing *

	

	
mDPT-L

O(m2[n2, nC])

	
mDPT-L + Filter

O(m2n)

	
mGH+

O(m2n)

	
n:m

	
Optimal

	
Best of this study

	
Best

+extra

	
Best

	
Best

	
9 m

	
9 m

	
200:20-1

	
80,260 *

	
80,205

	
80,205

	
80,163

	
80,196

	
80,121

	
79,606

	
200:20-2

	
80,171 *

	
80,122

	
80,122

	
80,122

	
80,121

	
80,069

	
79,488

	
200:20-3

	
79,101 *

	
79,083

	
79,083

	
79,061

	
79,083

	
79,041

	
78,561

	
200:20-4

	
76,264 *

	
76,208

	
76,208

	
76,174

	
76,174

	
76,149

	
75,823

	
200:20-5

	
79,619

	
79,619

	
79,619

	
79,581

	
79,581

	
79,515

	
78,886

	
200:20-6

	
76,749 *

	
76,711

	
76,711

	
76,711

	
76,711

	
76,612

	
76,203

	
200:20-7

	
76,543 *

	
76,474

	
76,474

	
76,429

	
76,474

	
76,402

	
75,959

	
300:30-1

	
121,806 *

	
121,756

	
121,742

	
121,742

	
121,756

	
121,654

	
120,842

	
300:30-2

	
119,877 *

	
119,828

	
119,828

	
119,795

	
119,828

	
119,743

	
118,938

	
300:30-3

	
119,806 *

	
119,762

	
119,762

	
119,756

	
119,749

	
119,684

	
118,937

	
300:30-4

	
115,567 *

	
115,556

	
115,529

	
115,516

	
115,556

	
115,434

	
114,767

	
300:30-5

	
117,204 *

	
117,175

	
117,175

	
117,160

	
117,168

	
117,065

	
116,350

	
300:30-6

	
118,516 *

	
118,493

	
118,493

	
118,493

	
118,450

	
118,386

	
117,737

	
300:30-7

	
115,793 *

	
115,752

	
115,752

	
115,706

	
115,693

	
115,641

	
115,093

	
300:30-8

	
123,664 *

	
123,624

	
123,624

	
123,620

	
123,620

	
123,552

	
122,570

	
500:50-1

	
205,672 *

	
205,645

	
205,645

	
205,645

	
205,645

	
205,488

	
204,132

	
500:50-2

	
199,868 *

	
199,781

	
199,775

	
199,775

	
199,781

	
199,681

	
198,462

	
500:50-3

	
202,321 *

	
202,286

	
202,286

	
202,277

	
202,277

	
202,164

	
201,102

	
500:50-4

	
136,669 *

	
136,657

	
136,657

	
136,653

	
136,652

	
136,595

	
135,409

	
500:50-5

	
135,806 *

	
135,796

	
135,795

	
135,795

	
135,796

	
135,736

	
134,793

Note: The symbol * (in Column 2) means that the (extra) solution may be overpacking.

[image: Table]

Table 14. Comparison of our multi-DPT-List + robust filtering and the mathematical HyMKP.

Table 14. Comparison of our multi-DPT-List + robust filtering and the mathematical HyMKP.

	
For Regular and Irregular Datasets (n ≤ 10,000, m ≤ 100)

	
Exact + Filtering

	
Our multi-DPT-List + robust filtering (the exact-fit best order) could find most optimal solutions (≥99%) in efficient response time (<1 s per n); see confirmed results in Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11 and Table 12.

	
O(m2n)

	
Exact

	
Mathematical HyMKP [34] can execute in τ secs. with Algorithm 6 (reflect multi-graph MKP with decreasing n weights (wj)) like the basic DP for each of m knapsacks. That initial solution can be improved by the knapsack decomposition in v iterations to find the optimal solution (n ≤ 500) in τ secs. However, no available results for n > 500 in that study.

	
O(mnC)

	
Heuristic

	
Multi-GH+ (Latin squares of top nine orders) could find good solutions in efficient time (< 1 s) but they are not optimal (see the last column results in Table 5, Table 6, Table 7, Table 8, Table 9 and Table 10 and Table 12). Note: LSs of top 9 orders could emulate 9 m iterations/evolutions in the GA/swarm optimization with good results (near optimal in each knapsack for small m).

	
O(m2n)

	
For critical and special benchmark datasets (n ≤ 500) [34]

	
Exact

	
Partial BnB (in HyMKP) [34]: The existing BnB (MULKNAP program) could find most optimal solutions (≥99.9%) in τ secs for n ≤ 500.

	
O((m + 1)n)

	
Exact + Filtering

	
Our multi-DPT-List + robust filtering (the best order): For critical datasets in 0/1-mKP applications, we can adopt the MULKNAP program [34] for n ≤ 500 in our approach to achieve 99.9% optimal solutions. For n > 500 we can apply our efficient multi-DPT-List + filtering in efficient time.

	
O(m2n)

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
a3

EEE
=]
&

HH¥ BRI

£
BEEREREEGE
3

BEEE0

5
57

£
s
s
55| Jss|
£
9

SEEEPassanbsewmn

media/file4.png
11 12 13 14 15 16 17 18

10

olalalalo oo

+ | FIFINNN

1
olalaaaavn

T R S

]

N ey NN
0444..~4M_44
oo o atiay| oy ey

|||
olay o avfav| v ey

T I

N N e
044Q.444

H
1
ol N il oy ey

T | ||

N N[N NN e
044av444
ola o afa v ey

SRR REE R S

[

~| | oo
0mU00333
|]
o|blo|o|R|R|%

H
oloo|lo|o|o|o

]
olo|lolololo|lo
olo|lolololo|lo
ojo|lo|lo|loo|lo
i
dlolololoolo
1
H
g o|o|o|o|lo|lo
Plo|lolololo|lo
y
olo|lolololo|lo
D~ N X In o
~

media/file52.png
Our Novel Research Track (Multi-DPT + Filtering) for solving 0/1-mKP

Exact DP (Dynamic Programming) Algorithm in O(nC)

e

Exact DPT (DP Transformation) in O([n2,nC])

v

Multi-DPT (m!-to-m? reduction) O(m2[n2,nC])

(m knapsacks)

O(m[n2,nC])

O(m[n?,nC])

O(m? [n?,nC])

O(m? [n#nC])

|
multi-DPT
(Exact-fit
(best) order)

(99%) Exact
Solution

2022
multi-DPT

|
multi-DPT

1
Initial S&lution

multi-DPT
(increasing order)

(Latin Squares
of Top 9 orders)

multi-DP
(Top 9 orders)

2020

2018

2019

Theoretical

2021

(Exact-fit
(best) order)
[8 proper policies
to handle critical
decisions

Practical

Study

(Time-Space Reduction
and Analysis)

Study —>

(K

and Experiment)

O(m2n)
Robust
Unbiased
Filtering

-fficient Implementation

media/file48.jpg
TP TW, dFit=C-TW, Select K,

Kki:c=10 [EEIT] 20 10 0 m"ﬂm select K1
[T 7= — || 20 19 1
Kace=15 [pl] 15 15 0 e (Flere) select K3
P = | s v 1
ks C= 12 [EEI] 0 1 2
KoCers [T 30 25 0y, [cacaks
o5 [o s o " G selectir
ke C= 19 [RAT) 20 18 1
ke co AL 9 9 0 S (PSiT) select K9
koc=24 (AT 24 24 0 withy select K10

(b)

media/file39.jpg
alare] .awmawxq

“DP Transformation (Array — List)" Jaise 1Pt

Basic 0P

Object
(0255, 110) Fuodonascaas 68

i) oy T it e g

89101

66 s 6o}

e O

s
freda
sasicor | Hibe b s

(c=18)

Poreity

E

i

media/file27.png
j 3 6 7 13 22
tw,=20 tw=20+30+39+50=139
W, 1
Knapsack 1 w [3[4]4] 6 |3] tp,=96 tp=96+103+103+91=393

(C,=20) pj 18 27 11 26 14
1218 24 0
Knapsack 2 W | : | s | 7 151 8 |pZios
(C,=30) pj 10 24 22 19 28
5 11 15 17 19 21 N\
tW3=39
Knapsack3 W 5|55 9 | 10 |5|] tp=103
(C5=40) pp 15 13 16 22 24
j 4 8™y 14 16 20 28 .
Knapsack4 w;| 7 | 10 | 8 | 11 | 8 |6 |
\(C4=50) p; 14 12 15 18 21 11)
5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0 17
2 31
4 14 31 45
5 | [15] 29 32 46 60
8 41 58
9 48 62
11 42 45 54 59 61 71 75
14 30 43 44 4757 60 61 69|74
15 16 31 45|46 48|58|59 60| 61 62/63|73 75|76 77 85
16 49 62 63|64 76|77 78| 79 80
17 22 38 53 67 68 80 81 82 84 85|86 95
19 55 68 69 70 77 82 83 91| 92 97
20 21 37 52 59 65 7476 79 87 89 98 101 103
21 57 78 79 81 92 93 100 102[103]

X-tracking in K5 by starting from (so/tp, min soltw) = (103, 39)

(a)
e 2 L 00 tw=20+430+40+50=140
. W= w=
Knapsackl WJ|3| 4 | 4| R |3|tp =96 tp=96+103+103+96=398
(C;=20) pj 18 27 11 26 14
10 12 18 24 fW.=30
Knapsack2W|4|6| 7 |5 | s |8
tp,=103
(C,=30) p, 10 24 22 19 28
i 4 5 11 15 19 20) I
Knapsack3 w;[7 |5 |5 |5 10 | 8 |tW3—_4O
tp;=103
(C;=40) P 14 15 13 16 24 21
| DT 14 16 17 21 23 ; 50
W, =
Knapsack4 w;| 11 | 8 | 11 [9 [5]6 |tp:=96

\(C4=50) p_ 17 _, 15 18 22 13 11

media/file18.png
5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

0

1

2|[]] 14 31

3 _. 32 60

4 41

5

6 42 45 71
7 43| |44 74

8 | |16 45|46 4858 77

9 49 781 79

10 22 38 53 85 86
11 55 91 92

12 21 37 52 59 65 7476 79 8789 98

13 57 78 79 81 92 93 100/102
14

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

0

1

2

3

4

5

6

7 30

8 16 31 45146 4858 59

9 49

10 22 38 53 - 67 68 80 81

11 55 68 69 70|77 82 83. 91 92
21 37 52 59 65 7476 79 87 89 98

=
w

=
s

[EY
N

57 78 79 81 92 93100 102H:

(b)

media/file44.png
Increasing Capacity C,
(an effective order)

Ci
/

4

/\
C, /.\\ The top (best) position (first)
Cz | . The 2" best position
G } The 3r bestposmon
/

\
/ \

/7
- — available capacity C;
Axlandzie {1.2,..m)]\ (for each position in a

\

Cm-1 7|
/

. company/organization)

J's

). The fundamental

. position (last)

. O SN BN BN EEE SN SN BN BN EEE BN B B S O e e e e e ol

x;= 0 (unselected objects)]

media/file20.jpg
00, nC)) S S

“ Parallel Computing ™\
> DPTransformation + Exact-fit{best) knapsack order

} 1

O {7, nC)) | Medum and Coarse grains) |

MUkDPT — T Botorr pyraier | n pem I

Listss [QGpe, ncp] > \ oitznc] Pectiacy] |1

P Tacton) | eeaonam |

Gouiines' C_Mltering* DPT thestorder | ___PobynomialTime ____ 1
Tetiont) T o

o paralel
1 mutoeT [OgEY] P | [omm] [Owmum)

+ Robust Filtering (1'<300,C(< <0< large & _ (Secton 4.2)

media/file7.jpg
niti n
Quantum observation and fitness evaluation

{

"Adaptive mutation operation

Selection operation

Crossover operation
Quantum observation and fitness evaluation

Binary trial individuals

Select the binary trial in
and the quantum trial individuals angle with adaptive GWO

Determine the qu:

antum rotation

i ——

Store the best solution

Update quantum individuals
with quantum rotation gate

Iteration = Iteration + 1
Teration < Max-Iteration

No

media/file28.png
5 7 8 9 10

16 31

22

21

11 12 13 14 15 16 17 18
17

31
2
30 43
44| 45/46
38
37 52

19 20 21 22 23 24 25 26 27 28 29

31
46
41
48
45 54 59
44 47|57 60
48[58]59| |60/ 61 |62)63
49 62| 6364
53 66 67 68
55 68 697077
59 65 74 76
57 78|79

30 31 32 33 34 35 36 37 38 39

45
60
58
62
61 71| |75
61 69| 74
73 75|76] |77 85
76|77] |78 79| |80
8081 (8284 85 86 95
[82J8390 91 92 97
79 8789 98| 101[203]

81 92 93 100 102 103

40

X-tracking in K; by starting from (soltp, max soltw) = (103, 40)

(b)

media/file6.png
Step 1 Initial solutions (by GH) and improved solutions (by GH*)
[P/W] X 816 1 9 6 0 4 18 2 17 12 11 14 10 19 3 5 13 7 15

W3 45 3 4 6 8 8 8 7 7 8 11 8 9 10 11 10 11 10
P45 54 55 31 32 43 55 50 45 37 36 40 54 37 38 42 39 35 38 34 tw tp
GH1'1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0O 0 0 99 652
GH1+ 0 1,0 0 0O 0 100 656
[Pl X 1 4 16 14 18 8 2 0 3 11 5 19 7 17 10 12 13 15 6 9
W5 8 4 11 8 3 8 6 10 8 11 9 11 7 8 7 1010 4 3
P/55 55 54 54 50 45 45 43 42 40 39 38 38 37 37 36 35 34 32 31 tw tp
GH2l1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 091 560
GH2+ 0 01 1 0 0 0 0 1 100 627
[W] X 8 9 16 6 1 0 17 12 4 18 2 11 10 19 3 13 1514 5 7
W3 3 4 45 6 7 7 8 8 8 8 8 9 10 10 10 11 11 11
P/45 31 54 32 55 43 37 36 55 50 45 40 37 38 42 35 34 54 39 38 tw tp
GH3/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0O 0O 0O O 98 640
GH3+ 0 00 1 0 0 99 652
Step 2 Objectclassification and unbiased filtering
X 0 1234 5 6 7/8 9 1011/12 13/ 14/15/16 17 18 19
GH1"' 5/5/5/5[5/ 0|5/ 0/5/5/5/5/5/0/5/0/5/5/5/|0
GH2*' 3/31/3/3/3/3/0/0/3/3/3/3/0/0/3/0/3/3/3/|0
GH3",1/1/1/0/1. 01011111010 1 1 1 1
dwi9f9/9/8/9 (360999960 [9/0/99[91
Filtering-in (13)={0,1,2,4,6,8,9,10,11,14,16,17,18}, Filtering-out(1)={15}

Step 3 DPonn'(6)=1{3,57,12,13,19}, C'=17

X0 1 23145167189 1011§12113§114 15 16 17 18} 19|tw tp
solx{1 1/ 131j1}j0§j1401 1 1 131j0f1 0|1 1 1}J0/)100 656

media/file36.png
Filtering-in (Remaining n'=18, C,'=17)

~

n =25 | 6,13, 3 ||221024181271155201121 17,19,4,14,23,16
v (temporary) Filtering-out
i 6 13 3122 10 24 0,9,8, 2!
Knapsack1 w, (4| 6 |3|3[6 | 8 |twy=30 ©=7=7%=0--
"(C,=30) p, 27 26 18114 24 28 Pi=137
e @ Filtering-in (Remaining n'=14, C.,'=18)
n*= 19 | 18, 12,15 ||5,7,20,11,21,1,17,19,4,14,23,16,0,9 |
<L (temporary) Filtering-out
j 18 12 15 7 11 1 g 2 |
Knapsack 2 w J| 51 7 |5 |4| 5 | 5 4 E\;/)V—f% T
(C,=40) p, 19 22 16115 11 13 13

tw=30+40=70 and tp=137+119=256

media/file15.jpg
Gocioy”
z‘.m,mm.l.\ :

o '@Z_@,*“ ,,_" :

S -tracking

[t 2345 67 8 swniznwisevs
o[o o] oloo oo+]

1[0 o[0 o o o]0 |la]]x

@ ol oe]s s | ce|oM0fso 00l
B[o ol ol [s]5 o o [ss]ss[ss || 1515 15| .F
ool o 6o slss us]os|ss||qlas s s]us faolas]{ s
[] Bw s vm
oo o T R
flBann o

@ oo 5 0 0 10
3o oo Tis 15 15 15 15 33 105
AN 9 |15 15 15[15 15 15 1515 |49 8|

BeLists: L

(a)

nav.xhtml

 algorithms-15-00366

 		
 algorithms-15-00366

media/file11.png
nxC array-space (tp values) of Basic DP

No 123 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 DP

inf o |0/ 000 0o 0 0 0/0 o0 o0/0 0/ 0 0/ 0|0 o] Transform B-Lists
ofolo oo olo o o0[als 4 4 4|4 4 4 4 (::::::::2 E|8<—:o
1folo oo oo o oflala 4 4 ala 4-10 10 | 10 15<—_1
2[o]o 0o of6]6 6 66 6 6 610 10 (10 |10 | 10 10 tp. |E|412<—_2
3(o]o o ofe[o] 9 o ofts]15/15/15 1515 1515 19 |19 [9]5{15]o—19]i7 < |3
4700069999151515151515151519 4

_ n lists of original e-nodes
|:| e(effective)-tp values regular-tp values for X-tracking

(a)

media/file2.png
1 Knapsack | 2wx; < C, x;€ {0,1} “ Capacity C
(a)
m Knapsacks 1 2 m
S SCll B <G || - - - [Zww,sG, || €= max(C)
Capacities C, C, C, C

m

media/file23.jpg
ote:

paralll (p=m),

52

Hewam
fol e 10 v
o 10
o
BT

Aenmo]2 [Fane
fHw s o (E (oo oo
cmenls[dondn
o o[£ [l e
e -
FEECIHEERE)
PR - N N
| € ffofe s
Sonalz [HeRE S
w2 Honas
8
<nols [Havns
DRI N SR
N [e
e[§ oo
o0 |8 [l o v
Mamno|, [Facos
s [F o mam
LN | S Ay
IHwo s | [Nown-
\1534m o sn

Odd-Even(of Inc)(8) Odd-Even(of Dec](9)

Odd-Even(of F(7)

B: Backward(6)

F: Forward(5)

media/file10.jpg
[<g 0300

nn BRoo6D

objecti=1.
s

&

Object =2
s

s

© WAy

jog;
sepay B

media/file24.png
2 1 5 3 4| 4 3 51 2] 2 4 1 3 5] 4 2 3 1 5] -Note)
15342 35124 41 352 2 315 4 .|n|:)ara||e|(pm)’I
53421 51 2 4 3 1 3524 3 15 4 2| ioneordercan be:
34215 12435 35241 15423iprocessedbyi
42153||24351||52413]||5423 1| :\oneprocessor |
Increasing(1) Decreasing(2) Combine Inc+Dec(3) Combine Dec+Inc(4)
1 2 3 4 5] 5 4 3 2 1] 1 3 5 2 4| 2 5 4 1 3| 4 5 2 3 1|
2 3451 4 3215 35241 541 3 2 52314
3451 2 32154 52413 4 1 3 25 2 3145
4 51 2 3 21543 241 35 1 3 254 31452
512 3 4 1543 2 4 1 352 32541 145 23
F: Forward(5) B: Backward(6) Odd-Even[of F](7) Odd-Even[of Inc](8) Odd-Even[ofDec](9)

media/file29.jpg
® [Knapsack 1: ¢, R
® | Knapsack 2: ¢, [T
@ knapsack 3: G, [EET] | dFit, = C,-Tw,
o S “n aquil mwam;, seia«mmb mm(c)‘
@) Knspsackm: C, EET—] =T, { L eg0) min(C)
Note: cll DPT-Listrs (7,) t find the (exact) P, and TW (i each knapsack)
@
1 selected K, (n the exact it (bst) order) by p=m (in porale, m:

292
e P
'nlur,-\sn. i

) et ka
) pzen)

2 (in paralel), =3 equal min(oris)
) seea K1 it

@iy <yTiy=0) (Pr=129)
68 (9Ft,=Ci-TW,=2)

4% selected K, (i the exact:fit (best) rder) by p=m'=m-3 (in parallel, m'=2

K3:C =80 [iEEGe])

W) seea K3 (GFIED)
Treen

161+261+126+97+51
(b)

media/file1.jpg
(@)
mKnapsacks 1 2 m
Bl - e c- reo
Capacities ¢, c, Lo/ Cn

(b)

media/file16.jpg
woBl 9%
iy

T el
EEEEEE

T
T =
11 -

T
T
T

ol o9
iy

5293 100 10
1 A

media/file12.png
d: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Transform
00/ 0 0 0 O0 OO 0 0 O/ 0 0 0/ 0 0O Object j=0
@ j=0 00 0/0 00 4 44 4 4 4 4 4 4
F-Lists ,—--- ‘3‘ d=8,TP=0
J-1: o] B-List
F reduction
Object j= 0- '—mm 29) ®[E8ﬂ°J
(Wy=8, p=4) A5 - --=—= - _
0= Po= @(.n.t.anlgﬁm new_ original e-nodes
e d: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 @
ransform .
100000004444444444
Object j=1
J—10000000444444101010
. T = = .
F_LIStS -___P_d.____\‘ d 15,TP 4 B_LIStS
j-1 81 d=8+15>C _ s < |0
! - F reduction
Object j=11 0+1 @ [> @ 15<— 1
(w;=15,p,=10) (initial) copy Original e-nodes
or inherit
Transform .0 123 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 @
0 00 0 O 00E|4 4 4 4 4410 10 10]]
Object j=2
j=2 000 6| 6 6 6666101010101010
d=4,TP= 0 d=12,TP=4
T d herit
F-Lists . I_____p_a' non-inneri remalnln @
8
I | 4: d=15+41C F reduction
(?b-]e:tJG)zl n ':@324 19 8+4 @ | > @[IEIA' m
Wo=4, Po= e ooy original e-nodes
()it 2 Copy new
Tf :0123456789101112131415161718
rans orm z 3 —
o oole|l6s 6 6 6 6 6 6 10 10 |10 10 10 10 Object j=3
j=3 o oofe 9| 9/ 9 9 15 15 |15 | 15 |15 | 15 15 19 B-Lists
<
d=5,TP=6 d=9,TP=6 d=17,TP=10 ® _0
F-Lists non-inherit remaining e-no @ 15(_ 1
j-1 12 |
_ R F reduction l_| _|E|12<— 2
Object j=3 Ak Ak 0 ——— @ (a1 3)
(W5=3, p3=9) (initial) COPY ew new new original e-nodes —
or inherit
d 0.1 .2 _3._4_5_ _6__7__8_9_10 _11 12 1314 _15_16 _17_18 .
7, Object j=4
Transform tiloJo ojofefofo 99 15] 15 15 15 15 15 15 15 |19]19 | 5 ists
J4' o o0oolelo 9991515151515151519: [4]e <
d=12<C__d=16<C__d=17<C d=12,TP=15 d=16,TP= -1|-‘FF’> 19 15<—

F List
J 1'
Ob]ect] 4:

w,=12,p

(|n|t|a|) copy

tp =8<TP tp=14<TP tp=17<TP d=21>C

5 Ii ;

d=29>C

no new e-node
(for F-list j, B-list j)

(6} —ftolize]
ohegezsmagne [o]eslopel

<«

media/file9.jpg
nxC array-space (tp values) of Basic DP

90123 45 67 8 omun B BEDE
o] o[0[0[0 0 o]0 o 0 0lo0 00 0o oo
ofo]o 00 00 o ofa]e 444 as aa a4
2[o]o 0 o[c]s & ¢ ¢ s & 6@ Dm0 w00
znnqnssesslslsxsislsxsxsw
s[0]o0 0 of5]5] s o o [is]ss 15 15 1515 15 15 [ao]ee

[e(effective)-tp values | | regular-tp values

(a)

or
e

@]t
G o
BER o]

n lists of original e-nodes
for X-tracking

media/file42.png
Space Reduction (3 steps)

-~
-~
-
-
-y
-~
-~
-
-
-~
-
-~ -
~—

Time Reduction (2D-array — Lists) \
\\

1 = 1
lobject 4. 91 23 | Basic DP c object DPT-List;gr :
I 0fC 0 |
1 1|cC . 1] 2 ,
o Ui = CIe) 2% Time=0 st |
1 J|C Space = nxC Space-1 1 2><2J Time = O(nC) worst :
: a1l & n-1l<c__Space < nxC(en deS)l
. In|t|al Reduction (1) ,
object object

0 Space-2

1 i Space = cn, c=const. ? i

2 i (tight-bound e-nodes)

ace = cn(n+1)

iginal e-nodes)
F-Reductio y

N

n'-' 1

media/file47.jpg
one large Knapsack|
(C=Cy+.4Cp)

mKnapsacks [REIII wel]

G 2(G)

-overpacking®
‘special object(s)
{ in extra space of

_] e

m(Cr)

(a)

media/file38.png
Object classification |Fi|tering—in| DPT-Liistrqp (n', C;) in each K| |

Vv 07
@ Knapsack 1: C, [x=1 | I dFit;=C,-TW,,-TW,, [49J_0_r_k_e_y _______________________
) | select K by best exact-Fit; = min(dFit,) |
@ KnapsaCk 2. C2 | x=1 | ” dFit,=C,-TW,;-TW,, l________ =12, 3 o ________:
® | Knapsack 3: C, dFity=Cy-TW,,-Tw,, Minorkeys
" r ' e l|f equal min(dFit;)s, select K; with mln(C)l
()| Knapsackm: C,, [xz1 | || dFit,,=C,-TW,,;-TW,,, 4if equal min(C)s,select K, with max(TP)’|

(a)

1st selected Ki (in the exact-fit (best) order) by p=m (in parallel), m=5

K1: C, =66 TP, 292(161+131),TW =64 (26+38) (dFit;=C;-TW,=2) equal min(dFits)
LK__2____C__2__:___2-_6__I8 TP,=161 (s3+78), :TWZ =26 (10+16) (dFit,=C,-TW,=) select K2 i dF'tz 0' C,=26

"""""""""""""" TP,=161
K3: C; =80 |32 bsi314 TP,=332 (238+94), TW;=80 we+34) (dFit;=C5-TW5= 0)(2)}

K4: C, =96 |S535 > P-L132332f| TP,=367 (230+137), TW,=95 (46+49) (dFit,=C,~TW,=1)

\dFit,=0} C,=80

K5: Cs =70 [S33:[18.13.1f | TP5=299 (161+138), TW;5=67 (26+41) (dFits= C5—TW5=3)
Filtefing-in U
2nd selected K; (in the exact-fit (best) order) by p=m’=m-1 (in parallel), m'=4
K1: C, =66 113.18 [0.830pp TP =197 (102+95), TW,=65 (29+36) (dFit,=C,-TW,=1)

K3: C3 =80 |1 813,18 [0,5,30,3p] TP;=226 (138+88),TW3_79 (41+38) (dFit3 Cs- TW3—1)

—— e e e e e - ——

c . TmEmmmmmTTmmomm e s e TP,=261
K5: C5 =70 i' TP;=206 (113+93), TW5—69 32+37) (dFits=Cs—TWs=)(4)
Filtering-in
3rd selected K; (in the exact-fit (best) order) by p=m’=m-2 (in parallel), m'=3 egl_Jfl_rPin(dFitS)
LK1::C:1:E:6:6: m El—126 (29+97), TW1 =66 (14+52) (dFit,=C,-TW, 0‘) select K11 dF't1 0' C,=66
K3:C,=80 LB | TPs=148 s2eoe), TW,=80 (orss) (dFit;=Co-TW,=0){ "1~ 126)-qF_|53_ =0} C,=80
K5: Cs =70 TP.=127 (28+99), TW,=68 (4+64) (dFits=Cs-TWs=2)
Filtefing-in -
4th selected K, (in the exact-fit (best) order) by p=m’=m-3 (in parallel), m'=2
K3: C; =80 [41726 112129] TP;=113 (60+53), TW;=78 (39+39) (dFit;=C5-TW;=2)
(K. C..= 70, [Er_[lo2ihs TP,= 97 (41+56), {TWe=70 z6+44) (dFits=Cs-TW5=0) select K5 {dFit =0,
——————————————————————————— (TPs=97)
Filtefing-in @
5t selected K; (in the exact-fit (best) order) by_|3__1__n_1__} ______________________
(K3 C.= 80} BB | TPy= 81w, {TWi80c0s0_(dFity=Cy-TW,=0) select K3 {Fit,=0
Fllterlng -in 3

media/file30.png
Knapsack 1: C, |_x~1

| | dFit, = C,-Tw, Major key

Knapsack 2: C, [x~1

I dFit, = C,-TW, & (i=1,2,3,..,m))

Knapsack 3: C; [x~1

| dF|t3 = C3-TW, _Minor keys

———————————————————————————————

Iif equal min(dFit;)s, select K; with mln(C) !

P:000

Knapsackm: C,,|__x=1

| dF|t = C -TW,, Illf equal min(C;)s, select K; W|th max(TP)) ,

Note: call DPT-List;cg (n, C;) to find the (exact) TP, and TW, (in each knapsack)

(a)

1st selected Ki (in the exact-fit (best) order) by p=m (in parallel), m=5

K1: C, =66 [Lowisiil] s

(K2.Co = _25_1 6.15.2}.28
K3: C; =80 [0.1.68.13.15.16.18.45.28
K4: C, =96 [0.1,6.8.13.15.18,23,25 28pp

K5: C5 =70 [L68.13.15185p8

TP,=292, TW1 64 (dFit;=C,-TW,=2) equal min(dFits)

TP,=161{TW;=26_(dFit=CrTW,=0) seiect K2 GFi=0, 0,226
TP,=332, TW,= 80 (dFit;=C;-TW;=0) =~ \dFit,=0} C,=80
TP,=367, TW,= 95 (dFit,=C,~TW,=1)
TPs=299, TW,= 67 (dFit;=Cs-TW5=3)

2

2nd selected K; (in the exact-fit (best) order) by p=m’=m—1 (in parallel), m'=4

K1: C, =66 [LEmmmal}:
K3: C; =80 |015813183032||

LK4 C,= 96 [0.1,7.8.13,16,18,23,30,32]

K5: C; =70 [0.1.813,18233}]

TP,= 226 TW,=79 (dFity=C;~TW,=1)

- m Em Em Em Em Em Em Em Em Em Em Em Em Em Em Em Em o

TP,=261! TW,= 96 (dFit,=C,~TW,= 0) select K4 (dFit,=0,

———————————————————————— (TP,=261)
TP;=206, TW;=69 (dFits=Cs-TWs=1)

2

3rd selected K (in the exact-fit (best) order) by p=m’=m-2 (in paraIIeI), m’=3 equal min(dFits)

Ka3: C3 80 |345222931 |
K5: C; =70 (45222931 ||

TP,=126; ‘TW,=66 (dFit,=C,~TW,=0) select K1 dFit,=0 C,=66
TP,=148, TW,= 80 (dFit,=C,-TW,=0) (""" 2%} \4Fit,=0} C,=80
TP5=127, TW,s= 68 (dFit;=Cs-TW5=2)

2

4t selected K; (in the exact-fit (best) order) by p=m’=m-3 (in parallel), m’=2

KS: C3 =80 |4,11,17,21,24,26 [

TP=113, TW;= 78 (dFit,=C;-TW,=2)

TPs= 97, {TW,= 70 (dFit;=Cs~TW5=0]) ?elect K5 TdFit,=0"

———————————————————————— TP,=97) “------
<

5th selected K; (in the exact-fit (best) order) by p=1, m’=1

K3: _6_3:__8_0_ [o.01142021 | |

TP,=81 81,,TW3 80 (dFit;=C5-TW;=0) select K3 | dFit,=0
----------------------- (TP,=81) ~====-~

TP, o125.45=161+261+126+97+81=726

(b)

media/file26.jpg
B
I
11
iV
I
n Ol
T £ s @m0
S w | m o we e
u) =
5 11T

X-tracking in K; by starting from (soltp, max soltw) = (103, 40)
(b)

media/file51.jpg
Our Novel Research Track (Multi-DPT + Filtering) for solving 0/1-mKP

/ Exact DP (Dynamic Programming) Algorithm in O(nC)

Exact DPT (DP Transformation) in O([nZnC])

Mul
(mknapsacks)

e

o(m[n%,nC])

2018

DPT (ml-to-m? reduction) O(m?[n%,nC])

o(mLn?,nC])

O(m2 [?,nC])

g,
ganl

2020

Theoretical

Fight time)
O(m2[n?,nC])
O(mn;

o) f e

202
malti P

e
R

Practical

Study

(Time-Spaco Reducton
“and Anabyels)

Study —

ficontimplomenatin
ey ™

BnB (Branch-and Bound) searching space for exact solution in O((m+1)")

media/file35.jpg
Filtering-in __(Remaining 1 7
[6, 13, 3][22,10,24,18,12,7,1,15,5,20,11,21,17,19,4,14,23,16
pen Ctemporary)

Filtering: (Remaining 4, C,'=18)
[18, 12, 15] [5.7.20,11,21,1,17,19,4,14,23,16,0,9]
e Gemporary)

5 [sTals[se] fsily

P 19 22 16115 11 13 13 10

i
i Knapsack 2 w, [5 |
(C;=40)

media/file3.jpg
8 9 10 1 12 13 14 15 16 17 18

]

€23
[

2 3 4 5 6

1

9

q

s o[0JoTolnlo 0] 0]
0

2la @ @ w|a 9l

42

(1 A AR IEARAR AR

[

[

AR AR AR AR AR AR K
EAEAEARAAEAEARARIER K

EAEIEA AR AR ARARARARA B

oo lR| e[2 e elel e

[
[
[

[

[
[
[

[

[
0
0

[

[

[

[

4]
El
El

media/file22.png
Problems { Algorithms p=1

RN Ao s [R
solutions) (Section 3) J “ Parallel Computing
= <} DPTransformation + Exact-fit(best) knapsack order l
i i d _ O@m! [n?, nC)) | ; Medium and Coarse grains |
: I Mll_1i|;|£DPT <} Best order Parallel | p=m p<m [
Y ™R [O@m?[n2, nCl) | — : [o(mimznCp| (O nClip) ||
0/1-mKP _ (Section 4) I (Section 4.1) 1
Soltions) .iitering + DPT +bestorder | _ _PolynomialTime _ _ _ I
I' ; (Secztion 4)/ Parallel I p=m p<m ‘I :
| MutEDPT O s === | [owm | [Oeemp] 1
| + Robust Filtering (1'<300,C(<<O)<large & (Section 4.2) 1/

"""""""'""""'_"_"_':'_"_"_':"‘
(b)

media/file19.jpg
Our Novel Research Track (start with DPT) for solving 0/1-mKP

(i SRRESaRReS
1 ognine) o ot ncy o ncyl 4 ot Mi
i :

]
|
(695 racsotons) 9 o oo e —r)
|
|

1
| Agorihms: 1. DPT-List 2. Exactit (best) order 3. Fitering 4. Parallel
\ (Transfomaton) (m-to-n reduction) (unoiased) o=m 7

media/file40.png
d: 01 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18
i1 lofo=0-Qa_Q 0 O 44 4 4 4 4/ 4|4 4 4 4 ST T s
. — e e Basic DP - Funclion cal - k
i=tJofo oo o o o/ofafa 4 27374 Y1010 10 10| (Co1g) | MIgnodeotFist-tin=nt; |
]] =15 | TP =n1tp: . i
Object J=1 wpp Transformation (Array — List) decode TP=4 ©IZIIIII1Ii: R |
(w;=15,p;=10) N ' Function decodeTP (d, n1,n2) |
__ __ 5 TP=n,.tp= ' while (d >= n2.d) !
F-Lists i-1 j-1 (D—EO_E 8l d1= 8+19 > C : n1=n2; n2 = n2.next, !
] ! -2 (no new jhode) i end while !
_ |::> X = DPT-List \\ return n1; !
object j=1. = IKD_)IEI _EI 8I(0+15) (3 nodes) . d
(initial) COpY (if cn.tp<p,;&cn.d<w new e-plode
(a)
d:_O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ’Ir:hent Remaining e-node) .
i |, - 1 en = remaining e-node of Flistj-1; \
j-1 |10 ~G)~Q\0 6 6.§§;6 6 6 6 6 |10 1Q~1Qf0 10 10 10 ' N = tail of Flistj: N2 = N: !
. -~ - i if tp > N2.tp) // inherit en to tail !
=3 [ofo ojo[efo] 9o 9 9*15| 1515 15 15 15 15 1501910 B3 OF R G Ry,
(C=18) | else // inherit en between N1,N2 '
Object j=3 d=5,TP=6 d=9,TP=6 __d _17 JP=1 ~ ! |f|(enNd1> [l:jlg g) nl?t/I/nfhe(;ItNe‘lnl\lanF“su:
1 else ac n 1
(w3=5,p3=9) D——ﬂ —EI 4 12 ' while(N1.d > en.d) !
: P _d = _. @ L (NZ=tN1; N?TNT&'ME; N2.d) :
0 2 __ < i if (en.tp > N1.tp & en.d < N2. I
F-Lists j-11 0 ﬂ 4} 12 @® ij= 3'D_’|E| —E4':!(o+5) ! insertBetween(N1,N2,en,Flist)); !
| | |:> ___________ new e-node I else not inherit en in Flistj; :
object j—3: 0 4: L T pe— S) E eﬁgﬂ'flg?s':;e; E
___________ J i-1[P{o]o{&] o] @) {insertBetwean(Ni Nz en Fiist)
(initial) copy (if cn. tp<p3&cn d<w I == . Jew I t=Allocate (en.tp, en.d); !
3\D,|E|0_E| ._EI ‘ I N1.next=t; t.back=N1; .
J=3! _ 6+9 r5) N tnext=N2: N2.back=t: /
""""" *end. S

— e

DPT-List
(5 nodes)

- mm mm mm omm omm mm mm oEm o o

new

compute tp=10+9=19, d=12+5=17

add new e-node(tp,d) to F-list j

media/file33.jpg
3GH' solutions and dw (dynamic weight) for filtering.

X 011234567 8 91011 12[13]1a 15| 16[17/1819] 20| 21 22[23] 28
P 1710 14/18/14/15 27 | 111216 |24 13 22 2615 16 18 22/19 24 | 21|13 14 |11 28
W 114143 7(54 4 101265 7 685 119510 8 5 368
PAW1525 1 6 23682812134 26314 232162 4242626471835
GH1'[0 0105005 0 0 05005000000
G20 000003 00000 3300 0030
Gixl0 10100 1 10000 0100 0010
dw 01106009 100503900 0040
Object Ciassification for Robust Filtering

Group 1(dw=9) 6,13

Group 2 (dw=86,5) | | 3,[22, 10, 24

Group 3 (dw=4,3,1) | [18,12 7, 1

Group 4 (dw=0) 15,5,20,11,21,17,19,4,14,23,16]0,9,8,2.

[6.13,3] [22.10,24,18,12,7,1,15,5,20,11,21,17,19,4,14,23,16] [0,9,8,2]

Filtering-in

p=

(temporary) Filtering-out

media/file32.png
‘---‘

-

Group 1 Group 2 Grou¢3 Group4
dw =9 N dw=865 || dw=(431|8 dw=0
(x,=1) 10 (x,=1) 29 200 |(x=0) 50 (x,=0)

Dynamlc Critical Region (n’ = y+(o+U)+ < 300)

media/file14.png
O 00 N O U1 A W N = O
L

5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
17
17 31
14 17 31 45
15 1729 32 46 60
15 17[29 32 41 46 58 60
15 17[29 32 4146 48 58 |62
15 28| 29 32 42 45 46 54 59 61 62 7175
15 28] [29[30 32(42(43] |44l45] 46/47|57 59/60] 61 69 74 75
16 31 44, |45/46 48|58|59] 6061 |62]63|73 7576/ |77 85
16 31 44| [as|46 49|58|59| 6062 |63]64]73 7677| |78/ 79| |8085
16 22|31 3844 45/46 53 5859 66 67 68 738081/ 8284 85 8 95
16 2231 3844 454653/55| 5859 6668 697077 |8082/8390 (91 92 95 97
16] |21[22]31 373844 4552 53/55| 59656668 7476|7779 80878990 |91 98 101103
16/ |21[22]31 37/38/44| 4552/53/57| 59165 66 68 74 787981 87|89 9092 93 100 102 103
16] |21]22]31 37(3844| [a5|s2[s3[57] [59]e5|66]68| [74[78]7981] [87[89[90|92|93|100[102|103

media/file49.png
one large Knapsack |
(Cs=C,+..+C,)

x=1 .- } <I-overpacking”
e > A special object(s)
L L S 1 in extra space of
—————————— I
= - - one large C¢
m Knapsacks | x=1 ﬂ x=1 ” - | x=1 ”
1(Cy) 2 (Cy) G

media/file41.jpg
Space Reduction (3 steps)
n (2D-array Lists)

media/file37.jpg
et cseicoon. [N e]

Knapsack 1: C, [EAI]] | dFity=C, Tw,,-Tw,, Malor key
Knapsack 2. C; [RETIR] | dFity=Cytwy T, { e ¥ o
Knapsack 3: G, (L] | drit

Knapsackrm G, [EETIIT] | dFit, C

SRR @R |
S S A |

€, TW, T, Minor keys
i

T, e i o et K WA AT

1% selected K, (in the exact-fit (best) order) by,

@)

(in paratlen), m=5

1.0, (]

-0 B

K5.Ci=70

96 (BT | TP, =367 coe1an, TW,=95 wvis (dFi

TP =292 o131, TW,=64 g (dFi

TP,=299 o100, TW, =67 vt (dFi

209 selected K, (n the exact-it (best) order) by

o

1 (n paratel), m'=4

1:0,~66 (Rl

TP =197 ones, TW, =65 23, (dFit
TP,=226 s, TW.=T9,

K.C,=70)

pe
4" selected K, (in the exactfit (best) order) by

10

o 3
D

(b)

media/file46.png
GH1* - . S min \
I _max i min |
H2* - - I
S x=1 B x=0 |
' min | max |
GH3* | _ _ I
) = 8] =0
Object igt
Classification Group 1 ' Group2 Y Group3 ! Group4
| x=1 Y x=1 jo| U x=0|
dw =9 1 dw=865 1 dw=431 1 dw=0
(n"=y+ o+ B+ U<300)

Robust Unbiased Filtering: O(n)

4
n’)

~—

(a)

0/1 KP
Solving

XJ=1 G ’Y’ a’
G roup (dws
(Filtering in) ih unggﬁt:i/r
Group, (dw=3,1), B x.=0
(in uncertain n’) |=i|tjering
out)

| DPT—Listh;>

(b)

DPT-List,sg ON N’ (<300), C’: O(C’)

TSR

x=1 JoPT-List
ijl
x=0
'\ J
YZ

media/file45.jpg
SieClhcation

Robust Unbiased Filtering: O(n)

7
(Fittering in)

0/1 KP
Solving

Group, (@w=3.1).
(in uncertain)

(b)

(= yrarpri

DPT-Listysg 0n 1’ (<300), C"

media/file50.png
TP,
Ki: C,=10 [x~1 | 20
K2:C=20 | x~1 | -0
K3:C=15 [x71 | 15
Ka: C,=18 | x71 | 18
K5:C=12 | x~1 1 0
Ké: Ce=25 | x7~1 | 30
K7: C,=5 x=1 5
K8: Ce=19 | x7~I | 50
KO: C=9 | x~1 | o
K10:Cio=24 | x~1 | o4

(b)

TW,
10

19
15
17
10
25
5
18
9
24

dFit,=C-TW;, Select K,

0
1

=

o O N

mirf]i(rg’lt: 0 select K1

?r?iﬁ(()glgit) select K3

: loct K6
mirﬁr(]:deit) select

select K7

beforedast (Policy 7] select K9
mintaFit select K10

media/file5.jpg
Step1 Initial solutions (by GH) andimproved solutions (by GH*)

288 =8z =8¢ =8

238 358 3833 :8
48Fc o ammo < ~ago o [Foo- BB
~HdBoc vedoo mdBoo @nmas s |&-
Q8Roo V8Roo IHF o~ [Rumaa T [B[~
ndfco/888c o B8R o o [@am~nE (&
mQ%o ~ 8~nBoo 82K 0o ﬁoouuuw alo
QR0 Quho « MY = o mss...s._m. 5
Swhe NrRo- AR~ mooloo &
SH¥~ ~SBoo Qwhk o oo
H®w9e RoaB-o HwQ o Hamoo x [F[~
N8 0HBe ~ve@ o EQumao¥ (8«
BrBe De2e BoR - msssiyv_m. @ -
Nofe ®9Ye T@Bo FEamoog ¥ @ o
QR Cwe WG o ~Nooloo @ i
“ofn ~e8e BrBo SGmo-e S o
c03n wm8~ owPo Emomomd o
©efin BaRe wBe Seamae$ X
omin AR~ ©vfo Smamomd &
“nBe QeFe Qe mzssxrsmw:;
Qefn vefn OmHo foamam £ £loo
®m@e nRe @m@ o Bonmao E g0~
XEeg 4 REeN A RIS T 4 X xx
§ e eE 7 siyeest e

media/file31.jpg
Group2 3 Group4

o dw=[a31(8 dw=0

[24 200 [ix=0)50 =0)

Dynamic Critical Region (n' = y#(cr+U)+3 < 300)

media/file25.jpg
13 22

L 7
Knapsack 1w STETAT 615 tcdd zzaszosanisos

©=20) g a7 T 36 14

Knapsack 2 i e e

CA T)

knspsscics w [ET5 [5T 5 T30 T5]) yoids

(Cy=40) n. 15 u 1 zz ZA 13

n--p-cuw‘ oy

(Ca=50) m 21 11

" CEemCm mc 5 ©

. = SRR FosECooACREES
2 s e e
e ma GEpgee soom |

Xtracking in K, by starting from (solp, min soltw) = (103, 39)

patsa 3

Knapsack 3 w 7 s 5]5] 10] o]
)

(©=40) 5 14 15 13 16 24

Knapsacica i |5 nnn

€=50) a7 15 18w

media/file0.png

media/file17.png
Nl1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18
ojo|ojojojo|o|ofafalalajala al alala 4
1lolololojlo|lo|o|4a|a|alalala 4lio]io] 10 10
@)oo/ o]s]s |6 s 6| 6|66 [toi0]10]t0 |10] 10|10
Bo o ol sfa]o oo |ts]15]15 7 15|15 151519
4lo|o0lol6|9| 9|99 |15]15 15 15|15 | 15|15 [19] 19
M1 2 3 4 5 6 7 9 10 11 13 14 15 16 17 18
@oooooooEl4 4 14| 4| 4| 4| 4| 4| 4
100000004444‘4744@101010
@0006666666.10101_0_101010
@Blo|ojole]a]|o oo |15]15]15 15] 15]15 1515.19
4lo|olo|6|9| 9|99 |15]15/15(15|15|/15 15|15 [19] 19

(a)

B-Lists:

L

]

AI@@H O =

Afterselectx,=1
B-reduction ~==-= -
delete node .
51015)|nL)—>l s l
(10 P2—4) B
, [8]+rfeofes
5270 [ofi i
start from solfp start from L,
at (n-1, . L]
-tracking
B-Lists:
/ _—_————
Xo=1 : E 8 ﬂ

(4-po=0) '

1
1
(;(g-gzi4) tp, IEI412+
1)?;p=3=f0) 5—@9: 174’—'

L

-b@tsl—l@‘—-

media/file8.png
Quantum observation and fitness evaluation

Initialization

v

Adaptive mutation operation
Crossover operation
Quantum observation and fithess evaluation

Selection operation
Yes

Binary trial individuals
better than current individua

Select the binary trial individuals
and the quantum trial individuals

Store the best solution

No

=

Determine the quantum rotation
angle with adaptive GWO

Update quantum individuals
with guantum rotation gate

Yes

media/file43.jpg
Increasing Capacity C; C. @, The top (best) positon (i
(an effective order) L 9 0p-{besl) geetion i
c The 2% best position

g The 3 best posmcn

available capacity C;

¢ (T
% (for each position in a
5 o Y companygarizaor)

o S\
() T fydanena
position (ast)

(unselected objects)

media/file34.png
3 GH' solutions and dw (dvnamic weight) for filtering
X 0l1 2,345 6718910 11/12/13/14 15|/16/17/18 19, 2021 22 23 24

P 11710 14/18 14|15 27 |11 1 12 |16 (24 13 | 22 26/15 16 18 22|19/ 24 1 21 |13 /14 11 28
w 1,4 143 7|5/ 4,4 /10/12/6 5,7 6 8 5 /119|510 8|53 6 8

P/W 15 25/1 6|2 368281213 4 26314 2 3216 2 4,24 26 26 4.7 1.8 3.5
GH17/ O 0 0500 5/ 0 O OS5 0 050 0 O0O0O0O0 O O 5 0 5
GH2 0 0 00O OO0 3 0O 0 00 O 33000030 0 0 0 0 3
G 0,1 01001 1,0 000 O0O0100/0010 0 0 1 0 O
dw | O 1 0/6 OO0 9/1 0 05 0 3 90 0 0040 0 0 6 0 8

Object Classification for Robust Filtering A

Group 1 (dw=9) 6, 13 | y=0
Group 2 (dw=8,6,5) 3,]22, 10, 24 a=3
Group 3 (dw=4,3,1) 18,12 7, 1 U=4
Group 4 (dw=0) 15,5,20,11,21,17,19,4,14,23,16/0,9,8,2| A= 11

6,13,3 | [22,10,24,18,12,7,1,15,5,20,11,21,17,19,4,14,23,16 | {0,9,8,2 |
’ (temporary) Filtering-out -

Filtering-in n

media/file21.png
Our Novel Research Track (start with DPT) for solving 0/1-mKP

| (99% exact solutions) (99% exact solutions) (99% exact solutions) (99% exact 30|Ut|0n3) |

I
| Algorithms: 1. DPT-List 2. Exact-fit (best) order 3. Filtering 4. Parallel
\ (Transformation) (m!-to-m? reduction) (unbiased) (p=m))

