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Abstract: Studying the theoretical properties of optimization algorithms such as genetic algorithms
and evolutionary strategies allows us to determine when they are suitable for solving a particular
type of optimization problem. Such a study consists of three main steps. The first step is considering
such algorithms as Stochastic Global Optimization Algorithms (SGOALs), i.e., iterative algorithm that
applies stochastic operations to a set of candidate solutions. The second step is to define a formal
characterization of the iterative process in terms of measure theory and define some of such stochastic
operations as stationary Markov kernels (defined in terms of transition probabilities that do not
change over time). The third step is to characterize non-stationary SGOALs, i.e., SGOALshaving
stochastic operations with transition probabilities that may change over time. In this paper, we
develop the third step of this study. First, we generalize the sufficient conditions convergence
from stationary to non-stationary Markov processes. Second, we introduce the necessary theory to
define kernels for arithmetic operations between measurable functions. Third, we develop Markov
kernels for some selection and recombination schemes. Finally, we formalize the simulated annealing
algorithm and evolutionary strategies using the systematic formal approach.

Keywords: evolutionary algorithms; non-stationary markov kernel; convergence analysis; evolutionary
strategies; simulated annealing; selection schemes, recombination schemes, stochastic optimization

1. Introduction

In global optimization studies, a general question is which type of algorithms are
more fit for which type of optimization problems, so, we can decide when to use an
evolutionary algorithm to solve a class of optimization problems by understanding its
theoretical properties and characterizing its observable behavior [1].

According to Zilinskas and Zhigljavsky in [2], stochastic global optimization algo-
rithms (SGOALs in short) are inseparable from their presentation and analysis. Several
researchers have done active development of the field from long time ago. Such as: Torn
and Zilinskas in [3], Mockus and Zilinskas in [4], or Neimark and Strongin in [5]. However,
it remains an active field of research including mathematical analysis of problems.

SGOALshave been also studied from a Markovian perspective: Zhigljavsky and Zilin-
skas in Sections 3.3 and 3.4 in [6] and Tikhomirov in [7] studied the convergence rate of
some homogeneous Markov monotone random search optimization algorithms. Also, H
Al-Mharmah et al. in [8] studied some random non-adaptive algorithms for finding the
maximum of a continuous function on the unit interval. An analysis of selection algorithms
was done by Chakraborty et al. in [9] and an analysis for evolutionary strategies for global
minimization was described by François in [10].

As can be noticed, these studies do not use measure theory to formalize probabilistic
concepts or are developed around a specific optimization problem. Gomez in [11], de-
scribes a formal and systematic approach for characterizing stochastic global optimization
algorithms. There, the required theory of probability to characterize SGOALssuch as mea-
sure theory, Markov kernel, operations between kernels, products and conditions to study
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convergence is presented. In addition, it is proved that some algorithmic functions like
projection and sort can be represented by kernels.

Moreover, the notion of join-kernel has been introduced in that paper as a way to
characterize the combination of stochastic methods. Also, it is defined a formal structure
of an optimization space for studying SGOALs. Finally, Gomez formalizes algorithms
that have a next-population stochastic method, which does not change transition prob-
abilities over time. Such algorithms can be viewed from the perspective of stationary
Markov processes. This viewpoint applies among others for, standard versions of hill-
climbing, parallel hill-climbing, steady-state genetic, generational genetic, and differential
evolution algorithms.

This work continues such a systematic formal approach. First, we review the theory
done by Gomez in [11]. Next, we generalize the sufficient conditions convergence Lemma
71 in [11] from stationary to non-stationary Markov processes. Third, we develop arithmetic
kernels to characterize arithmetic operations between measurable functions. We develop
Markov kernels for some selection and recombination schemes. Finally, in order to show
some applications of the concepts developed, we formalize both simulated-annealing
and evolutionary-strategies using the systematic formal approach , which are classical
algorithms and can be found several studies in the literature such as Romeijn et al. in [12]
or Weise in [13] .

2. Preliminaries

This section provides a brief introduction to the systematic formalization proposed
by Gomez in [11]. Such systematic formalization of SGOALs, is carried on Markov kernels
terms. We formalize SGOALs with stationary next population stochastic method, i.e.,
SGOALs that can be characterized as stationary Markov processes and do not change
transition probabilities of the next population over time. That is the case of the hill-
climbing [14], the parallel hill-climbing, the generational genetic [15–17], the steady-state
genetic [18], and the differential evolution [19,20] algorithms. However, SGOALs such as the
Simulated Annealing [21], Evolutionary Strategies [22], or any algorithm using parameter
control/adaptation techniques [23] cannot be characterized as stationary Markov processes.

We clarify that in this section we only review the concepts and not the proofs. The
proof of each concept can be found in [11].

2.1. Systematic Formalization Theory

We review the concepts used to characterize SGOALsand necessary concepts to extend
the theory to characterize adaptive SGOALs.

We consider an optimization problem with an objective function f : Φ → R, which
is defined over a feasible region Ω ⊆ Φ, where Φ is the solution space and f is a function
that is looking for a global optimizer p∗ described by:

min( f : Φ→ R) = {p∗ ∈ Ω ⊆ Φ | (∀p ∈ Ω)( f (p∗) ≤ f (p))}. (1)

2.1.1. Stochastic Global Optimization Algorithm

In this work, we focus on algorithms that are not deterministic but stochastic. e.g.,
simulated annealing and evolutionary strategies. A generic way to describe such algorithms
in pseudocode is given by Algorithm 1. Here the main difference between algorithms is the
way the NEXTPOP operation is carried out.

The NEXTPOP method generates new populations, the INITPOPN(n) method gener-
ates an initial population and BEST(Pt) chooses the best set of individuals from Pt.

2.1.2. Measure and Probability Theory

Gomez in [11] used probabilistic kernels to formalize SGOALs. This work is an
extension of Gomez’s work. We review some concepts that Gomez uses and that we are
going to use to characterize adaptive SGOALs.
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Algorithm 1 Stochastic Global Optimization Algorithm
SGOAL(n)
1. t0 = 0
2. P = INITPOP(n)
3. while ¬END(Pt , t) do
4. Pt+1 = NEXTPOP( Pt )
5. t = t + 1
6. return BEST(Pt)

Definitions of Measure Theory
Probability theory uses measure theory to formalize the concepts. Measure theory

defines elementary events Ω 6= ∅ and the system of observable events A ⊆ 2Ω, where A
is a family of sets. These concepts can be translated in the context of SGOAL where the set
of elementary events contains all possible populations and, a family of sets of populations
is a system of observable events.

Probability theory operates over sets to measure the probability of some observable
event. The structure used to measure subsets of Ω is a σ-algebra that meets the following
conditions:

1. Ω ∈ Σ. Ω is considered a universal set.
2. Σ is C. Σ is closed under complement.
3. Σ is CU. Σ is closed under countable unions.

When we deal with a continuous space, a topological space is used . Hence, (Ω, τ)
is a topological space, the sigma-algebra (σ-algebra) B(Ω) ≡ B(Ω, τ) ≡ σ(τ) is the Borel
σ-algebra on Ω. Consider set Ω = R, in that case B(R)is the σ-algebra on R. In this paper,
a tuple of the form (Ω, Σ), refers to a measurable space, where Σ is a σ-algebra.

In probability theory, we generally need to operate between measurable spaces using
certain functions, precisely measurable functions. Let (Ω1, Σ1) and (Ω2, Σ2) be two mea-
surable spaces. A function f is defined as measurable if f : Ω1 → Ω2, and f−1(B) maps a
subset of the domain. i.e., if B ∈ Σ2 then f−1(B) ∈ Σ2.

We call this function f measurable because we can define a measure µ : Σ → R on
(Ω2, Σ2) in terms of (Ω1, Σ1). Where µ has the following conditions:

1. µ(Ø) = 0.
2. µ(B) ≥ 0 for all B ∈ Σ.
3. µ(

⋃
i∈I Bi) = ∑i∈I µ(Bi) for all {Bi ∈ Σ}i∈I Countable Disjoint Family.

If (Ω, Σ) is a measurable space and µ is a measure, we call (Ω, Σ, µ) a measure space,
if µ is a probability measure i.e., µ(Ω) = 1, then (Ω, Σ, µ) is a probability space.

Let (Ω1, Σ1, Pr) be a probability space and (Ω2, Σ2) be a measurable space. If X : Ω1 →
Ω2 is a measurable function, then X is called a random variable with values in (Ω2, Σ2).

2.1.3. Kernel

Stochastic processes can model the process of generating one population from another
population. A transition kernel is used to characterize each iteration in a stochastic process
given by:

K(x, A) = P(x, A) = Pr[Xt ∈ A | Xt−1 = x]. (2)

where x is the current population and A a subset of possible populations.

Definition 1. (Markov kernel) Let (Ω1, Σ1) and (Ω2, Σ2) be measurable spaces. A function
K : Ω1 × Σ2 → [0, 1] is called a (Markov) kernel if the following two conditions hold:

1. Function Kx,• : A 7→ K(x, A) is a probability measure for each fixed x ∈ Ω1
2. Function K•,A : x 7→ K(x, A) is a measurable function for each fixed A ∈ Σ2.
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The transition kernel of an existing transition density K : Ω1 ×Ω2 → [0, 1] is de-
fined by:

K(x, A) =
∫

A
K(x, y)dy. (3)

Kernels linked with deterministic methods used by SGOALs play a significant role
in developing a systematic formal theory. Next, we review several characterizations of
stochastic methods using transition kernels.

Deterministic Kernel
Let (Ω1, Σ1) and (Ω2, Σ2) be measurable spaces, and f : Ω1 → Ω2 be Σ1 − Σ2 mea-

surable. The function 1 f : Ω1 × Σ2 → [0, 1] is a kernel defined by:

1 f (x, A) =

{
1 if f (x) ∈ A
0 otherwise.

(4)

Kernel Indicator
Let (Ω, Σ) be a measurable space. The indicator function 1 : Ω× Σ→ [0, 1] defined as

1(x, A) = 1id(x)(A), with id(x) = x is a kernel.

Random Scan (Mixing)
The mixing update mechanism of a set of n Markov transition kernels K1, . . . , Kn, each

of them with a probability of being picked p1, p2, . . . , pn (∑ pi = 1), is defined by:(
n

∑
i=1

piK1

)
(x, A) =

n

∑
i=1

pi

∫
A

Ki(x, y)dy. (5)

Composition
The composition update mechanism is built using the kernel multiplication operator.

It is built on the concept of applying one kernel after another. Kernel composition of K1, K2
is defined by:

(K2 ◦ K1)(x, A) =
∫

K2(y, A)K1(x, dy). (6)

The composition of update mechanisms that correspond to a set of n transition kernels
K1, . . . , Kn is defined as the product kernel Kn ◦Kn−1 ◦ . . . ◦K1. Based on the fact that kernel
multiplication is an associative operation.

Transition Kernel Iteration
The transition probability of iteration t (application) of a Markovian kernel K, describes

the probability to transit to set A ∈ Σ within t steps when starting at state x ∈ Ω as defined
by:

K(t)(x, A) =


K(x, A) , t = 1∫
Ω

K(t−1)(y, A)K(x, dy) , t > 1. (7)

Let p : Σ → [0, 1] be the initial distribution of subsets, in that case the probability
that the Markov process is in set A ∈ Σ at step t ≥ 0 is given by:

Pr{Xt ∈ A} =


p(A) , t = 0∫
Ω

K(t)(x, A)p(dx) , t > 0. (8)
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2.1.4. Kernels on Cartesian Products

SGOALswork with populations, so we need to work with probability theory concepts
that can handle them; To do so, we use a probability space

(
Ωn, Σ⊗n,

⊗ n
i=1µi

)
, where Ωn

is the set of elementary elements, i.e., the set of all possible populations of size n. Σ⊗n, is
the product σ-algebra and

⊗ n
i=1µi a product probability measure [11].

We can use probability theory on cartesian products to use several new kernels by
joining simple kernels. Hence, we can join stochastic methods used in SGOALsto generate
new populations from other populations.

SWAP Kernel
We can define a kernel 1

←−
: (Ω1 ×Ω2) × (Σ2 ⊗ Σ1) → [0, 1] that characterizes the

Swap method, a deterministic method often utilized by SGOALs when we need to select
individuals. Where←− is defined as follows:

←− : Ω1 ×Ω2 → Ω2 ×Ω1

(x, y) 7→ (y, x).
(9)

PROJECTION Kernel
We can define a kernel 1πI : ∏n

i=1 Ωi ×
⊗m

i=1 Σi → [0, 1] that characterizes a method
that selects m individuals from a population of size n. where πI is defined as follows:

πI : ∏n
i=1 Ωi → ∏m

i=1 Ωki
(x1, . . . , xn) 7→

(
xk1 , . . . , xkn

)
.

(10)

JOIN Kernel
The join of methods that generate a subpopulation of the next population can be

characterized by a join kernel ~K : Ωη × Σ⊗υ → [0, 1] with υ = ∑m
k=1 υk. Where the join

stochastic method is defined as follows:

F : Ωη → Ωυ

(x1, . . . , xn) 7→ ∏m
i=1 Fi.

(11)

PERMUTATION Kernel
Methods that generate permutations of populations can be characterized by the kernel

KI : Ωn × Σ�n → [0, 1] defined as KI = ~n
k=1πik . Where I = [i1, i2, . . . , in] is a fixed permu-

tation of the set {1, 2, . . . , n}. If we let P as the set of permutations of the set {1, 2, . . . , n}.
then, the kernel KP : Ωn × Σ�n → [0, 1] defined as KP = 1

|P | ∑
I∈P

πI characterizes a

stochastic method that generates a population from another one, looking for a fixed set of
permutations.

SORTING Kernel
Methods that sorts populations according to closeness of objective function are com-

monly used in SGOALS, so we need to characterize them with a kernel Sn,n−1 : Ωn×Σ�n →
[0, 1]. As defined in Proposition 63 in [11].

VR Kernel
A common pattern in most SGoals is that they can be described by two consecutive

stochastic methods: A variation V : Ωη → Ωv and a replacement R : Ωη+v → Ωυ

method. Gomez in [4] defined these methods as a single variation-replacement F : Ωη →
Ωυ method named (VR) method. These methods can be characterized by kernels KR :
Ωη+v × Σ⊗υ → [0, 1] and KV : Ωη × Σ⊗v → [0, 1], hence KVR = KR ◦ [1Ωη � KV ] and
KVR = KR ◦ [KV � 1Ωη ].
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2.2. Characterization of a SGOAL Using Probability Theory

Definition 2. (optimality) d(x) = f (BEST(x)) − f ∗ (Where f ∗ is the optimal value of the
objective function f in Ω).

Gomez in [11], defines an optimization space using sets that include optimal elements.
It can be seen that these sets can be related to the concept of level set. We establish optimal
individuals as individuals that have an objective function less than ε ∈ R+. The optimal
elements are defined as follows.

1. (ε-state) x is ε-optimum element if d(x) < ε,
2. (ε-state) x is an ε-optimum element if d(x) ≤ ε, and
3. (ε̂-state) x is an ε-element if d(x) = ε.

Gomez in [11] defines a ( f−optimization σ-algebra) as σ-algebra that contains strict
ε-optimum states {Ωε}ε>0 ⊆ Σ. This in order to finally define an optimization space
(Ωn, Σ⊗n, f ) to study the convergence of SGOALs. There Ω is the feasible region, Σ is a
f -optimization σ-algebra and f is an objective function.

2.3. Kernels on Optimization Spaces
Elitist Stochastic Methods

Some SGOALS use elitist stochastic methods that guarantee that the best υ solutions in
the next generation are equal to or better than the υ solutions of the current generation. It is
to capture the notion of improving the solution.

Definition 3. (elitist method) A stochastic method F : Ωη → Ωυ is called elitist if f (BEST(F(P))) ≤
f (BEST(P)).

Definition 4. (elitist kernel) A kernel K : Ωη × Σ⊗υ → [0, 1] is called elitist if K(x, A) = 0 for
each A ∈ Σ⊗υ such that d(x) < d(y) for all y ∈ A.

Lemma 1. If K : Ωη × Σ⊗υ → [0, 1] is elitist then

1. K
(

x,
(

Ωv
d(x)

)c)
= 0 and K

(
x, Ωv

d(x)

)
= 1.

2. Let x ∈ Ωη , if d(x) < α ∈ R then K
(

x,
(
Ωv

α

)c
)
= 0 and K

(
x, Ωv

α

)
= 1.

Definition 5. (optimal strictly bounded from zero) A kernel K : Ωη × Σ⊗υ → [0, 1] is called
optimal strictly bounded from zero iff K(x, Ωε) ≥ δ(ε) > 0 for all ε > 0.

2.4. Convergence of a SGoal
2.4.1. Convergence

Let (Dt) be a random sequence, i.e., a sequence of random variables defined on a
probability space (Ω, Σ, P). Then (Dt) is said to

1. converge completely to zero , denoted as Dt
c→ 0, if for every ε > 0

lim
t→∞

t

∑
i=1

Pr{|Dt| > ε} < ∞. (12)

2. converge in probability to zero, denoted as Dt
p→ 0, if for every ε > 0

lim
t→∞

Pr{|Dt| > ε} = 0. (13)

Gomez in [11] follows the approach proposed by Günter Rudolph in [24], to study
the convergence properties of a SGOAL. This concept is also studied by Zhigljavsky and
Zilinskas in [6] , where there is an extensive study of SGOALs. We clarify that in the rest of
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this paper, Σ is an optimization σ-algebra. First, Rudolph defines a convergence property
for a SGOAL in terms of the objective function.

Definition 6. (SGOAL convergence). Let Pt ∈ Ωn be the population maintained by a SGOAL A
at iteration t. Then A converges to the global optimum if the random sequence (Dt = d(Pt) : t ≥ 0)
converges completely to zero.

Lemma 2. (Lemma 1 in [24]) If ∃ε > 0 such that K(x, Ωε) ≥ δ > 0 for all x ∈ Ωc
ε and

K(x, Ωε) = 1 for all x ∈ Ωε then, holds for t ≥ 1

K(t)(x, Ωε) ≥ 1− (1− δ)t. (14)

Using Lemma 2, Rudolph establishes a theorem for convergence of evolutionary
algorithms. Which is specified towards SGOALsin Theorem 1.

Theorem 1. (Theorem 1 in Rudolph [24])
Let a SGOAL fulfill the condition everywhere dense sampling condition of Lemma 2. Then will

converge to the global optimum ( f ∗) of a real valued function f : Φ→ R with f > −∞, defined in
an arbitrary space Ω ⊆ Φ, regardless of the initial distribution p(·).

2.4.2. Convergence of a VR-SGOAL

Gomez [11] follows the approach used by Günter Rudolph in [24], to study the
convergence properties of a VR-SGOALs but Gomez rewrites it in terms of kernels VR
variaton-replacement.

Theorem 2. A VR-SGOAL with KV an optimal strictly bounded from zero variation kernel and
KR an elitist replacement kernel, will converge to the global optimum of the objective function.

3. Materials and Methods

In this section, we begin by generalizing the theory developed by Gomez in [11] to
generalize the concept of Stationary Markov process to non-stationary ones. Next, we
study the necessary theory to characterize arithmetic methods that are useful in some
recombination and mutation schemes described in [25].

3.1. Generalization to Non-Stationary Algorithms

For a non-stationary (or non-homogeneous) Markov process, the transition probabili-
ties (kernel) may change over time ([26]). Suppose that Kt is the transition kernel applied
at time t > 0 of a non-stationary Markov process. Then, the transition kernel of such
non-stationary Markov process at time t is defined as K(t) = Kt ◦ Kt−1 ◦ . . . ◦ K1. Clearly,
we can rewrite Equation (7) . The transition kernel of a non-stationary Markov process is
given by:

K(t)(x, A) =


K1(x, A) if t = 1∫
Ω

K(t−1)(y, A)Kt(x, dy) if t > 1. (15)

Now we are in the position of generalizing Lemma 71 in [11] to non-stationary Markov
processes.

Lemma 3. If ∃δ > 0, such that for all x ∈ Ωc
ε, Kt(x, Ωε) ≥ δ > 0 and, for all x ∈ Ωε,

Kt(x, Ωε) = 1, then K(t)(x, Ωε) ≥ 1− (1− δ)t holds for t ≥ 1.

Proof. We just rewrite the proof of Lemma 71 in [11] (Gomez uses induction on t) but
taking care of the non-stationary property of the Markov process. For t = 1 we have that
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K(t)(x, Ωε) = Kt(x, Ωε) (Equation (7)), so K(t)(x, Ωε) ≥ δ (condition lemma), therefore
K(t)(x, Ωε) ≥ 1− (1− δ)t (t = 1 and numeric operations). Here, we will use the notation
(as Gomez did) K(t)(y, Ωε) = K(t)

y (Ωε) to reduce the visual length of the equations.

K(t+1)
x (Ωε)

=
∫
Ω

K(t)
y (Ωε)Kt(x, dy) (Equation (7))

=
∫

Ωε

K(t)
y (Ωε)Kt(x, dy) +

∫
Ωc

ε

K(t)
y (Ωε)Kt(x, dy) (Ω = Ωε

⋃
Ωc

ε)

=
∫

Ωε

Kt(x, dy) +
∫

Ωc
ε

K(t)
y (Ωε)Kt(x, dy) (If y ∈ Ωε, K(t)

y (Ωε) = 1)

= Kt(x, Ωε) +
∫

Ωc
ε

K(t)
y (Ωε)Kt(x, dy) (def kernel)

≥ Kt(x, Ωε) +
[
1− (1− δ)t

]∫
Ac

ε

Kt(x, dy) (Induction hypothesis)

≥ Kt(x, Ωε) +
[
1− (1− δ)t

]
Kt(x, Ωc

ε) (def kernel)

≥ Kt(x, Ωε) + Kt(x, Ωc
ε)− (1− δ)tKt(x, Ωc

ε)

≥ 1− (1− δ)t(1− Kt(x, Ωε)) (Probability)
≥ 1− (1− δ)t(1− δ) (condition lemma)
≥ 1− (1− δ)t+1.

Finally, Theorem 72 in [11] also holds for non-stationary Markov processes. So, in
order to show convergence of a non-stationary SGOAL it is sufficient to prove that the
SGOAL satisfies the condition of Lemma 3.

Theorem 3. (Theorem 72 in [11]—a corrected version of Theorem 1 in [24]) A SGOAL whose
stochastic kernel satisfies K(t)(x, Ωε) ≥ 1− (1− δ)t for all t ≥ 1 will converge to the global
optimum ( f ∗) of a well-defined real-valued function f : Φ → R, defined in an arbitrary space
Ω ⊆ Φ, regardless of the initial distribution p(·).

Proof. See proof of Theorem 72 in [11].

3.2. Arithmetic between Measurable Functions

Arithmetic operations can be found in schemes of mutation and recombination [25].
So to characterize an algorithm with kernels in its entirety we must characterize all methods
that can alter the generation of new populations.

According to Theorem 22 in [11], to characterize arithmetic methods as deterministic
kernels it is enough to prove that these methods are measurable. Proposition 1 provides
the sufficient conditions for a function f : Ω→ R to be measurable.

Proposition 1. Let (Ω, Σ) be a measurable space, then f : Ω → R is Σ−B(R) measurable if
and only if one of the following conditions holds:

1. {x ∈ Ω : f (x) < b} ∈ Σ for every b ∈ R
2. {x ∈ Ω : f (x) ≤ b} ∈ Σ for every b ∈ R
3. {x ∈ Ω : f (x) ≥ b} ∈ Σ for every b ∈ R
4. {x ∈ Ω : f (x) > b} ∈ Σ for every b ∈ R .

Proof. Note that {x ∈ Ω : f (x) < b} = f−1((−∞, b)), and use {(−∞, b) : b ∈ R} family to
generate B(R). Details see [27] proposition 1 chapter 3.

Lemma 4 gives a useful equality between sets to characterize arithmetic methods.
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Lemma 4. Let (Ω, Σ), be a measurable space and f : Ω → R and g : Ω → R be Σ −B(R)
measurable, then

{(x, y) ∈ Ω×Ω : f (x) + g(y) < c} =
⋃

q∈Q
Lq,c × Rq,c, (16)

where

Lq,c = {x ∈ Ω : g(x) < c− q}

and

Rq,c = {y ∈ Ω : f (y) < q}.

Proof. [⊇] Consider a tuple (x, y) such that:

(x, y) ∈
⋃

q∈Q
Lq,c × Rq,c

then, for some q ∈ Q we have that g(x) < c− q and f (y) < q. Hence, applying an arithmetic
operation we have that f (y) + g(x) < c. So (x, y) ∈ {(x, y) ∈ Ω : f (y) + g(x) < c}.

[⊆]
Let (x, y) ∈ {(x, y) ∈ Ω : f (y) + g(x) < c} so there exists some q ∈ Q that by the

density of rational numbers holds: f (y) < q < c− g(x) applying some arithmetic f (y) < q
and g(x) < c− q. From,

(x, y) ∈
⋃

q∈Q
[{x ∈ Ω : g(x) < c− q} × {y ∈ Ω : f (y) < q}

follows that

{(x, y) ∈ Ω×Ω : f (x) + g(y) < c} ⊆
⋃

q∈Q
Lq,c × Rq,c.

3.2.1. Method Product by a Scalar

Proposition 2. Let (Ω, Σ), be a measurable space and f : Ω→ R be Σ−B(R) measurable, then
h : Ω→ R defined as h(x) = α ∗ f (x) where α ∈ R, is Σ−B(R) measurable.

Proof. For every α ∈ R and c ∈ R we want to show that h−1 ∈ Σ, we prove by cases.

[α = 0] Note that h−1((−∞, c)) = {x ∈ Ω : 0 ∗ f (x) = 0}
{x ∈ Ω : 0 ∗ f (x) = 0} = Ω Because f (x) ∈ R
Ω ∈ Σ Definition of σ-algebra
h−1({0}) ∈ Σ h−1({0}) = {x ∈ Ω : 0 ∗ f (x) = 0}

[α > 0] Note that h−1((c, ∞)) = {x ∈ Ω : α ∗ f (x) > c}
h−1((c, ∞)) = {x ∈ Ω : f (x) > c/α} Arithmetic operations
{x ∈ Ω : f (x) > c/α} ∈ Σ Measurable by proposition 2.
h−1(c, ∞) ∈ Σ h−1(c, ∞) = {x ∈ Ω : α ∗ f (x) > c}

[α < 0] Note that h−1((−∞, c)) = {x ∈ Ω : α ∗ f (x) < c}
h−1((−∞, c)) = {x ∈ Ω : f (x) < c/α} Arithmetic operations
{x ∈ Ω : f (x) < c/α} ∈ Σ Measurable by proposition 2.
h−1((−∞, c)) ∈ Σ h−1((−∞, c)) = {x ∈ Ω : α ∗ f (x) < c}.
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3.2.2. Method Addition

Proposition 3. Let (Ω, Σ) be a measurable space and f : Ω → R and g : Ω → R be Σ−B(R)
measurable functions, then h : Ω×Ω → R defined as h(x, y) : f (y) + g(x) is Σ⊗ Σ−B(R)
measurable.

Proof. We want to show that h−1((−∞, c)) ∈ Σ⊗Σ for all c ∈ R according to proposition 2.
Now, note that

{(x, y) : f (y) + g(x) < c} = h−1((−∞, c))

And using Lemma 4 we establish that:

{(x, y) ∈ Ω×Ω : g(x) + f (y) < c} =
⋃

q∈Q
Lq,c × Rq,c

where
Lq,c = {x ∈ Ω : g(x) < c− q}

and

Rq,c = {y ∈ Ω : f (y) < q}

So, if we show that
⋃

q∈Q
Lq,c × Rq,c ∈ Σ⊗ Σ, then h is measurable.

{x ∈ Ω : g(x) < c− q} ∈ Σ measurable by proposition 2
{y ∈ Ω : f (y) < q} ∈ Σ measurable by proposition 2
Lq,c × Rq,c ∈ Σ× Σ family product definition in [11]
Lq,c × Rq,c ∈ Σ⊗ Σ Σ× Σ ⊆ Σ⊗ Σ.⋃
q∈Q

Lq,c × Rq,c ∈ Σ⊗ Σ Σ⊗ Σ is CU

So h−1((−∞, c)) ∈ Σ⊗ Σ h−1((−∞, c)) =
⋃

q∈Q
Lq,c × Rq,c.

3.2.3. Method Product

Lemma 5. Let (Ω, Σ) be a measurable space and f : Ω→ R be Σ−B(R) measurable function,
then h : Ω→ R defined as h(x) : f 2(x) is Σ−B(R) measurable.

Proof. We need to show that h(x) is measurable. i.e., we need to show that h−1((c, ∞)) ∈ Σ,
for all c ∈ R, note that h−1((c, ∞)) = {x ∈ Ω : f 2(x) > c}, We prove by cases.

[c ≥ 0]
{x ∈ Ω : f 2(x) > c} = .
{x ∈ Ω : f (x) >

√
c} ∪ {x ∈ Ω : f (x) < −

√
c} Inequality

{x ∈ Ω : f (x) >
√

c} ∈ Σ Measurable by proposition 2
{x ∈ Ω : f (x) < −

√
c} ∈ Σ Measurable by proposition 2

{x ∈ Ω : f (x) >
√

c} ∪ {x ∈ Ω : f (x) < −
√

c} ∈ Σ Σ is CU

[c < 0]
{x ∈ Ω : f 2(x) > c} = Ω All values of f 2(x) are positive.
Ω ∈ Σ Definition of σ−algebra
h−1(c, ∞) ∈ Σ {x ∈ Ω : f 2(x) > c} = h−1(c, ∞).

Proposition 4. Let (Ω, Σ) be a measurable space and f : Ω → R and g : Ω → R be Σ−B(R)
measurable functions, then h : Ω ×Ω → R defined as h(x, y) : f (y) ∗ g(x) is Σ ⊗ Σ −B(R)
measurable.

Proof. We can observe that the product of two functions can be expressed as follows:
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f (y) ∗ g(x) = 1
2 [( f (y) + g(x))2 − f (y)2 − g(x)2]

This is measurable because it is in terms of addition, square of measurable functions,
and multiplication with a scalar. Follows from Propositions 2 and 3, and Lemma 5.

3.2.4. Arithmetic Kernels

Now we proceed to characterize the arithmetic methods using deterministic kernels
as defined in Section 2.1.3 that establishes as condition to work on a measurable function.

Theorem 4. (Addition kernel) Let h(x, y) = f (x) + g(y) be a measurable function as defined in
Proposition 3. The addition function 1+ : (Ω×Ω)×B(R)→ [1, 0] defined as 1h((x, y), A) =
1h(x,y)(A) is a kernel.

Proof. This is a deterministic kernel as defined in in Section 2.1.3, it is sufficient to prove
that h(x, y) is measurable, which is done in Proposition 3.

Theorem 5. (Product-Scalar kernel) Let h(x) = α ∗ f (x) be a measurable function as defined in
Proposition 2. The product-scalar function 1α : Ω×B(R)→ [1, 0] defined as 1h(x, A) = 1h(A)
is a kernel.

Proof. This is a deterministic kernel as defined in in Section 2.1.3, it is sufficient to prove
that h(x) is measurable, which is done in Proposition 2.

3.2.5. Product Kernel

Theorem 6. (Product kernel) Let h(x, y) = f (x) ∗ g(y) be a measurable function as defined in
Proposition 4. The product function 1∗ : (Ω×Ω)×B(R) → [1, 0] defined as 1h((x, y), A) =
1h(x,y)(A) is a kernel.

Proof. This is a deterministic kernel as defined in Section 2.1.3, it is sufficient to prove that
h(x, y) is measurable, which is done in Proposition 4.

Remark 1. For the sake of writing simplicity, in the rest of this paper, whenever we refer to an
arithmetic kernel or a combination of these, we will use the symbol 1+.

4. Results
4.1. Selection Scheme Formalization

A Selection Scheme , is a method of selecting a group of individuals from a popula-
tion [28]. Some studies of these schemes can be found in [29–31]. Many schemes define an
individual selection mechanism S1 : Ωλ → Ω, and selects a group of individuals by repeat-
edly applying S1. In this paper, we study the uniform, fitness proportional, tournament
([32]), roulette, and ranking selection schemes:

1. A uniform scheme (UNIFORM1 : Ωλ → Ω) gives to each candidate solution i =

1, 2, . . . , λ, the same selection probability p(xi) =
1
λ .

2. A fitness proportional scheme (PROPORTIONAL1 : Ωλ → Ω) gives to each candidate
solution i = 1, 2, . . . , λ, a selection’s probability p(xi) such that p(xi) < p

(
xj
)

if
f
(

xj
)
C f (xi) and p(xi) = p

(
xj
)

if f (xi) = f
(
xj
)
.

3. A tournament scheme (TOURNAMENT1m : Ωλ → Ω) of size m chooses m individuals
using a UNIFORM scheme and selects an individual from these using a PROPOR-
TIONAL1 scheme, TOURNAMENT1m = PROPORTIONAL1 ◦UNIFORMm .

4. A roulette scheme (ROULETTE1 : Ωλ → Ω) is a fitness proportional one where p(xi) =
rate(xi)

∑λ
i=1 rate(xi)

with rate(xi) < rate
(
xj
)

if f
(

xj
)
C f (xi) and rate(xi) = rate

(
xj
)

if f (xi) =

f
(

xj
)
. If f (xi) ≥ 0 for all i = 1, 2, . . . , λ and maximizing then rate(xi) can be set to

f (xi).
5. A ranking scheme (RANKING1 : Ωλ → Ω) is a roulette one with
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rate(xi) = 1 + |{xk : f (xi) C f (xk)}|.
6. A stud scheme (STUD1 : Ωλ → Ω) chooses the best candidate and can be characterized

for the next kernel KRµ,µ+λ
= π{

1
} ◦ sλ,λ−1

7. An Over Selection scheme as defined in [33] (OSELECTION1 : Ωλ → Ω) is a roulette
one with p(xi) = 0.8/(λ ∗ 0.68) if ranking(xi) C λ ∗ 0.68 and p(xi) = 0.2/(λ ∗ 0.32) if
ranking(xi) B λ ∗ 0.32 where ranking(xi) is defined as
ranking(xi) = 1 + |{xk : f (xi) C f (xk)}|.

Proposition 5. If S1 : Ωλ → Ω is a selection scheme with kernel KS1 then S : Ωλ → Ωµ has
kernel KS = ~µ

i=1KS1.

Corollary 1. If S1 is based on a probability function then KS is a kernel.

Corollary 2. The UNIFORM, PROPORTIONAL, TOURNAMENT, ROULETTE, RANKING, STUD

and OSELECTION selection schemes have Markov kernels.

4.2. Recombination Scheme Formalization

Recombination schemes use information from one or more parents and generate
offspring that share information with their parents. Details for each scheme can be found
in [25,34–36].

In the following characterizations each individual from a population belongs to Ωn (set
of elementary events), where n is the dimension. Keep in mind that all theory developed
by [11] is applicable, hence it is generalized from tuples of tuples to a single tuple. Review
Proposition 32 and Corollary 33 in [11].

1. A Single-Point Crossover method (SPC1d : Ωn ×Ωn → Ωn ×Ωn) is described in
Algorithm 2 and can be characterized by the next kernel:

KSPCQl
= π{1...d}(A)� π{d+1...n}(B)

KSPCQr
= π{1...d}(B)� π{d+1...n}(A)

KSPC = KSPCQl
� KSPCQr

. (17)

Proof. KSPC is defined in terms of projection kernel and join-kernels.

Algorithm 2 Single Point Crossover-SPC1

SPC1d(A, B)

1: Al = π{1,...,d} (A)
2: Ar = π{d+1,...,n} (A)
3: Bl = π{1,...,d} (B)
4: Br = π{d+1,...,n} (B)
5: Ql = JOIN(Al , Br)
6: Qr = JOIN(Bl , Ar)
7: return (Ql , Qr)

2. A Multiple-Point Crossover scheme (MPC1D : Ωn × Ωn → Ωn × Ωn). Let D =
{1, d1, d2, . . . dm, n} be an ordered list of {m + 2 ∈ N+} integers that indicate the m
positions of crossover plus the first and last position. This formalization just considers
when m is an odd number. We can see in Algorithm 3 the description of the algorithm
and can be characterized by the next kernel. where l is the length of D.
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KMPCQl
= �l/2

i=1(π{Di∗2−1 ...Di∗2}(A)� π{Di∗2+1...Di∗2+1}(B))

KMPCQr
= �l/2

i=1(π{Di∗2−1 ...Di∗2}(B)� π{Di∗2+1...Di∗2+1}(A))

KMPC = KMPCQl
� KMPCQr

. (18)

Proof. KMPC is defined in terms of projection kernel and join-kernels.

Algorithm 3 Multiple Point Crossover-MULTIPLEPOINT1

1: D = [1, d1, d2, . . . dm, n]

MULTIPLEPOINT1D (A, B)

1: Ql = {}
2: Qr = {}
3: for i = 1 to length(D)/2 do
4: Qli = JOIN(π{Di∗2−1,...,Di∗2}(A), π{Di∗2+1,...,Di∗2+1}(B))

5: for i = 2 to length(D)/2 do
6: Qri = JOIN(π{Di∗2−1,...,Di∗2}(B), π{Di∗2+1,...,Di∗2+1}(A))

7: return (Ql , Qr)

3. A Multi-Parent Crossover scheme (MULTIPARENTC1 : Ωn∗b → Ωn) can be consid-
ered as a generalization of Uniform Crossover, Where the definition is given in Algo-
rithm 4. There, the method (SIZE : Ωn∗b → N×N) in line 1 calculates the number of
features of each individual and the amount of parents (n, b) respectively. The method
GENERATELISTINDEX1 : N×N→ Nn creates a list of length n where each position has
an integer that indicates some parent. This assignation is done following some rule de-
fined in the design of the algorithm. Finally, the method CROSSOVER1D : Ωn∗b → Ωn

assigns each element from the parents to a new individual according to values of D.
In this characterization we can see that P ∈ Ωn∗b, we are using this representation in
order to use all theory created in [11] Section 3 that allow us to move from tuples of
tuples to a single tuple.
The method CROSSOVER1(D, n) as defined in Algorithm 4 can be characterized by a
kernel KCrossover : Ωn∗b × Σ⊗n → [0, 1] defined as:

KCrossover1 = �n
i=1π{n∗(Di−1)+i}. (19)

Proof. KCrossover1 is defined in terms of projection kernel and join kernels.

4. A Shuffle Crossover scheme (SHUFFLEC1 : Ωn × Ωn → Ωn × Ωn). We start by
permuting each parent. Next, we use some scheme that we have studied above
to obtain children. Finally, we undo the permutation that we did to the begin-
ning of the method.The definition can be seen in Algorithm 5. Where method
RANDONPERMUTATION : N→ Nn generates a permutation of a set of indexes corre-
sponding to the length of features of each parent; CONVPERMUTATIONLper : Ωn →
Ωn sorts the features of the parents according to the set of indexes obtained in
RANDONPERMUTATION; SEGMENTED1p : Ωn ×Ωn → Ωn ×Ωn is the same as def-
inition above; and CONVPERMUTATIONINVLper : Ωn → Ωn undo the permutation
obtained after obtain the child. This method can be characterized by the next kernels:

KRandomPermutation = KP

KConvPermutation = �n
i=1πLperi
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Algorithm 4 MultiParent Crossover-MULTIPARENTC1

CROSSOVER1D,n (P)

1: Q = {}
2: for i = 1 to n do
3: Qi = π{(n∗(Di−1))+i}(P)

4: return (Q)

MULTIPARENTC1 (P)

1: n, b= SIZE(P)
2: D = GENERATELISTINDEX(n,b)
3: Q = CROSSOVER1D,n (P)
4: return (Q)

KSegmented1p = KSC

KConvPermutationInv = �n
i=1πi

KShuffleC = [�n
i=1πi � �n

i=1πi] ◦ KSC ◦ [�n
i=1πLperi

� �n
i=1πLperi

] ◦ KP . (20)

Proof. KShuffleC is defined in terms of projection kernel, join-kernels and kernel
composition.

Algorithm 5 Shuffle Crossover-SHUFFLEC1

CONVPERMUTATION1Lper (P)

1: Q = {}
2: for i = 1 to n do
3: Qi = π{Lperi }

(P)

4: return (Q)

CONVPERMUTATIONINV1Lper (P)

1: Q = {}
2: for i = 1 to n do
3: Q{Lperi }

= πi(P)

4: return (Q)

SHUFFLEC1(A, B)

1: Lper = RANDOMPERMUTATION(n)
2: Aper = CONVPERMUTATIONLper (A)

3: Bper = CONVPERMUTATIONLper (B)
4: Q1per , Q2per = SEGMENTED1p (Aper, Bper)
5: Q1 = CONVPERMUTATIONINVLper (Q1per )

6: Q2 = CONVPERMUTATIONINVLper (Q2per )
7: return (Q1, Q2)

5. Flat Crossover or Arithmetic Crossover schemes, we can use them when the features
are defined in the real numbers. (FLATC1 : Ωn ×Ωn → Ωn), (ARITHMETICC1 : Ωn ×
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Ωn → Ωn ×Ωn).The definitions can be seen in Algorithm 6. These methods can be
characterized by the kernels KFlatC1 : (Ωn ×Ωn)× Σ⊗n → [1, 0], KArithmeticC1 : (Ωn ×
Ωn)× (Σ⊗n × Σ⊗n)→ [1, 0] where the definitions are:

KFlatC1 = �n
i=1[1+1 ◦ [πi(A)� πi(B)]]

KArithmeticC1 = [�n
i=1[1+1 ◦ [πi(A)� πi(B)]]� �n

i=1[1+2 ◦ [πi(A)� πi(B)]]]. (21)

Proof. KArithmeticC1 is defined in terms of projection kernel, join-kernels and kernel
composition.

Algorithm 6 Flat and Arithmetic Crossover-SHUFFLEC1, ARITHMETICC1

FLATC1(A, B)

1: Q = {}
2: for i = 1 to n do
3: α ∼ U[0, 1]
4: Qi = α ∗ πi(A) + (1− α) ∗ πi(B)
5: return (Q)

ARITHMETICC (A, B)

1: Ql = {}
2: Qr = {}
3: for i = 1 to n do
4: α ∼ U[0, 1]
5: Qli = α ∗ πi(A) + (1− α) ∗ πi(B)
6: Qri = (α− 1) ∗ πi(A) + (α) ∗ πi(B)
7: return (Ql , Qr)

6. A Blended Crossover scheme, can be seen as a generalization of FLATC1. The
scheme is represented by the function (BLENDEDC1α : Ωn ×Ωn → Ωn).The defi-
nitions can be seen in Algorithm 7. These methods can be characterized by the kernels
KBlendedC1 : (Ωn ×Ωn)× Σ⊗n → [1, 0], defined by:

Kmini = π1 ◦ s2C ◦ [πi(A)� πi(B)]

Kmaxi = π1 ◦ s2B ◦ [πi(A)� πi(B)]

KBlendedC1 = �n
i=1[1+i ◦ [[Kmini � Kmaxi ] ◦U[0, 1]]]. (22)

Proof. KBlendedC1 is defined in terms of projection kernel, join-kernels, kernel com-
position, arithmetic kernel and sorts kernel.
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Algorithm 7 Blended Crossover-BLENDEDC1

BLENDEDC1α(A, B)

1: Q = {}
2: for i = 1 to n do
3: xmin = min(πi(A), πi(B))
4: xmax = max(πi(A), πi(B))
5: dx = xmax − xmin
6: β ∼ [0, 1]
7: Qi = β ∗ (xmin − α ∗ dx) + (1− β) ∗ (xmax + α ∗ dx)
8: return (Q)

7. A Linear Crossover scheme, (LINEARC1 : Ωn ×Ωn → Ωn ×Ωn ×Ωn). The defini-
tions can be seen in Algorithm 8. These methods can be characterized by the kernels
KLinearC1 : (Ωn ×Ωn)× (Σ⊗n × Σ⊗n × Σ⊗n)→ [1, 0], defined by:

KLinearC1 = �n
i=1[[1+1i

◦ [πi(A)� πi(B)]]� 1+2i
◦ [πi(A)� πi(B)]� 1+3i

◦ [πi(A)� πi(B)]]. (23)

Proof. KLinearC1 is defined in terms of kernel, join-kernels, kernel composition and
addition kernel.

Algorithm 8 Linear Crossover-LINEARC1

LINEARC1(A, B)

1: Q1 = {}
2: Q2 = {}
3: Q3 = {}
4: for i = 1 to n do
5: Q1i = (1/2) ∗ πi(A) + (1/2) ∗ πi(B)
6: Q2i = (3/2) ∗ πi(A)− (1/2) ∗ πi(B)
7: Q3i = (−1/2) ∗ πi(A) + (3/2) ∗ πi(B)
8: return (Q1, Q2, Q3)

4.3. Simulated Annealing (SA)
4.3.1. Concept

The Simulated Annealing algorithm (SA) considers the idea behind the process of
heating and cooling a material to recrystallize it, see Algorithm 9. When the temperature
decreases, the material settles into a more ordered state, and the state into which they settle
is not always the same. This state tends to have low energy compared when the material
is in the presence of high temperature ([25]). If we consider energy as a cost function, we
can use this approach to minimize cost functions. Therefore, SA is a stochastic algorithm
that works with a single-individual that generates a single candidate-solution x (parent)
and sets a high temperature to explore the search space. Then, a variation mechanism
generates a new candidate-solution y (child) and measures its cost. A replacement policy,
that fitness function and the temperature, picks one individual between the father and the
child. Finally, a process decreases the temperature looking for each new solution having
less energy.

Clearly, the replacement policy in Algorithm 9 (lines 6, . . . , 11) is not elitist. This allows
SA to expand the search but can lead to the loss of some good candidate-solutions. In
practice, it is normal to keep track of the best solution found so far [25]. If this is done, the
replacement policy is an elitist one.
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Algorithm 9 Simulated Annealing [25]

SIMULATED ANNEALING

1: T = initial temperature > 0
2: α(T) = cooling function: α(T) ∈ [0, T] for all T
3: Initialize a candidate solution x0 to minimization problem f (x)
4: while ¬TERMINATIONCONDITION() do
5: Generate a candidate solution x
6: if f (x) < f (x0)
7: x0 = x
8: else
9: r = U[0, 1]

10: if r < exp[( f (x0)− f (x))/T]
11: x0 = x
12: T = α(T)

4.3.2. Formalization

To formalize and characterize (SA), we use the approach proposed by [11]. We rewrite
Algorithm 9 in terms of individual non-stationary stochastic methods, see Algorithm 10.
This new Algorithm is in terms of VARIATION-REPLACEMENT methods. Observe that
Algorithms 9 and 10 are equivalents. Line 5 of Algorithm 9 is the method VARIATESA
(line 1) of Algorithm 10; lines 6 to 11 of Algorithm 9 is the method REPLACESA (line 2) of
Algorithm 10. Finally, line 12 of Algorithm 9 and method UPDATEPARAMETERS (line 3)
perform the same task.

Algorithm 10 Simulated Annealing in terms of VR methods

NEXTPOPSA(x)

1: y =VARIATESA(x)
2: y =REPLACESAT (y,x)
3: UPDATEPARAMETERS(T)
4: return x′

Now, we focus on characterizing (SA) as a VR stochastic method and analyzing its
convergence through non-stationary Markov kernels.

Proposition 6. If REPLACESA(x, x) is an elitist method, then it can be characterized by the
Markov Kernel RSA : Ω2 × Σ −→ [1, 0] defined as:

KRSA = π1 ◦ s2. (24)

Proof. KRSA is defined in the same way that the method of RHC in [11]. So the proof uses
the same argument that Lemma 75 in [11].

Proposition 7. If the stochastic method VARIATEAST can be characterized by a non-stationary

Markov kernel V(t)
SAT

: Ω× Σ −→ [1, 0] and condition of Proposition 6 are fulfilled then method the
NEXTPOPS A(x) can be described as a VR non-stationary Markov Kernel defined as

K(t)
SA = KR ◦ K(t)

VSAT
. (25)

Proof. K(t)
SA is a kernel composition under the given conditions.
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Proposition 8. If REPLACESA is an elitist method, then NEXTPOPSA can be characterized by an
elitist non-stationary Markov kernel.

Proof. This proof uses the same argument as Proposition 77 in [11].

4.3.3. Convergence

Corollary 3. If the conditions of Propositions 6, 7 and 8, are fulfilled and method VARIATEAST is
optimal strictly bounded from zero then NEXTPOPSA is optimal strictly bounded from zero.

Proof. Follows from Definition 67, Lemma 68, and Definition 69 in [11] and Proposition 8
that state that NEXTPOPSA can be characterized by an elitist kernel, and this is optimal
strictly bounded from zero.

Theorem 7. SA will converge to the global optimum if REPLACES A is elitist and if VARIATEAST
is optimal strictly bounded from zero.

Proof. Follows from Corollary 3, and Propositions 6–8.

4.4. Evolutionary Strategies (ES)
4.4.1. Concept

Evolutionary Strategies (µ/ρ +, λ)-ES are a type of Evolutionary Algorithms that apply
mutation, recombination, and selection operators to a population of individuals [22], see
Algorithm 11. Every individual has two parts: the candidate solution (x) and the set of
endogenous strategy parameters (s) used to control the mutation operator ([22]). An ES

randomly initializes the population, (Line 2), and evolves both parts of the individual (Lines
5-9) up to certain ending-condition is fulfilled (Line 3). The set of endogenous parameters
are exposed to evolution (Lines 6 and 8) before producing a child candidate solution (Line
7 and 9) to introduce variety. The new individual is a composition of a set of selected
candidate solutions (Line 5). ES generates a new population of λ new individuals each
generation (Line 4). Finally, ES selects a final population using two possible approaches.
The (µ + λ)-ES approach that selects the best µ individuals among the µ parents and λ
children or the (µ,λ)-ES that selects the best µ individuals from the λ children (notice that
λ ≥ µ in this case). In this work, we study both of them.

Algorithm 11 Evolutionary strategies described by [22]

ESµ/ρ +, λ

1: g = 0
2: INITIALIZE(P(0)

q : = {(y(0)m , s(0)m , F(y(0)m )),m = 1, . . . , µ})
3: while ¬TERMINATIONCONDITION() do
4: for l = 1 to λ do
5: al = MARRIAGE(Pg

q , ρ)
6: sl = RECOMBINATIONs(al)
7: yl = RECOMBINATIONy(al)
8: s′l = MUTATIONs(sl)
9: y′l = MUTATIONs(yl , s′l)

10: F′l = F(y′l)
11: Pg

0 = {(y′l , s′l , F′l ), l = 1, . . . , λ}
12: if (µ, λ) then
13: Pg+1

q = SELECTION(Pg
0 , µ)

14: else (µ + λ)
15: Pg+1

q = SELECTION(Pg
0 , Pg

q , µ)
16: g = g+1
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4.4.2. Formalization

To formalize and characterize (µ/ρ +, λ)-ES, we rewrite Algorithm 11 in terms of
individual non-stationary stochastic methods, see Algorithm 12. This follows the approach
in [11] that express the algorithms in terms of Variation-Replacement methods to study
their convergence properties.

Notice that Algorithms 11 and 12 are equivalents: Lines 4–11 in Algorithm 11 is
method VARIATE(P) (Line 1) in the NEXTPOP method of Algorithm 12. Also, Lines 12–15 in
Algorithm 11 are Line 2 in the NEXTPOP method of Algorithm 12. Using this characteri-
zation, we proceed to characterize each method of Algorithm 12 through non-stationary
Markov kernels.

With the object of characterizing (µ/ρ+, λ)-ES we need to establish some non-stationary
Markov kernels. First, we study the VARIATE method (Line 1, method NEXTPOP, Algo-
rithm 12).

Following Definition 55 in [11], we can express the variation method VARIATE : Ωµ −→
Ωλ as a joined stochastic method.

VARIATE(P) = ∏λ
i=1 NEXTSUBPOPi(P) (26)

where NEXTSUBPOP : Ωµ −→ Ω chooses ρ individuals from the population, combines the
ρ individuals, generates a child and finally mutates the strategy and the child.

Algorithm 12 Evolutionary strategies algorithm-NextPop method described in terms of VR
methods

NEXTSUBPOPi(P)

1: a = PICKPARENTS(P)
2: q = XOVERa(P)
3: UPDATESTRATEGIESa(s, i)
4: d = VARIATEs(q)
5: return d

UPDATESTRATEGIESa(s, i)

1: z = XOVERSTRATEGIEa(s)
2: si = VARIATESTRATEGIE(z)

VARIATE(P)

1: for i = 1 to λ do
2: Qi = NEXTSUBPOPi(P)
3: return Q

NEXTPOPΨ(P)

1: Y = VARIATE(P)
2: Q = REPLACEΨ(P, Y)
3: return Q

Proposition 9. If Lines 8 and 9 of method UPDATESTRATEGIES of Algorithm 12 can be charac-
terized by non-stationary kernels X : Rρ ×B(R)⊗ρ −→ [0, 1] and VS(t) : R×B(R) −→ [0, 1]
respectively. UPDATESTRATEGIES can be characterized by a non-stationary kernel US(t) : Rρ ×
B(R) −→ [0, 1] defined as:

K(t)
US = K(t)

VS ◦ KXS. (27)

Proof. K(t)
US is in terms of kernel composition, follows from Definition 25 in [11].
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Proposition 10. If Lines 2 and 4 of Algorithm 12 can be characterized by non-stationary Markov
kernels XOVERa : (Ωρ × Σ) −→ [0, 1] and VARIATEs : (Ω× Σ) −→ [0, 1] respectively, then the
method NEXTSUBPOP can be characterized by the kernel NEXTSUBPOP : (Ωρ × Σ) −→ [0, 1]
defined as the non-stationary kernel:

KNEXTSUBPOP = K(t)
VARIATEs

◦ KXOVER ◦ π{
1,...,ρ

} ◦ KP . (28)

Proof. KNEXTSUBPOP is in terms of kernel composition, follows from Definition 25 in [11].

Proposition 11. If NEXTSUBPOP can be characterized by a non-stationary Markov kernel, the
stochastic method VARIATE(t) can be characterized by a kernel V : Ωµ × Σ⊗µ −→ [0, 1] defined as

K(t)
VARIATE = [�λ

i=1[KNEXTSUBPOPi ]]. (29)

Proof. K(t)
VARIATE is a join stochastic method, follows from Definition 55 and Proposition 56

in [11].

Proposition 12. The stochastic method REPLACE(µ+λ) used in Line 2 of method NEXTPOP, can
be characterized by the kernel Rµ,µ+λ : Ωµ+λ × Σ⊗µ −→ [0, 1] defined as KRµ,µ+λ

= π{
1,...,µ

} ◦
sµ+λ,µ+λ−1 and the stochastic method
REPLACE(µ,λ), can be characterized by the kernel Rµ,λ : Ωλ × Σ⊗µ −→ [0, 1 defined as KRµ,λ =
π{

1,...,µ
} ◦ sλ,λ−1 .

Proof. KRµ,λ and KRµ+λ
are kernels composition. Follows from Definition 25 in [11].

Corollary 4. If methods PICKPARENTS, XOVERa, XOVERSTRATEGIEa, VARIATESTRATEGIE

and, VARIATEs can be described by Markov kernels fulfilling the conditions of Propositions 9 and 10,
evolutionary Strategies can be described by a VR kernel.

KES = KR ◦ KV

where:

KV = KVARIATE

KR = KRµ,λ or KR = KRµ+λ
. (30)

Proof. Follows from Propositions 9–12.

4.4.3. Convergence

Proposition 13. The NEXTPOP(µ/ρ+λ)−ES is an elitist stochastic method that can be characterized
by an elitist stochastic kernel.

Proof. Let k ∈ [1, µ] be the index of the best individual in population P, then f (BEST(P)) =
f (Pk). Since P ⊆ {P ∪ VARIATE(P)} and the method REPLACE is elitist. It is clear that
f (BEST(P ∪ VARIATE(P))) /− f (Pk).

Corollary 5. If conditions of Proposition 9 and 10 are satisfied and VARIATEs is optimal strictly
bounded from zero then the method NEXTPOPµ+λ is optimal strictly from zero.

Proof. Follows from Definition 67, Lemma 68, and Definition 69 of [11] and Proposition 13
that establish that an elitist kernel is optimal strictly bounded from zero.
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Theorem 8. (µ/ρ + λ)-ES will converge to the global optimum if methods PICKPARENTS and
VARIATE

(t)
s can be characterized by stationary or non-stationary Markov kernels and VARIATEs is

optimal strictly bounded from zero.

Proof. Follows from Theorem 3 and Corollary 5.

5. Discussion

We have generalized the conditions of convergence to the global optimum from
stationary to non-stationary Markov process that are presented in the work of stochastic
global optimization algorithms: a systematic approach proposed in [11]. We study the
necessary theory to describe with kernels some arithmetic methods. For doing so, it
was necessary to use the concepts studied in real analysis, such as arithmetic between
measurable functions. However, the literature found only studied the case of operating
two functions on the same variable but not on two different variables. Hence, the concepts
of product sigma algebra presented by Gomez in [11], were used to prove that arithmetic
operations between measurable functions on two different variables are also measurable.

We formalized some selection and recombination schemes to generalize the theory
to cover as many variations of each algorithm as possible. For that, we have found that
most of these methods could be characterized using the kernels studied in [11] and the new
kernels studied in this paper. This makes us think that other schemes in the literature could
be easily adapted to the concepts developed in this paper.

In this paper, we have formalized and characterized the simulated annealing algo-
rithm and evolutionary strategies using the developed theory (both have been formalized
in terms of Variation-Replacement kernels). A wide variety of non-stationary algorithms
described algorithmically can be found in the literature. However, the theory described in
this work cannot be used directly. For that reason, the first step to take is to write the algo-
rithms in terms of Variation-Replacement as shown in Sections 4.3 and 4.4. This approach
can also be studied in [1]. There, the class of hybrid adaptive evolutionary algorithms is
characterized.

Also, we formulated a set of conditions that SA and ES algorithms should fulfill
to achieve a global convergence. After characterizing these algorithms by a Variation-
Replacement Kernel, it has been proven that these can converge to the global optimum
if the particular implementation of the Variational method is strictly bounded from zero,
which depends of the way each algorithm is implemented.

Our future work will focus on using the proposed approach to formalize as many
stationary and non-stationary SGOALsas possible, and extending and developing the
theory for several particular methods (Mutation, recombination and selection) that can be
considered in SGOALs. Moreover, we will study new convergence conditions and not only
for the global optimum.
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The following abbreviations are used in this manuscript:

SGOAL Stochastic Global Optimization Algorithm
SGOALs Stochastic Global Optimization Algorithms
ES Evolutionary Strategies
SA Simulated Annealing
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