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Abstract: Uncertainty or vagueness is usually used to reflect the limitations of human subjective judg-
ment on practical problems. Conventionally, imprecise numbers, e.g., fuzzy and interval numbers,
are used to cope with such issues. However, these imprecise numbers are hard for decision-makers to
make decisions, and, therefore, many defuzzification methods have been proposed. In this paper, the
information of the mean and spread/variance of imprecise data are used to defuzzify imprecise data
via Mellin transform. We illustrate four numerical examples to demonstrate the proposed methods,
and extend the method to the simple additive weighting (SAW) method. According to the results, our
method can solve the problem of the inconsistency between the mean and spread, compared with the
center of area (CoA) and bisector of area (BoA), and is easy and efficient for further applications.

Keywords: imprecise data; Mellin transform; defuzzification; center of area (CoA); bisector of
area (BoA)

1. Introduction

As we know, the real world is imperfect, imprecise, and uncertain. Hence, many
theories and approaches, e.g., fuzzy sets, rough sets, and interval sets, have been proposed
to reflect the vagueness of the real world. To reflect the human’s subjective uncertainty
of linguistics, Professor Zadeh used fuzzy numbers to capture the uncertainty and the
membership function to be the corresponding weights [1]. Usually, a fuzzy number is
represented by a triangular fuzzy number (a1, a2, a3), where a1, a2, and a3 are the left, center,
and right values of a fuzzy number, respectively. Indeed, we can use alternative forms,
e.g., trapezoidal or Gaussian, to present fuzzy numbers.

However, in most practical situations, we still hope the information for decision-
making is clear and crisp. Therefore, many defuzzification methods are proposed and used
to transform imprecise values, e.g., interval or fuzzy numbers, into crisp values for decision-
making. Note that defuzzifying imprecise data means using some functions to transform
fuzzy or interval numbers into crisp values. Since imprecise data analysis, no matter interval
or fuzzy numbers, is popular in many fields, e.g., multiobjective programming [2–4], data
envelopment analysis (DEA) [5–7], and decision sciences [8–10], the defuzzification of
imprecise numbers is a critical topic.

The problem of defuzzifying interval numbers is similar to that of defuzzifying fuzzy
numbers. The main difference is that the y-axis of fuzzy numbers denotes the membership
function, but the y-axis of interval numbers is the probability density function (pdf). The
authors of [11] first proposed the concept of ranking fuzzy numbers using the mean and
spread. However, it is inefficient to determine the better fuzzy number or interval data
when one has a higher mean and a higher spread. Although the concept of coefficient
of variance (CV) was provided in [12] to cope with the problem of inconsistency, it fails
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when there are crisp values, and it is hard to apply to follow-up multiple attribute decision-
making (MADM) applications, such as simple additive weighting (SAW) or weight product
method (WPM), due to the fact the original unit is changed. Hence, an easy and efficient
algorithm to defuzzify imprecise numbers is a critical issue for practical applications.

In this paper, we first find the mean and spread of imprecise numbers via the Mellin
transformation. Then, we derive the trade-off coefficient between the mean and spread.
Finally, we develop the preference relation of imprecise numbers to rank them. In addition,
we use four examples to demonstrate our concepts and extend our method to choose the
best alternative using the SAW method. Based on the numerical results, our method can
handle the problem of the inconsistency between the mean and the spread with respect
to the center of area (CoA) and the bisector of area (BoA), and can be easily used in
further applications.

The rest of this paper is organized as follows. Section 2 states the problem of the
inconsistency between the mean and the spread. Section 3 derives the relation between the
mean and the spread according to the utility theory. The detail of the Mellin transform is
presented in Section 4. Four numerical examples are used in Section 5 to demonstrate our
concept. Discussion is presented in Section 6, and the final section presents conclusions.

2. Statement of the Problem

Assume there are two alternatives, Ai and Aj, and their means and spreads are µi, µj,
and σi, σj, respectively. According to [10], the rules for ranking fuzzy numbers is Ai � Aj if
µi > µj or Ai � Aj if µi = µj and σi < σj. However, if we assume there are two imprecise
numbers with uniform distributions, then the rules seem incorrect when there is a smaller
mean and a smaller spread, as in Figure 1.
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Figure 1. The conflicting situation in precise data.

It is intuitive for a decision-maker to prefer A1 over A2, even though A2 has a higher
mean than A1. That being said, the higher mean does not necessarily have the higher
ranking order if the spread is too large, i.e., the mean and the spread comprise the trade-off
relation. This situation is also called risk premium (RP), which represents the additional
compensation required for assuming a higher risk, and is usually discussed in economic
and financial management.

In addition, [12] proposed another criterion, called the CV index, to improve Lee and
Li’s method [11] according to the following equation:

CV =
σ

|µ| (1)
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where σ denotes the spread and µ denotes the mean.
However, it is clear that the CV index fails when there are crisp values or the mean is

zero. In addition, another shortcoming is that the result is difficult to interpret because the
unit has changed. Hence, many researchers provided different methods to efficiently rank
fuzzy numbers, e.g., [13–17], or interval numbers, e.g., [16,17].

Another practical issue is that ranking imprecise numbers is not enough for further
applications. A decision-maker might like to derive the crisp values of alternatives [18].
Surely, plenty of defuzzification methods have been proposed to efficiently derive the
crisp values from imprecise numbers, e.g., the center of sums method, the CoA method,
the BoA method, the weighted average method, and different kinds of maxima methods.
However, none of them can handle all the considered situations here, and we will compare
our method with CoA and BoA to justify the proposed method. Here, we incorporate the
concept of risk premium into our method and derive the trade-off coefficient between the
mean and spread to rank and defuzzify imprecise numbers.

3. A Trade-Off between the Mean and Spread

According to utility theory, it is intuitive that a higher mean (µA) has a higher utility
(u(A)) and a lower spread (σA), correspondingly, has a higher utility. For simplicity, we
assume the equations are linear as:

u(A) = a + bµA (2)

u(A) = c− dσA (3)

and
du
dµ A

> 0,
du

dσA
< 0

Next, we derive the relationship between the mean and spread according to our
assumptions. Let two points be µA1 and µA2 , then u(A1), u(A2), σA1 , and σA2 can be
derived by Equations (2) and (3) to form the relationship between µA and σA, as shown in
Figure 2.
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According to Figure 2, we know that having an alternative with a larger spread is the
same as having a smaller mean and vice versa. Hence, the trade-off between the mean and
the spread can be defined as:

∆µA = θ∆σA (4)

where θ < 0 is an indifference ratio between the mean and the spread.
Next, we develop a criterion to incorporate the mean and the spread according to

Equation (4). This is because if we can transform the spread to the mean, we can easily
compare any imprecise data using the rule for the higher mean with the higher ranking
order. Based on this concept, we can transform the difference between the spreads into the
difference between the means and let:

∆µA = µ∆(A1, A2) = µA1 − µA2 (5)

∆σA = σ∆(A1, A2) = σA2 − σA1 (6)

Then, we can obtain the equation to be the criterion to rank the imprecise data as:

∆ΨA = Ψ(A1, A2) = µ∆(A1, A2) + λσ∆(A1, A2) (7)

where ∆ΨA denotes the preference difference between two imprecise numbers and λ = −θ
indicates the trade-off ratio between the mean and the spread.

Equation (7) indicates that the grades of the utility in A1 are superior to A2, so we can
conclude that

∆ΨA > 0, if A1 � A2 (8)

∆ΨA < 0, if A1 ≺ A2 (9)

∆ΨA = 0, if A1 ≈ A2 (10)

As the mean and spread are monotone functions, it is obvious that ∆ΨA satisfies the
transitive axiom (i.e., if A1 � A2 and A2 � A3, then A1 � A3). In addition, our simulation
indicates θ is approximately equal to −0.25, and the method of our experiment is listed in
Appendix A.

Let us consider the defuzzifying problem of the proposed method as follows. Let Ai
be a status quo alternative. The defuzzifying value of Ai is its µA1 , and the defuzzifying
value of Aj can be derived as:

Aj = µA1 + λσ∆(A1, A2) (11)

In addition, this paper uses the Mellin transform to calculate the mean and spread/variance
in any distribution quickly. Next, we describe details of the Mellin transform, and link it to
the nth moment to calculate the mean and spread.

4. An Application of the Mellin Transform

Given a random variable, x ∈ R+, the Mellin transform, M(s), of a pdf, f (x), can be
defined as:

M{ f (x); s} = M(s) =
∫ ∞

0
f (x)xs−1dx (12)

Let h be a measurable function on R into R and Y = h(x) is a random variable. Then,
some properties of the Mellin transform can be described, as shown in Table 1. For example,
if Y = ax, then the scaling property can be expressed as:

M{ f (ax); s} =
∫ ∞

0
f (ax)xs−1dx = a−s

∫ ∞

0
f (ax)(ax)s−1 = a−s M(s) (13)
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Table 1. The properties of the Mellin transform.

Properties of Mellin Transform Y=h(x) M(s)

Scaling property ax a−s M(s)
Multiplication by xa xa f (x) M(s + a)

Rising to a real power f (xa) a−1 M( s
a ), a > 0

Inverse x−1 f (x−1) M(1− s)
Multiplication by lnx lnx f (x) d

ds M(s)
Derivative dk

dsk f (x) Γ(s)
Γ(s−k)

Given a continuous non-negative random variable, X, the nth moment of X is denoted
by E(Xn) and is defined as:

E(Xn) =
∫ ∞

0
xn f (x)dx (14)

For n = 1, the mean of X can be expressed as:

E(X) =
∫ ∞

0
x f (x)dx (15)

and the variance of X can be calculated by:

σ2
x = E(X2)− [E(X)]2 (16)

Since the relation between the nth moment and the Mellin transform of X can be linked by:

E(Xn) =
∫ ∞

0
x(n+1)−1 f (x)dx = M{ f (x); n + 1} (17)

then the mean and the variance of X can be calculated by:

E(X) = M{ f (x); 2} (18)

σ2
x = M{ f (x); 3} − {M{ f (x); 2}}2 (19)

According to Equations (18) and (19), we can quickly calculate the mean and the
spread in any distribution. In practice, the uniform, the triangular, and the trapezoidal
distribution are usually used, and their Mellin transforms are summarized as shown in
Table 2. More Mellin transforms in various probabilistic density functions can be found
in [19].

Table 2. Mellin transform of some probability density functions.

Distribution Parameters M(s)

Uniform UNI(a, b) bs−as

s(b−a)
Triangular TRI(l, m, u) 2

(u−l)s(s+1) [
u(us−ms)
(u−m)

− l(ms−ls)
(m−l) ]

Trapezoidal TRA(a, b, c, d) 2
(c+d−b−a)s(s+1) [

(ds+1−cs+1)
(d−c) − (bs+1−as+1)

(b−a) ]

Based on Table 2, the mean and spread values can be efficiently derived by calculating
M(2) and M(3). Then, we can rank and defuzzify imprecise data using Equation (7). The
following section uses four numerical examples to show the detailed procedures of the
proposed method.

5. Numerical Examples

In this section, we demonstrate four examples to show how our method ranks impre-
cise data. The first three examples illustrate the way to rank various imprecise data. The last
example demonstrates our approach to extending to the simple additive weighting method.
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The Mellin transform derives the values of the mean and spread, and the preference of
objects is obtained by incorporating the variance into the mean value.

Example 1. Let four alternatives using imprecise data be used to measure the preference where we
do not know any information about our alternatives (i.e., assuming they have uniform distribution).
Their imprecise preferences are A1 = (2, 10), A2 = (4, 8), A3 = (5, 7), and A4 = (6, 9), and these
probability density functions are represented in Figure 3.
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According to the Mellin transform, we can obtain:

E(A1) = 6.0, σA1 = 2.3094
E(A2) = 6.0, σA2 = 1.1547
E(A3) = 6.0, σA3 = 0.5774
E(A4) = 7.5, σA4 = 0.8660

then the differences in the alternatives’ total mean can be calculated as:

Ψ(A1, A2) = µ∆(A1, A2) + λσ∆(A1, A2) = 0 + 0.25× (1.1547− 2.3094) = −0.2887 < 0
Ψ(A1, A3) = µ∆(A1, A3) + λσ∆(A1, A3) = 0 + 0.25× (0.5774− 2.3094) = −0.4330 < 0

Ψ(A1, A4) = µ∆(A1, A4) + λσ∆(A1, A4) = −1.5 + 0.25× (0.8660− 2.3094) = −1.8609 < 0

Based on the above result, we can conclude the ranking result is A4 � A3 � A2 � A1.
We can set A1 as the status quo alternative and defuzzify other alternatives. The result is
compared with CoA and Boa and presented, as shown in Table 3.

Table 3. The comparison of defuzzifying approaches in Example 1.

Methods A1 A2 A3 A4 Rank

CoA 6 6 6 7.5 A4 � A3 ≈ A2 ≈ A1

BoA 6 6 6 7.5 A4 � A3 ≈ A2 ≈ A1

Proposed 6 (status quo) 6.29 6.43 7.86 A4 � A3 � A2 � A1

Example 2. Given two imprecise data with triangular distributions, A1 = (0, 6, 10) and A2 = (3.8,
4.8, 5.8), and a crisp value A3 = 4.6, to present the measurement of the preference in A1, A2, and
A3. Their probability density functions are listed in Figure 4.
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By using the Mellin transform,

E(A1) = 5.0, σA1 = 2.0412
E(A2) = 4.8, σA2 = 0.4082

E(A3) = 4.6, σA3 = 0

then the differences in the alternative’s total mean can be calculated as:

Ψ(A1, A2) = µ∆(A1, A2) + λσ∆(A1, A2) = 0.2 + 0.25× (0.4082− 2.0412) = −0.2083 < 0
Ψ(A2, A3) = µ∆(A2, A3) + λσ∆(A2, A3) = 0.2 + 0.25× (0− 0.4082) = −0.0980 < 0

The above result indicates that the preference relation is A3 � A2 � A1, where A3 is
the best choice. Then, we can compare the proposed method with CoA and Boa, as shown
in Table 4.

Table 4. The comparison of defuzzifying approaches in Example 2.

Methods A1 A2 A3 Rank

CoA 5.33 4.59 4.6 A1 � A3 � A2

BoA 5.5 4.6 4.6 A1 � A3 ≈ A2

Proposed 4.6 4.8 (status quo) 4.9 A3 � A2 � A1

Example 3. Assume three alternatives (A1, A2, and A3) using interval data to measure the
preference rating, and of these alternatives, A2 and A3 are known to have trapezoidal and triangular
distributions, respectively. Their scores are A1 = (4, 7), A2 = (4, 5, 6, 7), and A3 = (2, 7, 8),
respectively, and the probability density functions are described in Figure 5.

By using the Mellin transform, the mean and the spread can be calculated as:

E(A1) = 5.5, σA1 = 0.8660
E(A2) = 5.5, σA2 = 0.4167

E(A3) = 5.67, σA3 = 1.2329

then the differences in the alternatives’ total mean can be calculated as:

Ψ(A1, A2) = µ∆(A1, A2) + λσ∆(A1, A2) = 0 + 0.25× (0.4167− 0.8660) = −0.1378 < 0
Ψ(A1, A3) = µ∆(A1, A3) + λσ∆(A1, A3) = −0.1 + 0.25× (1.2329− 0.8660) = −0.008 < 0
Ψ(A2, A3) = µ∆(A2, A3) + λσ∆(A2, A3) = −0.17 + 0.25× (1.2329− 0.4167) = 0.0341 > 0
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n
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=
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Figure 5. The probability density function in the third example.

The above result indicates that A2 � A3 � A1, and we can compare the proposed
method with CoA and Boa, as shown in Table 5.

Table 5. The comparison of defuzzifying approaches in Example 3.

Methods A1 A2 A3 Rank

CoA 5.5 5.5 5.67 A3 � A1 ≈ A2

BoA 5.5 5.5 5.9 A3 � A1 ≈ A2

Proposed 5.5 (status quo) 5.64 5.51 A2 � A3 � A1

Example 4. In order to extend to further applications in MADM, we demonstrate a way to employ
the SAW method using our concept. The SAW method can be expressed as:

V(Ai) = Vi =
n

∑
j=1

wjvj(xij), i = 1, · · · , m; j = 1, . . . , n (20)

where V(Ai) is the value function of alternative Ai, and wj and vj(·)are weight and value functions
of attribute j, respectively. After a normalization process, the value of alternative Ai can be rewritten as:

Vi =
n

∑
j=1

wjrij, i = 1, · · · , m (21)

Next, we can apply our concept to the simple additive weighting method according to
follow equations:

∆Vik = Vi −Vk =
n

∑
j=1

wjrij −
n

∑
j=1

wjrkj =
n

∑
j=1

wj∆rikj, i, k = 1, · · · , m; j = 1, · · · , n (22)

and let:
∆rikj = µ∆(Aij, Akj) + λσ∆(Aij, Akj) (23)

Then,

Ψ(Aij, Akj) =
h

∑
j=1

wjµ∆(Aij, Akj) +
h

∑
j=1

wjλσ∆(Aij, Akj) (24)

when Ψ(Aij, Akj) > 0 means Ai � Ak where i, k ∈ [1, . . . , m], and vice versa.
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Assume there are three alternatives described in Table 6, where each alternative
is measured using interval data. In addition, we assume these alternatives satisfy the
uniform distributions.

Table 6. Data for evaluation in the fourth example.

Alternatives w1 = 0.2 w2 = 0.5 w3 = 0.3

A1 [3.6, 5.8] [4.3, 6.7] [2.3, 5.7]
A2 [2.3, 6.0] [3.8, 4.6] [4.8, 6.9]
A3 [4.3, 6.4] [4.7, 5.8] [4.8, 6.2]

Next, we need to normalize all alternatives, and linear normalization is most often
used in the SAW method [20]. Therefore, in this example, we normalize the interval data
according to the following equation:

rij = [
r−

r∗
,

r+

r∗
] (25)

where r− and r+ are the interval boundary, and r∗ is the maximum value in jth attribute.
Based on Equation (20), we can normalize the interval data in Table 7.

Table 7. Data for evaluation in the fourth example after normalization.

Alternatives w1 = 0.2 w2 = 0.5 w3 = 0.3

A1 [0.563, 0.906] [0.642, 1.000] [0.333, 0.826]
A2 [0.359, 0.938] [0.567, 0.687] [0.696, 1.000]
A3 [0.672, 1.000] [0.701, 0.866] [0.696, 0.899]

After this normalization process, we can calculate the differences between the alterna-
tives’ means as follows:

Ψ(A1, A2) =
h
∑

j=1
wjµ∆(A1j, A2j) +

h
∑

j=1
wjλσ∆(A1j, A2j) = 0.0206 + 0.0884− 0.0846 = 0.0244 > 0

Ψ(A1, A3) =
h
∑

j=1
wjµ∆(A1j, A3j) +

h
∑

j=1
wjλσ∆(A1j, A3j) = −0.0205 + 0.0118− 0.0717 = −0.0804 < 0

According to the results A1 � A2 and A1 ≺ A3, and the alternative A3 is the best choice.

6. Discussions

One critical issue for imprecise numbers is to rank their order and defuzzify their
values. This paper focuses on imprecise data, and uses the mean and spread to defuzzify
and rank data. Although the CoA and BoA are widely used to defuzzify fuzzy numbers be-
cause of their simplicity, they can obtain wrong preferences in more complicated situations.
According to the utility theory, the difference between the spreads can be transformed into
the difference between the means by multiplying a specific ratio. Therefore, we can develop
some equations to achieve our purpose here.

Our method has several characteristics when ranking imprecise numbers based on
our numerical examples. First, when imprecise numbers have the same mean, the smaller
spread has the higher-ranking preference. Second, the influence of the spread to certain
utilities can clearly be reflected in the results, so it is not necessary to have the higher mean
indicate the higher-ranking preference if the spread is too large. However, the trade-off
between the mean and the spread is not mentioned in Lee and Li’s method [10]. Third, our
method is suitable for both imprecise and crisp data or mixed data. Last, our method does
not change the measurement unit, and the results can be interpreted more intuitively and
easily applied to further areas of research.
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The main concept of our method is that the difference in the utility should be larger
than zero when one preference is larger than another. We use three examples and the
SAW method to demonstrate our concept. Based on the results, our methods can rank the
preferences correctly. However, the correctness of the proposed method highly depends on
the choice of θ. Although we propose an experimental method to determine the parameter,
other sophisticated ways should be considered in different applications or considerations.
The choice of the parameter also provides the flexibility for decision-makers to reflect on
the facing problems.

7. Conclusions

According to the probability theory, we can describe the characteristics of imprecise
data depending on its mean and spread. These two criteria are also used to rank interval
and fuzzy numbers. However, the mean and spread exist in a trade-off relationship, and it is
not necessary to choose the alternative with the higher mean if the spread of the alternative
is too large. In order to solve the problem of this inconsistency under the perspectives
of the mean and the spread, the difference between the spread is transformed into the
difference between the mean. According to the results of the preference difference between
alternatives, we can rank the priority of the imprecise data. In addition, we also provide a
method to derive the crisp value of an imprecise number.

There are several advantages to our proposed method. First, after transforming the
spread, we can overcome the problem of being unable to determine the better ranking when
one has a higher mean and spread. Second, no matter the imprecise data distribution, the
mean and spread can quickly be calculated by the Mellin transform. Third, interpretation
is easier and more intuitive because the unit is not changed. In addition, our method can
be easily extended to other methods in MADM for further applications.
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Abbreviations

Abbreviation Definition
DEA Data envelopment analysis
pdf Probability density function
CV Coefficient of variance
MADM Multiple attribute decision-making
SAW Simple additive weighting
WPM simple product weighting
CoA Center of area
BoA Bisector of area
RP Risk premium
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Symbol
A Alternative
µ Mean
σ Spread
u(·) Utility function
θ Indifference ratio between the mean and the spread
λ Trade-off ratio between the mean and the spread
∆ΨA Preference difference between two imprecise numbers
M(s) Mellin transform
[r−,r+] Interval boundary

Appendix A

Based on the above discussion, the trade-off relationship between the mean and the
spread can be defined as:

∆µA = θ∆σA

where θ < 0 is an indifference ratio between the mean and the spread.
According to the equation, the mean and the spread have a trade-off of indifference

ratio and have no relation to the shape of the alternative. Next, we simulate various kinds
of situations to determine the indifference ratio.

Two alternatives,A1 and A2, measured using imprecise data, A1 = (4, 6) and A2 = (0, 10),
with triangular distribution, respectively, and their probability density functions ( f (x1) and
f (x2)) are described in Figure A1. The mean and the spread of A1 and A2 can be calculated
using the Mellin transform as:

E(A1) = 5, σA1 = 0.5

E(A2) = 5, σA2 = 2.0412
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Figure A1. The concept of finding the indifference ratio.

It is obvious that A1 � A2 (with the same mean and A1 has the smaller spread), and
then we move f (x1) to the left by decreasing E(A1) until the expert cannot figure out which
one is better, i.e., we view u(A1) ≈ u(A2) in this situation. Based on our experiments,
when the E(A1)

.
= 4.6, then u(A1) ≈ u(A2) and θ

.
= −0.25. The results are described in

Figure A2.
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