
Citation: Mathur, A.; Moka, S.;

Botev, Z. Coordinate Descent for

Variance-Component Models.

Algorithms 2022, 15, 354.

https://doi.org/10.3390/a15100354

Academic Editors: Georgy

Sofronov and Andras Farago

Received: 30 July 2022

Accepted: 23 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Coordinate Descent for Variance-Component Models
Anant Mathur 1,*, Sarat Moka 2 and Zdravko Botev 1,*

1 School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
2 School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW 2109, Australia
* Correspondence: anant.mathur@unsw.edu.au (A.M.); botev@unsw.edu.au (Z.B.)

Abstract: Variance-component models are an indispensable tool for statisticians wanting to capture
both random and fixed model effects. They have applications in a wide range of scientific disciplines.
While maximum likelihood estimation (MLE) is the most popular method for estimating the variance-
component model parameters, it is numerically challenging for large data sets. In this article, we
consider the class of coordinate descent (CD) algorithms for computing the MLE. We show that a basic
implementation of coordinate descent is numerically costly to implement and does not easily satisfy
the standard theoretical conditions for convergence. We instead propose two parameter-expanded
versions of CD, called PX-CD and PXI-CD. These novel algorithms not only converge faster than
existing competitors (MM and EM algorithms) but are also more amenable to convergence analysis.
PX-CD and PXI-CD are particularly well-suited for large data sets—namely, as the scale of the model
increases, the performance gap between the parameter-expanded CD algorithms and the current
competitor methods increases.

Keywords: linear-mixed models; maximum likelihood estimation; numerical optimization

1. Introduction

Linear models that contain both fixed and random effects are referred to as variance
components or linear-mixed models (LMMs). They arise in numerous applications, such as
genetics [1], biology, economics, epidemiology and medicine. A broad coverage of existing
methodologies and applications of these models can be found in the textbooks [2,3].

In the simplest variance component setup, we observe a response vector y ∈ Rn and a
predictor matrix X ∈ Rn×p and assume that y is an outcome of a normal random variable
Y ∼ N (Xβ, Ω), where the covariance is of the form,

Ω =
m

∑
i=0

γiVi ∈ Rn×n, γi ≥ 0.

The matrices V0, . . . , Vm are fixed positive semi-definite matrices, and V0 is non-
singular. The unknown mean effects β = (β1, . . . , βp) and variance component parameters
γ = (γ0, . . . , γm) can be estimated by maximizing the log-likelihood function,

L(β, γ) = −1
2

ln det Ω− 1
2
(y− Xβ)>Ω−1(y− Xβ). (1)

If Ω is known, the maximum likelihood estimator (MLE) for β is given by

β̂ =
(

X>Ω−1X
)−1

X>Ω−1y.

Algorithms 2022, 15, 354. https://doi.org/10.3390/a15100354 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15100354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2868-9420
https://doi.org/10.3390/a15100354
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15100354?type=check_update&version=3

Algorithms 2022, 15, 354 2 of 20

To simplify the MLE estimate for γ, one can adopt the restricted MLE (REML)
method [4] to remove the mean effect in the likelihood expression by projecting y onto the
null space of X. Let ν = n− p and suppose we have the QR decomposition,

X =
[
Q[p] Q[ν]

][R
0ν×p

]
,

where R is an p× p upper triangular matrix, 0ν×p is an ν× p zero matrix, Q[p] is an n× p ma-
trix, Q[ν] is n× ν, and Q[p] and Q[ν] both have orthogonal columns. If we take the Cholesky
decomposition LL> of the matrix Q>[ν]V0Q[ν], then the transformation, L−1Q>[ν] : Rn 7→ Rν

removes the mean from the response, and we obtain y′ := L−1Q>[ν]y ∼ N (0, Ω′), where

Ω′ := γ0I+ ∑m
i=1 γiV′i ∈ Rν×ν and V′i := L−1Q>[ν]ViQ[ν]L−>. After this transformation, the

restricted likelihood − 1
2 ln det Ω′ − 1

2 (y
′)>(Ω′)−1y′ will not depend on β.

Henceforth, and without loss of generality, we assume that such a transformation has
been performed so that we can focus on minimizing an objective function of the form:

− 2L(γ) = ln det Ω + y>Ω−1y. (2)

There exists extensive literature on optimization methods for the log-likelihood ex-
pression (2), including Newton’s Method [5], Fisher Scoring Method [6], the EM and MM
Algorithms [7–9]. Newton’s method is known to scale poorly as n, or the number of vari-
ance components m + 1, increase due the cost of O(mn3) + O(m3) flops required to invert
a Hessian matrix at each update. Both the EM and MM algorithms have simple updating
steps; however, numerical experience shows that they are slow to identify the active set
{i : γ̂i = 0}, where γ̂ is the MLE.

One class of algorithms yet to be applied to this problem are coordinate-descent
(CD) algorithms. These algorithms successively minimize the objective function along
coordinate directions and can be effective when the optimization for each sub-problem can
be made sufficiently simple. Furthermore, only few assumptions are needed to prove that
accumulation points of the iterative sequence are stationary points of the objective function.
CD algorithms have been used to solve optimization problems for many years, and their
popularity has grown considerably in the past few decades because of their usefulness in
data science and machine learning tasks. Further in-depth discussions of CD algorithms
can be found in the articles [10–12].

In this paper, we show that a basic implementation of CD is costly for large-scale
problems and does not easily succumb to standard convergence analysis. In contrast,
our novel coordinate-descent algorithm called parameter-expanded coordinate descent
(PX-CD) is computationally faster and more amenable to theoretical guarantees.

The PX-CD is computationally cheaper to run than the basic CD implementation
because the first and second derivatives for each sub-problem can be evaluated efficiently
with the conjugate gradient (CG) algorithm [13], whereas the basic CD implementation
requires repeat Cholesky factorizations for each coordinate update, each with a complexity
of O(n3). Further to this, it is often the case that the Vi are low-rank, and we can take advan-
tage of this by employing the well-known Woodbury matrix identity or QR transformation
within PX-CD to reduce the computational cost of each univariate minimization.

In PX-CD, the extended parameters are treated as a block of coordinates, which is
updated at each iteration by searching through a coordinate hyper-plane rather than single-
coordinate directions. We provide an alternate version of PX-CD, which we call parameter
expanded-immediate coordinate descent (PXI-CD), where the extended coordinate block
is updated multiple times within each cycle of the original parameters. We observe nu-
merically that, for large-scale models, the number of iterations needed to converge greatly
offsets the additional computational cost for each coordinate cycle. As a result, the overall
convergence time is better than that of the PX-CD.

Algorithms 2022, 15, 354 3 of 20

From a theoretical point of view, we show that the accumulation points of the iterative
sequence generated by both the PX-CD and PXI-CD are coordinate-wise minimum points
of (2).

We remark that the improved efficiency of the PX-CD algorithm is similar to the
well-known superior performance of the PX-DA (parameter-expanded data-augmentation)
algorithm [14,15] in the Markov-chain Monte Carlo (MCMC) context—namely, the PX-DA
algorithm is often much faster to converge than a basic data-augmentation Gibbs algorithm.
This similarity is also the reason for using the same prefix “PX” in our nomenclature.

The remainder of the paper is structured as follows. In Section 2, we describe the
basic implementation of CD and provide examples for which it performs unsatisfactorily.
In Section 3, we introduce the PX-CD and PXI-CD and show that accumulation points
of the iterations are coordinate-wise minima for the optimization. We then discuss their
practical implementation and detail how to reduce the computational cost when the Vi
are low-rank. We also extend the PX-CD algorithm for penalized estimation to perform
variable selection. Then, in Section 4, we provide numerical results when Vi are computer
simulated and when Vi are constructed from a real-world genetic data set. We have made
our code for these simulations available on GitHub (https://github.com/anantmathur44/
CD-for-variance-components) (accessed on 1 July 2022).

2. Basic Coordinate Descent

Recall that, after the REML procedure to remove the mean effect, we have Y ∼ N (0, Ω)
and Ω = ∑m

i=0 γiVi, where V0 = In. We thus seek to compute:

γ̂ = arg min
γ

G(Ω), γi ≥ 0, i = 0, 1 . . . , m (3)

G(Ω) := y>Ω−1y + ln det Ω. (4)

CD can be applied to solve this problem by successively minimizing G along coordi-
nate directions. There is significant scope for variation in the way components are selected
to be updated. In the most conventional way the algorithm cycles through the parameters
in the order γ0 → γ1 → · · · → γm and updates each in turn. This version, known as cyclic
coordinate descent, is shown in Algorithm 1.

Algorithm 1 Cyclic CD for G(Ω).
input: y and [V0, V1, . . . , Vm] where V0 = In

1 Choose γ ∈ {u ∈ Rm+1 | ui > 0}
2 Ω← γ0I + ∑m

i=1 γiVi
3 repeat
4 for k = 0, 1, . . . , m do
5 Ω−k ← Ω− γkVk
6 γk ← arg min

x≥0
G(Ω−k + xVk)

7 Ω← Ω−k + γkVk

8 until termination test satisfied
9 return γ, Ω

If we choose to minimize along one coordinate at a time, then the update of a parameter
consists of a line search along the selected coordinate direction—that is, if the selected
parameter is component k, then the new parameter value is updated as

γ
(t+1)
k ← arg min

x≥0
G
(
∑k−1

i=0 γ
(t+1)
i Vi + ∑m

i=k+1γ
(t)
i Vi + xVk

)
.

https://github.com/anantmathur44/CD-for-variance-components
https://github.com/anantmathur44/CD-for-variance-components

Algorithms 2022, 15, 354 4 of 20

2.1. Implementation

The non-trivial component of Algorithm 1 is to compute the line search,

arg min
x≥0

G(Ω−k + xVk),

where Ω−k := Ω − γkVk. When Ω−k is invertible, this step can be simplified to a
one-dimensional algebraic expression that can be numerically solved without repeated
evaluations of the terms y>(Ω−k + xVk)y and ln det(Ω−k + xVk). The simplification
is achieved using the Generalized Eigenvalue Decomposition (GEV) [13] to decompose
(Vk, Ω−k)→ (Dk, Uk) such that,

VkUk = Ω−kUkDk and U>k Ω−kUk = In,

where Dk ∈ Rn×n is a diagonal matrix with non-negative entries and Uk ∈ Rn×n is
invertible. Using the above expressions we obtain the factorized expression, Ω−k + xVk =
U−>k (I + xD)U−1

k . Therefore, we can express the inverse and log-determinant terms in
G(Ω−k + xVk) as,

(Ω−k + xVk)
−1 = Uk(In + xDk)

−1U>k , (5)

ln det(Ω−k + xVk) = ln det(In + xDk)− 2 ln det Uk. (6)

From (4), we have that,

G(Ω−k + xVk) = y>Uk(In + xDk)
−1U>k y + ln det(In + xDk) + const.

Let αk = U>k y and dk = diag(Dk). Then, the function to be minimized at the k-th
component is of the form,

gk(x) := G(Ω−k + xVk) =
n

∑
j=1

α2
k,j

dk,jx + 1
+ ln(1 + dk,jx) + const. (7)

where dj ≥ 0 for all j. Unless n = 1, in general, there is no closed-form expression for
the minimum. We thus resort to a numerical method, such as Newton’s method or the
Golden-section search method. With the above simplification the majority of the cost is
attributed to the GEV, which has a time complexity of O(14n3). Alternatively, one could
employ iterative methods without prior simplification of gk(x) via the GEV. In that case,
however, evaluation of gk(x) and its derivatives at each step requires one full Cholesky
factorization, costing O(n3). Either way, for problems where n is large, basic CD is too
costly per one update.

2.2. Convergence

An interesting question is whether the sequence generated in Algorithm 1 converges to
a local minimum of the objective function (3) (which is assumed to have a global minimum).
To make a general point about the convergence theory, take C to be the set of limit points of
a coordinate-descent sequence {γ(t)}. It is well-known [16,17] that the following existence
and uniqueness assumption:

gk(x) = G(Ω−k + xVk) has a unique (global) minimizer for x ≥ 0 (8)

is one of the simplest sufficient conditions that ensures the set C is not empty and contains
only singletons. Assuming that the existence and uniqueness assumption holds for a given
coordinate-descent algorithm and γ∗ ∈ C then, by construction, γ∗ is a global coordinate-
wise minimum of (3)—that is, one cannot reduce the value of the objective function by
moving along each of the coordinate directions (that is, G(Ω−k + xVk) ≥ G(Ω−k + γ∗k Vk)
for each k and all x ≥ 0).

Algorithms 2022, 15, 354 5 of 20

Even if γ∗ ∈ C is a coordinate-wise minimum, it may not be a local minimum of (3). It
may well be a saddle point of (3). For example, the function f (γ1, γ2) = γ2

1 + γ2
2 − 5γ1γ2

does not have a local minimum at zero (f (γ, γ) = −3γ2 indicating that a minimum does
not even exist); however, it has a coordinate-wise minimum at (γ1, γ2) = (0, 0).

Thus, it is important to remember that the set of local minima of the optimization
problem (3) is a subset of C because C may contain coordinate-wise minima, which are still
saddle points of (3). One positive aspect is that the saddle points found by any coordinate-
descent algorithm (under the existence and uniqueness assumption) are a subset of all the
saddle points of (3) because they are constrained to be coordinate-wise minima. Stated
another way, the set C consists of either local minimizers or saddle points that look like
coordinate-wise minimizers.

Either way, there is simply no guarantee that any of our coordinate-descent procedures
in this paper will converge to a strict local minimum of (3), see [16,18] for more in-depth
discussions. Of course, this is an issue for any of the existing optimization algorithms for (3)
(MM and EM algorithms simply being a special case of coordinate descent, and Newton’s
method known for convergence only when initialized near a local minimum), and thus it
should not be viewed as a particular disadvantage of our proposals.

Unfortunately, the existence and uniqueness assumption (8) cannot be used to deal
with the convergence of the basic CD Algorithm 1. This is because gk(x) can exhibit
multiple local minima, as illustrated next.

Suppose n = 2, then from Equation (7), we have

gk(x) =
α2

k,1

dk,1x + 1
+ ln(1 + dk,1x) +

α2
k,2

dk,2x + 1
+ ln(1 + dk,2x) + const.

In Figure 1, we observe two minimizers for gk(x) when αk = (1.2, 3) and dk = (10, 0.2),
respectively. This implies that the existence and uniqueness assumption does not hold for
the basic implementation of CD, and we cannot ensure that accumulation points of the
sequence {γ(t)} are coordinate-wise minima of G.

Figure 1. Two local minima: (0.11, 10.26) and (14.35, 8.66) obtained for gk(x) when αk,1 = 1.2,
αk,2 = 3, dk,1 = 10 and dk,2 = 0.2.

Example 1 (Sufficient Conditions for a Unique Minimum). In this example, we show that
strong conditions are needed for the existence and uniqueness assumption to hold, making the basic
CD Algorithm 1 less than attractive. Suppose δ := 1

n ∑n
j=1 α2

k,j > 1 and there is a constant d > 0
such that dk,j = d for all j = 1, . . . , n. In that case, we have

gk(x) =
n δ

dx + 1
+ n ln(1 + dx) + const.

Therefore, the first and second derivatives of gk(x) are, respectively, given by

g′k(x) =
n d

(1 + dx)

(
1− δ

(1 + dx)

)
and g′′k (x) = − n d2

(1 + dx)2

(
1− 2 δ

(1 + dx)

)
.

Algorithms 2022, 15, 354 6 of 20

Since d > 0, it easy to see that the equation g′k(x) = 0 has a unique (positive) solution, which is
x∗1 = δ−1

d . Similarly, the solution of g′′k (x) = 0 is x∗2 = 2δ−1
d , which is greater than x∗1 .

Since g′′k (x) > 0 for every x ∈ [0, x∗2), gk(x) is (strictly) convex over [0, x∗2). As a result,
since 0 < x∗1 < x∗2 , gk(x) exhibits a global minimum at x∗1 .

3. Parameter-Expanded CD

Since the basic CD Algorithm 1 is both expensive per coordinate update and is not
amenable to standard convergence analysis [16,17], we consider an alternative called the
parameter-expanded CD or PX-CD. We argue that our novel coordinate-descent algorithm
is both faster to converge and also amenable to simple convergence analysis because the
existence and uniqueness assumption holds. This constitutes our main contribution.

In the PX-CD, we use the supporting hyper-plane (first-order Taylor approximation)
to the concave matrix function f (A) = ln det A, where A � 0. The supporting hyper-plane
gives the bound [9]:

ln det A ≤ ln det C + tr
(

C−1(A−C)
)

,

where C ∈ Rn×n is an arbitrary PSD matrix, and equality is achieved if and only if C = A.
Replacing the log-determinant term in G with the above upper bound, we obtain the
surrogate function,

H(Ω, C) := y>Ω−1y +
m

∑
i=0

γitr(C−1Vi) + ln det(C)− n ≥ G(Ω). (9)

The surrogate function H has C as an extra variable in our optimization, which we set
to be of the form:

C =
m

∑
i=0

γ̃iVi,

where γ̃ = (γ̃0, γ̃1, . . . , γ̃m) are latent parameters. Similar to the MM algorithmic recipe [9],
we then jointly minimize the surrogate function H with respect to both γ and γ̃ using CD.

The most apparent way of selecting our coordinates is to cyclically update in the order:

γ0 → γ1 → . . .→ γm → γ̃,

where the last update is a block update of the entire block γ̃. In other words, the expanded
parameters γ̃ are treated as a block of coordinates that is updated in each cycle by searching
through the coordinate hyper-plane rather than the single-coordinate directions. We refer
to a full completion of updates in a single ordering as a “cycle” of updates. Suppose the
initial guess for the parameters are (γ(0), γ̃(0)), then, at the end of cycle t, we denote the
updated parameters as (γ(t), γ̃(t)). In Theorem 1, we state that under certain conditions, the
sequence {(γ(t), γ̃(t))}t≥0 generated by PX-CD has limit-points, which are coordinate-wise
minima for G.

Let Ω(t) = ∑m
i=0 γ

(t)
i Vi be the updated covariance matrix after the m + 1 original

parameters have been updated in cycle t. Then, as the inequality in (9) achieves equality if
and only if C = Ω the update for the expanded block parameters γ̃ in cycle t is,

γ̃(t) = arg min
γ̃

H(Ω(t),
m

∑
i=0

γ̃iVi) = γ(t).

In practice, we simply store C(t) = Ω(t) at the end of each cycle.
Minimizing H with respect to the k-th component of the original parameter γ yields a

function of the form:

hk(x) := H(Ω−k + xVk, C) = y>(Ω−k + xVk)
−1y + x tr

(
C−1Vk

)
+ const., x ≥ 0. (10)

One of the main advantages of the PX-CD procedure over the basic coordinate descent
in Algorithm 1 is that the optimization along each coordinate has a unique minimum.

Algorithms 2022, 15, 354 7 of 20

Lemma 1. hk(x) has a unique minimizer for x ≥ 0.

Proof. We now show that on [0, ∞), the function hk(x) is either strictly convex or a linear
function with a strictly positive gradient.

We first consider the case where Ω−k is invertible. From [13], we have the GEV
decomposition: (Vk, Ω−k) → (Dk, Uk) where Dk ∈ Rn×n is a diagonal matrix with non-
negative entries and Uk ∈ Rn×n is invertible. In a similar fashion to the simplified basic CD
expression (7), let αk = U>k y and dk = diag(Dk). Then, hk(x) can be simplified to,

hk(x) =
n

∑
j=1

α2
k,j

dk,jx + 1
+ x tr

(
C−1Vk

)
+ const. (11)

We then obtain the first and second derivatives,

h′k(x) = −
n

∑
j=1

α2
k,jdk,j

(dk,jx + 1)2 + tr
(

C−1Vk

)
, h′′k (x) =

n

∑
j=1

2α2
k,jd

2
k,j

(dk,jx + 1)3 . (12)

where dj ≥ 0. If there exists j such that αk,jdk,j 6= 0, then h′′(x) > 0 for x ≥ 0. Then, h is
strictly convex and attains a unique global minimizer x∗ ∈ [0, ∞). Suppose that αk,jdk,j = 0
for j = 1, . . . , n then h′k(x) = tr

(
C−1Vk

)
. If we can show that tr

(
C−1Vk

)
> 0, then hk(x) is

strictly increasing on [0, ∞), and x∗ = 0 is the unique global minimizer for x ∈ [0, ∞).
We note that the matrix C−1 is positive-definite since C = ∑m

i=0 γ̃iVi is invertible
and positive semi-definite. Therefore, the symmetric square root factorization, C−1 =
C−1/2C−1/2 exists, and

tr
(

C−1Vk

)
= tr

(
C−1/2VkC−1/2

)
,

due to the invariant cyclic nature of the trace. The matrix C−
1
2 VkC−

1
2 is positive semi-

definite as z>C−1/2VkC−1/2z = ‖V1/2
k C−1/2z‖2

2 ≥ 0 for all z ∈ Rn. Since C−
1
2 VkC−

1
2 is a

non-zero matrix and positive-semi-definite, tr
(
C−1Vk

)
> 0 and hk(x) has a strictly positive

slope, which implies that x∗ = 0 is the unique global minimizer for x ∈ [0, ∞).
Consider the case dim(span{V1, . . . , Vm}) = r < n. Assuming γ0 > 0, then Ω−k will

be invertible except when k = 0. When Ω−0 is singular, a simplified expression in the form
of (11) may be difficult to find. Instead, we take the singular value decomposition (SVD) of
the symmetric matrix Ω−0,

Ω−0 = Q>ΛQ, Λ =

[
diag(λ1, . . . , λr) 0

0 0

]
,

where λ1, . . . , λr > 0 are the real-positive eigenvalues of Ω−k, and the matrix Q ∈ Rn×n is
orthogonal. Then, we can express the inverse as

(Ω−0 + xI)−1 = Q(Λ + xIn)
−1Q>.

If we assume y /∈ span{V1, . . . , Vm}, then α = Q>y 6= 0. Then,

h0(x) =
r

∑
j=1

α2
j

λj + x
+

n

∑
j=r+1

α2
j x−1 + x tr

(
C−1Vk

)
+ const. (13)

and

h′′0 (x) =
r

∑
j=1

2α2
j

(λj + x)3 +
n

∑
j=r+1

2α2
j

x3 > 0,

when x > 0. Therefore, h0(x) still attains a unique minimizer as the function is strongly
convex for x > 0.

Algorithms 2022, 15, 354 8 of 20

The result of this lemma ensures the existence and uniqueness condition (8), and thus
we can ensure that accumulation or limit points of the CD iteration are also coordinate-wise
minimal points. The details of the optimization follow.

3.1. Univariate Minimization via Newton’s Method

Unlike the basic CD Algorithm 1, for which each coordinate update costs O(n3), here
we show that a coordinate update for the PX-CD algorithm costs only O(jn2) for some
constant j where typically j� n.

The function hk(x) can be minimized via the second-order Newton’s method, which
numerically finds the root of h′k(x). The basic algorithm starts with an initial guess x0 of
the root, and then

xn+1 = xn − h′k(xn)[h′′k (xn)]
−1, (14)

are successive better approximations. The algorithm can be terminated once successive
iterates are sufficiently close together. The first and second derivatives of h are given as

h′k(x) = −y>(Ω−k + xVk)
−1Vk(Ω−k + xVk)

−1y + tr
(

C−1Vk

)
, (15)

h′′k (x) = 2y>(Ω−k + xVk)
−1Vk(Ω−k + xVk)

−1Vk(Ω−k + xVk)
−1y, (16)

where we used differentiation of a matrix inverse, which implies that

∂(Ω−k + xVk)
−1

∂x
= −(Ω−k + xVk)

−1 ∂(Ω−k + xVk)

∂x
(Ω−k + xVk)

−1.

Similar to the basic CD implementation, computing the algebraic expression in (11)
via GEV is expensive. Evaluating (15) and (16) by explicitly calculating (Ω−k + xVk)

−1

is also expensive for large n and is of time complexity O(n3). Instead, we utilize the
conjugate gradient (CG) algorithm [13] to efficiently solve linear systems. At each iteration
of Newton’s method, we approximately solve,

(Ω−k + xVk)b = y, (Ω−k + xVk)c = Vkb, (17)

and store the solution in b and c, respectively, via CG algorithm. Generally, ‖b− (Ω−k +
xVk)

−1y‖ and ‖c− (Ω−k + xVk)
−1Vkb‖ can be made small with l � n iterations, where

each iteration requires a matrix-vector-multiplication operation with a n× n matrix. The
CG algorithm has complexity O(ln2) and can be easily implemented with standard Linear
Algebra packages. With the stored approximate solutions, we evaluate the first and second
derivatives as

h′k(x) = −b>Vkb + tr
(

C−1Vk

)
, h′′k (x) = 2b>Vkc. (18)

Before initiating Newton’s method, we can check if k is in the active constraint set
{k : γ̂k = 0}. Following from Lemma 1, if h′k(0) ≥ 0, then hk(x) is non-decreasing on

[0, ∞). Then, hk(0) is the global minimum for x ∈ [0, ∞), and we let γ
(t+1)
i = 0 if we are in

cycle t + 1 of PX-CD. If h′k(0) < 0, we initiate Newton’s method at the current value of the

variance component, x0 = γ
(t)
k . If dim(span{V1, . . . , Vm}) < n, we require γ0 > 0 so that

Ω is invertible.
In this case, k = 0 cannot be in the active constraint set and we immediately initiate

Newton’s method at the starting point x0 = γ
(t)
0 . In rare cases h′k(x) is sufficiently flat

at xn and (14) may significantly overstep the location of the minimizer and return an
approximation xn+1 < 0. In this case, we dampen the step size until xn+1 > 0.

Algorithms 2022, 15, 354 9 of 20

3.2. Updating Regime

We now consider an alternative to the cyclic ordering of updates. Suppose we update
the block γ̃ after every co-ordinate update—that is, the updating order of one complete
cycle is

γ0 → γ̃→ γ1 → γ̃→ . . .→ γm → γ̃.

This ordering regime satisfies the “essentially cyclic” condition whereby, in every
stretch of 2(m + 1) updates, each component is updated at least once. We refer to CD with
this ordering as parameter expanded-immediate coordinate descent (PXI-CD).

In practice, this ordering implies updating the matrix C after every update made to
each γk. Since the expression for h′k(x) requires one to evaluate tr

(
C−1Vk

)
and C is updated

after every coordinate, we must re-compute C−1 for each k. This implies that each cycle
in PXI-CD will be more expensive than PX-CD. However, we observe that in situations
where Vi is full rank and n is sufficiently large, the number of cycles needed to converge is
significantly less than that required for PX-CD and basic CD.

This results in PXI-CD being the most time-efficient algorithm when the scale of
the problem is large. In Section 3.3, we show that, when Vi is low-rank, re-computing
tr
(
C−1Vk

)
comes at no additional-cost through the use of the Woodbury matrix identity.

However, in this particular scenario, where Vk are low-rank, the performance gain from PXI-
CD is not as significant as when Vi are full rank, and both PXI-CD and PX-CD show similar
performance. Algorithm 2 summarizes both PX-CD and PXI-CD methods to obtain γ̂.

Algorithm 2 PX-CD and PXI-CD for G(Ω)

input: y and [V0, V1, . . . , Vm] where V0 = In
1 Choose γ ∈ {u ∈ Rm+1 | ui > 0}
2 Ω← γ0I + ∑m

i=1 γiVi
3 repeat
4 C← Ω

5 for k = 0, 1, . . . , m do
6 T← tr

(
C−1Vk

)
7 Ω−k ← Ω− γkVk
8 γk ← arg min

x≥0

[
y>(Ω−k + xVk)

−1y + xT
]

via Newton’s Method

9 Ω← Ω−k + γkVk
10 if PXI-CD then
11 C← Ω

12 until termination test satisfied
13 return γ, Ω

As mentioned previously, the novel parameter-expanded coordinate-descent algo-
rithms, PX-CD and PXI-CD, are both amenable to standard convergence analysis.

Theorem 1 (PX-CD and PXI-CD Limit Points). For both PX-CD and PXI-CD in Algorithm 2,
let {γ(t), γ̃(t)}t≥0 be the coordinate-descent sequence. Then, either G(∑k γ

(t)
k Vk) → −∞, or

every limit-point of {γ(t)}t≥0 is a coordinate-wise minimum of (3). If we further assume that
y 6∈ span{V1, . . . , Vm} < n, then the sequence {γ(t)}t≥0 is bounded and G(∑k γ

(t)
k Vk)→ −∞

is ruled out.

Proof. Recall that Ω = ∑m
i=0 γiVi and C = ∑m

i=0 γ̃iVi. Denote (x1, . . . , xm+1) := γ and
xm+2 := γ̃ ∈ Rm+1 as well as x := (x1, . . . , xm+1, xm+2) ∈ R2(m+1). We can rewrite the
optimization problem (3) in the penalized form:

Algorithms 2022, 15, 354 10 of 20

f (x) := f0(x) +
m+1

∑
k=1

fk(xk) + fm+2(xm+2),

where f0(x) := H(Ω, C) and

fk(x) :=

{
0, x ≥ 0
∞, x < 0

, k = 1, . . . , m + 1, fm+2(x) :=

{
0, x ∈ [0, ∞]

∞, x 6∈ [0, ∞)
.

We can then apply the results in [18], which state that every limit point of {γ(t)}t≥0 is
a coordinate-wise minimum provided that:

1. Each function xk 7→ f (x), k = 1, . . . , m + 1 and xm+2 7→ f (x) has a unique minimum.
For k = 1, . . . , m + 1 this has already been verified in Lemma 1. For xm+2 7→ f (x), we
simply recall that H(Ω, C) ≥ G(Ω) with equality achieved if and only if C = Ω, or
equivalently xm+2 = (x1, . . . , xm+1).

2. Each fk, k = 1, . . . , m + 2 is lower semi-continuous. This is clearly true for k =
1, . . . , m + 1 because, at the point of discontinuity, we have lim infx→0 fk(x) ≥ fk(0) =
0. For fm+2, we simply check that {x : fm+2(x) ≤ c} for a given c ∈ R is a closed set.

3. The domain of f0 is a Cartesian product and f0 is continuous on its domain. Clearly,
the domain is the 2(m + 1) Cartesian product D := [0, ∞) × · · · × [0, ∞) and f0 is
continuous on its effective domain {x ∈ D : f (x) < ∞}.

4. The updating rule is essentially cyclic—that is, there exists a constant T ≥ m + 2 such
that every block in (x1, . . . , xm+1, xm+2) is updated at least once between the r-th
iteration and the (r + T − 1)-th iteration for all r. In our case, each block is updated
at least once in one iteration of Algorithm 2 so that we satisfy the essentially cyclic
condition. In the PXI-CD, we actually update (m + 1) times the block xm+2.

Thus, we can conclude by Proposition 5.1 in [18] that either f0(γ
(t)) → −∞ or the

limit points of {γ(t)}t≥0 are coordinate-wise minima of H(Ω, C).
If we further assume that y 6∈ span{V1, . . . , Vm} < n, then we can show that set

{γ ≥ 0 : f0(γ) ≤ f0(γ
(0))} is compact, which ensures that the sequence {γ(t)}t≥0 is

bounded and rules out the possibility that limt f0(γ
(t)) = −∞. To see that this is the case,

note that G(Ω) provides a lower bound to H(Ω, C), and this is sufficient to show that
{γ ≥ 0 : G(∑k γkVk) ≤ c} is compact for any c ∈ R under the assumption that V0 := I and
y 6∈ span{V1, . . . , Vm} < n. However, these are precisely the conditions of Lemma 3 in [9],
which ensure that {γ ≥ 0 : L(γ) ≥ c} is compact for a likelihood L(γ) := −G(∑k γkVk).

Finally, note that since we update the entire block γ̃ simultaneously (in both PX-CD
and PXI-CD), this means that a coordinate-wise minimum of H(Ω, C) is also a coordinate-
wise minimum for G(Ω).

We again emphasize that, as with all the competitor methods, the theorem does not
guarantee convergence of the coordinate-descent sequence {γ(t)}t≥0 or that the conver-
gence will be to a local minimum. The only thing we can say for sure is that, when the
sequence converges, then the limit will be a coordinate-wise minimum (which could be a
saddle point in some special cases). Nevertheless, our numerical experience in Section 4 is
that the sequence always converges to a coordinate-wise minimum and that the coordinate-
wise minimum is in fact a (local) minimum.

3.3. Linear Mixed Model Implementation

We now show that, for Linear Mixed Models (LMM), we can reduce the computational
complexity of each sub-problem to O(jd2), for some constants j� n and d < n. As shown
in Section 3.1, solving each univariate sub-problem can be simplified to implementing
Newton’s method, where at each Newton’s update, we solve two n-dimensional linear
systems.

In settings where rank(Vi) < n, for i = 1, . . . , m, we are able to reduce the dimensions
of the linear system that is required to be solved. To see this, let us first specify the

Algorithms 2022, 15, 354 11 of 20

general variance-component model (also known as the general mixed ANOVA model) [19].
Suppose,

y = Xβ + Z1b1 + · · ·+ Zmbm + ε, (19)

where X is an n × p matrix of known fixed numbers, p ≤ n; β is an p × 1 vector of
unknown constants; Zi is a full-rank n × ci matrix of known fixed numbers, ci ≤ n; bi
is an ci × 1 vector of independent variables from N (0, γi), which are unknown and ε is
an n × 1 vector of independent errors from N (0, γ0) that are unknown. In this setup,
γ0, . . . , γm, are the variance component parameters that are to be estimated, Vi = ZiZ>i
and Ω = γ0I + ZΣZ>, where

Z =

 | | |
Z1 Z2 · · · Zm
| | |

, Σ = block diag(γ1Ic1 , . . . , γmIcm).

We now provide two methods that take advantage of Vi being low-rank. Let,

c :=
m

∑
i=1

rank(Vi) =
m

∑
i=1

ci.

In the first method, we utilize a QR factorization that reduces the computational
complexity when c < n, i.e., the column rank of Z is less than n. In the second method, we
use the Woodbury matrix identity to reduce the complexity when ci < n for i = 1, . . . , m,
i.e., the column rank of each of the matrices Zi is less than n.

3.3.1. QR Method

The following QR factorization can be viewed as a data pre-processing step that allows
all PX-CD and PXI-CD computations to be c-dimensional instead of n-dimensional. The
QR factorization only needs to be computed once initially with a cost of O(cn2) operations.
Let the QR factorization of Z ∈ Rn×c be

Z =

Q︷ ︸︸ ︷[
Q[c] Q[n−c]

][R
0

]
, R =

 | | |
R1 R2 · · · Rm
| | |

,

where R is an c× c upper triangular matrix, 0 is an (n− c)× c zero matrix, Q[c] is an n× c
matrix, Q[n−c] is n× (n− c), and Q[c] and Q[n−c] both have orthogonal columns. The matrix
R is partitioned such that the number of columns in Ri is equal to the number of columns
in Zi. Let ỹ = [ỹ[c], ỹ[n−c]]

> = Q>y, where ỹ[c] are the first c elements of ỹ and ỹ[n−c] are
the last n− c elements of ỹ. Then,

H(Ω, C) = ỹ>[c]Ω̃
−1ỹ[c] +

m

∑
i=0

γitr(C̃−1Ṽi) + ln det(C)− n + α,

where we define: Ṽi := RiR>i , Ṽ0 := Ic, Ω̃ := ∑m
i=0 γiṼi, C̃ := ∑m

i=0 γ̃iṼi and α :=
γ0γ̃0

−1(n − c) + γ−1
0 ỹ>[n−c]ỹ[n−c]. The details of this derivation are provided in the

Appendix A. To implement PX-CD or PXI-CD after this transformation we run Algorithm 2
with inputs Ṽ0, . . . , Ṽm ∈ Rc×c and ỹ[c] ∈ Rc×1. In this simplification of H, we have the
additional term α, which is dependent on γ0. Therefore, when we update the parameter γ0
and implement Newton’s method we must also add

∂α

∂γ0
= γ̃0

−1(n− c)− γ−2
0 ỹ>[n−c]ỹ[n−c] and

∂2α

∂γ2
0
= 2γ−3

0 ỹ>[n−c]ỹ[n−c]

to the corresponding derivatives derived for Newton’s method in Section 3.1.

Algorithms 2022, 15, 354 12 of 20

3.3.2. Woodbury Matrix Identity

Alternatively, if c is large (say c > n) but individually ci < n, for i = 1, . . . , m, we
can use the Woodbury identity to reduce each linear system to ck dimensions (instead of
n dimensions) when updating the component γk. Suppose we are in cycle t + 1 of either
PX-CD or PXI-CD and we wish to update the parameter γk, where k 6= 0, then we can
simplify the optimization,

γ
(t+1)
k = arg min

x≥0
hk(x), hk(x) = H(Ω−k + xVk, C),

by viewing Ω−k + xVk = Ω + (x− γ
(t)
k)ZkZ>k as a low-rank perturbation to the matrix Ω.

The Woodbury identity gives the expression for the inverse,[
Ω + (x− γ

(t)
k)ZkZ>k

]−1
= Ω−1 − (x− γ

(t)
k)Ω−1Zk

[
Ick + (x− γ

(t)
k)Z>k Ω−1Zk

]−1
Z>k Ω−1, (20)

which contains the unperturbed inverse matrix Ω−1 and the inverse of a smaller ck × ck
matrix. In this implementation of PXI-CD and PX-CD we re-compute and store the matrix
Ω−1 after each coordinate update. Let w := Z>k Ω−1y, then the line search along the k-th
component (k 6= 0) of the function H simplifies to

hk(x) = −(x− γ
(t)
k)w>

[
Ick + (x− γ

(t)
k)Z>k Ω−1Zk

]−1
w + x tr

(
C−1ZkZ>k

)
+ const.

When implementing PXI-CD, there is no additional cost when using the Woodbury
identity, as the update C← Ω is made after every coordinate update and the trace term in
the line search can be evaluated cheaply because Ω−1 is known. We can now implement
Newton’s method to find the minimum of hk(x). Let

B := Z>k Ω−1Zk, M := Ick + (x− γ
(t)
k)B.

If we then solve the ck-dimensional linear systems Md = w and M f = Bd with CG
and store the solution in the vectors d and f , respectively, we can evaluate the first and
second derivatives of hk(x) as

h′k(x) = −w>d + (x− γ
(t)
k)d>Bd + tr(B), h′′k (x) = 2d>Bd + 2(x− γ

(t)
k)d>B f , (21)

and implement the Newton steps (14). The derivation of these derivative expressions are
provided in Appendix B. After each coordinate k is updated we evaluate and store the
updated inverse covariance matrix,

Ω−1 ←
[
Ω + (γ

(t+1)
k − γ

(t)
k)ZkZ>k

]−1
,

using (20), where we invert a smaller ck × ck matrix only. When k = 0, no reduction in
complexity can be made as the perturbation to Ω is full-rank and we update γ0 as we did in
Section 3.1. If c = ∑m

i=1 ci < n, then we can use an alternate form of the Woodbury identity,

Ω−1 = γ−1
0

[
I−W(γ0I + W>W)−1W>

]
,

where W := ZΣ1/2 to update Ω−1 after γ0 has been updated. If c > n, we invert the
full n× n updated matrix covariance to obtain Ω−1 using a Cholesky factorization at cost
O(n3). This O(n3) cost for updating γ0 is a disadvantage for this implementation if c > n;
however, numerical simulations suggest that, when ci � n for i = 1, . . . , m, the Woodbury
implementation is the fastest implementation.

Algorithms 2022, 15, 354 13 of 20

3.4. Variable Selection

When the number of variance components is large, performing variable selection
can enhance the model interpretation and provide more stable parameter estimation. To
impose sparsity when estimating γ, a lasso or ridge penalty can be added to the negative log-
likelihood [20]. The MM implementation [9] provides modifications to the MM algorithm
such that both lasso and ridge penalized expressions can be minimized. We now show that,
with PX-CD, we can minimize the penalized negative log-likelihood when using the ‖ · ‖1
penalty. Consider the penalized negative log-likelihood expression,

G(Ω) + λ
m

∑
i=0

γi, γi ≥ 0, λ > 0.

We then have the surrogate function,

J(Ω, C) := H(Ω, C) + λ
m

∑
i=0

γi.

If we use PX-CD to minimize J, we need to repeatedly minimize the one-dimensional
function along each co-ordinate, jk(x) := hk(x) + λx + λ ∑m

i 6=k γi. Here, we implement
Newton’s method as before with the only difference now being that the derivative is
increased by the constant λ,

j′k(x) := h′k(x) + λ.

It follows from Lemma 1 that j(x) is either strictly convex or linear with strict positive
gradient for x ∈ [0, ∞). We check if h′k(0) + λ ≥ 0 to determine if jk(0) is the global

minimizer for x ∈ [0, ∞). If it is, we let γ
(t+1)
i = 0 if we are in cycle t + 1. If j′k(0) < 0, we

initiate Newton’s method at the current value of the variance component x0 = γ
(t)
k . The

larger the parameter λ is, the greater number of times this active constraint condition will
be met, and therefore more variance components will be set to zero.

4. Numerical Results

In this section, we assess the efficiency of PX-CD and PXI-CD via simulation and
compare them against the best current alternative method, the MM algorithm [9]. In [9] the
MM algorithm is found to be superior to both the EM and Fisher Scoring Method in terms
of performance. This superior performance was also described in [21].

In our experiments, we additionally include the Expectation–Maximization (EM) and
Fisher-Scoring (FS) method in the small-scale problem only, where γ0 = 0.1. We exclude
the EM and FS method for more difficult problems, as they are too slow and unsuitable.
The MM, EM and FS are executed with the Julia implementation in [9]. We provide results
in three settings. First, we simulate data from the model (Section 3.3), where ci < n, i.e.,
when the matrices Vi are low-rank. Secondly, we simulate when ci = n, i.e., the matrices
Vi are full-rank, and finally, we simulate data from model (Section 3.3), where the matrices
Vi are constructed from a real data-set containing genetic variants of mice.

4.1. Simulations

For the following simulations, we simulate data from the model (Section 3.3). Since
the fixed effects β can always be eliminated from the model using the REML, we focus
solely on the estimation of the variance component parameters. In other words, the value
of β in our simulations is irrelevant. In each simulation, we generate the fixed matrices
Vi as

Vi =
∑r

j=1 Zi,jZ>i,j∥∥∥∑r
j=1 Zi,jZ>i,j

∥∥∥
F

, (22)

where Zi,j ∼ N (0, In) and ‖ · ‖F is the Frobenius matrix norm. The rank of each Vi is equal
to the parameter r, which we vary.

Algorithms 2022, 15, 354 14 of 20

In each simulation, for k 6= 0, we draw the m true variance components as γk = (1 + ρ)2

where ρ ∼ N (0, 1). Then, we simulate the response from y ∼ N (0, ∑m
i=0 γiVi) and estimate

the vector γ̂. We vary the value of γ0 from the set {0.1, 1, 10} and keep n = 1000.

4.1.1. Low-Rank

We now present the results for where Vi are generated as stated above and r < n. As Vi
are low-rank, we run the Woodbury implementation of PXI-CD and exclude PX-CD as it has
the same computational cost as PXI-CD for each update and exhibits almost identical perfor-
mance. First, PXI-CD is run until the relative change

[
L(γ(t+1))− L(γ(t))

]
/
[
| L(γ(t)) | +1

]
is less than 10−10 and we store the final objective value as L∗. We then run the algorithms
MM, EM and FS and terminate once L(γ(t)) > L∗. We initialize all algorithms to start from
the point γ(0) = 1. Each simulation scenario is replicated 10 times. The mean running time
is reported along with the standard error of the mean running time provided in parentheses.

The results of the low-rank simulations are given in Tables 1–3. The results indicate
that, apart from the smallest scale problem when r = m = 20, our PXI-CD algorithm
outperforms the MM algorithm and significantly so that the scale of the model (both m and
r) increases.

Table 1. The running times (s) when Vi are low-rank, n = 1000, and γ0 = 0.1.

m

Method r 20 50 75 100

PXI-CD 20 4.20 (0.07) 17.00 (1.18) 25.81 (1.57) 51.8 (5.09)
MM 1.89 (0.22) 42.54 (7.69) 220.06 (61.19) 845.2 (136.89)
EM 23.30 (0.52) - - -
FS 91.80 (0.99) - - -
PXI-CD 50 5.42 (0.16) 21.36 (0.85) 37.46 (2.72) 40.21 (2.97)
MM 95.63 (41.20) 203.24 (53.20) 584.76 (53.20) 1167.22 (114.38)
PXI-CD 100 8.96 (0.25) 30.17 (2.24) 28.26 (0.73) 45.65 (2.56)
MM 112.58 (21.48) 555.38 (82.01) 699.89 (90.55) 1327.54 (53.80)
PXI-CD 150 14.13 (0.63) 33.18 (4.67) 38.24 (1.54) 48.97 (2.08)
MM 122.44 (38.48) 628.24 (55.61) 929.67 (75.87) 1243.97 (84.30)

Table 2. The running times (s) when Vi are low-rank, n = 1000, and γ0 = 1.

m

Method r 20 50 75 100

PXI-CD 20 3.10 (0.08) 9.52 (0.28) 16.30 (0.43) 26.05 (0.77)
MM 3.11 (0.84) 117.40 (24.42) 280.31 (51.43) 719.32 (158.51)
PXI-CD 50 4.08 (0.11) 14.35 (0.76) 29.94 (1.33) 53.10 (3.7)
MM 157.98 (34.53) 501.60 (90.15) 546.56 (91.48) 1133.83 (129.96)
PXI-CD 100 6.00 (0.36) 25.34 (0.95) 61.69 (3.38) 73.23 (10.6)
MM 103.08 (31.4) 544.06 (61.35) 743.79 (104.67) 1254.97 (87.32)
PXI-CD 150 9.18 (0.45) 42.30 (2.08) 66.13 (8.3) 66.67 (10.2)
MM 176.80 (31.64) 498.12 (63.39) 986.87 (61.46) 1110.90 (105.59)

Algorithms 2022, 15, 354 15 of 20

Table 3. The running times (s) when Vi are low-rank, n = 1000, and γ0 = 10.

m

Method r 20 50 75 100

PXI-CD 20 3.62 (0.10) 8.79 (0.20) 15.60 (0.41) 23.13 (0.91)
MM 10.17 (0.84) 318.53 (90.49) 648.64 (132.62) 839.24 (158.52)
PXI-CD 50 4.36 (0.09) 14.39 (0.4) 24.65 (0.97) 42.07 (1.13)
MM 184.03 (38.8) 473.58 (80.82) 648.33 (114.98) 1230.56 (128.79)
PXI-CD 100 6.53 (0.22) 26.07(1.51) 48.48 (2.48) 60.72 (5.33)
MM 124.68 (19.93) 511.66 (65.85) 880.53 (69.53) 1279.40 (81.93)
PXI-CD 150 10.15 (0.37) 35.34 (1.72) 66.94 (2.28) 103.89 (10.36)
MM 199.80 (33.17) 512.35 (49.97) 943.84 (84.24) 1244.32 (72.13)

4.1.2. Full-Rank

We now present the results when rank(Vi) = n = 1000. We implement the standard
PX-CD, PXI-CD and MM algorithms, where either the Woodbury, or the QR method cannot be
used. Initially, PX-CD is run until the relative change

[
L(γ(t+1))− L(γ(t))

]
/
[
| L(γ(t)) | +1

]
is less than 10−10, and we store the final objective value as L∗. The other algorithms termi-
nate once L(γ(t+1)) > L∗. For the following simulations, we consider one iteration of a CD
algorithm as a single cycle of updates. Each simulation scenario is replicated 10 times. The
mean running time and mean iteration number is reported with the standard error of the
mean running time and mean iteration provided in parentheses.

The results of the full-rank simulations are given in Tables 4–6. PX-CD and PXI-CD
both significantly outperform the MM and the basic CD algorithms in these examples. We
observe that as the number of components m increases the problem becomes increasingly
difficult for the MM algorithm. An intuitive explanation for this performance gap is that the
CD algorithms are able to identify the active constraint set {k : γ̂k = 0} in only a few cycles.

When γ0 = 0.1 and γ0 = 1 and m is large (m = 50, m = 100), PXI-CD is the fastest
algorithm, even though it is computationally the most expensive per cycle. When γ0 = 10
and m = 100, PXI-CD is the fastest algorithm. In fact, as the problem size grows, the
number of iterations that PXI-CD requires to converge is less than that of the basic CD.
This simulation indicates that PXI-CD is well-suited to problems with large m, n and when
Vi are full-rank. The basic CD algorithm, while numerically the inferior compared to the
PX-CD and PXI-CD algorithms still outperforms the MM algorithm in these simulations.

Table 4. The convergenceresults when Vi are full-rank, n = 1000, and γ0 = 0.1.

Method m Iterations Time (s) Objective

PX-CD 25 89.00 (2.90) 37.47 (1.71) −1383.44
PXI-CD 146.90 (21.17) 97.49 (13.58) −1383.44
CD 109.40 (17.52) 286.96 (19.83) −1383.44
MM 3957.90 (300.77) 281.53 (21.03) −1383.44
PX-CD 50 182.40 (11.34) 147.21 (10.64) −1831.40
PXI-CD 73.10 (2.97) 104.42 (4.64) −1831.40
CD 103.40 (6.18) 852.41 (70.22) −1831.40
MM 10,240.40 (2140.25) 1557.79 (343.47) −1831.40
PX-CD 100 279.10 (15.09) 376.18 (24.14) −2143.93
PXI-CD 80.70 (2.97) 211.19 (8.58) −2143.93
CD 164.00 (8.84) 2060.69 (155.37) −2143.93
MM 12,171.90 (1526.30) 3482.30 (465.51) −2143.93

Algorithms 2022, 15, 354 16 of 20

Table 5. The convergence results when Vi are full-rank, n = 1000, and γ0 = 1.

Method m Iterations Time (s) Objective

PX-CD 25 82.60 (4.05) 32.00 (1.93) −1707.53
PXI-CD 172.70 (7.08) 112.31 (5.15) −1707.53
CD 116.90 (6.31) 279.61 (18.03) −1707.53
MM 4313.90 (347.85) 303.13(24.3) −1707.53
PX-CD 50 192.50 (8.89) 155.03 (8.11) −1957.26
PXI-CD 103.00 (18.85) 147.79 (26.11) −1957.26
CD 110.20 (4.53) 940.96 (58.0) −1957.26
MM 15,860.80 (2872.82) 2488.70 (484.24) −1957.26
PX-CD 100 313.60 (13.88) 423.78 (20.48) −2203.61
PXI-CD 86.80 (3.06) 226.10 (8.51) −2203.61
CD 185.60 (8.33) 2422.93 (143.76) −2203.61
MM 12,820.60 (2102.69) 3792.45 (725.63) −2203.61

Table 6. The convergence results when Vi are full-rank, n = 1000, and γ0 = 10.

Method m Iterations Time (s) Objective

PX-CD 25 75.20 (2.88) 25.74 (1.46) −2603.51
PXI-CD 152.00 (6.98) 95.59 (5.12) −2603.51
CD 38.50 (1.60) 172.03 (11.70) −2603.51
MM 3616.90 (513.57) 254.87 (36.27) −2603.51
PX-CD 50 143.70 (6.93) 108.55 (5.89) −2668.99
PXI-CD 177.50 (28.72) 249.73 (39.38) −2668.99
CD 79.80 (4.59) 668.65 (40.71) −2668.99
MM 11,306.30 (1824.79) 1697.89 (275.36) −2668.99
PX-CD 100 304.00 (12.39) 412.54 (19.01) −2731.09
PXI-CD 87.40 (2.54) 230.54 (7.27) −2731.09
CD 181.80 (7.63) 2697.20 (150.64) −2731.09
MM 11,796.10 (1732.0) 3358.14 (521.92) −2731.09

4.2. Genetic Data

We now present simulation results when Zi are constructed from the
https://openmendel.github.io/SnpArrays.jl/latest/#Example-data (accessed on 1 July
2022) mouse single nucleotide polymorphism (SNP) array data set available from the Open
Mendel project [21]. The dataset consists of Z, an n × c matrix consisting of c genetic
variants for n individual mice. For this experiment, c = 10,200 and n = 500. We artificially
generate m different genetic regions by partitioning the columns of Z into Zi=1,...,m gene
matrices, where Zi ∈ Rn×r. Then, we can compose our fixed matrices V1, . . . , Vm as,

Vi =
ZiZ>i∥∥∥∑m

j=1 ZjZ>j
∥∥∥

F

.

We simulate γ and y as we did in Section 4.1. In this case, y mimics a vector of
quantitative trait measurements of the n mice. This data set is well-suited for testing our
method when m is large (m > n). In these cases, we observe that, when initialized at
the same point, the MM and PXI-CD method converge to different solutions, i.e., they
may converge to different stationary points. Therefore, we run all algorithms until the
relative change

[
L(γ(t+1))− L(γ(t+1))

]
/
[
| L(γ(t)) | +1

]
is less than 10−10. Since r < n, we

implement PXI-CD utilizing the Woodbury identity. Each simulation scenario is replicated
10 times. The mean running time and mean iteration number are reported with the standard
error of the mean running time and mean iteration provided in parentheses.

The results of the genetic study simulation are provided in Table 7. We observe that
PXI-CD outperforms the MM algorithm for all values of m and r for this data set in both the
number of iterations and running time until convergence. When m > n, we observe that

https://openmendel.github.io/SnpArrays.jl/latest/#Example-data

Algorithms 2022, 15, 354 17 of 20

the MM and PXI-CD method converge to noticeably different objective values. We suspect
that this is because when m > n the likelihood in (2) exhibits many more local minima. On
average, PXI-CD converges to a more optimal stationary point when m is large and m > n.

Table 7. The running times (s)—mouse data.

Method m r Iterations Time (s) Objective

PXI-CD 100 102 95.1 (9.9) 23.1 (2.66) −43.6
MM 1580.2 (194.76) 108.7 (15.37) −43.6
PXI-CD 200 51 180.0 (13.41) 58.8 (4.4) −82.5
MM 2797.8 (401.1) 466.0 (88.95) −82.6
PXI-CD 500 20 397.8 (53.73) 258.1 (34.56) −100.3
MM 2700.8 (366.57) 1055.4 (179.97) −106.6
PXI-CD 1000 10 434.7 (35.7) 507.5 (39.91) −82.1
MM 3004.8 (343.61) 2329.4 (296.37) −91.2

5. Conclusions

The MLE solution for variance-component models requires the optimization of a
non-convex log-likelihood function. In this paper, we showed that a basic implementation
of the cyclic CD algorithm is computationally expensive to run and is not amenable to
traditional convergence analysis.

To remedy this, we proposed a novel parameter-expanded CD (PX-CD) algorithm,
which is both computationally faster and also subject to theoretical guarantees. PX-CD
optimizes a higher-dimensional surrogate function that attains a coordinate-wise minimum
with respect to each of the variance component parameters. The extra speed is derived from
the fact that required quantities (such as first and second-order derivatives) are evaluated
via the conjugate-gradient algorithm.

Additionally, we propose an alternative updating regime called PXI-CD, where the
expanded block parameters are updated immediately after each coordinate update. This
new updating regime requires more computation for each iteration as compared to PX-CD.
However, numerically, we observed that, for large-scale models, where the number of
variance components m + 1 is large and Vi are full-rank, the number of iterations needed
to converge greatly offsets the additional computational cost per coordinate update cycle.

Our numerical experiments suggest that PX-CD and PXI-CD outperform the best
current alternative—the MM algorithm. When the number of variance components m is
large, we observed that PXI-CD was significantly faster than the MM algorithm and tended
to converge to more optimal stationary points.

A potential extension of this work is to apply parameter-expanded CD algorithms to
the multivariate-response variance-component model. Instead of the univariate response,
one considers the multivariate response model with a n× d response matrix Y. In this
setup, E[Y] = XB where B is a p× d matrix. The nd× nd covariance matrix is of the form

Ω = cov(vec(Y)) =
m

∑
i=0

Γi ⊗Vi,

where Γi are unknown d× d variance components and Vi are the known n× n covariance
matrices. The challenging aspect of this problem is that each optimization with respect to a
parameter Γi is not univariate but is rather a search over positive semi-definite matrices—
itself, a difficult optimization problem.

Algorithms 2022, 15, 354 18 of 20

Author Contributions: Conceptualization, A.M., S.M. and Z.B.; methodology, A.M., S.M. and Z.B.;
software, A.M.; formal analysis, A.M., S.M. and Z.B. data curation, A.M.; writing—original draft
preparation, A.M.; writing—review and editing, A.M., S.M. and Z.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://openmendel.github.io/SnpArrays.jl/latest (accessed on 1 July 2022) mouse
single nucleotide polymorphism (SNP) array data set.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CD Coordinate descent
PX-CD Parameter expanded coordinate descent
PXI-CD Parameter expanded-immediate coordinate descent

Appendix A. QR Method

In this section, we provide further details on the QR factorization used in Section 3.3.1.
Recall that we have the decomposition,

Z =

Q︷ ︸︸ ︷[
Q[c] Q[n−c]

][R
O

]
, R =

 | | |
R1 R2 · · · Rm
| | |

,

where Q is an orthogonal matrix and R is partitioned such that the number of columns in
Ri is equal to number of columns in Zi. Recall that ỹ = [ỹ[c], ỹ[n−c]]

> = Q>y where ỹ[c] are
the first c elements of ỹ and ỹ[n−c] are the last n− c elements of ỹ. Then,

Ω = γ0I + ZΣZ>

= Q
(

γ0I +
[

R
0

]
Σ
[
R> 0

])
Q>

= Q
[

RΣR> + γ0Ic 0
0 γ0In−c

]
Q>.

Taking the inverse of this matrix yields

Ω−1 = Q

[(
RΣR> + γ0Ic

)−1
0

0 γ−1
0 In−c

]
Q>.

and
y>Ω−1y = ỹ>[c]Ω̃

−1ỹ[c] + γ−1
0 ỹ>[n−c]ỹ[n−c]. (A1)

We now consider the simplifications for the trace terms in H. Let

Σ̃ = block diag(γ̃1Ic1 , . . . , γ̃mIcm).

Then, C = γ̃0I + ZΣ̃Z> and

C−1 = Q

(RΣ̃R> + γ̃0Ic

)−1
0

0 γ̃−1
0 In−c

Q>.

https://openmendel.github.io/SnpArrays.jl/latest

Algorithms 2022, 15, 354 19 of 20

If we substitute this expression into the trace term when k 6= 0, we obtain

tr
(

C−1Vk

)
= tr

(
Z>k C−1Zk

)
= tr

Z>k Q

(RΣ̃R> + γ̃0Ic

)−1
0

0 γ̃−1
0 In−c

Q>Zk

= tr

[R>k 0
](RΣ̃R> + γ̃0Ic

)−1
0

0 γ̃−1
0 In−c

[Rk
0

]
= tr

((
RΣ̃R> + γ̃0Ic

)−1
RkR>k

)
. (A2)

When k = 0, we have

tr
(

C−1V0

)
= tr

Q

(RΣ̃R> + γ̃0Ic

)−1
0

0 γ̃−1
0 In−c

Q>

= tr

(RΣ̃R> + γ̃0Ic

)−1
0

0 γ̃−1
0 In−c

= tr

((
RΣ̃R> + γ̃0Ic

)−1
)
+ γ̃−1

0 (n− c). (A3)

If we recall the definitions Ṽi := RiR>i , Ṽ0 := Ic, Ω̃ := ∑m
i=0 γiṼi and C̃ := ∑m

i=0 γ̃iṼi
and combine Equations (A1)–(A3), we obtain

h(Ω, C) = y>Ω−1y +
m

∑
i=0

γitr(C−1Vi) + ln det(C)− n

= ỹ>[c]Ω̃
−1ỹ[c] +

m

∑
i=0

γitr(C̃−1Ṽi) + ln det(C)− n + γ0γ̃0
−1(n− c) + γ−1

0 ỹ>[n−c]ỹ[n−c].

Appendix B. Woodbury Identity

Recall from Section 3.3.2 that we have the definitions w := Z>k Ω−1y; B := Z>k Ω−1Zk

and M := Ick + (x− γ
(t)
k)B and the simplified univariate function,

hk(x) = −(x− γ
(t)
k)w>M−1w + x tr(B) + const.

We now derive the first and second derivatives of this function. The differentiation of
an invertible symmetric matrix implies that

∂M−1

∂x
= −M−1BM−1. (A4)

Then, from the product rule of differentiation,

h′k(x) = (x− γ
(t)
k)w>M−1BM−1w−w>M−1w + tr(B).

If we then approximately solve the linear system Md = w with CG, then

h′k(x) = −w>d + (x− γ
(t)
k)d>Bd + tr(B).

Algorithms 2022, 15, 354 20 of 20

Using the matrix product rule of differentiation, we have that

∂M−1BM−1

∂x
= 2M−1BM−1BM−1. (A5)

Then, using (A4) and (A5) to differentiate h′k(x), we obtain

h′′k (x) = 2w>M−1BM−1w + 2(x− γ
(t)
k)w>M−1BM−1BM−1w.

If we solve Md = w and Mj = Bd with CG then j will approximate the matrix-vector
product M−1BM−1w and the second derivative can be evaluated as

h′′k (x) = 2d>Bd + 2(x− γ
(t)
k)d>Bj.

References
1. Kang, H.M.; Sul, J.H.; Service, S.K.; Zaitlen, N.A.; Kong, S.y.; Freimer, N.B.; Sabatti, C.; Eskin, E. Variance component model to

account for sample structure in genome-wide association studies. Nat. Genet. 2010, 42, 348–354. [CrossRef] [PubMed]
2. Searle, S.; Casella, G.; McCulloch, C. Variance Components; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ,

USA, 2009.
3. Jiang, J.; Nguyen, T. Linear and Generalized Linear Mixed Models and Their Applications; Springer: New York, NY, USA, 2007;

Volume 1.
4. Harville, D.A. Maximum likelihood approaches to variance component estimation and to related problems. J. Am. Stat. Assoc.

1977, 72, 320–338. [CrossRef]
5. Jennrich, R.I.; Sampson, P. Newton–Raphson and related algorithms for maximum likelihood variance component estimation.

Technometrics 1976, 18, 11–17. [CrossRef]
6. Longford, N.T. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random

effects. Biometrika 1987, 74, 817–827. [CrossRef]
7. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B

(Methodol.) 1977, 39, 1–22.
8. Lindstrom, M.J.; Bates, D.M. Newton–Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. J.

Am. Stat. Assoc. 1988, 83, 1014–1022.
9. Zhou, H.; Hu, L.; Zhou, J.; Lange, K. MM algorithms for variance components models. J. Comput. Graph. Stat. 2019, 28, 350–361.

[CrossRef] [PubMed]
10. Wright, S.J. Coordinate-descent algorithms. Math. Program. 2015, 151, 3–34. [CrossRef]
11. Nesterov, Y. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 2012, 22, 341–362.

[CrossRef]
12. Luo, Z.Q.; Tseng, P. On the convergence of the coordinate descent method for convex differentiable minimization. J. Optim.

Theory Appl. 1992, 72, 7–35. [CrossRef]
13. Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2013.
14. Liu, J.S.; Wu, Y.N. Parameter expansion for data augmentation. J. Am. Stat. Assoc. 1999, 94, 1264–1274. [CrossRef]
15. Meng, X.L.; Van Dyk, D.A. Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika

1999, 86, 301–320. [CrossRef]
16. Bezdek, J.C.; Hathaway, R.J. Convergence of alternating optimization. Neural Parallel Sci. Comput. 2003, 11, 351–368.
17. Bezdek, J.; Hathaway, R. Some Notes on Alternating Optimization. In AFSS International Conference on Fuzzy Systems, Proceedings

of the Advances in Soft Computing—AFSS 2002, Calcutta, India, 3–6 February 2002; Springer: Berlin/Heidelberg, Germany, 2002;
Volume 2275, pp. 288–300. [CrossRef]

18. Tseng, P. Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 2001,
109, 475–494. [CrossRef]

19. Hartley, H.O.; Rao, J.N. Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika 1967, 54, 93–108.
[CrossRef] [PubMed]

20. Schelldorfer, J.; Bühlmann, P.; DE GEER, S.V. Estimation for high-dimensional linear mixed-effects models using l1-penalization.
Scand. J. Stat. 2011, 38, 197–214. [CrossRef]

21. Zhou, H.; Sinsheimer, J.S.; Bates, D.M.; Chu, B.B.; German, C.A.; Ji, S.S.; Keys, K.L.; Kim, J.; Ko, S.; Mosher, G.D.; et al.
OpenMendel: A cooperative programming project for statistical genetics. Hum. Genet. 2020, 139, 61–71. [CrossRef] [PubMed]

http://doi.org/10.1038/ng.548
http://www.ncbi.nlm.nih.gov/pubmed/20208533
http://dx.doi.org/10.1080/01621459.1977.10480998
http://dx.doi.org/10.2307/1267911
http://dx.doi.org/10.1093/biomet/74.4.817
http://dx.doi.org/10.1080/10618600.2018.1529601
http://www.ncbi.nlm.nih.gov/pubmed/31592195
http://dx.doi.org/10.1007/s10107-015-0892-3
http://dx.doi.org/10.1137/100802001
http://dx.doi.org/10.1007/BF00939948
http://dx.doi.org/10.1080/01621459.1999.10473879
http://dx.doi.org/10.1093/biomet/86.2.301
http://dx.doi.org/10.1007/3-540-45631-7_39
http://dx.doi.org/10.1023/A:1017501703105
http://dx.doi.org/10.1093/biomet/54.1-2.93
http://www.ncbi.nlm.nih.gov/pubmed/6049561
http://dx.doi.org/10.1111/j.1467-9469.2011.00740.x
http://dx.doi.org/10.1007/s00439-019-02001-z
http://www.ncbi.nlm.nih.gov/pubmed/30915546

	Introduction
	Basic Coordinate Descent
	Implementation
	Convergence

	Parameter-Expanded CD
	Univariate Minimization via Newton's Method
	Updating Regime
	Linear Mixed Model Implementation
	QR Method
	Woodbury Matrix Identity

	Variable Selection

	Numerical Results
	Simulations
	Low-Rank
	Full-Rank

	Genetic Data

	Conclusions
	Appendix A
	Appendix B
	References

