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Abstract: The prevention of falls in older people requires the identification of the most important
risk factors. Frailty is associated with risk of falls, but not all falls are of the same nature. In this
work, we utilised data from The Irish Longitudinal Study on Ageing to implement Random Forests
and Explainable Artificial Intelligence (XAI) techniques for the prediction of different types of falls
and analysed their contributory factors using 46 input features that included those of a previously
investigated frailty index. Data of participants aged 65 years and older were fed into four random
forest models (all falls or syncope, simple fall, complex fall, and syncope). Feature importance
rankings were based on mean decrease in impurity, and Shapley additive explanations values were
calculated and visualised. Female sex and a previous fall were found to be of high importance in all
of the models, and polypharmacy (being on five or more regular medications) was ranked high in the
syncope model. The more ‘accidental’ (extrinsic) nature of simple falls was demonstrated in its model,
where the presence of many frailty features had negative model contributions. Our results highlight
that falls in older people are heterogenous and XAI can provide new insights to help their prevention.

Keywords: explainable artificial intelligence; random forests; falls; frailty; healthcare

1. Introduction

The clinically heterogenous character of falls in older people has long challenged
clinicians in their prevention and management. Falls can lead to reduced mobility, hospital-
isations, and a reduced quality of life which are associated with physical and psychological
restrictions post-fall [1]. In 2004, the economic cost of falls and fractures in older adults
aged 65 years and over in Ireland was estimated to be €402 million, thus representing 0.32%
of the Gross National Product; and with the assumption of technological improvements but
the absence of a national strategy on fracture risk reduction, the projection of this cost over
25 years is estimated to be a staggering €1587 million by 2030 [2]. In response, the Strategy
to Prevent Falls and Fractures in Ireland’s Ageing Population was launched as a collective
recognition of the high economic, social, and health consequences of falls [3]. This strategy
mirrors the UK’s 2013 National Institute for Health and Care Excellence (NICE) guidelines
in that they also recommend a multifactorial risk assessment, ideally within a specialised
falls service, after an older person has experienced a fall or demonstrated abnormalities in
their gait and balance [4]. This prompt, multifaceted assessment is particularly important
when falls are recurrent, unexplained, and/or injurious because these types of falls tend to
have worse clinical outcomes [5,6].

The use of Artificial Intelligence (AI) in the research of fall prediction is not a new
concept, with previous topics in the literature ranging from the use of sensors to capture
gait features [7], to the study of the biomarkers for the prediction of physiological reserve [8]
and frailty [9,10], which are concepts that are closely intertwined with fall risks in the older
population [11].
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Explainable AI, or XAI, is used to describe a set of techniques that is aimed at making
the results of AI models more comprehensible to its human users [12]. AI models have
been commonly classified into white box and black box, with white box models such as
Random Forest and Decision Trees being easier to understand by the end-users, and black
box models such as Neural Networks being more difficult to explain in terms of their inner
workings and how the final outputs are derived [13]. There is potential value in XAI within
the healthcare sector, where understanding how AI algorithms handle data inputs is crucial
in ensuring the trustworthiness of their outputs for real-life clinical decision making [14].
Indeed, explainability can facilitate the implementation of AI in healthcare [15].

A previous falls prediction effort that was based on the simple arithmetic sum of
individual health deficits (frailty index) offered significant results but with low degree
of explainability [6]. However, by implementing XAI, new insights may be obtained
through us being able to understand which features are the most important, and how they
influence the prediction outcome. The transparency of the model’s behaviour also allows
for error correction and the improvement of the model performance. These are crucial in
the healthcare field where inaccurate clinical decisions could lead to adverse consequences
for patients. Moreover, with the increasing implementation of AI in healthcare settings,
compliance with the European General Data Protection Regulation (GDPR) is ever more
important. In that regard, compared to black box algorithms, XAI techniques are better
placed to support the compliance with the “right to explanation”, which is the right to be
given an explanation for the output of an algorithm [14,16].

With the ability to process large amounts of data and perform complex computational
tasks, and backed by the insurgence of electronic health records and other large health
databases, there are increasing opportunities for AI to be implemented within both the
research and clinical fields of medicine. In that regard, the increasing availability of publicly
archived datasets pertaining to major longitudinal studies of ageing presents a unique
opportunity to employ XAI techniques for the prediction of common clinical conditions in
older people and gain unique insights into their prevention. The development of a clinically
useful XAI model for the prediction of future falls could provide insights into their multi-
etiological character and identify the most important predictors, which could in turn inform
the screening and clinical management efforts towards their prevention.

In this work, we utilised the large, publicly available data resource from The Irish
Longitudinal Study on Ageing (TILDA) to implement Random Forests and XAI techniques
for the prediction of different types of falls and analyse their contributory factors using
input features that included those of a previously investigated frailty index [6].

2. Materials and Methods
2.1. Dataset

TILDA is a national longitudinal population study of adults aged 50 years and over in
Ireland [17]. Having been started in 2009, the dataset stores a comprehensive collection of
information from over 8000 participants including their pre-existing medical conditions,
physical biomarkers, and socioeconomic characteristics. New data from both existing and
new participants are collected every approximately 2 years. In this study, data from Wave
1, which were collected between October 2009 and February 2011, were used for the input
features, while data from Waves 2, 3 and 4, which were collected between April 2012 and
December 2016, were used for the outputs. TILDA data were accessed via the Irish Social
Science Data Archive—www.ucd.ie/issda (accessed on 1 July 2020).

2.2. Input Features

A total of 46 features were used. The majority of the input features were taken from
the previously investigated Syncope-Falls Index (SYFI), a 40-deficit frailty index which was
derived from the simple arithmetic sum of 40 health deficits selected from TILDA Wave 1
which was based on their clinically postulated likelihood of increasing the risk of syncope
and falls within the older population [6]. Age and sex, which were not originally included in

www.ucd.ie/issda
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the SYFI, were also included as input features in the present work. The remaining 4 features,
namely “Fall in the last year” (yes or no), “Any previous history of blackout/faint” (present
or absent), “Frequent fainter when young” (present or absent), and “Afraid of falling”
(present or absent) were included as additional features that were potentially associated
with the future risk of falls.

Except for age at the time of Wave 1 data collection, which was used as a continuous
variable, all of the input features were binary, where the presence of the feature was
recorded as “1” and its absence as “0”. To ensure consistency with the previous SYFI study,
only participants aged 65 years and over at the time of the first interview (Wave 1) were
included. Table 1 summarises the 46 input features that were utilised in the present study.
Details of the 40 SYFI deficits have been described elsewhere [6].

Table 1. Forty-six input features.

Features Type of Variable (Continuous, Binary) Feature Value

1. Polypharmacy Polypharmacy 0 = Absent, 1 = Present

2. Antihypertensives Binary 0 = Absent, 1 = Present

3. Anticholinergics Binary 0 = Absent, 1 = Present

4. Benzodiazepines Binary 0 = Absent, 1 = Present

5. Z-drugs Binary 0 = Absent, 1 = Present

6. Antidepressants Binary 0 = Absent, 1 = Present

7. Weight loss Binary 0 = Absent, 1 = Present

8. Poor eyesight Binary 0 = Absent, 1 = Present

9. Poor hearing Binary 0 = Absent, 1 = Present

10. Poor smell Binary 0 = Absent, 1 = Present

11. Poor taste Binary 0 = Absent, 1 = Present

12. Hypertension Binary 0 = Absent, 1 = Present

13. Angina Binary 0 = Absent, 1 = Present

14. Myocardial infarction Binary 0 = Absent, 1 = Present

15. Congestive cardiac failure Binary 0 = Absent, 1 = Present

16. Heart murmur Binary 0 = Absent, 1 = Present

17. Abnormal heart rhythm Binary 0 = Absent, 1 = Present

18. Diabetes mellitus Binary 0 = Absent, 1 = Present

19. Stroke Binary 0 = Absent, 1 = Present

20. Transient ischemic attack Binary 0 = Absent, 1 = Present

21. Grip weakness Binary 0 = Absent, 1 = Present

22. Leg ulcers Binary 0 = Absent, 1 = Present

23. Protein in urine Binary 0 = Absent, 1 = Present

24. Leg numbness Binary 0 = Absent, 1 = Present

25. Diabetic retinopathy Binary 0 = Absent, 1 = Present

26. Diabetic nephropathy Binary 0 = Absent, 1 = Present

27. Chronic obstructive pulmonary
disease (COPD)

Binary 0 = Absent, 1 = Present

28. Asthma Binary 0 = Absent, 1 = Present

29. Osteoarthritis Binary 0 = Absent, 1 = Present

30. Osteoporosis Binary 0 = Absent, 1 = Present

31. Cancer Binary 0 = Absent, 1 = Present

32. Psychiatric problems Binary 0 = Absent, 1 = Present

33. Alcohol or substance abuse Binary 0 = Absent, 1 = Present

34. Cognitive impairment Binary 0 = Absent, 1 = Present

35. Gastric ulcers Binary 0 = Absent, 1 = Present
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Table 1. Cont.

Features Type of Variable (Continuous, Binary) Feature Value

36. Feels unsteady on standing Binary 0 = Absent, 1 = Present

37. Unsteady getting up from chair Binary 0 = Absent, 1 = Present

38. Varicose ulcers Binary 0 = Absent, 1 = Present

39. Liver cirrhosis Binary 0 = Absent, 1 = Present

40. Urine incontinence Binary 0 = Absent, 1 = Present

41. Age Continuous 65–80

42. Sex Binary 0 = Male, 1 = Female

43. Falls in last year Binary 0 = Absent, 1 = Present

44. Any history of blackout/faint Binary 0 = Absent, 1 = Present

45. Frequent fainter when young Binary 0 = Absent, 1 = Present

46. Afraid of fall Binary 0 = Absent, 1 = Present

2.3. Future Falls

Falls were classified into the following types: simple, complex, and syncope. As
previously described [6], simple falls were defined as accidental ones (e.g., a single slip or
trip), while complex falls were defined as recurrent, unexplained, and/or injurious ones.
Syncope was defined as a recollected transient loss of consciousness, which is characterised
by a rapid onset, a short duration of the event, and a spontaneous, complete recovery [18].
The outcome of each model was specified as a participant reporting at least one fall by the
end of Wave 4, which represents an approximate 6-year interval from their first participation
in TILDA Wave 1. The occurrence of a fall which was recorded at least once in Wave 2, 3, or
4 was coded as “1”, and the absence of a fall was recorded as “0”.

2.4. Random Forests and Feature Relevance

Various applications of random forests in medicine have been described [19,20]. In the
present study, random forests were used as a classifier for the above-mentioned 46 features
to predict simple falls, complex falls, or syncope among participants over a 6-year period.
RandomForestClassifier in the Scikit-learn Python package was used for the construction of
the random forest models, and GridSearchCV was implemented to tune the hyperparameters
of the models. Shapley additive explanations (SHAP) and random forest feature importance
were then used to explain the prediction models that were created.

Feature importance can also be derived from the random forest models by calculating
the mean decrease in impurity (MDI) [21]. The most important features are utilised earlier
as splitting attributes at the top of the tree, and these continue downwards according to
the order of their importance. The decision tree identifies the feature importance based on
its Gini coefficient, which measures the probability of a particular variable being wrongly
classified when it is randomly chosen. The lower the Gini coefficient of a feature is, the
more important the decision tree deems the feature to be in its classification [22]. In the
context of random forests, the final feature importance is derived from the average of the
impurity decrease across all of the trees [21].

With its origins from game theory, SHAP is a technique that can be applied to predic-
tive models to enhance their explainability [23]. This is because with SHAP, the individual
contribution towards each prediction can be observed in comparison to other techniques
that only present the aggregate contribution. For each input feature, SHAP measures its
contribution to the model. SHAP values also indicate if the feature contributes positively
or negatively towards the output, which in this case is the prediction of a future fall.

2.5. Classification Performance Measures

To assess the overall performance of the random forest models, the precision, recall,
and F1-score were utilised. The precision score is the number of correct predictions of
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a class which is divided by the total number of times that the model predicted that class,
while the recall score is the number of correct predictions of a class over the total number of
members in that class. The F1 score is the harmonic average of both the precision and recall
scores, and it provides a single value of the classification performance for each class [24].

2.6. Workflow Summary

The workflow process of the present study is summarised as follows:

1. Extraction of data from the TILDA database.
2. Data processing and cleaning (removing data with missing values, removing duplicate

data, and encoding binary variables).
3. Building random forest prediction models (all falls and syncope model; simple falls

model; complex falls model; syncope model).

a. Python 3 programming language was used on the Anaconda platform.
b. GridSearchCV package was implemented for tuning of hyperparameters.

4. Assessing the model’s performance by calculating the precision, recall and F1 scores.
5. Feature relevance: SHAP and random forest feature importances were derived from

the four models.

2.7. Detailed Code

The full code that was used to build the models can be accessed through the follow-
ing links:

• All falls and syncope: https://www.kaggle.com/code/tang1628/3rffallssyncope-
rebalance (accessed on 20 August 2022).

• Simple falls: https://www.kaggle.com/code/tang1628/3rfsimplefallspred-rebalance
(accessed on 20 August 2022).

• Complex falls: https://www.kaggle.com/code/tang1628/3rfcomplexfalls-rebalance
(accessed on 20 August 2022).

• Syncope: https://www.kaggle.com/code/tang1628/3rfsyncope-rebalance (accessed
on 20 August 2022).

3. Results
3.1. Dataset

Of the 8504 TILDA Wave 1 participants, 3499 were aged 65 or more years. By Wave
4, 599 of the participants (17.1% of Wave 1 sample) did not provide information for the
6-year outcomes. This resulted in the data of 2900 participants being included in this study.
Out of the 2900 samples, 217 simple falls, 1077 complex falls, and 185 syncope episodes
were recorded. The random oversampling of the smaller class was performed in all of the
models to preserve the model performance in consideration of the class imbalance. The
dataset size of each model is presented in Table 2.

Table 2. Dataset size of each model.

Model Number of Events
in the Original Dataset

Number or Events in the
Training Dataset
after Rebalance

All Falls and Syncope 0: 1549
1: 1351

0: 1098
1: 1070

Simple Falls 0: 2683
1: 217

0: 1888
1: 1868

Complex Falls 0: 1823
1: 1077

0: 1302
1: 1250

Syncope 0: 2715
1: 185

0: 1899
1: 1902

https://www.kaggle.com/code/tang1628/3rffallssyncope-rebalance
https://www.kaggle.com/code/tang1628/3rffallssyncope-rebalance
https://www.kaggle.com/code/tang1628/3rfsimplefallspred-rebalance
https://www.kaggle.com/code/tang1628/3rfcomplexfalls-rebalance
https://www.kaggle.com/code/tang1628/3rfsyncope-rebalance
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3.2. Prediction Performance

The precision, recall, and F1 scores for each model are presented in Table 3.

Table 3. Precision, recall, and F1 score for each model.

Model (Class) Precision Recall F1-Score

Falls and Syncope (0) 0.58 0.65 0.61
Falls and Syncope (1) 0.63 0.56 0.59

Simple Falls (0) 0.90 0.63 0.75
Simple Falls (1) 0.72 0.93 0.82

Complex Falls (0) 0.57 0.69 0.62
Complex Falls (1) 0.65 0.52 0.58

Syncope (0) 0.81 0.88 0.84
Syncope (1) 0.87 0.79 0.83

3.3. Feature Importance

The most important 20 features in each model based on their MDI are shown in
Tables 4–7.

Table 4. Top 20 features (by feature importance coefficient) in the all falls and syncope model.

All Falls and Syncope Model Feature Importance Coefficient

Fall in last year 0.140
Age 0.108

Afraid of fall 0.070
Sex 0.060

Osteoarthritis 0.046
Osteoporosis 0.040
Hypertension 0.036

Urine incontinence 0.031
Frequent fainter when young 0.030

Polypharmacy 0.029
Grip weakness 0.026

History of blackout/faint 0.025
Abnormal heart rhythm 0.024

Antihypertensives 0.024
Unsteady getting up from chair 0.022

Z-drugs 0.020
Anticholinergics 0.020

Angina 0.020
Asthma 0.019

Antidepressants 0.017

Table 5. Top 20 features (by feature importance coefficient) in the simple falls model.

Simple Falls Model Feature Importance Coefficient

Age 0.138
Sex 0.041

Weight loss 0.039
Hypertension 0.035

Fall in last year 0.034
Myocardial infarction 0.034

Polypharmacy 0.033
Urine incontinence 0.030

Afraid of fall 0.030
Unsteady on standing 0.028

Unsteady getting up from chair 0.027
MMSE less than 24 0.027

COPD 0.027
Asthma 0.026

Grip weakness 0.026
Frequent fainter when young 0.025

Osteoarthritis 0.024
Abnormal heart rhythm 0.024

Angina 0.023
History of blackout/faint 0.021
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Table 6. Top 20 features (by feature importance coefficient) in the complex falls model.

Complex Falls Top Features Feature Importance

Fall in last year 0.135
Age 0.110

Afraid of fall 0.081
Osteoporosis 0.045

Sex 0.042
Grip weakness 0.039
Osteoarthritis 0.034

Unsteady getting up from chair 0.034
Urine incontinence 0.028

Frequent fainter when young 0.028
Hypertension 0.023
Polypharmacy 0.023

Feels unsteady on standing 0.022
Antidepressants 0.021

Antihypertensives 0.020
Anticholinergics 0.019

Psychiatric problems 0.019
Abnormal heart rhythm 0.017

History of blackout/faint 0.016
Diabetes 0.016

Table 7. Top 20 features (by feature importance coefficient) in the syncope model.

Syncope Model Feature Importance

Age 0.118
Frequent fainter when young 0.043

Polypharmacy 0.041
Fall in last year 0.040

MI 0.039
Unsteady getting up from chair 0.038

Sex 0.033
Osteoporosis 0.031

Angina 0.030
Grip weakness 0.029

Abnormal heart rhythm 0.029
Antihypertensives 0.029

Varicose ulcers 0.027
Cancer 0.027

Osteoarthritis 0.026
Afraid of fall 0.025
Hypertension 0.024

Urine incontinence 0.023
Poor smell 0.022

History of blackout/faint 0.021

3.4. SHAP Values

A summary and the bar plots containing the top 20 features of the highest mean abso-
lute SHAP values for each model are presented in Figures 1–8. The SHAP value summary
plot shows the spread of every SHAP value that was calculated for every feature in each
sample. The colour of the plots represents the feature value, with ‘1’ being represented as
red and ‘0’ represented being blue for the binary variables. For age, the colour changes from
blue to red with an increasing feature value. The summary plot visualises the distribution
of the SHAP values for each feature whilst ranking the feature according to the mean
absolute SHAP values. Alternatively, this can be observed in the bar plot, which provides
a comparison of the mean absolute SHAP values of the top 20 features.
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of a future fall (all falls and syncope). Within each feature, every point across the x axis represents 

Figure 1. All falls and syncope SHAP summary plot. Fall in the last year is at the top of the y axis,
which is followed by sex (female = red; male = blue) and being afraid of falling. This suggests
that a fall in the last year has, amongst the other features, the biggest contribution towards the
prediction of a future fall (all falls and syncope). Within each feature, every point across the x axis
represents the SHAP value of the feature for each participant. As observed, a fall in the last year
contributes positively towards a future fall, and most positively in some participants, compared
to other features, but the wide distribution of the points suggests the variability of this positive
contribution amongst participants. In comparison, not falling in the last year has a more consistent
contribution towards having no future fall prediction. The only two dichotomous features whose
presence has negative contributions to the model are being a frequent fainter when they were young,
and more notably, having chronic obstructive pulmonary disease (COPD). In regards age, higher
values tend to contribute positively to the model, with the opposite being generally true, but with
there being a degree of heterogeneity (i.e., some red dots can be seen as having a negative impact and
some blue dots have a positive impact).
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4. Discussion

In this work, we utilised the large, publicly available TILDA dataset to implement
Random Forests and XAI techniques for the prediction of different types of future falls and
analysed their contributory factors using 46 input features. Being of the female sex and
having had a previous fall were found to be high in the feature importance ranking in all of
the models, and polypharmacy (being on five or more regular medications) was ranked
high in the syncope model. The accidental (or more ‘extrinsic’) nature of simple falls was
demonstrated in this model, where the presence of many frailty features showed negative
model contributions.

4.1. Accuracy of Prediction

From the results in Table 3 (precision, recall, and F1 score for each model), it can be
observed that both the syncope and simple falls models (overall accuracy of 0.83 and 0.79
in the Kaggle outputs, respectively) had a better prediction performance, while the all falls
and syncope and complex falls models had a more modest performance (overall accuracy
of 0.60 in the Kaggle outputs).

The performance of our XAI algorithms to predict future falls in TILDA can be com-
pared to that of a recent TILDA study which utilised conditional inference forests and
included additional input features that were not available in the public TILDA dataset.
Compared to the present study, their study showed a lower overall accuracy for future
syncope (0.62), and similarly low predictive accuracy for future recurrent, injurious, and
unexplained falls [25]. However, it is possible that our achievement of higher accuracy for
syncope may be explained by the higher degree of class imbalance in the model, thereby
resulting in a larger number of times that the data belonging to the smaller class was
duplicated. This could also apply to our simple falls model, which also had higher overall
accuracy. By being trained on more duplicates, a model could be more likely to correctly
predict the classes of the duplicates in the test dataset.

However, it is of contextual importance that in community-dwelling older adults, the
prediction of falls remains elusive, and a recent systematic review showed that existing
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prognostic models had high risk of presenting a bias, rendering them unreliable for pre-
diction applications in clinical practice, and in the few validated models that have been
reviewed, the area under the curve ranged from 0.62 to 0.69 [26]. This low predictability
could be related to the fact that in community-dwelling older people, the occurrence of falls
is, overall, infrequent. In contrast, a study that was looking at various AI models, consisting
of calculations of the bagging, random forest, adaptive boosting and classification trees for
inpatient fall risk prediction using electronic health records, showed that they had more
accurate predictions [27].

4.2. All Falls and Syncope

Judging by the feature importance scores (≥0.1), the model would suggest that if
a clinician was interested in predicting any future falls or syncope over a six year period,
the most important features to consider would be whether a fall had occurred in the last
year and their age. The highest SHAP feature importance score was also for whether a fall
had occurred in the last year, which was followed by their sex (being female had a positive
impact on model output), and a fear of falling. In keeping with the literature [28,29], higher
age values tended to contribute positively to the model, with the opposite being generally
true; however, the SHAP plot allowed us to appreciate a degree of heterogeneity (i.e.,
with some older—more red—participants having a negative impact, and some younger
participants —more blue—having a positive impact). This interesting nuance that is
evidenced by XAI is helpful for reminding clinicians that despite it having average effects,
individual disagreements with the norm are not uncommon. Previous falls have also
been highlighted in the literature as being predictive of future falls [26], and the top
importance of them having had a fall in the last year in our model resonates with the top
clinical recommendation by NICE that older people who are in contact with healthcare
professionals should be asked routinely whether they have fallen in the past year [4].

The fact that female sex contributed towards the prediction of all falls and syncope
is consistent with the literature, which suggests that women are more prone to falls than
men [30,31]. The SHAP summary plot demonstrated that there was little deviation over the
SHAP values of sex between the samples, thereby suggesting that there was little variability
amongst samples of the contribution of the sex feature towards the final output. This
contrasted with the features such as having had a fall in last year, where a large variance
in the SHAP values could be seen. This suggests that the importance of this feature to the
prediction that is makes may differ from person to person.

There was also a general trend where the absence of a binary feature which was
represented by a blue spot on the summary plot had a lesser impact on the model output
as compared to the presence of the feature. This may be observed on the SHAP summary
plot as larger absolute SHAP values for the red dots in comparison to the corresponding
blue ones. It may be suggested that the presence of a feature is much more relevant to the
prediction of a fall, rather than its absence. A clear example of this is being on Z-drugs, as
is highlighted in the literature [32].

4.3. Simple Falls

Judging by feature importance scores (≥0.1), age was the most important feature in
the prediction of future simple falls. However, in the SHAP summary plot, there was also
some individual age heterogeneity. The highest SHAP feature importance scores were for
age, sex, having a myocardial infarction, and having had a fall in the last year. However,
the presence of a myocardial infarction had negative contribution to the model. The SHAP
summary plot also showed a similar effect for other features such as weight loss, being
unsteady while standing, being unsteady when one is getting up from chair, and having
a cognitive impairment, COPD, asthma, and osteoporosis. This may be due to the likely
more “extrinsic” (e.g., environmental) nature of simple falls, with them having a less likely
influence on the “intrinsic” morbidity factors. Yet, the presence of other features such as
urine incontinence, an abnormal heart rhythm, poor hearing, a poor sense of smell, and
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psychiatric problems had positive contributions to these. Overall, the findings from the
simple falls model are helpful for reminding clinicians that falls in the older population
with comorbidities are less likely to be “accidental” or even “mechanical”, and hence, they
warrant a timely multifactorial assessment as recommended by the NICE guidelines [4].

4.4. Complex Falls

Judging by feature importance scores (≥0.1), the top features were them having had
a fall in the last year and their age. In the SHAP summary plot, having had a fall in
the last year and having a fear of falling were also the most important features, which
were followed by sex (being female had a positive impact on model output), having grip
weakness, osteoporosis, and their age (older generally having a more positive impact on
model output).

The importance of the fear of falling in this model can be interpreted in the light
that the complex falls included injurious events. For example, Young et al. described the
psychological influence of the fear of falling on the attention and behaviour of older adults,
which can in turn contribute to further falls [33]. On the other hand, generalised muscle
weakness that is due to sarcopenia can persistently impair gait and balance and contribute
to recurrent falls [34].

Fragility fractures, which are fractures that are incurred from falls from a standing
height or lower are associated with osteoporosis and may contribute to a sharp decrease in
mobility and quality of life [35]. In 2017, the total health burden of fragility fractures within
the EU6 (France, Germany, Italy, Spain, Sweden, and UK) was calculated to be 1.02 million
QALYs, with an expected increase of 25.6% by 2030 [36]. Given that injurious falls are
classified as complex falls, the significant contribution of osteoporosis to the risk of a fall
causing fractures is observed by its rank within the top features for complex falls.

4.5. Syncope

Judging by the feature importance scores (≥0.1), age was the top predictor for this.
In the SHAP plot, having had a fall in the last year, polypharmacy (being on five or
more regular medications), their age, being unsteady when getting up from chair, and
having osteoporosis, and a myocardial infarction all had clear positive influences in the
model. Being a frequent fainter when they were young had a more mixed effect on the
model output.

Polypharmacy was placed second in the SHAP summary plot, which was much
higher when it was compared to the other models, underlining the additive contribution
of cardiovascular and non-cardiovascular medications towards the risk of orthostatic
hypotension as a common cause of syncope in older people [37]. In our model, the feature
of antihypertensives had the highest feature importance and SHAP values amongst the
individual-type medications that were considered in the syncope model. This is consistent
with the literature [38], and it reinforces the importance of careful medication review in the
prevention of syncopal falls in older people. The SPRINT trial showed that intensive blood
pressure control in adults aged 50 years and above was associated with an increased risk
of syncope and hypotension. but not with falls [39]. However, the replication of the trial
using the TILDA dataset on adults aged 75 years and older, fulfilling the inclusion criteria
for SPRINT, showed that there was a five-fold increase in injurious falls (complex falls) and
syncope as compared to the SPRINT group that received standard care [40]. The perils of
intensive blood pressure control in older adults aged 65 years and over that are living with
frailty, including having a higher risk of future syncope, have been further evidenced in
the TILDA dataset [41].

Unsteadiness when they are getting up from a chair is a feature that showed high
importance among the simple falls, complex falls, and syncope models. This may be
interpreted differently, where in simple and complex falls, unsteadiness may be associated
with musculoskeletal weakness and balance problems, but in syncope, it may be more
related to orthostatic intolerance associated with orthostatic hypotension. In orthostatic
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hypotension, a drop in blood pressure is observed when a person changes, often too quickly,
from a sitting to standing position and this results in sudden cerebral hypoperfusion that
may precipitate a transient loss of consciousness [18].

Regarding the mixed effect of them being a frequent fainter when they were young in
the syncope model, the clinical implication is that when an older adult with multimorbidity
presents with syncope and there is a history of them fainting as a young person, the
clinicians should not immediately attribute the current fainting to the old benign tendency
to faint (i.e., vasovagal syncope), and regardless of their previous fainting history, they
should instigate a comprehensive review of the pathological drivers of the syncope (e.g.,
orthostatic hypotension or cardiac arrhythmia) [42].

4.6. Limitations
4.6.1. Self-Report Limitation

The type of fall that was experienced was determined by the participants themselves.
These may not be entirely reliable due to the subjectivity of the recollection of the events,
thereby leading to a potential recall bias [43,44]. A recall bias may also contribute more
significantly to the simple falls model, especially if the participants were unable to recall the
triggering mechanism of the fall, therefore, brushing off the event as accidental. This may
be contributory to the seemingly mixed profile of predictors within the simple falls SHAP
values. In addition, amnesia or loss of consciousness has been reported in syncope and these
may be more prevalent in the older age group [45]. The self-reporting of falls contributing
to a recall bias is an appreciable limitation in a falls assessments, and a collateral history
should always be considered by clinicians.

4.6.2. Low Granularity in Certain Features

A limitation in our design is that some input features had a low level of granularity,
which precludes the postulation of mechanistic effects in the results. For example, the
polypharmacy or antihypertensives features in the syncope model did not provide further
information on the exact medication classes and/or dosages of the patients, which are
aspects that clinicians need to take into account. In other datasets with more medication
granularity, XAI models could be useful in analysing the impact on falls that different med-
ications within each drug class have, as well as the impact of common drug combinations
on falls. The interactions between the features, which was not considered in this study, also
has potential in future research. The refinement of predictors based on clinical knowledge,
feature selection, and feature engineering will improve the predictability and quality of the
analyses in future AI models.

4.6.3. Other Dataset Limitations

A small number of simple and syncopal falls were recorded in the TILDA dataset. As
noted above, this caused a large class imbalance in the respective models, and balancing
the sizes of the classes with random oversampling resulted in many duplicates that may
have affected the results.

4.6.4. Technical Limitations and Alternative Algorithms

Tree-based models are more prone to bias towards continuous variables such as age
over binary variables due to there being more split points for these [46]. Age being present
within the top features of all of the models may suggest that the effect of such a bias and
categorisation of the age groups may be a future alternative for a similar implementation of
tree-based models. However, the overall effect of age in our models is clinically plausible
and it is discussed above, and it is also supported by the literature. We did not discretise
the variables, and we used age groups instead because as is noted above, we wished to
evidence the extent to which individual variability in age existed in the models.

XAI models are also insufficient to prove cause-and-effect relationships. Hence, the
relevance of a feature may not equate to its importance as a risk factor for falls, but instead
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as a non-causal association. An example would be osteoporosis, where the history of a fall
may lead to the screening for and diagnosis of osteoporosis, whereas osteoporosis does
not per se cause falls. However, understanding how AI models utilise each feature into
the predictions that they make might provide some intuition as to the possible causal
relationships between the features.

4.6.5. Alternative Algorithms and Explainability Considerations

Maximising the utility of machine learning models requires the selection of the correct
model that best suits the context of the problem. These considerations include the type of
problem, the characteristics of the features, versatility, and the need for explainability. Real
life application then further considers the technical feasibility of it such as its computational
intensity. For a binary classification problem as per our research question, supervised learn-
ing alternatives could have been decision trees and the supervised vector machine (SVM).
Deep learning models such as neural networks could have also been alternatives [47].
Amongst these considerations, explainability is crucial, particularly in analysing popula-
tion datasets of health and healthcare relevance, where it is essential to allow both clinicians
and patients to interpret the feature relevance of the model’s prediction. This can help to
personalise and streamline the preventative measures and medical management for a maxi-
mum amount of individual patient benefits. Decision trees allow for direct visualisation of
how the algorithm makes a prediction using the features that are provided. Explainability
is achieved easily as both the patient and clinician can interpret the tree results visually,
without requiring extensive knowledge in artificial intelligence [22]; however, decision
trees have high variance and are more prone to overfitting, which reduces the consistency
and quality of their predictions in real datasets. This is important to be avoided especially
when the consequences of erroneous predictions are significant, such as in the healthcare
context. Utilising the strength of ensemble learning, random forests are able to provide
more accurate and stable predictions through the aggregation of results from randomly
built decision trees. This is at a slight expense of their interpretability, where the expression
of feature relevance may be less straightforward for the general population.

On the other side of the explainability spectrum, deep learning models such as neural
networks may offer better prediction performance but with minimal transparency over
the derivation of the predictions. This may make clinical correlations of the results more
difficult and less attractive for their practical application in medicine [48]. Moreover, the
small dataset that is present in each of our classification problems may also restrict the
performance of neural networks, which require a large training dataset for the delivery
of stable and accurate results. However, in recent years there has been increasing interest
in the optimisation of the performance of neural networks for small datasets, which can
increase their applicability to the medical field [49,50].

5. Conclusions

XAI applications can be useful in medicine, and our study exemplifies this in the area
of fall prediction in older adults, by providing a comprehensive, easy-to-understand per-
spective on the multi-faceted nature of various types of falls whilst reinforcing the existing
knowledge to support clinical and research efforts in fall prevention. The identification of
modifiable risk factors can help to streamline and optimise the prevention efforts, which is
beneficial in ageing societies that increasingly need to divert scarce healthcare resources
towards older citizens. Future clinical applications may see AI models providing rapid
point-of-care personalised results to reduce falls risk and provide contributory red flags for
the individualised management of this issue. The implementation of XAI techniques in
medicine will also help us to comply with regulatory requirements and reduce user reluc-
tance towards the utilisation of AI in clinical settings because of their ability to generate
results that are more human-understandable. However, challenges remain that need to be
targeted and in the specific area of falls prediction, and more work is required to continue
to refine the definitions of falls, provide more granularity and objectivity in the inputs,
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consider possible interactions between inputs, and identify the algorithms that provide the
best explainability and accuracy.
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