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Abstract: Evolutionary approaches are widely applied in solving various types of problems. The
paper considers the application of EvolODE and EvolODES approaches to the identification of
dynamic systems. EvolODE helps to obtain a model in the form of an ordinary differential equation
without restrictions on the type of the equation. EvolODES searches for a model in the form of
an ordinary differential equation system. The algorithmic basis of these approaches is a modified
genetic programming algorithm for finding the structure of ordinary differential equations and
differential evolution to optimize the values of numerical constants used in the equation. Testing for
these approaches on problems in the form of ordinary differential equations and their systems was
conducted. The influence of noise present in the data and the sample size on the model error was
considered for each of the approaches. The symbolic accuracy of the resulting equations was studied.
The proposed approaches make it possible to obtain models in symbolic form. They will provide
opportunities for further interpretation and application.

Keywords: identification of dynamic systems; evolutionary algorithms; genetic programming algo-
rithm; ordinary differential equation; ordinary differential equation system

1. Introduction

Nowadays, evolutionary algorithms are applied in solving problems of optimization,
classification, clustering, forecasting, and regression in various practical fields [1–4].

In addition, evolutionary algorithms are an efficient tool for solving identification
problems [5,6]. System identification is the process of constructing mathematical models
of dynamic systems based on measurements that describe input and output variables of
the process under consideration. One of the most informative ways to represent models
of dynamical systems are differential equations and their systems [7,8]. This way of
describing the processes makes it possible to present the relationship between variables in
an interpretable form as well as to reflect the dynamics.

The problem of parametric identification is mainly solved with the help of evolutionary
algorithms. Thus, evolutionary approaches to parametric identification are considered in
the following papers [9,10].

Parametric identification determines the parameter values of a model with an already
known structure. This class of models makes it possible to describe a lot of real processes.
For example, there exist processes described by a homogeneous differential equation in
economics, biology and chemistry [6].
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The presented papers consider a genetic programming algorithm applied to construct
a model in the form of an ordinary differential equation (ODE). However, they are all from
a class of homogeneous equations. Consequently, the method is not universal due to its
applicability to only one class of ODEs [11,12].

However, there is a need to identify processes with a previously unknown structure
with the increasing complexity of technological processes. In this case, there is a need for
automated methods to construct models of dynamic systems of arbitrary structure. The
need to search for such models is faced by specialists in such fields as metallurgy, chemical
industry and thermal power plants.

Various methods have been developed due to the current significance of the problem
being solved. Nonparametric methods and artificial neural networks are of the greatest
importance [13–17].

However, these methods are often unable to construct a model that reflects the true
nature of the process in an understandable and interpretable form. The paper presents ap-
proaches to the identification of dynamical systems in the form of ODEs and their systems.

2. Materials and Methods

The paper solves an inverse problem of mathematical modelling. The inverse problem
involves constructing a system model based on a sample of measurements of inputs and
outputs. The approaches proposed in the paper fulfil the search for models in the form
of ODEs and their systems. It is possible to apply a genetic programming algorithm to
solve the inverse problem of mathematical modelling in order to construct a model in
symbolic form. The application of the genetic programming algorithm becomes possible
when considering the identification problem as a problem of symbolic regression [18].

2.1. The Evolutionary Approach EvolODE for the Identification of Dynamical Systems in the Form
of an ODE

The authors’ approach based on a self-configuring genetic programming algorithm to
identify a system in ODE form of arbitrary structure is presented in detail in [19]. The paper
denotes this approach as EvolODE (evolutionary approach, ordinary differential equation).

Let us consider a statement of the problem in more detail and highlight the key features
of the approach under consideration.

It is necessary to construct a model in ODE form of arbitrary order (1) based on the
measurement data of the input xti and output yi characteristics of the process (where t is
the number of inputs, i = 1, . . . , n, where n is sample size):

ŷ(k) = F
(

ŷ(k−1), . . . , ŷ′, ŷ, x
)

. (1)

The authors propose to apply the genetic programming algorithm to construct models
in ODE form. Consequently, the terminal set has been changed to encode an ODE in the
form of a tree. Changes to the terminal set were made relative to the classical GP algorithm
for solving the symbolic regression problem. The terminal set in the proposed approach
was represented by a set of all input (x) and output (y) variables, a set of constants, and
derivatives (y′, . . . , y(k−1)). The root vertex is supplemented with information about
the maximum order of the derivative for the current individual at the current iteration.
The functional set is standard for the problem of symbolic regression. It contains a set of
functions for constructing dependencies. Thus, Figure 1 shows an example of the ODE
encoded as a tree.
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The authors modified such steps of the genetic programming algorithm as the initial-
ization, fitness calculation, and mutation to implement the proposed approach. 

The population is generated at the initialization stage. Here, each individual encodes 
an ODE of the k-order not higher than K, where K is the maximum order of the derivative 
specified by a researcher. The algorithm determines an order for each individual automat-
ically, but the value of the order does not exceed the value of K. Thus, the order of the 
equation is not fixed initially, but restricted. 

Figure 1. Example of the ODE encoded as a tree.

The main stages of the evolutionary process of the EvolODE algorithm were also
modified. Its scheme is presented in Figure 2:
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Figure 2. Scheme of the evolutionary approach EvolODE for the identification of dynamical systems
in the form of ODE.

The authors modified such steps of the genetic programming algorithm as the initial-
ization, fitness calculation, and mutation to implement the proposed approach.

The population is generated at the initialization stage. Here, each individual encodes
an ODE of the k-order not higher than K, where K is the maximum order of the derivative
specified by a researcher. The algorithm determines an order for each individual automat-
ically, but the value of the order does not exceed the value of K. Thus, the order of the
equation is not fixed initially, but restricted.

The fitness calculation is carried out in accordance with Equations (2) and (3):

f itness =
1

1 + error
, (2)
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error =
1
n

n

∑
i=1

√
(ŷi − yi)

2

max(yi)−min(yi)
, (3)

where n is the sample size, ŷi is the value of the individual at the i-th point, and yi represents
values from the original sample.

The peculiarity is that mutation could be at the root node. The node contains the
maximum order of the derivative for the given individual. In this case, the order of all
derivatives included in the tree is randomly changed so that their order does not exceed a
new maximum order of the derivative.

The authors of the paper chose the achievement by the algorithm of a given number
of generations as a stop criterion.

The authors apply the method of differential evolution to optimize the numerical
constants included in the equation and initial conditions [20]. The study presents the
efficiency of a hybrid evolutionary approach that combines genetic programming and
differential evolution [21].

The presented approach makes it possible to obtain a model of a dynamic system in
ODE form of arbitrary structure.

2.2. The Evolutionary Approach EvolODES for the Identification of Dynamical Systems in the
Form of an ODE System

An output of a dynamic system is often characterized by several variables in real
processes. It is necessary to use the representation in the form of a system of ODEs to
develop a model of such processes.

As provided by this problem statement, it is obligatory to construct a model in the
form of an ODE system of arbitrary order (4) according to the measurement data of the
input xti and output ysi characteristics of the process (where t is the number of input and
output variables, i = 1, . . . , n, where n is sample size):

y(k)1 = f1(t, x1, . . . , xt, y1, . . . , ys)

y(k)2 = f2(t, x1, . . . , xt, y1, . . . , ys)
. . .

y(k)s = fs(t, x1, . . . , xt, y1, . . . , ys)

. (4)

The order of ODE k will be considered as a limited K-value set by a user.
The paper presents a new approach based on the EvolODE evolutionary approach

described above. Thus, according to the new proposed approach, a system of ODEs should
be encoded by a set of trees (Figure 3).
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The evolutionary approach to the identification of dynamical systems in the form
of a system of ODEs will be denoted as EvolODES (Evolutionary, Ordinary Differential
Equations System).

The peculiarity of the proposed EvolODES approach is the implementation of a com-
bination of several genetic programming algorithms (k genetic programming algorithms
are required for k equations in the system) [22]. Each of them searches for one equation of
the system. The number of equations n corresponds to the number of output variables in
the data (Figure 4).
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in the form of an ODE system.

Next, a population of individuals is generated by each genetic programming algorithm.
Individuals are potential representations of each of the k ODEs in the system.

The fitness is calculated for all individuals of each population (one-time full enumer-
ation of all possible combinations of individuals without regard to order). It is based on
the obtained values in each population; the best individual is determined. The fitness
calculation for each individual of each population is conducted by substitution into each of
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the equations of the system. The best individuals are selected as the remaining equations.
The calculation is performed in accordance with Equations (5) and (6).

f itness =
1

1 + error
, (5)

error =
∑k

i=1 ∑n
j=1
(
yij − ŷij

)2

sn
, (6)

where n is the sample size, s is the number of equations, yij are values from the original
sample, and ŷij is the value of the model.

According to the new approach, there are no restrictions on the number of ODEs
included in the system, their order or their structure. The models obtained in symbolic
form can be interpreted in the context of the subject area under consideration.

Both proposed approaches apply a self-configuring type of evolutionary algorithms
(genetic programming and differential evolution) [19,21]. The success history adaptation
algorithm is applied for genetic programming and differential evolution parameters con-
taining numerical values [23]. The PDP method is applied for parameters with the selection
of the type [24]. For the experiment, the authors determined the number of generations for
differential evolution as 30. The population contains 10 individuals.

3. Results

Let us consider the proposed approaches in detail. Firstly, consider the efficiency on
test tasks represented by ODEs and their systems.

The tasks presented in Table 1 were used to test the evolutionary approach of EvolDE.
ODEs represent tasks of various types and orders. The exhaustive testing and study of the
efficiency of this algorithm on tasks with some input variables and with input variables
represented by functions are reflected in [25].

Table 1. Test tasks for the evolutionary approach to the identification of dynamical systems in the
form of an ODE.

No Differential Equation Initial Sample Point

1 y′ = y+x2 cos x
x

y(x0) = 0.06

2 y′ = − y ln y
x y(x0) = e

3 y′′ = 2(y′)2

y−1
y(x0) = 2

4 y′′ = 6y′ − 9y + 6xe3x y(x0) = 3

5 y′′′ = 4y′ + 24e2x − 4 cos(2x) + 8 sin(2x) y(x0) = 1

6 yIV = y + 2 cos(x) y(x0) = 0

7 yV = yIV + 2x + 3 y(x0) = 2

8 y′ = y+x2
1 cos x2
x3

y(x0) = 0.06

9 y′′ = y′+x2
1yy′

x2
2

y(x0) = 0

10 y′′ = −2y′ − 2y + 2x2
1 + 8x2 + 6 y(x0) = 3

Table 2 presents the results of identification according to the data generated by the
tasks from Table 1. Data of different volumes were generated without noise and with noise
for each task. Noise is distributed normally. The authors conducted 50 runs for each task.
Table 2 shows the results by error values (averaged over 50 runs) depending on the sample
size and the presence of noise in the data.
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Table 2. Testing results of the evolutionary approach to the identification of dynamical systems in the
form of an ODE.

No

Sample Size

150 100 50

Noise, %

0 5 10 0 5 10 0 5 10

1 0 0 0.001 0 0 0 0 0 0.0001
2 0 0 0 0 0 0 0 0.0001 0.0001
3 0.0001 0.0008 0.0008 0.0001 0.0008 0.0008 0.0002 0.0009 0.0012
4 0.0002 0.0003 0.0003 0.0002 0.0003 0.0003 0.0003 0.0004 0.0005
5 0 0.0005 0.0007 0 0.0006 0.0007 0.0001 0.0008 0.0008
6 0 0.0001 0.0002 0 0.0002 0.0003 0.0001 0.0004 0.0005
7 0 0.0008 0.0009 0.0001 0.0009 0.0009 0.0001 0.0013 0.0014
8 0.0046 0.0055 0.0059 0.0074 0.0092 0.0104 0.0113 0.0201 0.0287
9 0.0017 0.0047 0.0053 0.002 0.0049 0.0051 0.0033 0.0058 0.0075

10 0.0011 0.0033 0.0041 0.0023 0.0037 0.0042 0.0024 0.0037 0.0039

The authors consider the dependence of the rate of a chemical reaction on temperature
to study the possibility of using this approach in solving applied tasks. A set of values
describing the process for a chemical reaction is known. It is necessary to construct a model
that describes a change in the rate of a chemical reaction depending on temperature.

It is necessary to estimate the dependence of the reaction rate constant on temperature
for the reaction H2 + I2 → 2HI. A sample of temperature (T) and rate constant (k) values
was applied to construct a model. The sample size was 12 points. As a result, the authors
obtained a symbolic model. It corresponds to the well-known Arrhenius Equation (7):

dlnk
dT

=
Ea

RT
, (7)

where Ea is the activation energy, and R is the universal gas constant [26].
Figure 5 shows graphs corresponding to the original data and points obtained from

the model. The mean squared error of the fit was 0.
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The tasks presented in Table 3 are applied to test the evolutionary approach of EvolDES.
The systems of ODEs of various types and orders represented these tasks.

Table 3. Test tasks for the evolutionary approach to the identification of dynamical systems in the
form of an ODE system.

No System of Differential Equations Initial Sample Point

1
{

dy1
dt = 2y1 − 5y2 + 3

dy2
dt = 5y1 − 6y2 − 1

y1(0) = 6
y2(0) = 5

2
{

dy1
dt = 2y1 + y2

dy2
dt = 3y1 + tet

y1(1) = 1
y2(1) = 2

3
{

dy1
dt = y1 + 2y2 + e−2t

dy2
dt = 4y1 − y2

y1(0.1) = 5
y2(0.1) = 8

4
{

dy1
dt = y2 − y2

1 − y1
dy2
dt = 3y1 − y2

2 − y1

y1(0) = 0
y2(0) = 1

5


dy1
dt = −y2
dy2
dt = y1

dy3
dt = y1 − y4

dy4
dt = y2 + y3

y1(0) = 1
y2(0) = 0
y3(0) = 0
y4(0) = 0

6


dy1
dt = 2y1 − y2 − y3

dy2
dt = 3y1 − 2y2 − 3y3 + 2t

dy3
dt = 2y3 − y1 − y2 − t2

y1(0) = 2
y2(0) = 3
y3(0) = 2

7


dy1
dt = −10y1 + 10y2

dy2
dt = 25y1 − y2 − y1y2

dy3
dt = y1y2 − 10y3

y1(0) = 1
y2(0) = 0

y3(0) = −1

8
{

dy1
dt = 3y1 + 2y2

d2y2
dt2 = −10y1 − y2

y1(0) = −1
y2(0) = 7

9
{

d2y1
dt2 = −ty2

d2y2
dt2 = y2 − 2 dy1

dt

y1(1) = 4
y2(1) = −4

10
{

d2y1
dt2 =

dy1
dt −

dy2
dt + e−t + cos t

d2y2
dt2 =

dy1
dt −

dy2
dt − 2et − sin t

y1(0) = 2
y2(0) = 0

The analysis of the error of the obtained models was conducted in a similar way to the
previous testing scheme. This depended on the amount of data and the presence of noise
(Table 4).

Let us consider the application of this approach in solving a practical task from the
field of biology. Let values describing the change in the population size of predators and
prey over time be given in some ecosystem. The sample size is 50 points. It is necessary to
calculate the change in the number of prey and predator populations over time.

As a result, an expression was obtained represented by a system of differential equa-
tions. { dx

dt = 0.998x− xy
1.023+2x−x − 0.124x2 + 0.009x2

dy
dt =

(0.255−0.101 y
x +0.08)y2

y
=

=

{
dx
dt =

(
0.998− y

1.023+x − 0.115x
)

x
dy
dt =

(
0.175− 0.101 y

x
)
y

(8)
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Table 4. Testing results of the evolutionary approach to the identification of dynamical systems in the
form of an ODE system.

No

Sample Size

150 100 50

Noise, %

0 5 10 0 5 10 0 5 10

1 0.034 0.036 0.039 0.032 0.037 0.039 0.03 0.038 0.04
2 0.018 0.023 0.024 0.018 0.024 0.024 0.019 0.025 0.024
3 0.018 0.051 0.057 0.018 0.052 0.057 0.019 0.055 0.058
4 0 0 0.001 0 0 0.001 0.002 0.002 0.003
5 0 0 0.002 0 0 0.002 0 0.001 0.003
6 0.022 0.024 0.025 0.031 0.035 0.39 0.038 0.039 0.038
7 0.027 0.031 0.032 0.028 0.029 0.033 0.031 0.032 0.039
8 0 0 0.002 0 0.001 0.002 0.002 0.003 0.003
9 0 0.002 0.002 0 0.002 0.002 0.001 0.002 0.003

10 0.041 0.042 0.053 0.042 0.045 0.054 0.039 0.045 0.053

The presented system corresponds to the best solution found among 50 runs. It
corresponds to an error of 0.0019. The best solution was found 24 times from 50 runs. The
averaged error over 50 runs was 0.0031.

The presented system of differential equations corresponds to the Holding–Tanner
model. Generally, it is represented as follows [27]:{

dx
dt =

(
a− cy

g+x − ex
)

x
dy
dt =

(
b− f y

x
)
y

(9)

where x is the size of the predator population, y is the size of the prey population, cy
g+x is

the predation coefficient, and a, b, f are positive parameters.
Figure 6 shows graphs corresponding to the original data and points obtained from

the model represented by the system of differential Equation (8). The mean squared error
of the fit is 0.
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4. Discussion

The authors conducted the study of two evolutionary approaches for constructing
models of dynamical systems in the form of differential equations (EvolDE) and their
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systems (EvolDES). According to the results, we can observe high accuracy of the models
obtained as a result of testing. Changing the sample size within presented limits does not
have a significant effect on the error.

An important peculiarity of these approaches is the possibility of obtaining models
in symbolic form. However, such representation is expected to be consistent with the
true nature of the process. Therefore, it was determined that the models obtained as the
identification of test tasks belong to three types: symbolically accurate (full compliance of
the structure and parameters of the resulting equation or system with known true ones),
symbolically conditionally accurate (the resulting structure corresponds to the known
true one after performing the simplest mathematical operations), and approximate ones
(solutions that do not belong to two previous types). Figures 7 and 8 show the number
of symbolically accurate, symbolically conditionally accurate, and approximate solutions
for each of the 50 runs for each task. Figure 7 contains information about the results for
the evolutionary approach to the identification of dynamical systems in the form of an
ODE. Figure 8 contains information about the results for the evolutionary approach to the
identification of dynamical systems in the form of ODE systems.
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The successful search for a structure that corresponds to the true nature of the process
is also proven by the above models of processes from chemistry and biology.

The paper presents two evolutionary approaches that combine a genetic programming
algorithm, differential evolution, and methods for the self-configuring parameters of
evolutionary algorithms. The proposed approaches make it possible to identify dynamical
systems in the form of ODEs and their systems. In the process of identification, both
approaches automatically select the order, structure, and parameters of an ODE, both single
and included in the system. The developed approaches make it possible to operate with
systems in the form of ODEs of arbitrary order, a number of input and output variables.
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