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Abstract: In recent years, machine learning algorithms have been applied in many real-time applica-
tions. Crises in the energy sector are the primary challenges experienced today among all countries
across the globe, regardless of their economic status. There is a huge demand to acquire and produce
environmentally friendly renewable energy and to distribute and utilize it efficiently because of its
huge production cost. PEMFC are known for their energy efficiency and comparatively low cost, and
can be an alternative energy source. The efficiency of these PEMFC can still be enhanced with the help
of advanced technologies like machine learning and artificial intelligence, as they provide an optimal
solution to explore the hidden knowledge from the generated data. The proposed model attempts
to compare several design techniques with varied humidity levels. To enhance the performance of
PEMFC, the various humidification processes were considered during the experimental study. The
humidification reduces the heat during energy generation and increases the performance of PEM fuel
cell. The humidity levels such as 100%, 50%, and 10% were considered to be tested with the machine
learning models. The SVMR, LR, and KNN algorithms were tested and observed with the RMSE
value as the evaluation parameters. The observed results show that SVMR has an RMSE rate of
0.0046, the LR method has an RMSE rate of 0.0034, and KNN has an RMSE rate of 0.004. The analysis
shows that the LR model provides better accuracy than other models. The LR model enhances the
PEMFC performance.

Keywords: PEM fuel cells; machine learning; SVMR; LR; KNN

1. Introduction

The proton exchange membrane fuel cell (PEMFC) is an alternative source of energy
for the automotive industry. The fuel cell works on the principle of converting the chemical
energy of the fuel into electrical energy through electrochemical reactions. The hydrogen
and oxygen are considered as the reactant and oxidant for the PEMFC. During the electro-
chemical reaction, hydrogen oxidation reaction and oxygen reduction reaction will take
place. The electrons will be formed during the electrochemical reaction. The working
principle of PEMFC is based on the electrochemical reaction of the reactant and oxidant in
the electrode of the fuel cell. During this electrochemical reaction, the fuel cell responds
to the exothermic reaction, thereby producing heat in the system. The temperature of the
PEMFC during the electrochemical reaction varies from 30 °C to 80 °C depending upon the
operating parameters, namely flow rate, pressure, and humidification of the reactant and
oxidant, respectively [1].

A number of studies have been carried out in the field of PEMFC as expressed ear-
lier [2,3]. The majority of these studies have been carried out by using the methodology of
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computational fluid dynamics (CFD). A very small amount of deviation was reported in
most of the previous works between experimental and numerical (CFD) analysis; hence, it
can be inferred that CFD is a very viable method of predicting and analyzing the perfor-
mance of a PEMFC having a high accuracy percentage [4].

The main factor to be considered when designing a fuel cell is to ensure proper
humidification without causing flooding as expressed in previous literature [5]. Flooding
factors are considered when designing the flow channels and the operating conditions of
the fuel cells. The PEMFC needs to be humidified for its proper functioning and prevent it
from drying out. This humidification needs to be provided through an anode as well as
a cathode inlet. However, higher humidification, especially for the cathode can result in
flooding conditions, which in turn will lead to the deterioration of the performance of the
fuel cell.

Fuel cells are gaining worldwide importance because of their clean nature, fuel, and
reliability; they are finding increased applications in almost every industry. Proton exchange
membrane fuel cells (PEMFCs) are preferred on a larger scale due to their lower operating
conditions and high power output. Increased manufacturing costs for fuel cells have been
a major concern for researchers around the world. Scaling up PEMFC can help reduce this
very cost to a great extent. As found in the literature, an enormous number of studies have
been done in the field of PEMFCs with a typical active area of 25 to 50 cm2. The authors
have found from the literature that there are not many studies that deal with scaled-up
PEMFC with active areas of 100 cm2. The power output of a single cell is increased as the
PEMFC is scaled up. On the other hand, if the PEMFC is scaled up, it must be ensured that
the flow channel is properly designed for effective water and species distribution; otherwise
the power density would drop as compared to the standard PEMFC with an active area
of 25 cm2. Hence, this present work will contribute significantly to the existing literature
by giving an in-depth analysis of scaled-up PEMFC and all other factors which affect its
performance by evaluating some novel flow-field designs that numerically use CFD. A
real-time numerical data analysis was implemented by [6] to enhance the performance of
PEMFC with various designs.

To enhance the performance of the PEMFC, this paper adopts machine learning
techniques which will give better performance in power generation. The numerical analysis
methods is a time-consuming method that leads to less accuracy. However, the proposed
methods try to reduce the operational cost by implementing prediction methods. The main
objective of this method is to enhance the performance of the PEMFC.

1. The presented method exploits machine learning algorithms to optimize the power
generation.

2. Various PEMFC design models were considered to prepare the data for analysis. In
addition, the method considered various humidity levels.

3. The method experimented and analyzed three different regression algorithms to select
optimized model for prediction.

4. Finally, the methods validated with existing numerical analysis methods.

Based on the observed results, the linear regression methods yield better results.

2. Literature Survey
2.1. PEMFC and Various Design

Neutron imaging techniques have been used by [7] for determining the distribution of
water in the membrane electrolytes of the PEMFC and have been used as benchmark data
for validating numerically predicted results by using a CFD code. The local distribution
of liquid water as predicted by the model are compared to those obtained by using the
techniques of neutron imaging at various different operating parameters. The numerical
CFD experiment has been validated with experimental data by using polarization curves.

The 3D CFD simulations for the flow fields in the bipolar plate for hydrogen flow in
a PEMFC was performed by [8]. The author has considered different flow field models
for the bipolar plates by varying the geometry. OPEN FOAM software has been used to
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analyze the flow simulations and to obtain the velocity and pressure distributions. The
variable parameters considered for these straight parallel flow fields are the depth, shape,
and width of the channels. It is reported that the geometric changes in the structure of the
parallel flow field could affect the flow and pressure distribution.

The numerical simulation on a wavy flow field structure and a vertical flow field
structure using CFD code on PEM fuel cell performance is carried out by [9]. They reported
that due to the wavy flow fields, vertical fluid flows were established, which helps in
improving the effective diffusion of oxygen and delay concentration losses for high current
density. The wavy structure helps to reduce concentration losses even at lower stoichiome-
try. Moreover, the wavy flow field design also helps to maintain a uniform current density
and gas flow. A numerical investigation on the two-phase flow occurring in a PEMFC with
tapered channel flow using air and water [10]. They reported more effective water removal
for tapered channels due to increased air velocity. The channel tapering effect on fuel cell
performance was significant at higher temperatures, low voltages, and high current density.
When compared with normal rectangular channels, the water is removed more effectively
with the tapered flow channel.

A 3D CFD model of a new type of flow field for a PEMFC which has a structure like the
branches of a tree [11]. They studied three different tree types of flow field configuration.
They were compared to the conventional flow field types like the parallel and the serpentine.
They reported that the tree-shaped designs ensure a much more uniform distribution of
the reactants and lower pressure drop when compared to the conventional patterns. In the
tree-shaped design, it was found that as the bifurcations increase, and there is an increase
in the active area, which increases the cell performance.

The numerical investigation on nature-inspired flow field design for a PEMFC was
conducted by [12]. They also stated the role of CFD models in analyzing these nature-
inspired flow field designs. Various nature-inspired designs have been considered, such as
fractal designs, heuristic, biologically inspired designs, and formal, biologically inspired
designs. A comparison of these designs to the conventional flow fields has also been
presented, and the various challenges regarding the development of these nature-inspired
flow designs. A 3D CFD investigation of the liquid water dynamics on the performance
of PEMFC was conducted by [1]. The volume of the fluid model has been used for the
simulation purpose. It was shown that droplets from inner and outer pores tend to
move along the lower edge of the gas channel. They reported that there is an increase
in GDL water surface coverage and a decrease in water volume fraction. The proper
balance between the water volume fraction and the GDL surface water coverage ratio will
optimize the performance of the fuel cell. A numerical simulation on a new compound
flow-field design using a 3D CFD model was performed. They compared the performance
characteristics between conventional parallel and serpentine flow fields [13]. The contours
and the polarization curves for the flow fields have been used for comparison. The output
numerical results of the models stated that the parallel flow field performance is lesser
than the other two designs due to insufficient reactant distribution. They reported that
the compound flow field is better for controlling and reducing flooding. However, the
performance of the compound flow field was similar to that of the serpentine flow field.

A volume of fluid (VOF) model which has been coupled with a one-dimensional MEA
model to study the effect of low misdistribution in parallel channels of a PEMFC [14].
The results state that the slug flow patterns increase the surface water coverage in the
gas diffusion layer, decreasing cell performance. The performance of the fuel cell can be
improved by optimizing the flow field resistance without causing much loss of pressure in
the flow.

A detailed review on the application and development of stainless steel bipolar plates
(BPPs) for PEMFC was performed by [15]. Various assemblies and processes required for
manufacturing and optimizing the performance of these steel BPPs have been discussed.
A detailed discussion about the various processes involved in stainless steel BPPs, such
as laser welding, micro-stamping, rubber pad forming, and hydro-forming have taken
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place. They reported the effects of anti-corrosive and conducting coatings on stainless steel
materials. The effects of various errors in the shape, size, and other parameters of the BPPs
on the performance have also been reported.

A numerical and CFD simulation to determine the optimum channel width to rib
height ratio for serpentine flow fields to get the optimum performance of the fuel cell [16].
Seven different flow fields have been analyzed, and its effects on water distribution, current
density, flooding, and reactant gases mass fraction were also studied numerically. Pressure,
stoichiometry, and temperature effects have also been evaluated in this study [17].

The numerical analysis on the anode and the cathode gas channel of a PEMFC with
rectangular-shaped obstacles in the flow field was conducted by [18]. By using a 3D
CFD model, the numerical analysis of the flow field with obstacles at different operating
parameters of relative humidity, stoichiometry, and temperature was studied. The authors
reported that the flow field with rectangular obstacles, and the current density values are
higher than ordinary flow fields. The fuel cell performance is studied by using the I-V
polarization curves [19]. An effective cooling system for a PEMFC was considered by [20],
the authors of which performed a numerical investigation of new and different cooling flow
fields. The parameters like thermal behavior, pressure drop, and coolant flow distribution
of various thermal designs have been studied. They stated an increase in the mass flow
rate of the cooling field as well as a minimization of the maximum temperature difference
between flow field surface.

An investigation on water dynamics inside the PEMFC was performed by [21], the
authors of which investigated the water content at the cathode of the PEM cell due to the
dynamic behavior of liquid water. The surface coverage of the GDL by water can be greatly
reduced, and this can be achieved by increasing the inter-pore distance, and decreasing the
pore diameter. The three-dimensional PEMFC with different operational parameters and
geometric inputs [22]. They have compared the simulated model with experimental results,
and there is a good match between them. These parameters include species concentration,
water content in the PEM, over-potentials, and the current densities. The effect of these
factors on cell performance has also been evaluated.

2.2. PEMFC Using the Machine Learning Model

Machine learning and artificial intelligence (AI), have been proven to give better
performance in data analysis, system control, and design optimization performance and
energy development [5]. Advances in computational power, simulation, and machine
learning enables researchers to explore large amounts of data, to provide inspiration and
tools for designing new systems. This study [23] experiments with modeling and data
analysis tools to build a framework for the study and development of high-temperature
polymer electrolyte membrane fuel cells (HT-PEMFC). In [23], the machine learning tech-
nique is used to identify the two-phase flow pressure drop in a flow channel of a PEMFC.
Three machine learning models: logistic regression, support vector machine, and artificial
neural networks (ANN) are used to classify the liquid–gas two-phase flow pressure drop
images into three pressure classes. Machine learning and AI, which are effective tools
for data analysis/classification, system control/monitoring, and design/performance op-
timization, are gaining power in the material- and energy-development industries [23].
The machine learning-based modeling and analysis approach proposed here allows for
quick identification of material qualities and device operating parameters that improve
PEMFC performance [24]. Catalyst layers have been intensively investigated for not only
PEMFC, but also many other systems, such as electrolyzes and sensors with Pt-catalyst
electrodes. Machine learning and AI are immensely helpful, but also challenging, for cata-
lyst layer development when such catalyst layers have been thoroughly studied not only
for PEMFC, but also many other systems, such as electrolyzes and sensors with Pt-catalyst
electrodes [25]. The parametric identification of a polymer electrolyte membrane (PEM)
can be effectively performed by using the machine learning model [26].
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3. Proposed Methodology

The proposed method is broadly classified into preprocessing, model selection, and
evaluation. Figure 1 illustrated the overall architecture of the proposed method.

Figure 1. Architecture of proposed method.

3.1. Numerical Study

Numerical modeling consists of three stages, namely pre-processing, processing, and
post-processing. In the pre- processing stage, the three-dimensional geometry is modeled
by using Solid Works 10.0 software. Flow channel designs are illustrated in Figure 2, and
the design parameter is listed in Table 1. Finite volume discretization of the PEMFC is
modeled by using the ANSYS ICEMCFD 15.0 code. In the processing stage, governing
equations, which are used to capture the flow physics and electrochemical reactions of
PEMFC are solved by using the ANSYS Fluent 15.0. CFD code. The modeling of the proton
exchange membrane fuel cell is created by using solidworks 10.0, which consists of nine
parts, namely membrane electrolyte, catalyst layers, gas diffusion layers, flow channels,
and the current collectors in both anode and cathode side. The proton exchange membrane
fuel cell is discretized through a finite volume approach by using ANSYS ICEMCFD 15.0.
The PEMFC parts are meshed individually by adopting the blocking technology to generate
hexahedral elements. The angle and determinant value mesh lies in the range of 85° and
0.9, respectively.
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(a) (b)

(c) (d)

(e)

Figure 2. Flow channel design. (a) 2-Serpentine. (b) 3-Serpentine. (c) Serpentine zigzag. (d) Straight
zigzag. (e) Straight zigzag.

Table 1. Design parameters.

Parameter Value

PEMFC Cross-sectional Area 100 cm2

Width of the flow Channel 1 mm
Width of the Landing (Rib) 1 mm

Depth of the Channel 1 mm
Thickness of the Gas Diffusion Layer 0.33 mm

Thickness of the Catalyst Layer 0.01 mm
Thickness of the Membrane 0.051 mm

3.2. Surrogate Models Development

The surrogate models were implemented with the help of machine learning algorithms.
The machine learning algorithms provided the performance growth in many energies’ effi-
cacy models. The machine learning algorithms are classified into supervised, unsupervised
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learning, and predictive models: classification, clustering, and regression. Each method
has different algorithms to process the data. The data analysis has been made based on the
amount of data available, and the processing resources must all be considered while choos-
ing the best algorithm. The regression analysis has a greater advantage over classification
and clustering. The regression algorithm predicts the independent variable data based on
dependent data. Adopting a predictive model provides better accuracy as per previous
studies [27]. The proposed method considered three machine learning algorithms such as
support vector machines, linear regression and k-nearest neighbor method to analyze the
performance of PEMFC with various humidity levels.

3.3. Machine Learning

Machine learning and artificial intelligence play an important role in various scientific
applications. The data analysis, classification, regression, and clustering techniques are
widely applied in many applications like material and energy development. Machine
learning and artificial intelligence have simplified the numerical analysis of PEMFC in
recent decades, allowing for the discovery of essential knowledge of hidden patterns in
energy development, design optimization, and energy efficiency [28].

The research objective is focused on three-dimensional, two-phase computational fluid
dynamics to scale up PEMFC. However, existing studies show that the size of fuel cells are
stacked together with other fuel cells, which is not adequate for agility purposes [29]. The
present study focuses on different design methods to scale up an active area of 100 cm2

with various flow field configurations namely two-serpentine, three-serpentine, serpentine
zigzag, straight parallel, and straight zigzag. Numerical study has been conducted and
validated with different design methods. The various humidification of hydrogen and
oxygen is considered for better performance. Machine learning algorithms are introduced
to analyze the data’s hidden knowledge. The various algorithms that include classification,
regression, and clustering reveal the relationship between the input and output parameters
under appropriate training to test the data.

3.4. Support Vector Machine

In recent years, a massive amount of data analysis has been carried out in support
vector machines, in a multidisciplinary environment [30–32]. SVM is powerful and robust
in classification and regression methods in multidisciplinary research (Algorithm 1). It
plays a significant role in pattern recognition which is helpful in research. The support
vector machine for regression (SVMR) problem is based on structural risk minimization
which provides good performance, with an epsilon (ε) intensive loss function obtained,
and a symmetric performance of reduced training errors and reduced model complexities.
These models work well even with small training data. Hence, SVM for regression has
chosen to build a surrogate model. SVMR is used to find the hidden relationship between
the input variables like voltage, humidity level, and design structure of the PEM cell and
the output variable of the current.

Algorithm 1 An algorithm for support vector machine

1: Split the data into training and testing
2: Set random number for learning parameters
3: Repeat the process to optimal value
4: Fit the SVMR model
5: Find error (mse) value
6: Continue the same until no more changes in the error value
7: Find the best value for regression
8: End
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3.5. Linear Regression

The linear regression model is a basic and simple regression technique [33,34]. Finding
a linear relationship between one or more variables is done by using linear regression.
There are two types of linear regression, simple and multiple linear regression. This model
is used to estimate the relationship between the input variable (X) and output variable (Y)
which work under the principle of statistical and machine learning concepts. The LR model
predicts and calculates changes in output variable (Y) when the input variable changes (X).
The input and output variables can be exchanged by correlation coefficient. The LR model
predicts the target value (Y) based on the input variable (X). The simple linear regression is
given in Equation (1),

y = mX + c => Y = s0X + s1, (1)

where from (1), y is the target (dependent) variable, X is the input (independent) variable,
s0 is the slope, and s1 is the regression coefficient. The complexities of the regression model
are used to evaluate the number of coefficients used in this model. The model coefficient
or parameters are obtained together as m and c; after utilizing the training data to get the
model coefficient estimates of ŝ0 and ŝ1. We have

ŷ = ŝ0X + ŝ1, (2)

where from (2), ŷ indicates the prediction. We also have

ej = yj − ŷj, (3)

where from (3), ej is the error difference between the actual and predicted value of jth

representation. The sum of square error is defined as

SSE = e2
1 + e2

2.....e2
n. (4)

In regression, there is a concept of best-fit line, which is the line that best matches the
provided data (Algorithm 2). SSE is called loss function or cost function, and minimizing
the error would result in good fit or accuracy. This strategy is called the least squares
method. By using some calculus, the least-squares method chooses 0 and 1 to minimize the
SSE. Then, a new set of coefficients is generated, and it needs some metrics to verify that
the estimated coefficients are accurate.

Algorithm 2 An algorithm for linear regression

1: Start
2: Load data
3: Split the data into training and testing
4: Set random number for learning parameters
5: Repeat the process to optimal value
6: Fit the LR model
7: Find error (mse) value
8: Continue the same until no more changes in the error value
9: Find the best value for regression

10: Predict the value for regression model
11: End

3.6. KNN for Regression

The KNN model is used for both classification and regression techniques (Algorithm 3).
Based on the similarity among the features, the new value is predicted. With the closeness
learned from the features in the training data, the model predicts the new value. At the
initial step, the model calculates the distance between the new value and each data point
in the training dataset. Based on the distance, the K value is chosen. There are various
distance measures which include Euclidean distance, Manhattan distance, and Hamming
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distance, which are used to find the similarity distance between the training data points
and new data points [35]. Choosing optimal K values influences the performance of the
KNN model. The optimal value has been chosen in the training dataset based on error.

Algorithm 3 An algorithm for K-nearest neighbor for regression

1: Start
2: Load data
3: Split the data into training and testing
4: Initialize the K value
5: Find distance between each data points for data sample
6: Append the value in the index list
7: Sort the list and take average value of k-indexes in the list
8: End

4. Experimental Results
4.1. Data Generation

A real-time PEM heap data simulation is configured by containing cells and an active
area of 100 cm2. A real-time numerical simulation is carried out with an active area of
100 cm2 PEMFC. The numerical work was carried out at various cell voltages ranging from
0 V to 0.95 V under different hydrogen and oxygen humidification [36]. The dataset was
considered with 10%, 50%, and 100% humidity levels with different flow channel designs
likes two serpentine, three serpentine, serpentine zigzag, straight parallel, and straight
zigzag [6]. The experimental study was conducted based on humidity levels.

4.2. Evaluation Metric

The surrogate model is evaluated by using the following metrics [37]. The root means
squared error (RMSE) and the squared correlation coefficient (R2). The root means square
error is the average of mean error between the actual and predicted value.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi) (5)

R2 = 1 −
n

∑
i=1

(yi − ŷi) (6)

4.3. Learning Parameter

The dataset is randomly split into training and testing. The k-fold cross-validation
technique is applied to obtain the optimized parameter in the training dataset. For the
experimental purpose, the five-fold validation is conducted and the radial basis function
(RBF) kernel function is chosen to optimize the parameters like gamma and epsilon for SVM
regression. The model learns the hyperparameter valuesy performed by a five cross-fold
validation method. The optimal value for the support vector machine for regression was
chosen based on different values tested with k-fold validation.

4.4. Result and Discussion

The machine learning-based modeling and analysis approach proposed here allows
for flow channel design and operating parameters of hydrogen and oxygen that improve
PEMFC performance. The performance of the presented method was evaluated with
different models, such as SVMR, KNN, and LR models. The mentioned models predict the
cell voltage is directly based on regression.

4.4.1. SVMR Method

The support vector machine regression method was tested with various learning
parameters. An epsilon is the loss function for SVMR. The model was tested with various
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values, which range from [0.11, 0.12 . . . 0.16]. The result illustrated in Figure 3. shows
that 0.12 is the optimal value for predicting cell voltage by using SVMR (Table 2). The
experiment was stopped at 0.16 (Table 3). as there is an increase in error value. In addition
to this test, the experiment was conducted with various kernel functions to identify the
optimal kernel function (RBF, poly, linear, sigmoid) for the data. The kernel functions help
to solve the complexity of the data [38]. It is necessary to select optimized function for
data. It is observed that the kernel function RBF gives better result as listed in Table 4
when compared to other functions. Figures 4–6 illustrate the comparison of various kernel
functions with humidity levels of 10%, 50%, and 100% (Table 5). The training of the SVM
regression model turns out to be the most expensive, as it necessitates the cross-validation
tweaking of three hyperparameters. The results show that the 100% humidity level gives
better results, as depicted in Figure 7.

Table 2. Results of SVMR.

100% Humidity

RMSE 0.0046 0.004 0.0094 0.024 0.0437

R2 0.9149 0.9444 0.9456 0.5545 0.611

50% Humidity

RMSE 0.0031 0.0025 0.005 0.0131 0.015

R2 0.9605 0.9644 0.9221 0.7492 0.8623

10% Humidity

RMSE 0.0039 0.0029 0.0047 0.0173 0.0172

R2 0.9467 0.9563 0.9261 0.5919 0.8311

Table 3. Kernel function comparison (100% humidity).

epsilon 0.11 0.12 0.13 0.14 0.15 0.16

Kernel Function rbf

RMSE 0.0052 0.0055 0.0071 0.007 0.0082 0.0085

R2 0.8699 0.8619 0.8205 0.8243 0.831 0.8247

Kernel Function poly

RMSE 0.0085 0.0098 0.0113 0.0115 0.0123 0.0129

R2 0.7865 0.7538 0.7161 0.7118 0.746 0.7343

Kernel Function Linear

RMSE 0.0048 0.006 0.0073 0.0083 0.009 0.0098

R2 0.8784 0.8502 0.8169 0.7924 0.7751 0.7545

Kernel Function sigmoid

RMSE 0.0058 0.0069 0.0083 0.0093 0.0109 0.0127

R2 0.8537 0.8256 0.7925 0.7656 0.7262 0.6821
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Table 4. Kernel function comparison (10% humidity).

Kernel Function Rbf

RMSE 0.0033 0.0026 0.0029 0.0035 0.0043 0.0054

R2 0.9574 0.9603 0.956 0.9469 0.9344 0.9184

Kernel Function poly

RMSE 0.0123 0.0128 0.0131 0.0136 0.0146 0.0158

R2 0.8325 0.8252 0.8208 0.8139 0.80007 0.784

Kernel Function Linear

RMSE 0.0043 0.0044 0.0059 0.0085 0.0111 0.0134

R2 0.9405 0.9391 0.9191 0.8839 0.0848 0.8176

Kernel Function sigmoid

RMSE 0.0057 0.0062 0.0072 0.0084 0.0103 0.0115

R2 0.9139 0.9066 0.8908 0.8734 0.8449 0.8261

Table 5. Kernel function comparison (50% humidity).

epsilon 0.11 0.12 0.13 0.14 0.15 0.16

Kernel Function rbf

RMSE 0.0011 0.0015 0.002 0.0027 0.003 0.0036

R2 0.97 0.9606 0.9478 0.9307 0.9199 0.9079

Kernel Function poly

RMSE 0.0049 0.0055 0.0062 0.0071 0.0068 0.0074

R2 0.8745 0.8596 0.8404 0.8184 0.825 0.8088

Kernel Function Linear

RMSE 0.0025 0.0036 0.0036 0.0037 0.0039 0.0039

R2 0.934 0.9068 0.9068 0.904 0.8991 0.8991

Kernel Function sigmoid

RMSE 0.0049 0.0048 0.0048 0.006 0.0073 0.0079

R2 0.8742 0.875 0.8758 0.8459 0.8119 0.7983

Figure 3. Learning parameter epsilon.
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Figure 4. Kernel function comparison for 10% humidity.

Figure 5. Kernel function comparison for 50% humidity.
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Figure 6. Kernel function comparison for 100% humidity.

Figure 7. SVMR model with various humidity levels.
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4.4.2. Linear Regression Method

The linear regression model was tested with various humidity levels at 10%, 50%, and
100%, and their results are listed in Table 6. It was observed from the Figure 8 that the LR
method gives better results at the 50% humidity level. Based on the humidity level, the
performance differs from machine learning models.

Figure 8. LR model with various humidity levels.

Table 6. Various humidity comparison of LR model.

100% Humidity

RMSE 0.0060 0.0052 0.0036 0.0292 0.0496

R2 0.8489 0.8917 0.9716 0.0035 0.3107

50% Humidity

RMSE 0.0018 0.0009 0.0044 0.0134 0.0155

R2 0.962 0.9762 0.8851 0.591 0.7851

10% Humidity

RMSE 0.0039 0.0029 0.0047 0.0173 0.0172

R2 0.9467 0.9563 0.9261 0.5919 0.0172

4.4.3. KNN Model

The KNN model for regression was tested with various humidity levels, and Table 7
depicts the results. It was observed from Figure 9 that all the humidity level falls at certain
0.013 then it starts to deviate.
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Figure 9. KNN model with various humidity levels.

Table 7. Results of KNN method.

100% Humidity

RMSE 0.0034 0.0051 0.027 0.0178 0.0462

R2 0.9354 0.9281 0.8431 0.6681 0.5879

50% Humidity

RMSE 0.0001 0.0005 0.0139 0.0121 0.0106

R2 0.9982 0.9923 0.7843 0.7698 0.9031

10% Humidity

RMSE 0.0003 0.0006 0.0135 0.0162 0.0123

R2 0.9963 0.9914 0.7876 0.6186 0.8789

The study on comparative analysis of various humidity levels using various machine
learning model was analyzed, and the results obtained from the various models show
that 100% humidification works well when compared to other levels, as listed in Table 8.
The results observed in Figure 10 show that LR methods perform well when compared to
other models.

Table 8. Comparison of various models.

Metrics SVMR LR KNN

RMSE 0.0046 0.0034 0.004

R2 0.9343 0.9354 0.9444
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Figure 10. Different models’ RMSE value.

4.4.4. Flow Channel Design

Furthermore, the investigation was extended by using the flow channel designs,
namely two serpentine, three serpentine, serpentine zigzag, straight parallel, and straight
zigzag with machine learning models. Here, the datasets were considered based on the
flow channel designs. All the humidification levels are considered with respect to flow
channel designs.The tested results illustrated in the Figure 11 show the algorithm gives
different results based on the nature of designs.

Figure 11. Flow channel design comparison.

4.4.5. Comparison with Numerical Study

The numerical study was conducted on [6] humidification of reactant to enhance the
performance of PEMFC. The study considered various fuel cell designs at different levels
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of humidification. Under the numerical investigation, different cell designs yield different
error rates, which increase the complexity of finding the optimal values. In order to find the
optimal value, a machine learning algorithm was introduced to enhance the performance
of PEMFC. The machine learning-based modeling and analysis approach proposed here
allows swift identification of material qualities and device operating parameters that
improve PEMFC performance.

The results observed that the machine learning model predicts an output voltage of
0.88 at the greatest power density point, which closely matches with the prediction by
numerical models, as illustrated in Figure 12.

Figure 12. Comparison with numerical study.

5. Conclusions and Future Enhancement

This research experimented with various PEMFC designs with various humidity levels.
Machine learning models, such as SVMR, LR, and KNN models, were tested with various
humidity levels. The performance is compared by using the error rate of each model. The
model which gives the lesser error is considered to be the best algorithm. The experimental
analysis model yields the SVMR error rate of 0.0046, LR error rate of 0.0034, and the KNN
error rate of 0.004. It is observed that the LR model gives better result. In the future,
the research will extend to enhance the performance of PEMFC by using a deep learning
approach while considering various parameters like oxygen level, water, humidity, and
various cell designs [39].
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural Networks
BPPs Bipolar Plates
CFD Computational fluid dynamics
GDL Gas Diffusion Layer
KNN K-Nearest Neighbor
LR Linear Regression
ML Machine Learning
MSE Mean Square Error
PEMFC Proton Exchange Membrane Fuel Cell
RBF Radial Basis Function
RMSE Root Mean Square Error
SVMR Support Vector Machine for Regression
VOF Volume of Fluid
Symbols
ε Epsilon

References
1. Jo, J.H.; Kim, W.T. Numerical simulation of water droplet dynamics in a right angle gas channel of a polymer electrolyte

membrane fuel cell. Int. J. Hydrogen Energy 2015, 40, 8368–8383. [CrossRef]
2. Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next generation of

proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [CrossRef] [PubMed]
3. Haider, R.; Wen, Y.; Ma, Z.F.; Wilkinson, D.P.; Zhang, L.; Yuan, X.; Song, S.; Zhang, J. High temperature proton exchange

membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2021, 50, 1138–1187. [CrossRef]
[PubMed]

4. Zhang, S.; Liu, S.; Xu, H.; Mao, Y.; Wang, K. Numerical Investigation on the Performance of Proton Exchange Membrane Fuel
Cell With Zigzag Flow Channels. Front. Therm. Eng. 2022, 1, 5. [CrossRef]

5. Wang, Y.; Seo, B.; Wang, B.; Zamel, N.; Jiao, K.; Adroher, X.C. Fundamentals, materials, and machine learning of polymer
electrolyte membrane fuel cell technology. Energy AI 2020, 1, 100014. [CrossRef]

6. Selvaraj, A.S.; Rajagopal, T.K.R. Effect of flow fields and humidification of reactant and oxidant on the performance of scaled-up
PEM-FC using CFD code. Int. J. Energy Res. 2019, 43, 7254–7274. [CrossRef]

7. Zhang, G.; Jiao, K. Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review. J.
Power Sources 2018, 391, 120–133. [CrossRef]

8. Wilberforce, T.; El-Hassan, Z.; Khatib, F.; Al Makky, A.; Mooney, J.; Barouaji, A.; Carton, J.G.; Olabi, A.G. Development of Bi-polar
plate design of PEM fuel cell using CFD techniques. Int. J. Hydrogen Energy 2017, 42, 25663–25685. [CrossRef]

9. Han, S.H.; Choi, N.H.; Choi, Y.D. Simulation and experimental analysis on the performance of PEM fuel cell by the wave-like
surface design at the cathode channel. Int. J. Hydrogen Energy 2014, 39, 2628–2638. [CrossRef]

10. Mancusi, E.; Fontana, É.; de Souza, A.A.U.; de Souza, S.M.G.U. Numerical study of phase flow patterns in the gas channel of
PEM fuel cells with tapered flow field design. Int. J. Hydrogen Energy 2014, 39, 2261–2273. [CrossRef]

11. Lorenzini-Gutierrez, D.; Hernandez-Guerrero, A.; Ramos-Alvarado, B.; Perez-Raya, I.; Alatorre-Ordaz, A. Performance analysis of a
proton exchange membrane fuel cell using tree-shaped designs for flow distribution. Int. J. Hydrogen Energy 2013, 38, 14750–14763.
[CrossRef]

12. Arvay, A.; French, J.; Wang, J.C.; Peng, X.H.; Kannan, A.M. Nature inspired flow field designs for proton exchange membrane
fuel cell. Int. J. Hydrogen Energy 2013, 38, 3717–3726. [CrossRef]

13. Vazifeshenas, Y.; Sedighi, K.; Shakeri, M. Numerical investigation of a novel compound flow-field for PEMFC performance
improvement. Int. J. Hydrogen Energy 2015, 40, 15032–15039. [CrossRef]

14. Ding, Y.; Bi, X.; Wilkinson, D. Numerical investigation of the impact of two-phase flow maldistribution on PEM fuel cell
performance. Int. J. Hydrogen Energy 2014, 39, 469–480. [CrossRef]

15. Peng, L.; Yi, P.; Lai, X. Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J.
Hydrogen Energy 2014, 39, 21127–21153. [CrossRef]

16. Rahimi-Esbo, M.; Ranjbar, A.; Ramiar, A.; Alizadeh, E.; Aghaee, M. Improving PEM fuel cell performance and effective water
removal by using a novel gas flow field. Int. J. Hydrogen Energy 2016, 41, 3023–3037. [CrossRef]

17. Mariani, M.; Basso Peressut, A.; Latorrata, S.; Balzarotti, R.; Sansotera, M.; Dotelli, G. The Role of Fluorinated Polymers in the
Water Management of Proton Exchange Membrane Fuel Cells: A Review. Energies 2021, 14, 8387. [CrossRef]

18. Bilgili, M.; Bosomoiu, M.; Tsotridis, G. Gas flow field with obstacles for PEM fuel cells at different operating conditions. Int. J.
Hydrogen Energy 2015, 40, 2303–2311. [CrossRef]

http://doi.org/10.1016/j.ijhydene.2015.04.122
http://dx.doi.org/10.1038/s41586-021-03482-7
http://www.ncbi.nlm.nih.gov/pubmed/34262215
http://dx.doi.org/10.1039/D0CS00296H
http://www.ncbi.nlm.nih.gov/pubmed/33245736
http://dx.doi.org/10.3389/fther.2022.907873
http://dx.doi.org/10.1016/j.egyai.2020.100014
http://dx.doi.org/10.1002/er.4750
http://dx.doi.org/10.1016/j.jpowsour.2018.04.071
http://dx.doi.org/10.1016/j.ijhydene.2017.08.093
http://dx.doi.org/10.1016/j.ijhydene.2013.08.063
http://dx.doi.org/10.1016/j.ijhydene.2013.11.106
http://dx.doi.org/10.1016/j.ijhydene.2013.08.012
http://dx.doi.org/10.1016/j.ijhydene.2012.12.149
http://dx.doi.org/10.1016/j.ijhydene.2015.08.077
http://dx.doi.org/10.1016/j.ijhydene.2013.10.047
http://dx.doi.org/10.1016/j.ijhydene.2014.08.113
http://dx.doi.org/10.1016/j.ijhydene.2015.11.001
http://dx.doi.org/10.3390/en14248387
http://dx.doi.org/10.1016/j.ijhydene.2014.11.139


Algorithms 2022, 15, 346 19 of 19

19. Arif, M.; Cheung, S.C.; Andrews, J. A systematic approach for matching simulated and experimental polarization curves for a
PEM fuel cell. Int. J. Hydrogen Energy 2020, 45, 2206–2223. [CrossRef]

20. Alizadeh, E.; Rahgoshay, S.; Rahimi-Esbo, M.; Khorshidian, M.; Saadat, S. A novel cooling flow field design for polymer electrolyte
membrane fuel cell stack. Int. J. Hydrogen Energy 2016, 41, 8525–8532. [CrossRef]

21. Hossain, M.; Islam, S.Z.; Colley-Davies, A.; Adom, E. Water dynamics inside a cathode channel of a polymer electrolyte membrane
fuel cell. Renew. Energy 2013, 50, 763–779. [CrossRef]

22. Yu, L.j.; Ren, G.p.; Qin, M.j.; Jiang, X.m. Transport mechanisms and performance simulations of a PEM fuel cell with interdigitated
flow field. Renew. Energy 2009, 34, 530–543. [CrossRef]

23. Briceno-Mena, L.A.; Venugopalan, G.; Romagnoli, J.A.; Arges, C.G. Machine learning for guiding high-temperature PEM fuel
cells with greater power density. Patterns 2021, 2, 100187. [CrossRef] [PubMed]

24. Wang, B.; Xie, B.; Xuan, J.; Jiao, K. AI-based optimization of PEM fuel cell catalyst layers for maximum power density via
data-driven surrogate modeling. Energy Convers. Manag. 2020, 205, 112460. [CrossRef]

25. Wang, C.; Waje, M.; Wang, X.; Tang, J.M.; Haddon, R.C.; Yan, Y. Proton exchange membrane fuel cells with carbon nanotube
based electrodes. Nano Lett. 2004, 4, 345–348. [CrossRef]

26. Sultan, H.M.; Menesy, A.S.; Kamel, S.; Selim, A.; Jurado, F. Parameter identification of proton exchange membrane fuel cells
using an improved salp swarm algorithm. Energy Convers. Manag. 2020, 224, 113341. [CrossRef]

27. Gao, T.; Lu, W. Machine learning toward advanced energy storage devices and systems. Iscience 2021, 24, 101936. [CrossRef]
[PubMed]

28. Hong, T.; Wang, Z.; Luo, X.; Zhang, W. State-of-the-art on research and applications of machine learning in the building life cycle.
Energy Build. 2020, 212, 109831. [CrossRef]

29. Daud, W.; Rosli, R.; Majlan, E.; Hamid, S.; Mohamed, R.; Husaini, T. PEM fuel cell system control: A review. Renew. Energy 2017,
113, 620–638. [CrossRef]

30. Han, I.S.; Chung, C.B. Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven
models: A comparison of artificial neural network and support vector machine. Int. J. Hydrogen Energy 2016, 41, 10202–10211.
[CrossRef]

31. Han, I.S.; Chung, C.B. A hybrid model combining a support vector machine with an empirical equation for predicting polarization
curves of PEM fuel cells. Int. J. Hydrogen Energy 2017, 42, 7023–7028. [CrossRef]

32. Prabu, M. Canopy Removal on Satellite Images Using Classification and Contrast Enhancement. Available online:
https://www.researchgate.net/publication/338606745_Canopy_Removal_On_Satellite_Images_Using_Classification_And_
Contrast_Enhancement (accessed on 5 July 2022).

33. Placca, L.; Kouta, R.; Candusso, D.; Blachot, J.F.; Charon, W. Analysis of PEM fuel cell experimental data using principal
component analysis and multi linear regression. Int. J. Hydrogen Energy 2010, 35, 4582–4591. [CrossRef]

34. Yu, C.; Yao, W. Robust linear regression: A review and comparison. Commun.-Stat.-Simul. Comput. 2017, 46, 6261–6282. [CrossRef]
35. Deng, Z.; Zhu, X.; Cheng, D.; Zong, M.; Zhang, S. Efficient kNN classification algorithm for big data. Neurocomputing 2016,

195, 143–148. [CrossRef]
36. Iranzo, A.; Boillat, P.; Rosa, F. Validation of a three dimensional PEM fuel cell CFD model using local liquid water distributions

measured with neutron imaging. Int. J. Hydrogen Energy 2014, 39, 7089–7099. [CrossRef]
37. Lan, H.; Yang, L.; Zheng, F.; Zong, C.; Wu, S.; Song, X. Analysis and optimization of high temperature proton exchange membrane

(HT-PEM) fuel cell based on surrogate model. Int. J. Hydrogen Energy 2020, 45, 12501–12513. [CrossRef]
38. Sánchez A.V.D. Advanced support vector machines and kernel methods. Neurocomputing 2003, 55, 5–20. [CrossRef]
39. Legala, A.; Zhao, J.; Li, X. Machine learning modeling for proton exchange membrane fuel cell performance. Energy AI 2022,

10, 100183. [CrossRef]

http://dx.doi.org/10.1016/j.ijhydene.2019.11.057
http://dx.doi.org/10.1016/j.ijhydene.2016.03.187
http://dx.doi.org/10.1016/j.renene.2012.08.041
http://dx.doi.org/10.1016/j.renene.2008.05.048
http://dx.doi.org/10.1016/j.patter.2020.100187
http://www.ncbi.nlm.nih.gov/pubmed/33659908
http://dx.doi.org/10.1016/j.enconman.2019.112460
http://dx.doi.org/10.1021/nl034952p
http://dx.doi.org/10.1016/j.enconman.2020.113341
http://dx.doi.org/10.1016/j.isci.2020.101936
http://www.ncbi.nlm.nih.gov/pubmed/33458608
http://dx.doi.org/10.1016/j.enbuild.2020.109831
http://dx.doi.org/10.1016/j.renene.2017.06.027
http://dx.doi.org/10.1016/j.ijhydene.2016.04.247
http://dx.doi.org/10.1016/j.ijhydene.2017.01.131
https://www.researchgate.net/publication/338606745_Canopy_Removal_On_Satellite_Images_Using_Classification_And_Contrast_Enhancement
https://www.researchgate.net/publication/338606745_Canopy_Removal_On_Satellite_Images_Using_Classification_And_Contrast_Enhancement
http://dx.doi.org/10.1016/j.ijhydene.2010.02.076
http://dx.doi.org/10.1080/03610918.2016.1202271
http://dx.doi.org/10.1016/j.neucom.2015.08.112
http://dx.doi.org/10.1016/j.ijhydene.2014.02.115
http://dx.doi.org/10.1016/j.ijhydene.2020.02.150
http://dx.doi.org/10.1016/S0925-2312(03)00373-4
http://dx.doi.org/10.1016/j.egyai.2022.100183

	Introduction 
	Literature Survey
	PEMFC and Various Design
	 PEMFC Using the Machine Learning Model

	Proposed Methodology
	Numerical Study
	Surrogate Models Development
	Machine Learning
	Support Vector Machine
	Linear Regression
	 KNN for Regression

	Experimental Results
	Data Generation
	 Evaluation Metric
	 Learning Parameter
	Result and Discussion
	SVMR Method
	Linear Regression Method
	KNN Model
	Flow Channel Design
	Comparison with Numerical Study


	Conclusions and Future Enhancement
	References

