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Abstract: The present work is devoted to the construction of optimal quadrature formulas for the
approximate calculation of the integrals

∫ 2π
0 eiωx ϕ(x)dx in the Sobolev space H̃m

2 . Here, H̃m
2 is the

Hilbert space of periodic and complex-valued functions whose m-th generalized derivatives are
square-integrable. Here, firstly, in order to obtain an upper bound for the error of the quadrature
formula, the norm of the error functional is calculated. For this, the extremal function of the considered
quadrature formula is used. By minimizing the norm of the error functional with respect to the
coefficients, an optimal quadrature formula is then obtained. Using the explicit form of the optimal
coefficients, the norm of the error functional of the optimal quadrature formula is calculated. The
convergence of the constructed optimal quadrature formula is investigated, and it is shown that
the rate of convergence of the optimal quadrature formula is O(hm) for |ω| < N and O(|ω|−m) for
|ω| ≥ N. Finally, we present numerical results of comparison for absolute errors of the optimal
quadrature formula with the exp(iωx) weight in the case m = 2 and the Midpoint formula. There,
one can see the advantage of the optimal quadrature formulas.

Keywords: Sobolev space of periodic functions; extremal function; error functional; optimal quadra-
ture formulas; oscillating functions

MSC: 65D30; 65D32

1. Introduction and Statement of the Problem

Approximate calculation of the integral∫ 2π

0
exp(iωx)ϕ(x)dx, (1)

where ω is an integer and i2 = −1, plays an important role in computational mathematics.
It is well-known that numerical calculation of such integrals encounters difficulties for large
values of ω because the integrand oscillates strongly. Computation of the integral (1) are
often done by the Filon method [1]. The Filon method reminds us of the Simpson quadrature
formula. However, while in the Simpson method the entire integrand is replaced by a
parabola, in the Filon method, only the function ϕ(x) is replaced by a parabola. This way
Filon obtained the quadrature formula with coefficients depending on ω [1].

Various aspects of the calculation of the integral (1) are discussed in a number of
papers [2–16], where there are fairly complete bibliographies.

In the present work, combining S.L. Sobolev’s and I. Babuška’s methods for the
approximate computation of the integral (1), an optimal quadrature formula is constructed,
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and the square of the norm for the error functional of the obtained optimal quadrature
formula is evaluated in a certain Hilbert space.

Suppose H̃(m)
2 , m ≥ 1 is the Hilbert space of 2π-periodic, complex-valued functions

ϕ(x), −∞ < x < ∞, which are square-integrable with the mth generalized derivative.
Every element of the space H̃(m)

2 is a class of such functions that differ from each other by a
constant term, and the inner product of the elements in this space is defined as

( f , g)m =

2π∫
0

f (m)(x)g(m)(x)dx. (2)

Here, the notation ḡ is the complex conjugate to g. The norm of a function ϕ(x) in the space
H̃(m)

2 is defined by ∥∥∥ϕ|H̃(m)
2

∥∥∥ =

 2π∫
0

ϕ(m)(x)ϕ(m)(x)

 1
2

. (3)

For ϕ(x) ∈ H̃(m)
2 , we consider a quadrature formula of the form

2π∫
0

exp(iωx)ϕ(x)dx ∼=
N

∑
k=1

Ck ϕ

(
2πk
N

)
, (4)

where Ck are coefficients of the quadrature formula, N = 2, 3, . . ..
The error of the quadrature formula is given in the form

(`, ϕ) =

2π∫
0

exp(iωx)ϕ(x)dx−
N

∑
k=1

Ck ϕ

(
2πk
N

)

=

2π∫
0

[
exp(iωx)−

N

∑
k=1

Ck

∞

∑
β=−∞

δ

(
x− 2πk

N
− 2πβ

)]
ϕ(x)dx. (5)

Here, δ(x) is the Dirac delta-function,

`(x) = exp(iωx)−
N

∑
k=1

Ck

∞

∑
β=−∞

δ

(
x− 2πk

N
− 2πβ

)
, (6)

` is the periodic functional of the error for the quadrature formula, and (`, ϕ) is the value
of the error functional at ϕ.

The challenge in the construction of an optimal quadrature formula for the approxi-
mate calculation of the integral (1) is calculating the quantity

inf
Ck

sup
ϕ∈H̃(m)

2

|(`, ϕ)|∥∥∥ϕ|H̃(m)
2

∥∥∥ =
∥∥∥ ˚̀|H̃(m)∗

2

∥∥∥ =
∥∥∥ ˚̀
∥∥∥, (7)

that is, finding a function ψ`(x) from H̃(m)
2 for which the exact upper bound is attained,

and the coefficients C̊k for which the exact lower bound are attained in (7).
In this case, the function ψ`(x) is said to be the extremal for the given quadrature

formula, C̊k values are called the the optimal coefficients for the quadrature formula (4) in the
space H̃(m)

2 , and ‖ ˚̀‖ is the norm for the error functional of the optimal quadrature formula.
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It should be noted that H̃(m)∗
2 is the conjugate space to the space H̃(m)

2 , and it consists
of all periodic functionals that are orthogonal to the unity, i.e.,

(`, 1) = 0. (8)

The remaining part of the paper is organized as follows. In Section 2, we present the
main results; i.e., we obtain the extremal function, the analytic expressions for the optimal
coefficients, and the norm of the error functional for the optimal quadrature formula of the
form (4). Further, in Sections 3–6, we provide proofs of the main results.

2. Main Results

The central results of the present paper are the following.

Theorem 1. The extremal function of the periodic error functional ` for the quadrature formula (4)
has the form

ψ`(x) =
exp(−iωx)

ω2m −
N

∑
k=1

Ck ∑
β 6=0

exp(iβ
(

x− 2πk
N

)
)

2πβ2m + ν. (9)

Here, Ck are complex conjugate to the coefficients Ck of the quadrature formula (4), and ν is an
unknown number.

Theorem 2. If ϕ(x) ∈ H̃(m)
2 , then, for the optimal coefficients of the quadrature formula (4) with

the error functional (6), the following formula holds

C̊k =
2π

N

(
sin πω

N
πω
N

)2m (2m− 1)! · exp( 2πiωk
N )

2
m−2
∑

n=0
a(2m−2)

n cos(2π(m− 1− n) ω
N ) + a(2m−2)

m−1

, (10)

k = 1, 2, . . . , N.

In the last formula, the a(2m−2)
n values are the coefficients of the Euler–Frobenius polynomial

E2m−2(x) of degree (2m− 2) and are defined as follows:

a(2m−2)
n =

n

∑
j=0

(−1)j
(

2m
j

)
(n + 1− j)2m−1,(

2m
j

)
=

(2m)!
(2m− j)! j!

.

Theorem 3. In the space H̃(m)
2 , the square of the norm of the error functional `(x) for the optimal

quadrature formula of the form (4) has the following expression:

∥∥∥ ˚̀|H̃(m)∗
2

∥∥∥2
=

2π

ω2m

1−
(

sin πω
N

πω
N

)2m
(2m− 1)!

2
m−2
∑

n=0
a(2m−2)

n cos(m− 1− n) ω
N + a(2m−2)

m−1

. (11)

Hence, in particular, we obtain the following.

Remark 1. For ω = 0, we have the well-known optimal quadrature formula, which is the following
rectangular formula

∫ 2π

0
ϕ(x)dx ∼=

2π

N

N

∑
k=1

ϕ

(
2πk
N

)
.
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Moreover, for the norm of the error functiona, we obtain

∥∥∥ ˚̀|H̃(m)∗
2

∥∥∥2
=

( 2π
N
)2m|B2m|
(2m)!

,

where B2m is the Bernoulli number.

Remark 2. If ω is a multiple for the number N of the nodes of the quadrature formula, i.e., ω = Np,
p = ±1,±2, . . ., then

C̊k = 0, k = 1, 2, . . . , N

and ∥∥∥ ˚̀|H̃(m)∗
2

∥∥∥2
=

2π

ω2m .

Remark 3. Calculations show that

2m−2

∑
n=0

a(2m−2)
n = (2m− 1)!,

where a(2m−2)
n values are the coefficients of the Euler–Frobenius polynomial of degree (2m− 2).

3. The Extremal Function to the Error Functional for the Quadrature Formula (4)

In order to find an explicit form of the norm for the error functional `(x), we use an ex-
tremal function of the given functional, i.e., a function ψ`(x) for which the following holds:

(`, ψ`) =
∥∥∥`|H̃(m)∗

2

∥∥∥ · ∥∥∥ψ`|H̃
(m)
2

∥∥∥. (12)

Proof of Theorem 1. The idea of the proof is as follows. Using the formula (2) and applying
the Riesz theorem for the error functional `, we find an explicit expression for ` by a new
function ψ`, which is an element of the space H̃(m)

2 . It is easy to see that the function ψ` is
related to the error functional ` by the following differential equation:

ψ
(2m)
` (x) = (−1)m

(
exp(iωx)−

N

∑
k=1

Ck

∞

∑
β=−∞

δ

(
x− 2πk

N
− 2πβ

))
. (13)

Indeed, by the definition of the inner product, we have

(`, ϕ) =

2π∫
0

ψ
(m)
` (x)ϕ(m)(x)dx. (14)

Integrating by parts the right-hand side of (14) and taking into account that a function ϕ(x)
is infinitely differentiable and finite, i.e., ϕ(x) ∈ C̊(∞), we obtain

(`, ϕ) = (−1)m
2π∫
0

d2mψ`(x)
dx2m ϕ(x)dx. (15)

On the other hand, by definition of the error functional `(x), we have

(`, ϕ) =

2π∫
0

[
exp(iωx)−

N

∑
k=1

Ck

∞

∑
β=−∞

δ

(
x− 2πk

N
− 2πβ

)]
ϕ(x)dx. (16)
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Placing (16) on the left-hand side of (15), we find (13). Since the space of the infinity
differentiable and finite functions is dense in the space H̃(m)

2 , i.e., any function ϕ(x) from

H̃(m)
2 can be approximated with arbitrary high accuracy by a sequence of the functions

from the space C̊(∞), it follows that a periodic solution of Equation (13) is the extremal
function ψ` of the error functional ` for the quadrature formula (4) and ψ` ∈ H̃(m)

2 .
Further, we find a periodic solution of Equation (13). In order to solve this equation,

we use the Fourier transforms. For this, we provide some useful formulas:

F[ϕ](p) =

∞∫
−∞

exp(2πipx)ϕ(x)dx, (17)

F−1[ϕ](x) =

∞∫
−∞

exp(−2πipx)ϕ(p)dp, (18)

F−1[F[ϕ]] = ϕ(x), (19)

F[ϕ(n)(x)] = (−2πip)nF[ϕ], (20)

F[φ0(x)] = φ0(p), φ0(x) =
∞

∑
β=−∞

δ(x− β). (21)

Applying the Fourier transform to both sides of Equation (13), we obtain

F

[
d2mψ`(x)

dx2m

]
= (−1)m(F[exp(iωx)]− F[T(x)]), (22)

where

T(x) =
N

∑
k=1

Ck ∑
β

δ

(
x− 2πk

N
− 2πβ

)
. (23)

By virtue of the formula (20), we have

F

[
d2mψ`(x)

dx2m

]
= (−2πip)2mF[ψ`(x)]. (24)

Now, using the definition of the Fourier transform, i.e., Formula (17), we directly
obtain

F[exp(iωx)] = δ
(

p +
ω

2π

)
. (25)

Applying the Fourier transform defined by Formula (17) to both sides of (23), we find

F[T(x)] =
N

∑
k=1

CkF
[

δ

(
x− 2πk

N
− 2πβ

)]

=
N

∑
k=1

Ck

∫ ∞

−∞
exp(2πipx)

∞

∑
β=−∞

δ

(
x− 2πk

N
− 2πβ

)
dx. (26)

Using the known properties of the delta-function, we have

δ

(
x− 2πk

N
− 2πβ

)
=

1
2π

δ

(
Nx− 2πk

2πN
− β

)
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and introducing the notation y = Nx−2πk
2πN and using the formula (21), we rewrite Equality (26)

in the form

F[T(x)] =
N

∑
k=1

Ck

∫ ∞

−∞
exp

(
2πip

(
2πy +

2πk
N

)) ∞

∑
β=−∞

δ(y− β)dy

=
N

∑
k=1

Ck exp
(

2πip
2πk
N

) ∫ ∞

−∞
exp(2πi(2πp)y)

∞

∑
β=−∞

δ(y− β)dy

=
N

∑
k=1

Ck exp
(

2πip
2πk
N

) ∞

∑
β=−∞

δ(2πp− β). (27)

Now, from (22), (24), (25) and (27), it immediately follows that

(−2πip)2mF
[
ψ`(x)

]
= (−1)m

[
δ
(

p +
ω

2π

)
−

N

∑
k=1

Ck exp
(

2πip
2πk
N

) ∞

∑
β=−∞

δ(2πp− β)

]
. (28)

The right-hand side of (28) is equal to 0 at p = 0, since, in virtue of (8), the singularities

δ
(

p +
ω

2π

)
and

N

∑
k=1

Ck exp
(

2πip
2πk
N

) ∞

∑
β=−∞

δ(2πp− β)

are mutually canceled.
Therefore, we can divide both sides of Equation (28) by (−2πip)2m. This division is

not uniquely defined. For Equation (28), the function F[ψ`] is defined up to the term of
the form νδ(p). Taking into account the aforementioned as well as the properties of the
delta-function, we obtain

F[ψ`] =
δ
(

p + ω
2π

)
(2πp)2m −

N

∑
k=1

Ck exp

(
(2π)2ipk

N

)
∑
β 6=0

δ(2πp− β)

(2πp)2m

=
δ
(

p + ω
2π

)
ω2m −

N

∑
k=1

Ck ∑
β 6=0

exp
(

2πiβk
N

) δ
(

p− β
2π

)
2πβ2m + νδ(p). (29)

Applying the inverse Fourier transform to both sides of Equation (29) and using
Formulas (18) and (19), after some calculations, we have

ψ`(x) =
exp(iωx)

ω2m −
N

∑
k=1

Ck ∑
β 6=0

exp
(

iβ
(

2πk
N − x

))
2πβ2m + ν. (30)

From (30), it follows that

ψ`(x) =
exp(−iωx)

ω2m −
N

∑
k=1

Ck ∑
β 6=0

exp
(

iβ
(

2πk
N − x

))
(2πβ)2m + ν. (31)

Theorem 1 is completely proved.

Now, we give an important theorem on zeros of the extremal function which is
due to I. Babuška. This theorem was proved in the language of functional analysis (see,
for example [17,18]).
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Theorem 4 (I. Babuška). Suppose the error functional (`, ϕ)

(a) is defined on the space H̃(m)
2 —i.e., its value at constant is zero—and

(b) is optimal; i.e., among all functionals of the form

`(x) = exp(iωx)−
N

∑
k=1

Ck

∞

∑
β=−∞

δ

(
x− 2πk

N
− 2πβ

)

with given system of nodes, it has the lowest norm in H̃(m)∗
2 .

Then there exists a solution ψ`(x) of the equation

d2mψ`(x)
dx2m = (−1)m`(x),

which is zero at points 2πk
N and belongs to H̃(m)

2 .

4. The Square of the Error Functional of the Quadrature Formula (4)

It is easy to proof Babuška’s theorem also by algebraic way. For the sake of complete-
ness, we give this proof here as well. A quadrature formula with the error functional `(x)
in the space H̃(m)

2 can be characterized by two manners. From one side, this quadrature
formula is defined by coefficients Ck, k,= 1, 2, . . . , N, under the condition

(`, 1) = 0. (32)

From the other side, it is defined by the extremal function ψ`(x) of the quadrature formula.
The square of the norm for the error functional of the quadrature formula is expressed
by the bilinear form with respect to coefficients of the formula and values of the extremal
function. Indeed, since H̃(m)

2 is a Hilbert space, we have

∥∥∥`|H̃(m)∗
2

∥∥∥2
= (`, ψ`) =

2π∫
0

ψ
(m)
` (x)ψ(m)

` (x)dx = (−1)m
2π∫
0

ψ
(2m)
` (x)ψ`(x)dx,

where ψ`(x) is the extremal function of our quadrature formula. However,

d2mψ`(x)
dx2m = (−1)m`(x),

, so ∥∥∥`|H̃(m)∗
2

∥∥∥2
= (`, ψ`) =

2π∫
0

`(x)ψ`(x)dx. (33)

Using Formulas (6), (9), and (33), we have

∥∥∥`|H̃(m)∗
2

∥∥∥2
=

2π∫
0

(
exp(iωx)−

N

∑
k=1

Ck

∞

∑
β=−∞

δ

(
x− 2πk

N
− 2πβ

))

×

exp(−iωx)
ω2m −

N

∑
k′=1

Ck′ ∑
β 6=0

exp
(

iβ
(

x− 2πk′
N

))
2πβ2m + ν

dx.
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However, by virtue of (8), i.e., by equality
N
∑

k=1
Ck = 0, we obtain

∥∥∥`|H̃(m)∗
2

∥∥∥2
=

2π∫
0

(
exp(iωx)−

N

∑
k=1

Ck

∞

∑
β=−∞

δ

(
x− 2πk

N
− 2πβ

))

×

exp(−iωx)
ω2m −

N

∑
k′=1

Ck′ ∑
β 6=0

exp
(

iβ
(

x− 2πk′
N

))
2πβ2m

dx

=
1

ω2m

2π∫
0

exp(iωx) exp(−iωx)dx−
N

∑
k′=1

Ck′ ∑
β 6=0

1
2πβ2m

×
2π∫
0

exp(iωx) exp
(

iβ
(

x− 2πk′

N

))
dx− 1

ω2m

N

∑
k=1

Ck

× exp
(
−2πiωk

N

)
+

N

∑
k=1

N

∑
k′=1

CkCk′ ∑
β 6=0

exp
(

2πiβ
N (k− k′)

)
2πβ2m .

Simple calculations show that

1
ω2m

2π∫
0

(exp(iωx) exp(−iωx))dx =
2π

ω2m . (34)

By virtue of

2π∫
0

exp(i(ω + β)x)dx =

{
0, if ω + β 6= 0,
2π, if ω + β = 0

it follows that

∑
β 6=0

1
2πβ2m

2π∫
0

exp(iωx) exp(iβ(x− 2πk′

N
))dx

= ∑
β 6=0

exp
(
−2πk′iβ

N

)
2πβ2m

2π∫
0

exp(i(ω + β)x)dx =
2π

ω2m exp
(

2πiωk′

N

)
. (35)

Using Equalities (34) and (35) for the square of the norm for the error functional of the
quadrature formula, we obtain the following analytical expression

∥∥∥`|H̃(m)∗
2

∥∥∥2
=

2π

ω2m −
1

ω2m

N

∑
k′=1

Ck′ exp
(

2πiωk′

N

)
− 1

ω2m

N

∑
k=1

Ck exp
(
−2πiωk

N

)

+
N

∑
k=1

N

∑
k′=1

CkCk′ ∑
β 6=0

exp
(

2πiβ(k−k′)
N

)
2πβ2m . (36)
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For finding the minimum of the square for the error functional of the quadrature
formula, we apply the method of indefinite Lagrange multipliers. For this we consider the
following function:

Λ(C, C, ν) =
∥∥∥`|H̃(m)∗

2

∥∥∥2
− ν(`, 1).

Setting to 0 all partial derivatives by Ck, Ck, and ν of the function Λ(C, C, ν), we have

∂Λ
∂Ck

= 0, k = 1, 2, . . . , N,

∂Λ
∂Ck′

= 0, k = 1, 2, . . . , N,

∂Λ
∂ν

= 0.

These give the following system of equations

∂Λ
∂Ck

= − 1
ω2m exp

(
−2πiωk

N

)
+

N

∑
k′=1

Ck′ ∑
β 6=0

exp
(

2πβi(k− k′)
N

)
− ν = 0

for k = 1, 2, . . . , N, (37)

∂Λ
∂Ck′

= − 1
ω2m exp

(
2πiωk′

N

)
+

N

∑
k=1

Ck ∑
β 6=0

exp
(

2πβi(k−k′)
N

)
2πβ2m = 0,

for k′ = 1, 2, . . . , N, (38)

∂Λ
∂ν

=
N

∑
k=1

Ck = 0. (39)

It is not difficult to see that

∂Λ
∂Ck′

= − 1
ω2m exp

(
−2πiωk′

N

)
+

N

∑
k=1

Ck ∑
β 6=0

exp(2πβi(k− k′))
2πβ2m = 0,

for k′ = 1, 2, . . . , N.

Taking into account (37), it follows immediately that ν = 0.
In order to find unknown coefficients Ck, it is enough to solve the systems (38) and (39).

The solution of this system, which we denote by C̊k, k = 1, 2, . . . , N and ν̊, is a stationary
point for the function Λ(C, ν). From the theory of the Lagrange method, it follows that C̊k
values are searching values of the coefficients for the quadrature formula, k = 1, 2, . . . , N.
They give the conditional minimum for the square of the norm ‖`‖ provided that (8) holds.

By virtue of condition (37), we see that the extremal function ψ`(x), defined by (9),
vanishes at the nodes of the quadrature formula (4), i.e., ψ`

(
2πk
N

)
= 0. This proves

Babuška’s theorem.
Here, we assume that the systems (38) and (39) are solvable. Its solvability follows from

the general theory of the Lagrange multipliers. However, as is shown in the calculations,
the matrix of the systems (38) and (39) coincides with the matrix of the system considered
in [10] in the construction of optimal cubature formulas in the Sobolev space L̃(m)

2 of periodic
functions. In [10], uniqueness of the set of the optimal coefficients was also proved. Hence,
it immediately follows that the systems (38) and (39) have a unique solution.
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5. Optimal Coefficients of the Quadrature Formula (4)

In the present section, we prove Theorem 2. In order to prove the theorem, it is
enough to solve the systems (38) and (39) with respect to coefficients Ck, k = 1, 2, . . . , N.
For a solution of this system, we search in the form

C̊k = C(ω, N, m) exp
(

iω
2πk
N

)
, (40)

where C(ω, N, m) is an unknown function. We are directly convinced that C̊k values,
defined by Formula (40), k = 1, 2, . . . , N, satisfy Equality (39). Substituting (40) into (38),
we obtain

−1
ω2m exp

(
2πiωk′

N

)
+ C(ω, N, m)

N

∑
k=1

exp
(

iω2πk
N

)
∑
β 6=0

exp
(

2πiβ(k−k′)
N

)
2πβ2m = 0. (41)

We introduce the following notation:

z = C(ω, N, m) ∑
β 6=0

exp
(
−2πiβk′

N

)
2πβ2m

N

∑
k=1

exp
(

2πik
N

(ω + β)

)
. (42)

It is clear that

N

∑
k=1

exp
(

2πik
N

(ω + β)

)
=

{
0, if ω+β

N is not integer,
N, if ω+β

N is integer.

Therefore, denoting t = ω+β
N and then β = tN −ω, we rewrite (42) in the form

z =
N
2π

C(ω, N, m) exp
(
−2πi(tN −ω)k′

N

) ∞

∑
t=−∞

1
(tN −ω)2m

=
N
2π

C(ω, N, m) exp
(

2πiωk′

N

) ∞

∑
t=−∞

1
(tN −ω)2m . (43)

From (41)–(43), it follows that

N
2π

C(ω, N, m) exp
(

2πiωk′

N

) ∞

∑
t=−∞

1
(tN −ω)2m −

1
ω2m exp

(
2πik′ω

N

)
= 0,

k′ = 1, 2, . . . , N.

Hence, we have

1
ω2m exp

(
2πiωk′

N

)[
N
2π

C(ω, N, m)
∞

∑
t=−∞

1
(1− tN

ω )2m
− 1

]
= 0,

k′ = 1, 2, . . . , N.

From the uniqueness of the solution for the systems (38) and (39), we obtain

C(ω, N, m) =
2π

N

(
∞

∑
t=−∞

1
(1− tN

ω )2m

)−1

.
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Hence, we directly obtain

C(ω, N, m) =
2π

N

(
N
ω

)2m
(

∞

∑
t=−∞

1
(t− ω

N )2m

)−1

. (44)

We now refer to calculations of

f (z) =

(
∞

∑
t=−∞

1
(t− z)2m

)−1

. (45)

As is known [11],

∞

∑
t=−∞

1
(z− t)2 =

(
π

sin(πz)

)2
. (46)

Taking the derivative of order 2m− 2 with respect to z from both sides of (46) and
taking (45) into account, we obtain

1
f (z)

=
1

(2m− 1)!
d2m−2

dz2m−2

(
π

sin (πz)

)2
.

Now we calculate d2m−2

dz2m−2

(
π

sin (πz)

)2
. For this, we use Euler’s known formula

sin(πz) =
exp(2πix)− 1

2i exp(πiz)

Denoting λ := exp(2πiz), we have

d
dz

=
dλ

dz
d

dλ
,

d
dz

= 2πiλ
d

dλ
,

d2m−2

dz2m−2 = (2πi)2m−2D2m−2,

where D = λ d
dλ , and D2m−2 = λ d

dλ D2m−3.
Consequently,

1
f (z)

=
(2πi)2m

(2m− 1)!
D2m−2 λ

(1− λ)2 . (47)

Hence, as is known (see, for example, [18]), the Euler–Frobenius polynomial is defined
by the formula

λE2m−2(λ) = (1− λ)2mD2m−2 λ

(1− λ)2 (48)

and

E2m−2(λ) =
2m−2

∑
n=0

a(2m−2)
n λn,

where

a(2m−2)
n = (n + 1)2m−1 −

(
2m
1

)
n2m−1 +

(
2m
2

)
(n− 1)2m−1 − . . . (−1)n

(
2m
n

)
,

a(2m−2)
n = a(2m−2)

2m−2−n.
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From (48), we have

D2m−2 λ

(1− λ)
2 =

λE2m−2(λ)

(1− λ)2m . (49)

By virtue of (49) and (47), Equality (45) takes the form

f (z) =
(−1)m(1− λ)2m(2m− 1)!

(2π)2mλE2m−2(λ)
.

Using the formula

sin2πz =
(1− λ)2

2iλ
,

after some calculations, we obtain

f (z) =
sin2mπz

π2m · λm−1(2m− 1)!
E2m−2(λ)

.

By virtue of symmetry for the coefficients of Euler’s polynomial, we have

f (z) =

(
sin πz

π

)2m λm−1(2m− 1)!
2m−2

∑
n=0

a(2m−2)
n λ2m−2−n

=

(
sin πz

π

)2m (2m− 1)!
m−2
∑

n=0
a(2m−2)

n λm−1−n

=

(
sin πz

π

)2m (2m− 1)!

2
m−2
∑

n=0
a(2m−2)

n (λm−1−n + λn+1−m) + a(2m−2)
m−1

=

(
sin πz

π

)2m (2m− 1)!

2
m−2
∑

n=0
a(2m−2)

n cos(2π(m− 1− n))z + a(2m−2)
m−1

. (50)

Accordingly, from (50), (44), and (45), we obtain

C(ω, N, m) =
2π

N

(
sin πω

N
πω
N

)2m

· (2m− 1)!

2
m−2
∑

n=0
a(2m−2)

n cos 2π(m− 1− n) ω
N + a(2m−2)

m−1

. (51)

From (40) and (51), the statement of Theorem 2 follows; i.e., the optimal coefficients
of the quadrature formula (4) have the form

C̊k =
2π

N

(
sin πω

N
πω
N

)2m

·
(2m− 1)! exp

(
2πiωk

N

)
2

m−2
∑

n=0
a(2m−2)

n cos 2π(m− 1− n) ω
N + a(2m−2)

m−1

,

k = 1, 2, . . . , N. (52)
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6. The Norm for the Error Functional of the Optimal Quadrature Formula

Here, we present the proof of Theorem 3. For this, we simplify the expression (36)
as follows:

‖ ˚̀|H̃(m)∗

2 ‖2 =
2π

ω2m −
1

ω2m

N

∑
k′=1

C̊k′ exp
(

2πik′ω
N

)
− 1

ω2m

N

∑
k=1

C̊k exp
(
−2πikω

N

)

+
N

∑
k=1

N

∑
k′=1

C̊kC̊k′ ∑
β 6=0

exp
(

2πiβ(k−k′)
N

)
2πβ2m =

2π

ω2m −
N

∑
k′=1

C̊k′

×

 1
ω2m exp

(
2πik′ω

N

)
−

N

∑
k=1

C̊k ∑
β 6=0

exp
(

2πiβ(k−k′)
N

)
2πβ2m


− 1

ω2m

N

∑
k=1

C̊k exp
(
−2πiωk

N

)
.

Hence, taking (38) into account for the square of the norm, we obtain

‖ ˚̀|H̃(m)∗

2 ‖2 =
2π

ω2m −
1

ω2m

N

∑
k=1

C̊k exp
(
−2πiωk

N

)
.

Then, using the analytic expressions of the optimal coefficients, i.e., by the formula (52),
we obtain

‖ ˚̀|H̃(m)∗

2 ‖2 =
2π

ω2m −
2π

Nω2m

N

∑
k=1

(
sin πω

N
πω
N

)2m

×
(2m− 1)! exp

(
2πikω

N

)
exp

(
− 2πikω

N

)
2

m−2
∑

n=0
a(2m−2)

n cos 2π(m− 1− n) ω
N + a(2m−2)

m−1

.

Provided that exp
(

2πikω
N

)
exp

(
− 2πikω

N

)
= 1 and

N
∑

k=1
1 = N, for the square of the

norm, we finally obtain

‖ ˚̀|H̃(m)∗

2 ‖2 =
2π

ω2m

1−
(

sin πω
N

πω
N

)2m
(2m− 1)!

2
m−2
∑

n=0
a(2m−2)

n cos 2π(m− 1− n) ω
N + a(2m−2)

m−1

.

Theorem 3 is completely proved.

Now, we give the square of the norm of the error functional for the several first values
of m for ω < N.

If m = 1, then

∥∥∥ ˚̀|H̃(1)∗
2

∥∥∥2
=

π

3

(
2π

N

)2
− ω2

180

(
2π

N

)4
+ O

((
2π

N

)6
)

.

Now let m = 2. It follows that∥∥∥ ˚̀|H̃(2)∗
2

∥∥∥2
=

π

cos 2πω
N + 2

[
1
5!

(
2π

N

)4
+

3ω2

7!

(
2π

N

)6
]
+ O

((
2π

N

)8
)

.
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It is easy to see that, for N → ∞ and ω < N,(
sin πω

N
πω
N

)2m

→ 1 and

2
m−2

∑
n=0

a(2m−2)
n cos

(
2π(m− 1− n)

ω

N

)
+ a(2m−2)

m−1 → 2
m−2

∑
n=0

a(2m−2)
n + a(2m−2)

m = (2m− 1)!,

then ‖`‖2 → 0.

In the case ω > N and ω → ∞, we have

‖`‖2 → 2π

ω2m .

From the last results, we can conclude that, for the functions from the space H̃m
2 , the

rate of convergence of the constructed optimal quadrature formula is O(hm) for |ω| < N
and O(|ω|−m) for |ω| ≥ N.

7. Numerical Results

In this section, we present numerical results of comparison for absolute errors of the
optimal quadrature formula of the form (4) with the exp(iωx) weight in the case m = 2
and the Midpoint formula. We note that the rate of convergence for both of these formulas
is O(h2). Here we use the Maple to obtain numerical results.

As an example, we consider calculation of the integral

I =
∫ 2π

0
exp(iωx)ϕ(x)dx (53)

with ϕ(x) = e1−x/(2π)+ex/(2π)

2(1−e) . Since for the functions ϕ we have the relation ϕ(0) = ϕ(2π),
we can consider it as a periodic function on the interval [0, 2π]. For convenience, we denote
the integrand as f (x); i.e., f (x) = exp(iωx) e1−x/(2π)+ex/(2π)

2(1−e) .
We approximately calculate the integral I by the Midpoint rule. Then approximate

value for the integral (53) is then calculated as follows using the Midpoint rule

Amid =
N

∑
k=1

f
(

xk + xk−1
2

)
(xk − xk−1), (54)

where xk = kh, k = 0, 1, . . . , N and h = 2π/N.
Hence, for the function f (x) = exp(iωx) e1−x/(2π)+ex/(2π)

2(1−e) , the error of the Midpoint rule (54) is

I − Amid =
∫ 2π

0
f (x)dx−

N

∑
k=1

f
(

xk + xk−1
2

)
(xk − xk−1). (55)

In Table 1, we give the absolute values for the real part of the error (55) of the Midpoint
rule for N = 1, 10, 100, 1000 and ω = 1, 10, 100, 1000.
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Table 1. The absolute values for the real part of the error (55) of the Midpoint rule for N = 1,
10, 100, 1000 and ω = 1, 10, 100, 1000.

ω = 1 ω = 10 ω = 100 ω = 1000

|I− Amid| |I− Amid| |I− Amid| |I− Amid|
N = 1 6.184049 6.027234 6.028810 6.028825

N = 10 2.709174(−3) 6.282159 6.280552 6.280552

N = 100 2.618891(−5) 2.710011(−5) 6.283175 6.283159

N = 1000 2.618003(−7) 2.618898(−7) 2.710020(−7) 6.283185

It can be seen from the results given in Table 1 that the Midpoint rule converges for
N > ω. In Figure 1, the process of this convergence is graphically shown when ω = 1 and
N = 1, 10, 100, 1000 for the real part of the function f (x).

Figure 1. The process of convergence for the Midpoint rule when ω = 1 and N = 1, 10, 100, 1000 for
the real part of the function f (x).

In Figure 2 the graphs of numerical calculation of the integral (53) by the Midpoint rule
for the case ω = 1, 10, 100, 1000 and N = 1 are given. Here, we can see that the Midpoint
rule does not converge when ω ≥ N for the function f (x).
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Figure 2. The Midpoint rule does not converge when ω ≥ N for the function f (x).

Now, we approximate the above integral (53) using the optimal quadrature formula of
the form (4) with exp(iωx) weight in the case m = 2. Then, taking into account (10), we
have the approximate equality

2π∫
0

exp(iωx)ϕ(x)dx ∼=
N

∑
k=1

C̊k ϕ

(
2πk
N

)
, (56)

for ϕ(x) = e1−x/(2π)+ex/(2π)

2(1−e) with the optimal coefficients

C̊k =
2π

N

(
sin(πω

N )
πω
N

)4 3 exp( 2πiωk
N )

cos( 2πω
N ) + 2

, k = 1, 2, . . . , N.

The approximate value for the integral (53) is calculated as follows, using the optimal
quadrature formula:

Aopt =
N

∑
k=1

C̊k
e1− k

N + e
k
N

2(1− e)
.
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Hence, for the function ϕ(x) = e1−x/(2π)+ex/(2π)

2(1−e) , the error of the optimal quadrature
formula (56) is

I − Aopt =
∫ 2π

0
exp(iωx)

e1−x/(2π) + ex/(2π)

2(1− e)
dx−

N

∑
k=1

C̊k
e1− k

N + e
k
N

2(1− e)
. (57)

Thus, the numerical results of Table 2 show convergence of the optimal quadrature
formula (56) for N ≥ ω and N < ω.

Table 2. The absolute values for the real part of the error (57) of the optimal quadrature formula (56)
for N = 1, 10, 100, 1000 and ω = 1, 10, 100, 1000.

ω = 1 ω = 10 ω = 100 ω = 1000

|I− Aopt| |I− Aopt| |I− Aopt| |I− Aopt|
N = 1 1.552231(−1) 1.591146(−3) 1.591545(−5) 1.591549(−7)

N = 10 5.301897(−3) 1.591146(−3) 1.591545(−5) 1.591549(−7)

N = 100 5.236676(−5) 5.301920(−5) 1.591545(−5) 1.591549(−7)

N = 1000 5.235995(−7) 5.236677(−7) 5.301920(−7) 1.591549(−7)

8. Conclusions

We obtained optimal quadrature formulas for the approximate calculation of the
Fourier coefficients

∫ 2π
0 eiωx ϕ(x)dx in Sobolev space H̃m

2 . Firstly, in order to obtain an
upper bound for the error of the quadrature formula, the norm of the error functional
was calculated. Using the extremal function of the considered quadrature formula, we
calculated the norm of the error functional. We found the explicit forms of the coefficients
for the optimal quadrature formula, and they provide the minimum value to the norm of
the error functional. Finally, we calculated the norm of the error functional of the optimal
quadrature formulas. We show that, for the functions from the space H̃m

2 , the rate of
convergence of the constructed optimal quadrature formula is O(hm) for |ω| < N and
O(|ω|−m) for |ω| ≥ N. Finally, we presented numerical results of comparison for absolute
errors of the constructed optimal quadrature formula in the case m = 2 and the Midpoint
formula, showing the advantage of the optimal quadrature formulas.
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