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Abstract: The Earth’s observation programs, through the acquisition of remotely sensed hyperspectral
images, aim at detecting and monitoring any relevant surface change due to natural or anthropogenic
causes. The proposed algorithm, given as input a pair of hyperspectral images, produces as output a
binary image denoting in white the changed pixels and in black the unchanged ones. The presented
procedure relies on the computation of specific dissimilarity measures and applies successive bina-
rization techniques, which prove to be robust, with respect to the different scenarios produced by
the chosen measure, and fully automatic. The numerical tests show superior behavior when other
common binarization techniques are used, and very competitive results are achieved when other
methodologies are applied on the same benchmarks.
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1. Introduction

The task of change detection (CD) refers to those algorithms and methods that, given
as input a collection of remotely sensed images, taken at different times of the same
area, provide as output binary images where the white pixels denote the changed re-
gions, while black pixels denote the unchanged parts; see [1] for a comprehensive survey.
The CD task is especially useful in the Earth’s surface observation programs, which aim
at monitoring any relevant change in the environment due, for example, to natural disas-
ters [2,3], urban expansions, agricultural habits and so on; see [4] and references therein for
a broad overview.

Hyperspectral (HS) sensors remotely acquire data observations at high spectral and
spatial resolution. In particular, every HS image can be thought of as a three-mode tensor,
where, in the first and second mode, the spatial information is stored, while, in the third
mode, the spectral information is registered at specific, predetermined wavelengths of
the light. Hence, for every pixel, a hundred regularly spaced narrow bands are stored,
allowing for a great abundance of information. For this reason, a common denominator of
many CD methods is the use either of matrix or tensor factorizations [5–8], or autoencoder
architectures; see, e.g., [9,10], which can provide a reasonable representation in suitable
subspaces of reduced dimensions, allowing one to eliminate redundancies while keeping
the relevant features. Another strong motivation for using matrix or tensor decompositions
is to remove the noise affecting the original HSI or to restore the missing information;
see, e.g., [11–14] for recent advances regarding this topic. Taking care of the preprocessing
phase has been proven to significantly improve the final CD results; see [15]. In this work,
however, since most of the publicly available datasets for CD are already preprocessed, this
step is not implemented.

A second common component in many CD algorithms is the use of specific similarity
or dissimilarity functions (sometimes called error functions) that, hence, produce several
types of scenarios. Most algorithms do not provide an automatic selection of the best
output, but all of the produced outputs are analyzed and the optimal results are selected
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via post-analysis, i.e., after the evaluation, the best binary change map is the one with
the higher computed accuracy. On the one hand, in certain cases, very accurate results
can be achieved with a specific configuration—see, e.g., [16]—but on the other hand, such
approaches are still limited in real applications when the reference binary change map,
i.e., the ground-truth image, is not available to provide a post-analysis evaluation.

In this work, a new method is proposed that does not use any initial projection and
that computes a suitable mean image given 6 types of error functions. This strategy is
therefore robust with respect to the chosen function and it is automatic, i.e., the best choice
is not obtained via any post-analysis.

After the similarity or dissimilarity phase, usually, a binarization technique is ap-
plied, either by using clustering [17,18] or via automatic thresholding techniques [19,20].
Here, a novel thresholding method is also proposed. In particular, three binarization pro-
cedures are formulated and applied successively. In the first one, for every error function,
a collection of 5 different binary images are produced and a suitable mean image is com-
puted. Then, this mean image is again binarized by setting to 0 any pixel value below 1
and setting to 1 any pixel value originally greater than 1. Lastly, the newly produced mean
images for every error function are summed together and binarized again according to a
new threshold value. This type of successive binarization is compared against the most
commonly adopted thresholding techniques.

Finally, it is also important to recall that while, originally, many methods were for-
mulated within an unsupervised framework, recently, many new approaches have been
derived exploiting deep learning by constructing very innovative architectures and hence
producing robust results; see, e.g., [21–25].

In summary, the presented method hinges on the following three steps:

• Successive binarization techniques are proposed by varying the thresholding value,
which can be considered fixed every time, i.e., not adaptively varying and not a free
parameter, if the proposed types of error functions are the ones adopted here.

• Among the used error functions, a new one based on the Pearson correlation coefficient
is introduced.

• Robustness with respect to the error function is achieved by computing a suitable
mean image: the produced output is a suitable weighted sum of every contribution.

The paper is organized as follows. In Section 2, the proposed algorithm is detailed.
In Sections 3 and 4, the numerical experiments are carried out. In Section 5, the obtained
results are discussed and compared with other available techniques. In Section 6, some
conclusive comments are given.

2. Methodology

Two HS images I1 and I2, acquired at two different time steps for the same area, are
given. Denoting with m× n× k the size of I1 and I2, each HS image is rearranged into
a matrix I1 and I2, respectively, with size p× k, with p = mn. The CD methodology in
Algorithm 1 is proposed. The first step (line 2) consists in computing 6 error functions
selected by previous and intensive experiments on several datasets; see [17,26,27]. More
specifically, let the considered error function be denoted with fi, having i ranging between
1 and 6. To be self-contained, the description of the chosen error functions is reported in
the following Section 2.1.

2.1. Error Functions

Many error functions could be used to assess possible changes; however, here, the fol-
lowing ones have been selected.

• Euclidean distance (i = 1): The difference between every spectral row vector in I1 and
I2 is computed. Then, the second norm of the resulting difference vectors is calculated.
The computational cost for this metric is proportional to O(pk).

• Manhattan distance (i = 2): The norm 1 is computed on the spectral difference vectors.
The computational cost is proportional to O(pk).
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• SAM-ZID (i = 3)—see [16]: Firstly, the sinus of the angle between every spectral row
vector in I1 and I2 is computed and then scaled in [0, 1]; secondly, the obtained result
is multiplied by the standardized difference vector, again scaled in [0, 1]. The compu-
tational cost is proportional to O(2pk).

• Spatial Mean SAM—in short, SAM-MEAN (i = 4): The arithmetic mean of the angles
between two pairs of spectral vectors (i.e., one row vector in I1 and another row vector
in I2) inside a local window is computed. The computational cost is O(4pk + 2dV − 1),
where, by dv, we denote the chosen window size; see [28] for the details about this
parameter.

• Spatial Mean Spectral Angles Deviation Mapper—in short, SMSADM (i = 5): The
arithmetic mean of the deviation angles from their spectral mean is computed inside a
local window, which slides through the considered image. The computational cost is
O(4pk + 2dV − 1), where, again, by dv, we denote the chosen window size.

• A complementary measure of the Pearson correlation coefficient, denoted in short
as Pearson cc, (i = 6): The Pearson correlation coefficient [29] is computed between
every pair of spectral row vectors. This is not a common error function to measure
changes, but it is experimentally proven to be insightful; see [30]. Here, we propose
the following novel formulation. The Pearson coefficient, computed for every spectral
row vector, is a value ρ between −1 and 1. In particular, ρ = −1 means a negative
linear correlation, while ρ = 1 means a positive linear correlation. Values of ρ near the
0 mean either very low or no correlation at all. In order to use ρ as a suitable indicator
for the change detection task, firstly, it is computed as |ρ|, to eliminate any negative
numbers (which would be meaningless in terms of pixel intensity values) and then it
is mirrored with respect to one, so 1− |ρ|. In fact, a high correlation is expected among
the unchanged pixels, in the background, since the same area is analyzed at two
different time steps, and hence, for those pixels, the corresponding |ρ| should be close
to 1. Meanwhile, regarding the changed pixels, it is unlikely to obtain any possible
linear correlation, i.e., the ρ values should be small or even 0. Therefore, to obtain a
suitable output that highlights changes, the |ρ| produced for every spectral row vector
is mirrored with respect to one, so that 0 or close to 0 values will become closer to 1
and the corresponding pixels will have higher intensity values. The computational
cost is O(6pk).

Algorithm 1: RSB pseudo-code
Data: Given I1, I2 HS vectorized images
Result: Binary change map

1 for i = 1, . . . , 6 do
2 Compute Ĩi ← fi(I1, I2);
3 Compute Ĩi,s ← Scale( Ĩi) %Scale the values between 0 and 1;
4 Compute Mi ← Binarize1( Ĩi,s);
5 Compute Mi,b ← Binarize2(Mi);
6 end
7 Compute T ←∑

i
Mi,b;

output : Binarize3(T);

The chosen error functions are selected by considering that both spatial and spectral
changes should be detected. The error functions f1 and f2 account both for the spatial
distribution; the error functions f3, f4 account for the spectral distribution; the error function
f5 is a hybrid measure and accounts for spectral and spatial distribution together, and,
finally, the function f6 highlights the areas that are highly not correlated and hence possibly
changed.
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Remark 1. Note that the functions f4 and f5, i.e., SAM-MEAN and SMSADM, have been
experimentally proven to remarkably improve the classical SAM [31] and SSCC [32], when HS
images are analyzed; see [27] for additional details, and refer to [33] and references therein for other
types of error functions.

2.2. The Algorithm

For the bi-temporal pair of HS images (I1, I2), the generation of the final binary change
map is carried out by using the following robust successive binarization (RSB) procedure:

1. Application of an error function fi, which gives as output an image denoted by Ĩi,
for every i = 1, . . . , 6, line 2 in Algorithm 1.

2. Scaling in the range [0, 1] the intensity values of Ĩi, to obtain Ĩi,s, line 3 in Algorithm 1.
3. Binarize Ĩi,s by applying different threshold values, line 3 in Algorithms 1 and 2.

In particular, let us denote with ε = 0.2, 0.3, 0.4, 0.5, 0.6 the chosen thresholds. The pix-
els in Ĩi,s are screened against the values of ε, producing 5 differently binarized images,
for every analyzed Ĩi,s. Hence, selecting any Ĩi,s, the pixels greater than or equal to the
value of the current ε are set to 1 (i.e., they will be white), and the others, less than
ε, will be set to 0, i.e., black pixels. We denote the resulting image with Ĩi,s,ε, for the
chosen value of ε. The computational cost for this procedure is O(5p + 5). It should
be noted that this process is commonly performed by an automatic thresholding
technique, such as Otsu’s thresholding method; see [34]. The choice to produce 5
different outputs though is preferable here, as we are not seeking to produce the best
binarized possible image, for which an adapting thresholding technique should be
employed. The goal here is to produce a set of different possible binary images, which
is achieved more easily in the following.

4. A suitable mean image is then computed as

Mi =
∑

ε

Ĩi,s,ε

2
.

The choice to divide by 2 rather than by 5, as it would be in the common mean defini-
tion, is motivated by the fact that we are looking to sum together the contributions
of the two sought classes of changed and unchanged pixels. Since it is not a priori
known which of the 5 produced binary images are the best ones to make the two
classes fairly separable, all Ĩi,s,ε are considered, but it is assumed that the contribution
provided by these 5 images, under a theoretical point of view, should sum up to 2.

5. Every image Mi, for i = 1, . . . , 6, is then itself binarized (line 5 in Algorithms 1 and 3)
by setting to 1, i.e., white, the pixels whose intensity is greater than or equal to 1, and
setting to 0, i.e., black, the pixels with intensity values less than 1. The computational
cost for this procedure is O(p). This step, for every fixed i, will produce an image
denoted with Mi,b whose entries are only integer values of 0 s and 1 s.

6. The next step consists in computing the following image:

T =
6

∑
i=1

Mi,b.

7. Since T is obtained by summing integer quantities, when the white pixels are present
on the same areas, the resulting entries in T will be equal to 6; on the contrary, if only
black pixels are present in a certain spot, the corresponding entries in T will be 0.
An interesting case arises when, on the same regions, in some cases, there are white
pixels, and in other cases, there are black ones. In particular, T is binarized according
to the following rule:

• Pixels with an intensity value greater than or equal to 3 are set to 1 and hence
will be white, i.e., changed ones;
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• Pixels with values less than 3 are set to 0, and hence they will denote unchanged
areas.

This procedure is summarized in Algorithm 4 and it costs O(p).
The adopted error functions are dissimilarity measures; hence, the higher values are
provided when different areas, either in the spatial domain or in the spectral domain,
are analyzed. However, it can happen that, due to different light conditions, similar
areas could be perceived as different ones, and hence, as a result, the corresponding
pixels could receive a high intensity value in the computed Ĩi image. This possible
scenario does not necessarily appear in every Ĩi for every used error function fi; thus,
the best value to threshold the computed output is set to 3 for the following reason.
There are two error functions to detect changes in the spatial domain (i.e., f1, f2)
and in the spectral domain (i.e., f3, f4); then, there is a hybrid error function for the
spectral–spatial domain ( f5) and another function for detecting any linear correlation
in the background ( f6). The functions f1 and f2 on the one side, and the functions
f3 and f4 on the other, behave pair-wise similarly. Therefore, any analyzed pixel
cannot be wrongly classified more than twice, since f5 is a hybrid function that should
smooth out any contradictory behaviors of the previous functions and f6 measures a
different indicator.

Algorithm 2: Binarize1 pseudo-code
Data: Given a matrix A
Result: Binary mask

1 for ε ∈ {0.2, 0.3, 0.4, 0.5, 0.6} do

2 Compute Aε ←
{

1 where A >= ε
0 otherwise

3 end

4 Compute M← ∑ε Aε

2
;

output : M;

Algorithm 3: Binarize2 pseudo-code
Data: Given a matrix M
Result: Binary mask

1 Compute Mb ←
{

1 where M >= 1
0 otherwise

;

output : Mb;

Algorithm 4: Binarize3 pseudo-code
Data: Given a matrix T
Result: Binary mask

1 Compute Tb ←
{

1 where T >= 3
0 otherwise

;

output : Tb

3. Numerical Experiments

The numerical experiments are performed with an Intel Core I7-6500U 2.50 GHz, 8 GB
RAM, and the following benchmark datasets are analyzed:

• Hermiston dataset (The dataset can be downloaded at: https://gitlab.citius.usc.es/
hiperespectral/ChangeDetectionDataset/-/tree/master/Hermiston access date 15 Au-
gust 2022) consists of two coregistered HS images over the city of Hermiston, Oregon,
in 2004 and in 2007. The images are acquired by the Hyperion sensor and consist

https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset/-/tree/master/Hermiston
https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset/-/tree/master/Hermiston
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of 390× 200 pixels with 242 spectral bands; see Figure 1 for the RGB rendering of
this dataset.

• USA dataset (The dataset can be downloaded at: https://rslab.ut.ac.ir/documents/81
960329/82034892/Hyperspectral_Change_Datasets.zip access date 15 August 2022)
consists again of two HS images acquired by the Hyperion sensor over Hermiston in
Umatilla County, on 1 May 2004, and 8 May 2007, respectively. The land cover types
are soil, irrigated fields, river, building, types of cultivated land, and grassland. These
two HS images consist of 307× 241 pixels and 154 spectral bands; see Figure 2 for the
RGB rendering of this dataset.

• River (The dataset can be downloaded at: http://crabwq.github.io access date
15 August 2022) dataset [35] contains two HS images taken in Jiangsu Province,
China, acquired on 3 May 2013 and on 31 December 2013, respectively, by the (EO-1)
Hyperion sensor; see Figure 3 for the RGB rendering of this dataset. These two images
consist of 463× 241 pixels with only 198 spectral bands after noise removal.

• Bay Area (The dataset can be downloaded at https://gitlab.citius.usc.es/hiperespectral/
ChangeDetectionDataset/-/tree/master/bayArea access date 15 August 2022) dataset
consists of two HS images taken in the years 2013 and 2015 with the AVIRIS sensor
surrounding the city of Patterson (California). The spatial dimension is
600 × 500 pixels and there are 224 spectral bands. In the available ground truth,
75.79% of the total number of pixels are not classified, i.e., do not have any label.
These images were coregistered by using the HypeRvieW desktop tool; see [36,37]
and Figure 4 for the RGB rendering.

Figure 1. RGB rendering of the Hermiston dataset scenes.

Figure 2. RGB rendering of the USA dataset scenes.

Figure 3. RGB rendering of the River dataset scenes.

https://rslab.ut.ac.ir/documents/81960329/82034892/Hyperspectral_Change_Datasets.zip
https://rslab.ut.ac.ir/documents/81960329/82034892/Hyperspectral_Change_Datasets.zip
http://crabwq.github.io
https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset/-/tree/master/bayArea
https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset/-/tree/master/bayArea
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Figure 4. RGB rendering of the Bay Area dataset scenes.

The choice of these datasets is not casual as they can be considered typical benchmarks
to assess the accuracy of the CD algorithm for three different cases. Indeed, in the Hermiston
ground truth, in Figure 5g and, the changed areas have a very clear and neat silhouette;
in the USA dataset ground truth, in Figure 6g, the changed areas have both neat profiles
as well as fragmented and very thin boundaries. Finally, in the ground truth of the River
dataset, in Figure 7g, the majority of the changed areas look very fragmented and no clear
shapes can be highlighted. Regarding the Bay Area ground-truth, Figure 8h, the same
observation as in the Hermiston case hold. The goal of change detection algorithms is to
provide a method that would achieve good accuracy regardless of the shape of the changed
areas; hence, it is important to test the proposed methodology at least on these three
different types of scenarios. In all four cases, the RBG rendering, produced by applying the
algorithm in [38], is performed only for visualization purposes.

(a) (b) (c) (d) (e)

(f) (g)
Figure 5. Results after line 2 in Algorithm 1 for the Hermiston dataset. (a) f1: Euclidean distance,
(b) f2: Manhattan distance, (c) f3: SAM-ZID, (d) f4: SAM-MEAN, (e) f5: SMSADM, (f) f6: Pearson cc,
(g) ground truth.
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(a) (b) (c) (d)

(e) (f) (g)
Figure 6. Results after line 2 in Algorithm 1 for the USA dataset. (a) f1: Euclidean distance,
(b) f2: Manhattan distance, (c) f3: SAM-ZID, (d) f4: SAM-MEAN, (e) f5: SMSADM, (f) f6: Pearson cc,
(g) ground truth.

(a) (b) (c) (d)

(e) (f) (g)
Figure 7. Results after line 2 in Algorithm 1 for the River dataset. (a) f1: Euclidean distance,
(b) f2: Manhattan distance, (c) f3: SAM-ZID, (d) f4: SAM-MEAN, (e) f5: SMSADM, (f) f6: Pearson cc,
(g) ground truth.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 8. Results after line 2 in Algorithm 1 for the Bay Area dataset. (a) f1: Euclidean distance,
(b) f2: Manhattan distance, (c) f3: SAM-ZID, (d) f4: SAM-MEAN, (e) f5: SMSADM, (f) f6: Pearson cc,
(g) ground truth with unlabelled pixels in gray, (h) ground truth with only labelled pixels.

3.1. Preliminary Discussion

In Figures 5–8, the image Ĩi is shown, for i = 1, . . . , 6, for all the considered datasets,
by varying the adopted error function fi with i = 1, . . . , 6. After this first step, for the
Hermiston dataset, it is clear that f1 and f2 are producing some relevant noise around the
changed areas, while f3 and f4 produce a better output but also the river silhouette appears
at the bottom of the images. Regarding f5 and f6, these two functions produce the best
output. Although there are pixels that could be wrongly classified if f1, f2, f3, and f4
were considered separately; after step 7 of the proposed algorithm in Section 2, the wrong
detections would be completely discarded.

Regarding the USA dataset, the functions that produce the best output, according to
the given ground truth, are f1 and f2. All the others fully highlight the river at the bottom
of the image. In particular, the worse output is given by f3 and f4, while the function f5
produces a less visible river shape and some interesting details in the upper part of the
image, and the function f6 yields a too clean output in the upper part of the image and a
still visible river shape at the bottom of it.

Regarding the River dataset, all the assayed functions produce a reasonable output.
Only f6 gives a very dark image as the ρ values for the considered spectral row vectors are
found to be very small.

Finally, in the Bay Area dataset, after suitably scaling each spectral vector of I2 within
the same range of values of the corresponding spectral vectors in I1, for the error functions
fi, i = 1, . . . , 4, a gamma correction with γ = 0.2 to enhance brightness was necessary to
improve the frequency ranges.

3.2. Thresholding Robustness

In order to show the robustness of proposed successive binarization technique with
respect to the chosen error functions, in Figure 9, the output obtained with the proposed
algorithm RSB (first column) is shown together with that of other thresholding methods.
In particular, the output of the following methods is shown: in the second column, Otsu’s
thresholding; in the third column, the mean thresholding [39]; in the fourth column, the Li
thresholding [40]; in the fifth column, the Sauvola thresholding [41]; in the sixth, the triangle
thresholding [42], and, finally, in the last column, the Yen thresholding [43].

It is also worth mentioning that the minimal thresholding technique [39,44] could not
be successfully applied due to the absence of two maxima in the intensity value histograms
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and the fact that the local thresholding technique [45] provided as output completely black
images, regardless of the size of the chosen local sliding window.

Figure 9. Binary change maps provided by different thresholding methods. From left to right: RSB,
Otsu, Mean, Li, Sauvola, Triangle, Yen. From top to bottom: Hermiston, USA, River, and Bay Area
datasets.

3.3. Results Evaluation

To assess the quality and the accuracy of the final produced results, two common indi-
cators are adopted: the overall accuracy (OA) and the Kappa coefficient (K). In particular,
OA expresses the fraction of the correctly classified pixels with respect to the total number
of pixels,

OA :=
(TP + TN)

(TP + FP + FN + TN)
.

The OA indicator sometimes appears to be biased; for example, in the case of a
completely black output, since the black pixels constitute the majority of the pixels in the
ground truth, the computed OA could still be slightly greater than 0.50, which is obviously
a faulty accuracy evaluation. Hence, to obtain a more reliable result, the Kappa coefficient
is also computed as

K :=
OA− p

1− p
,

p :=
(TP + FP)(TP + FN)

(TP + TN + FP + FN)2 +
(FN + TN)(FP + TN)

(TP + TN + FP + FN)2 .

In both the above expressions, the used symbols correspond to
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- TP: true positive,
- TN: true negative,
- FP: false positive,
- FN: false negative.

Note that the ideal classifier would give OA and K equal to 1. Hence, the aim of CD
algorithms is to produce binary change maps that should have both OA and K as close
as possible to 1. In Table 1, we report the results obtained by varying the thresholding
method. The algorithm proposed here, RSB, provided the higher OA and K for all three
assayed datasets. The Otsu thresholding method gave the second best output for all the
considered datasets, while the worst results where achieved when using the Sauvola and
triangle thresholding methods.

Table 1. Comparisons with other thresholding techniques. RSB achieves the best results (in bold).

Thresholding Hermiston USA River Bay Area
OA K OA K OA K OA K

RSB 0.9867 0.9410 0.9076 0.7060 0.9624 0.7250 0.8935 0.5873
Otsu 0.9633 0.8522 0.7323 0.3939 0.9061 0.5970 0.8335 0.5134
Mean 0.7691 0.4155 0.6939 0.3960 0.5637 0.1595 0.6585 0.2882

Li 0.9028 0.6710 0.7276 0.4225 0.8091 0.3946 0.7190 0.3525
Sauvola 0.2029 0.0223 0.2822 0.0302 0.1403 0.0104 0.2833 0.0483
Triangle 0.2543 0.0415 0.2330 0.0043 0.8474 0.4628 0.7427 0.3820

Yen 0.8579 0.5663 0.7117 0.4079 0.9409 0.6977 0.8865 0.5962

4. Post-Processing

In order to improve the achieved results with RSB, some post-processing (PP) tech-
niques could be applied. Since this step comes after a post-analysis of the obtained output,
a suitable technique can be chosen on the basis of the obtained binary change map.

4.1. Morphological Transformations

Regarding both the Hermiston and the Bay Area dataset, the white regions of the RSB-
produced change map (Figure 9, the first picture in the first row and the first picture in
the last row) appear very neat and with a precise silhouette; therefore, it is appropriate
to use a noise removal filter, in order to eliminate the spurious noisy pixels. To this end,
a morphological opening transformation (see, e.g., [46], Chapter 5) with the following
kernel is applied:

Kernel =


0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

.

The obtained results for the Hermiston and the Bay Area datasets are discussed in Section 5
and the produced final binary change maps are shown in Figure 10, in the leftmost sub-
figure and in Figure 10, in the rightmost sub-figure, respectively.
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Figure 10. The obtained final binary change maps. From leftmost to rightmost: Hermiston, USA, River,
and Bay Area datasets.

4.2. Supervised Classifier

Regarding the other two datasets, USA and River, the produced change maps (Figure 9,
first pictures in the second row and in the third row, respectively) look very detailed and,
hence, it is not advisable to use a pixel-wise noise removal filter, as important information
could be lost. Therefore, the obtained binary change maps are used as pseudo-labels to train
a supervised classifier. Note that this step is now performed without using the exact ground
truth. In particular, a Gaussian Naive Bayes algorithm is applied. Naive Bayes methods are
a set of supervised learning algorithms based on applying Bayes theorem with the “naive”
assumption of conditional independence between every pair of features, given the value
of the class variable. Therefore, every feature distribution can be individually estimated:
this implies an ability to solve many mono-dimensional problems, which in turn can
alleviate the computational cost when large matrices or tensors are processed. Moreover,
besides being rather efficient, Naive Bayes are considered optimal in many applications [47].
In our specific case, the likelihood of every feature is assumed to be modeled by a Gaussian
distribution, where the unknown mean and standard deviation, for every Gaussian, are
estimated via the maximum likelihood algorithm. The Gaussian Naive Bayes (GNB) is
run twice. The first time, for the training and test set, the difference image |I1 − I2| for the
USA and River dataset is constructed and the output of the RSB change maps are used as
“exact” labels. The second time, the ”exact” labels are replaced by the output produced
by the first iteration. The implementation is done by using scikit-learn [48], and on
the first iteration, the algorithm is run with the default parameters, while on the second
iteration, the parameter var_smoothing is set to 1.125210−3 for the USA dataset and to 1.0
for the River dataset. The finetuning of such parameters is not a trivial task; although quite
elaborate techniques exist, since this is outside the scope of the current paper, for our
purpose, the chosen values have been experimentally found. The obtained results after this
PP step are shown in Table 2. Applying GNB, after the first iteration, remarkably improves
both OA and K for the USA dataset, while, for the River dataset, the OA is slightly reduced,
but K is largely increased. After the second iteration, for both datasets, the OA indicator
is slightly increased, but K is highly improved, hence providing a more accurate output.
The final produced change maps are shown in Figure 10, in the second and third picture
for the USA and River dataset, respectively.

Table 2. Output of the Gaussian Naive Bayes.

Datasets 1 Iteration 2 Iterations
OA K OA K

USA 0.9535 0.8609 0.9579 0.8781
River 0.9609 0.7711 0.9681 0.8014
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Table 3. The proposed approach, RSB, with post-processing, and other competitors on the Hermiston
dataset. The best results are displayed in bold.

Method Hermiston
OA K

RSB+PP 0.9876 0.9447
AI-QLP [49] 0.9856 0.9400
Method [10] 0.9874 −

BIC2 [17] 0.9881 −
ORCHESTRA [50] 0.9871 −

GETNET [18] 0.9540 0.7810
CVA [18] 0.9390 0.6610

PCA-CVA [18] 0.9790 0.9060
CNN [18] 0.9470 0.7600

CUDA [20] 0.9848 −
AICA [51] 0.9887 −

SFBS-FFGNET [18] 0.9850 0.9310

5. Discussion

In this section, we compare the obtained accuracy results with other methods available
in the literature, whose results have been published.

For the Hermiston dataset, in Table 3, the achieved results produced by other methods
are reported. In particular, in the table, for each method, a reference in which the reported
results are published is provided. The method AICA [51] achieves the best OA, but there
is no automatic selection of the best output, while the method proposed here obtains the
third best OA. Among the methods that provide also the K values, our method, RSB,
yields the highest value. The considered competitors are the following: AI-QLP [49],
an approximate iterative QLP decomposition; the method in [10], which also works for
multi-class change detection classification; BIC2 [17], a methodology based on iterative
clustering; ORCHESTRA [50], an autoecoder-based approach; GETNET [35], a method
based on an end-to-end 2D convolution neural network; CVA [19], an approach that exploits
change vector analysis; PCA-CVA [52], enhanced PCA, and inverse triangular function-
based thresholding, which are used together with change vector analysis; CNN [23],
an approach based on autoencoder, clustering, and pseudo-label generation; CUDA [20], a
method that exploits similarity measures, PCA, and the automatic Otsu thresholding; and
SFBS-FFGNET [18], a CNN framework with slow–fast band selection and feature fusion.

Regarding the USA dataset, the results are reported in Table 4, and again, a reference
is provided for the published results. Here, BIC2 [17] achieves the best OA, but again,
there is no automatic selection of the best scenario, while the best value for K is provided
by the method SSCNN-S [24], a spectral–spatial convolutional neural network approach
realized with a Siamese architecture. Among all the proposed approaches, the method here
presented, RSB, achieves good accuracy (OA = 0.9579), which is behind only advanced
methods based on iterative learning and ad hoc neural network architectures, and it also
yields the third best K value (K = 0.8781). The analyzed competitors are GETNET-1 and
GETNET-2, which denote an end-to-end 2D convolutional neural network without unmix-
ing and with unmixing, respectively; CVA [19], MAD-SVM, and the multivariate alteration
detection method (MAD [53]), where the thresholding operation is carried out via SVM;
IR-MAD-SVM, the iteratively reweighted MAD [54,55], where, again, the thresholding
selection is done via SVM; the method proposed in [56], which is based on 3D convolution
deep learning; BIC2 [17]; AICA [51]; HybridSN [57], a hybrid spectral CNN; SCNN-S [24]
and SSCNN-S [24], which denote a spectral convolutional NN with a Siamese architec-
ture and a spectral–spatial convolutional NN with a Siamese architecture, respectively;
TRIFCD-MS [7] and TRIFCD-Fusion [7], methods based on the simultaneous fusion of
low-spatial-resolution HS images and low-spectral-resolution MS images with the use
of a tensor regression; and BCG-Net [58], an architecture driven by a partial Siamese
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united unmixing module, together with multi-temporal spectral unmixing and a temporal
correlation constraint.

Table 4. The proposed approach, RSB, with post-processing, and other competitors on the USA
dataset. The best results are displayed in bold.

Method USA
OA K

RSB+PP 0.9579 0.8781
GETNET-1 [35] 0.9289 0.7764
GETNET-2 [35] 0.9332 0.7897

CVA [19] 0.9272 0.7670
MAD-SVM [56] 0.8612 0.4760

IR-MAD-SVM [56] 0.9285 0.7700
Method [56] 0.9490 0.8310

BIC2 [17] 0.9728 −
AICA [51] 0.9417 −

HybridSN [24] 0.9553 0.8701
SCNN-S [24] 0.9631 0.8848

SSCNN-S [24] 0.9651 0.8918
TRIFCD-MS [7] 0.8848 0.7024

TRIFCD-Fusion [7] 0.9263 0.7813
BCG-Net [58] 0.9546 0.8662

For the River dataset, the RSB method achieves the best OA and K values compared to
all the other methods considered, see Table 5.

Finally, the Bay Area dataset’s results are reported in Table 6. The competitors in-
clude EUC + EM, a method constructed with Euclidean distance CVA and expectation
maximization; EUC + Otsu, Euclidean distance CVA-based and Otsu thresholding; SAM
+ Otsu, a method based on the spectral angle mapper error function plus CVA and Otsu
thresholding; EUC + WAT + Otsu, which adds the spatial processing based on watershed
segmentation plus region averaging and spatial regularization; SAM + WAT + Otsu, which
replaces the Euclidean distance with the SAM error function, and SAM + WAT + EM, which
replaces the Otsu thresholding with the expectation maximization algorithm. The perfor-
mance of RSB is better than that of Euclidean-based methods and plain techniques, such as
the ones adopted for AICA. It is evident that in order to improve the accuracy results for
this example, more pre-processing steps should be applied.

Remark 2. It should be noticed that having a higher OA does not necessarily imply a higher K as
well. We can observe this fact also here, for example, in the River test. For instance, in Table 5,
the method GETNET-2 has a higher OA compared to GETNET-1, but the corresponding K is lower
than that of GETNET-1. Another case is with the method CNN, which has an OA (0.9440) higher
than PCA-CVA (OA = 0.9434) but the corresponding K is much lower. It is obviously difficult to
judge which method is in fact the best among all, since both the indicators give reasonable insights
into the achieved accuracy, but the computation of the K coefficient is fundamental when the assayed
datasets consist of unbalanced data, as the OA can be strongly biased. Therefore, the computation of
K could be considered far more reliable to assess the goodness of the proposed method, rather than
using the OA alone.
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Table 5. The proposed approach, RSB, with post-processing, and other competitors on the River
dataset. The best results are displayed in bold.

Method River
OA K

RSB+PP 0.9681 0.8014
GETNET-1 [35] 0.9497 0.7662
GETNET-2 [35] 0.9514 0.7539

CVA [19] 0.9529 0.7967
PCA-CVA [52] 0.9434 0.7326

IR-MAD [54,55] 0.8963 0.6632
SVM [59] 0.9046 0.6360
CNN [35] 0.9440 0.6867

HybridSN [57] 0.9614 0.7371
SCNN-S [24] 0.9610 0.7300

SSCNN-S [24] 0.9640 0.7431
TRIFCD-MS [7] 0.9442 0.7063

TRIFCD-Fusion [7] 0.9529 0.7573
SFBS-FFGNET [18] 0.9670 0.7710

Table 6. The proposed approach, RSB, with post-processing, and other competitors on the Bay Area
dataset. The best results are displayed in bold.

Method Bay Area
OA K

RSB+PP 0.9274 0.6540
ORCHESTRA [50] 0.9561 −

EUC+EM [37] 0.8884 −
EUC + Otsu [37] 0.8501 −
SAM + Otsu [37] 0.9493 −

EUC + WAT + Otsu [37] 0.8666 −
SAM + WAT + EM [37] 0.9437 −

SAM + WAT + Otsu [37] 0.9694 −
AICA [50] 0.8529 −
BIC2 [17] 0.9551 −

6. Conclusions

In the present paper, the method of RSB based on successive binarization techniques
is proposed for the task of change detection in hyperspectral images. The method of RSB
relies on the computation of specific dissimilarity measures and on successive different
thresholding iterations, which make the produced output robust with respect to the chosen
error function and fully automatic. RSB results in greater accuracy than commonly adopted
thresholding strategies. Moreover, to improve the obtained accuracy, two post-processing
techniques are applied according to the type of produced binary change map. The final
obtained results are highly competitive compared to the most up-to-date methodologies.
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