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Abstract: Parkinson’s disease (PD) is characterized by abnormal brain oscillations that can change
rapidly. Tracking neural alternations with high temporal resolution electrophysiological monitoring
methods such as EEG can lead to valuable information about alterations observed in PD. Concomi-
tantly, there have been advances in the high-accuracy performance of deep neural networks (DNNs)
using few-patient data. In this study, we propose a method to transform resting-state EEG data into a
deep latent space to classify PD subjects from healthy cases. We first used a general orthogonalized
directed coherence (gOPDC) method to compute directional connectivity (DC) between all pairwise
EEG channels in four frequency bands (Theta, Alpha, Beta, and Gamma) and then converted the DC
maps into 2D images. We then used the VGG-16 architecture (trained on the ImageNet dataset) as
our pre-trained model, enlisted weights of convolutional layers as initial weights, and fine-tuned
all layer weights with our data. After training, the classification achieved 99.62% accuracy, 100%
precision, 99.17% recall, 0.9958 F1 score, and 0.9958 AUC averaged for 10 random repetitions of
training/evaluating on the proposed deep transfer learning (DTL) network. Using the latent features
learned by the network and employing LASSO regression, we found that latent features (as opposed
to the raw DC values) were significantly correlated with five clinical indices routinely measured: left
and right finger tapping, left and right tremor, and body bradykinesia. Our results demonstrate the
power of transfer learning and latent space derivation for the development of oscillatory biomarkers
in PD.

Keywords: rsEEG; gOPDC; MVAR; directional connectivity; UPDRS; deep transfer learning; EEG neu-
romarkers

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
affecting seniors [1]. The motor features of PD include bradykinesia, posture, and rest
tremors, while non-motor complications can include constipation, postural hypotension,
depression, and dementia. Pathologically, PD is characterized primarily by the degenera-
tion of dopaminergic cells in the substantia nigra in the midbrain [2], leading to dopamine
depletion in the striatum [3]. This neurochemical alteration impairs neuronal processing
in the basal ganglia [4], resulting in prominent 8–30 Hz oscillations in local field potential
recordings.

Non-invasive neuroimaging modalities (e.g., fMRI, MEG, EEG) have assisted in de-
tecting altered brain networks in PD. As fMRI has limited temporal resolution (~sec) [5], it
cannot directly detect features such as pathological oscillations seen at higher frequencies
(e.g., 8–30 Hz). On the other hand, fMRI is capable of assessing changes in functional
connectivity between macroscopic brain regions. Prior studies have demonstrated that
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changes in striatal dopamine profoundly affect cortico-striatal connectivity, with decreases
in connectivity between the posterior putamen and cortical somatosensory and motor
regions [5]. Resting-state fMRI studies have also shown the disruption of connectivity in
cortico-striatal networks [6]. The improved temporal resolution of EEG and MEG allows
for the assessment of oscillations and has also demonstrated alterations in connectivity in
PD at much more rapid time scales [7]. Thus, researchers are starting to explore ways to
utilize rsEEG in diagnosing neurodegenerative diseases such as PD [8].

Several methods already exist to analyze rsEEG signals. These include spectral and
complexity analysis [9], energy and entropy features followed by a decision tree classi-
fier [10], and time-frequency properties of components from blind source separation [11].
In many of the aforementioned approaches (e.g., [12]), the EEG signals are divided into
short (e.g., 2-s) epochs, which may fail to capture low-frequency dynamics of potential
diagnostic utility. Here, we used a full 60 s of data to avoid this complication. Moreover,
authors in this paper used time-frequency representations in which the channels’ location
are not considered as we consider here.

In [13], the authors have developed a classification approach using extracted features
with the aim of emotion classification in HC and advanced (Hoehn–Yahr scale 4–5 stage)
PD subjects, in contrast to the mildly affected people assessed here (Hoehn–Yahr 1–2).

Many previous approaches do not fully consider the spatial, temporal, and spectral
properties of EEG signals while looking at the interaction between EEG channels may also
be fruitful [14]. For example, in [15], a 1D-CNN was developed to classify features (as
opposed to utilizing the raw data). Based on the assumption that the spatial location of the
channels may benefit classification, EEG signals can be converted into multispectral images
for subsequent classification [16]. In a related study, a feature-fusion multispectral image
method (FMIM) was proposed to analyze multi-channel EEG signals and proved superior
to conventional multispectral image methods [17].

Here, our aim is to consider channels connectivity as a key factor for Parkinson’s
classification, which would provide us with the exact interaction of channels instead of
considering only their relative locations.

We propose using images based on the directional connectivity (DC) between EEG
channels for the classification of the EEG from PD subjects. DC approaches model how neu-
ral activity in one region modulates neural activity in another location (but not necessarily
vice versa). One effective way to compute DC is to employ multivariate autoregressive
(MVAR) modeling [18]. This utilizes a linear combination of previous values of one channel
to find its causal influences on another one, akin to Granger causality [19,20].

In this paper, we demonstrate that a latent space found by a deep transfer learning
method to discriminate between HC and PD proves superior to standard methods such
as sparse discriminant analyses in associating the EEG and clinical features such as UP-
DRS3 [18]. This implies that a non-linear combination of features is more likely to prove
more valuable in creating PD-specific biomarkers.

2. Materials and Methods
2.1. Overview

Here, we explore an MVAR-based DC measure to calculate connection strength be-
tween brain channels based on the gOPDC method (see Methods, below). DC is computed
from EEG data for four bands: Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), and
Gamma (30–45 Hz). We arrange DC matrices as 2D image-based representations of EEG
signals and train a deep transfer learning model based on these acquired images. Then, we
extract latent features of this model and demonstrate that these are more closely aligned
with three important clinical indices of tremor, finger tap performance, and body bradyki-
nesia compared to the original DC values, with each clinical feature having a unique DC
signature. The general schematic overview of the procedures carried out in this research is
depicted in Figure 1.
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Figure 1. General schematic overview of the proposed approach.

2.2. Participants

The EEG data used in this paper are the same as [21], where a classical machine
learning algorithm, sparse discriminant analyses [22], was used to discriminate between
PD and control subjects. More detailed information is described in [21]. Moreover, 15 PD
subjects (7 males; age: 67.3 ± 6.5 years) and 18 HC (9 males; age: 67.6 ± 8.9 years) subjects
participated in the experiment. Because, in this study, we were utilizing the raw data, we
were stringent in excluding subjects that had excessive muscle artifact in the EEG. Four HC
and five PD subjects were excluded. Table 1 shows the characteristics of the subjects. The
Hoehn and Yahr stages [23] range from 0—no disease to 1—Unilateral involvement only,
2—Bilateral involvement without impairment of balance, 3—Mild to moderate involvement
with some postural instability, 4—Severe disability, and 5—Wheelchair-bound or bedridden.
All participants provided written, informed consent. The study procedure was approved
by the Clinical Research Ethics Board at the University of British Columbia (UBC).

Table 1. Demographic and clinical characteristics of the study.

PD (n = 15) HC (n = 18)

Age (year) 67.3 ± 6.5 67.6 ± 8.9

Sex (male/female) 7/8 9/9

Disease Duration (years), mean (std) 7.4 (4.3) -

UPDRS II, mean (std) 14.8 (8.1) -

UPDRS III, mean (std) 23.3 (9.1) -

Hoehn and Yahr scale, mean 1.3 (1–2) -

2.3. Study Protocols

The participants were seated in front of a computer screen, continuously gazing at a
fixed target while EEG was recorded for 60 s.

The PD participants stopped taking levodopa medication and dopamine agonists for
at least 12 h and 18 h, respectively, before the experiments. More detailed information is
available in [21].
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2.4. Recording and Pre-Processing EEG Signals

Data were acquired by 27 scalp electrodes, positioned according to the international
10–20 placement standard [21], as in Figure S1. Pre-processing steps are mainly based on
what was reported in [21]. As explained in [21,24], the noise-removed EEG signals were
filtered into four EEG frequency bands, Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz),
and Gamma (30–45 Hz), by a two-way finite impulse response (FIR) filter (the eegfilt
function in EEGLAB: data sampling rate of 1000 Hz, filter order = 3*(sampling rate/ low
edge frequency) with 3 minimum 3 low-edge frequency cycle and minimum filter order of
15-fractional width of transition zones: 0.25–1 frame per epoch).

2.5. Directional Connectivity

Functional connectivity algorithms typically use a linear mapping between two connec-
tions, leading to symmetrical connectivity matrices between EEG channels [25]. However,
there is no guarantee that there will be abnormal connections in both directions equally
between two brain regions [26]. To compute directional connectivity, we can assume that
an asymmetrical linear operator H has been multiplied with zero-mean sources W that
form the measured signals. Then, assuming the lack of instantaneous feedback between
the received signals, the power spectral matrix of these signals can be decomposed, having
components of H (a transfer function) and diagonal covariance matrix of W, which is ∑ as
shown in Equation (1) [25], where the superscript H means the Hermitian operator:

S( f ) = H∑ HH (1)

To compute this asymmetrical H matrix, we suppose a multivariate autoregressive
(MVAR) model for the received signals to find a correlation pattern between values of a
“cause” source to later values of its “effect” (similar to that in Granger causality). In this
way, a time series y(n) with L samples can be modeled by a causal MVAR of order p: y1 (n)

...
yM (n)

 =
p

∑
r=1

Ar

 y1 (n− r)
...

yM (n− r)

+

 w1 (n)
...

wM (n)

 (2)

where w =
[

w1 · · · wM
]T are the assumed white noise vector with zero mean and

a diagonal covariance matrix with nonzero elements equal to
〈
wwT〉 = diag

{
λ2

kk
}

. The
Ar matrix elements are equal to the linear delay between two channels at a specific delay.
For instance, m-th row and n-th column element, ar

mn, is the r-th delay between channel m
(cause) and channel n (effect) [27]. There can be two time-variant and time-invariant cases
that the latter one forces Ar elements’ values to be dependent on the time.

Taking the Z-transform of both sides of Equation (2), the time-varying case Ar can
be computed by an algebraic equation (as shown in Equation (3), where Z [25] means the
Z-transform of a function or matrix). The frequency components of H can be computed by
utilizing the correspondence of z = ej2π f between the Fourier and Z transforms. The A(n,
f ) matrix is related to the power component in each time and frequency bin:

HZ{W} =
(

∑
p
r=1 Ar(n)z−r

)
Z{W}+ Z{W}⇒ A(n, f ) = I−

∑
p
r=1 Ar(n)z−r

∣∣∣z=ej2π f ; H(z, n) = A−1(n, f )
(3)

Partial directed coherence (PDC) is a technique to compute directional connectivity in
the frequency domain:

| π̃kl(n, f )| , |Akl(n, f )|√
∑k|Akl(n, f )|2

(4)



Algorithms 2022, 15, 5 5 of 19

Equation (4) implies that the PDC from channel l to k is the ratio of in the k-th series
due to the past of the l-th series. This method, based on a frequency picture of Granger
causality, utilizes directional connection to compute the strength of the causal link between
channels. In this manner, the null-hypothesis for Granger causality is no connection from
l-th to k-th region (H0: π̃kl(n, f ) = 0) [28].

Unfortunately, PDC as typically written has two major disadvantages. First, it is not
scale-invariant, i.e., if one of the signals is amplified by a constant value and its spectral
representation is unchanged, then the value of PDC is reduced [29]. To overcome this
issue, each power component in Equation (4) can be divided by the related element in
the cross-covariance matrix to obtain an estimate for general partial directed coherence
(gPDC). Another drawback of the PDC is its sensitivity to volume conduction effects.
Volume conduction is a serious problem for directional connectivity computations of EEG
signals [30] due to the relatively poor spatial resolution of scalp EEG. A single source on
the brain, through volume conduction, can reach adjacent channels leading to erroneous
inferences about connectivity [18].

In [31], a method was proposed to orthogonalize the power envelope of the received
signals to suppress volume conduction effects. By orthogonalizing power signals at each
channel, adjacent channels do not share the trivial co-variability made by common sources.
Reference [18] proves that the aforementioned orthogonalizing procedure can be reflected
in the imaginary part of cross-spectral density between two channels using the MVAR
modeling of the received signals. This method (using the time scaling technique) is called
general orthogonal partial directed coherence (gOPDC). If we assume that at most K inde-
pendent sources affect each EEG channel and the sources add linearly, such a relationship
based on Equation (1) in the frequency domain is:

Yi( f ) =
K

∑
k=1

vikSk( f ) (5)

Equation (5) can be written in its matrix form:

Y( f ) = VS( f ) (6)

Y( f ) ∈ CM is a multi-channel EEG collected datum in the frequency domain, S( f ) ∈
CM is the multivariate source signal in the frequency domain, and V ∈ RM×M includes all
source weights.

V =

 v11 · · · v1k
...

. . .
...

vM1 · · · vMk

 (7)

The cross-spectral density function Cij( f ) between Yi( f ) and Yj( f ) is defined by
Equation (8):

Cij( f ) = 〈Yi( f )Y∗j ( f )〉 =
K

∑
k=1

VikVjk〈|Sk|〉2 (8)

The MVAR model in Equation (8) aids in checking the directional connectivity in
the cross-spectral density. The innovative idea behind [18] is that instead of having two
orthogonal signals, they search for orthogonal MVAR representations. The imaginary part
of Imag

{
Cij( f )

}
, in effect, subtracts the volume conduction effects from the received signal.

It can be shown that this value can be computed by Equation (9) [27]. Σ−1
w is the inverse

covariance matrix of l-th column of A(n, f ), and al(n, f ) is the l-th column of A(n, f ). The
inverse covariance value is used to ensure scale invariance:

Ψkl(n, f ) =
|Real{Akl(n, f )}|√

aH
l (n, f )al(n, f )

× |Imag{Akl(n, f )}|√
aH

l (n, f )al(n, f )
if k 6= 1 (9)
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Analogous to the definition of gPDC, OPDC can be extended to gOPDC, Ψ̃kl(n, f ) by
taking the effect of time series scaling into consideration:

Ψ̃kl(n, f ) =
1

λ2
kk
× |Real{Akl(n, f )}|√

aH
l (n, f )∑−1

w al(n, f )
× |Imag{Akl(n, f )}|√

aH
l (n, f )∑−1

w al(n, f )
if k 6= 1 (10)

We computed DC from EEG signals during rest using the model in Equation (1) and the
formula of Equation (10). Each element of DC matrix is the mean value of time components
and frequency bins in the regarded band derived from Equation (10). After computation
of gOPDC via Equation (10), we analyzed the resulting directional connectivity to see
how strong the connections were. Directional connectivity (DC) in this paper is computed
by averaging over time and frequency bins’ (in each of the 4 bands) component values
of any computed gOPDC connection. Because the number of variables is 2808 (4 × 2

×
(

27
2

)
− 4 frequency bands, 2 directions of DC, and

(
27
2

)
related to all possible

existing connections based on choosing 2 combinations of 27 numbers of EEG channels)
(based on 4 frequency bands and 2 directions), the DC matrix is 33 × 2808, including 2808
for each of 18 HC and 15 PD subjects. The optimum orders of the autoregressive model
were chosen based on the minimum value of the Bayesian Information Criterion (BIC).

2.6. Image-Based Representation of DC

1. In order to increase our sample size, for each of the 4 frequency bands, we created
2D matrices (27 × 27) as a heatmap since there were 27 channels, and there were 26
channels that can be directionally connected to each channel (connectivity of a channel
with itself is ignored). In order to have a square matrix for sizing of the heatmap, we
created a 27 x 27 matrix and set the main diagonal components of the matrix to zero.

2. We normalized each matrix individually. In fact, we had normalized each matrix of
DC (27 × 27) using the min/max approach.

3. We represented the results by computing heat maps, i.e., 2D representations of the
values in a data matrix, in which colors represent their variability in intensity. Figure 2,
as an example, shows two sample heat maps from two PD and HC cases. Larger
values were represented by lighter pixels and smaller values by darker pixels.
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Figure 2. (A) Subject 11 DC of healthy class in the alpha band. (B) Subject 10 (Total Unified Parkinson’s
Disease Rating Scale (UPDRS) = 22) DC of Parkinson class in the alpha band.

4. We resized the heatmap images to 224 × 224 in order to make them fit the architecture
of the VGG-16 architecture.
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After we computed heat maps of all bands, Theta, Alpha, Beta, and Gamma, we
obtained 18 HC subjects’ 2D arranged DC matrices (18 subjects × 4 bands = 72 heatmaps)
and 15 PD subjects’ 2D arranged DC matrices (15 subjects × 4 bands = 60 heatmaps). These
were then used as the alternative compact representations of the EEG dataset for the binary
classification task via deep transfer learning.

2.7. Transfer Learning

Traditionally, the goal of transfer learning is to solve the problem of domain gap when
the knowledge gained on training data (source) needs to be re-used on different test (target)
data. This aids in the problem of insufficient training data [32]. The primary layers of
a DCNN (Deep Convolutional Neural Network), trained on a large dataset, can extract
general features, as shown by [33,34]. Therefore, by recruiting deep transfer learning on
a big dataset, we can fine-tune a pre-trained model on our small-size dataset and solve a
binary classification task to PD/HC much more efficiently.

1. We used the VGG-16 architecture [35] trained on the ImageNet dataset as our pre-
trained model, and we used only weights of convolutional layers of the pre-trained
model.

2. To better fit our classification task, we modified the base model of VGG-16 in this
order: (A) Implementing a fully connected layer (1 × 1 × 512) after the last max-
pooling layer (7 × 7 × 512). (B) Developing a fully connected layer (1 × 1 × 64)
with activation function of “Relu” to better map reduced features to the last layer.
(C) Applying the fully connected layer (1 × 1 × 2) with the activation function of
“Softmax” for the classification task consists of two categories, Parkinson’s disease
and healthy controls.

3. We tried two techniques of fine-tuning: The network, which we call the Totally trained
model, is represented in Figure 3, while the other alternative is represented in the
Appendix A just for further information.

4. To implement the first technique, we used weights of convolutional layers as initial
weights and updated all layers’ weights with our data. The network architecture is
shown in Figure 3. Tables 2 and 3 represent the details of this network. In addition,
Figure A1 shows the best performance of the proposed model over the epochs.
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We compared the best performance of both techniques (see the Appendix A for the
alternative one) to choose the best fine-tuning strategy. As it is shown in Table 4, The totally-
trained model surpassed the limited-trained model (expanded upon in the Appendix A).
Our implementation was performed in Python using Keras with Tensorflow Backend and
underwent 43 s of training on Google Colab. The test data set was 25% of data that had
been randomly selected.
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Table 2. Totally trained model’s characteristics.

First Model

Optimizer SGD

Learning rate 0.01

Decay 0.001

Batch size 8

Loss function Binary cross entropy

Table 3. Totally trained model’s summary.

Layer Output Shape Param

Functional VGG16 (None, 7, 7, 512) 14,714,688

Max Pooling (None, 1, 1, 512) 0

Flatten (None, 512) 0

Dense (None, 64) 32,832

Dense (None, 2) 130

Total params: 14,747,650
Trainable params: 14,747,650

Non-trainable params: 0

Table 4. Comparing the performance of fine-tuning strategies.

Totally-Trained Model Limited-Trained Model

Train accuracy 1.00 1.00

Test accuracy 1.00 0.871

Train loss 0.0004 0.013

Test loss 0.053 0.274

2.8. Performance Evaluation

We used accuracy, precision, recall, and F1 score concepts defined by Equations (11)–
(14), respectively:

Accuracy(%) =
TP + TN

TP + TN + FP + FN
× 100 (11)

Precision(%) =
TP

TP + FP
× 100 (12)

Recall(%) =
TP

TP + FN
× 100 (13)

F1 score = 2× Recall× Precision
Recall + Precision

(14)

2.9. Feature Extraction from the Network

To investigate the clinical relevance of the features learned by the model, we saved
the weights of the best model, fed every data sample in, and extracted the features of the
second last layer. This resulted in a vector of (1 × 64) for each data point for each subject.

In [21], after the computation of phase-locking value (PLV) as a functional connectivity
metric, sparse discriminant analysis [36] was used to find different main connections
between HC and PD cases. This reference suggested that PLV variability lowers after the
development of PD, and there is a significant negative correlation between PLV variability
and disease severity. Here, we used the same EEG data as [21] and acquired new features
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from the above DC approach by transfer learning. We then used the latent space features
learned by the network to determine if the latent space is associated with disease severity.

We use the aforementioned (1 × 64) vector as 64 new latent features for DC of each
subject. The UPDRS of healthy subjects were considered zero to incorporate both HC and
PD connectivity values in the correlation computation [37]. To investigate whether these
extracted features differed from raw connectivity values in predicting clinical scores, we
fitted separate LASSO regression models [38] to both the extracted latent features and the
raw DC values [39]. We then computed the correlation between the actual clinical scores
and the scores estimated by the fitted models.

For the clinical scores, we checked for 5 sub-scores including both symmetric and
asymmetric symptoms to compare latent and non-latent space results: Right and left
“Finger tapping performance” and “Tremor” may present asymmetrically, while “Body
Bradykinesia” is midline and is not associated with a specific side.

The LASSO regression models were computed for 30 runs separately for both latent
and non-latent cases. In each run, out of 33 observations (33 subjects’ data), 25 random
observations were assigned to the train and the rest 8 to the test set. In addition, as
there were five statistical tests (the null hypothesis is that the resultant correlation is not
significantly different from zero), p-values were corrected by the FDR method to deal with
multiple comparisons. The corrected p-values less than 0.05 were considered significant.
After completing 30 runs of the LASSO, the average of 30 best beta coefficients (coefficients
that resulted in the least MSE at each run) were considered as the LASSO coefficients for
the final LASSO model. Then, these vectors were chosen as the final LASSO coefficients of
the models and were applied to the latent space and non-latent space data to estimate each
clinical score.

3. Results
3.1. PD Classification Performance

To compare the proposed method against when only the four last layers were fine-
tuned (Appendix A) and a prior DL model on the same data set [8], we evaluated it by
feeding in randomly selected test data.

We tested the model 10 times (on randomly chosen train/test partitions). The training
accuracy was constantly 100%, but the test accuracy varied in the range of 91 to 100%.

The average values of performance metrics are reported in Table 5. We extracted the
last layer’s scores assigned to each class (HC/PD) for 10-fold repetition as predicted classes,
compared them to the actual classes, and computed the True Negative, True Positive, False
Negative, and False Positive declared in Figure 4.

In [15], a CNN model is suggested comprised of four consecutive blocks which are
comprised of a 1D convolutional layer, max pooling layer, and activation layer, and the
activation function is Relu, finally followed by three fully connected layers with Softmax
activation function. The learning rate equals to 0.001, and the optimizer is Adam.

Table 5. Performance comparison of models.

Proposed CRNN [8] SVM-RBF [8] [15]

Accuracy (%) 99.6 99.2 95.4 95.4

Precision (%) 100 98.9 96.3 95.2

Recall (%) 99.17 99.4 94.3 95.5

F1 score 0.995 0.992 0.953 0.953

AUC (area under the ROC curve) 0.995 0.992 0.954 0.954
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Previous work on the same data set included applications on a variety of machine
learning models, including “KNN”, “SVM-L”, “SVM-P2”, “SVM-P3”, “SVM-RBF”, and
“RF” for 779 extracted time-series features, including autocorrelation, quantiles, and number
of zero-crossings [8]. In addition, they used univariate statistical analyses (ANOVA) and
identified significant features, with a significance level of 0.05. Then, using these significant
features, they trained the models. The best performance for these models is reported as
“SVM-RBF” in Table 5. The proposed approach achieved 99.62% accuracy, 100% precision,
99.17% recall, 0.995 F1 score, and 0.995 AUC.

3.2. Clinical Relevance of Deep-Transfer-Learning-Based Classification

Figure 5 illustrates the correlation and the related p-values found by the fitted LASSO
models on the two latent space and non-latent space cases. The values of the coefficients
are plotted in A5 (Appendix A).
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To quantitatively compare the correlation scores found by LASSO models in the latent
and non-latent spaces, we use t-statistics on the Fisher z-transform of these correlation
values to see whether latent space correlation values among the 30 runs were significantly
higher than the non-latent space.

The t-test outcomes are shown in Table 6 and demonstrate the superiority of the latent
space in predicting clinical aspects of the disease.

Table 6. t-Statistics values between the correlation of latent and non-latent space values with each
clinical data sample for the 30 runs.

Clinical Test Right Finger
Tap

Left Finger
Tap

Right
Tremor Left Tremor Bradykinesia

t-test 6.0533 10.15 7.63 5.07 4.12

p-value <1 × 10−7 <2 × 10−14 <3 × 10−10 <5 × 10−6 <2 × 10−4

Since it is difficult to visualize the heat map that would maximize each feature, we
found the DC image (heat map) of which subject, in what health status (HC or PD), and
in which frequency band led to the highest value in each feature (Table 7). The 10 highest
values of each DC matrix (leading to maximum values in each feature) are shown in an
arrow type plot in Figure 6.

Table 7. A related subject, health status (PD/HC), and the band of the DC heat map leading to the
maximum value among 64 features for each clinical test.

Clinical Test Right Finger
Tap

Left Finger
Tap

Right
Tremor Left Tremor Bradykinesia

Subject 2 11 2 9 2

Health
Status PD PD PD PD HC

Frequency
Sub-Band Beta Beta Beta Gamma Alpha
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To establish the most influential EEG bands in non-latent space, we drew the main
neural oscillations related to the right and left finger tap (the two cases mostly worse than
the latent-space data) for non-latent data (Figure 7).
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4. Discussion

We found that DC measures are useful to discriminate PD subjects from controls.
Importantly, we found that the latent space obtained by TL was more closely aligned
with clinical indices related to movement, tremor, and body bradykinesia. It is perhaps
unsurprising that the latent space, which will likely contain non-linear combinations of DC
would more closely align with clinical performance, as presumably there will be a complex
non-linear mapping between EEG connectivity measures and crude clinical performance
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metrics. What is perhaps surprising is that TL, from a network trained on natural images
(as the VGG-16 network used here is), results in a latent space that is more closely aligned
to clinical indices.

We are acutely aware that our study may potentially be under-powered. However,
we note that (1) as is typical with patient populations, the number of subjects tends to be
quite low, and as a result of the challenges associated with obtaining recordings in these
populations, (2) we have spent particular effort in ensuring that overfitting has not taken
place, and (3) we are using transfer learning, which is a key aspect of the novelty of the
proposed approach. The whole point of transfer learning is to allow for smaller data sets to
be employed to allow for informed descriptions of disease states, and (4) we augmented the
data by a factor of four by generating independent heat maps for each frequency subband.

The goal of using LASSO was to (1) select a sparse set of features and then (2) solve
the regression problem to linearly map these sparse features to the target clinical scores.
The beta coefficients are found by jointly minimizing the mean square error (MSE) between
original and modeled values and applying an L1 norm constraint on the coefficients to
promote sparsity. In Figure 5 we show that the LASSO method using the latent space
values more closely predicts the clinical scores compared to the DC values used to develop
the latent space. This proves that there exists a linear mapping from extracted features (of
latent space) to the five clinical scores considered in this paper.

It is interesting that the network was agnostic to the particular band used, yet still
provided excellent classification performance. This implies that the presence of effective
connectivity between pairs of channels may be more informative for disease discrimination
than the particular frequencies involved. Note that we were still able, post-hoc, to infer
which frequency bands were most informative by deducting which particular heat maps
were most informative in the final latent space.

It is also notable that many of the DC connections in the latest space appear ipsilateral
to the hand in the finger tapping and tremor tasks (Figure 6). While mirror movements
have been suggested as a reason for ipsilateral activation in PD subjects [40], it is important
to note that the features we isolate best discriminate between PD and HC subjects. PD
subjects tend to demonstrate more bilateral activation with unilateral movement than HC
subjects [41]. Thus, the connections we found that best discriminate between PD and HC
subjects will tend to be ipsilateral to the movement. We note that most of the discriminating
features are in the beta-band (Table 7). This is hardly surprising, given the prominent role
of altered beta-band oscillations in PD pathophysiology [42].

The proposed method had better results in terms of the accuracy, precision, AUC, and
F1 score compared to when only the last four layers were fine-tuned (A2), a prior DL model
on the same data set [8], and another deep learning approach for PD diagnosis [36], with
approximately 10% of the run time of [8]. This likely reflects the relatively small data set,
so that the other DL approaches could not fully capture the discrimination subspace given
the data available. The transfer learning approach, adopted here, would appear to make
discrimination tasks on smaller data sets more feasible.

Finally, we note that the maximum values of a feature originated from different
connections, different subjects, and different bands. This suggests that the features we
found were not based on overfitting a small subset of subjects.

5. Conclusions

Computing DC in the EEG provided us with an innovative technique to generate
image representation of the 1D signal. Transfer learning achieved excellent classification
performance and provided a latent space that is more closely related to clinical indices. Our
results suggest transfer learning applied to an image classifier incorporating heatmaps may
provide a way to assist in the classification of small-sample data sets.
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The best performance of the proposed model, classifying PD and HC subjects, is
shown in Figure A1.
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In an alternative technique, we froze the weights of convolutional layers of the pre-
trained model and updated only the last four layers with our data is shown in Figure A2. In
addition, the details of the network are given in Tables A1 and A2 and the best performance
of the network is shown in Figure A3.
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Table A1. Limited-trained model’s characteristics.

First Model

Optimizer Adam

Learning rate 0.01

Decay 0.001

Batch size 8

Loss function Binary cross entropy

Table A2. Limited-trained model’s summary.

Layer Output Shape Param

Functional VGG16 (None, 7, 7, 512) 14,714,688

Max Pooling (None, 1, 1, 512) 0

Flatten (None, 512) 0

Dense (None, 64) 32,832

Dense (None, 2) 130

Total params: 14,747,650
Trainable params: 32,962

Non-trainable params: 14,714,688
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Figure A5 depicts the mean value of the beta after 30 runs of LASSO.
If any element of the average beta vector is nonzero in at least 70% of the 30 runs,

then that element is used in the final set of coefficients otherwise it is discarded. In fact,
LASSO coefficients in different runs can be variable, and this causes unstable results. So,
we heuristically found that stability over 70% of the runs leads to more reliable outcomes.
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