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Abstract: In this article we present a class of mixed Poisson regression models with varying dispersion
arising from non-conjugate to the Poisson mixing distributions for modelling overdispersed claim
counts in non-life insurance. The proposed family of models combined with the adopted modelling
framework can provide sufficient flexibility for dealing with different levels of overdispersion. For
illustrative purposes, the Poisson-lognormal regression model with regression structures on both
its mean and dispersion parameters is employed for modelling claim count data from a motor
insurance portfolio. Maximum likelihood estimation is carried out via an expectation-maximization
type algorithm, which is developed for the proposed family of models and is demonstrated to
perform satisfactorily.

Keywords: EM algorithm; regression structures on the mean and dispersion parameters; non-life

insurance; claim frequency

1. Introduction

During the last three decades, mixed Poisson regression models have been applied in
various fields of studies, including non-life insurance for modelling overdispersed claim
count data. The members of this family of models, which can be constructed based on a
mixing distribution which is conjugate to the Poisson distribution, such as the negative
binomial and the Poisson-inverse-Gaussian, have been the most popular choices due to
the simplicity of their log-likelihood functions, which can be easily maximized using the
standard maximum likelihood (ML) estimation approach. See, for example, Refs. [1-3]
for the former and [4—6] for the latter, among many others. However, it should be noted
that the assumption of conjugancy can be very restrictive for constructing a mixed Poisson
model that will be able to efficiently capture different levels of overdispersion in real claim
count data sets. In particular, as is well known, overdispersion is a direct consequence
of unobserved heterogeneity due to systematic effects in the data. For example, in motor
insurance, the driving skills, preferences, habits, and driving experience of policyholders,
which differ, may lead to extra variation in the claim count data, the degree of which is con-
trolled by the value of the dispersion parameter of the mixed Poisson model. Furthermore,
overdispersion can either be caused by a large presence of zeros or a heavy tail in the data.
Regarding the latter case, as is well known, the tails of mixed Poisson distributions in the
case of continuous mixing distributions are similar to the tails of their mixing distributions
(see, for instance, Ref. [7]). Therefore, restricting attention only to mixed Poisson models
which are derived based on conjugate to the Poisson mixing densities may result in biased
parameter estimates because of their inability to always efficiently model the tail of claim
count distribution. This, in turn, may have a profound impact on many tasks which are
carried out by the actuaries, such as risk management and pricing of (re-)insurance con-
tracts. Thus, it becomes clear that an important task of actuaries is to be able to design more
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representative probabilistic models for the number of claims with good prediction accuracy.
This procedure depends on the reliability of the statistical method which will be used to
construct them.

The aim of this article is to present a general class of mixed Poisson regression models
with varying dispersion stemming from non-conjugate C? densities with a continuous
first derivative and a continuous second derivative. The class of mixed Poisson models
we consider is very wide and the flexibility it provides in (i) the distributional choice
for the mixing density and (ii) modelling jointly the mean and dispersion parameters as
parametric functions of risk factors allows us to add the required amount of weight to
the right tail area of the claim count distribution for accommodating different levels of
overdispersion, thus resulting in an improved risk evaluation. At this point, it should
be noted that, with the exception of very few articles, such as those by [8-10], modelling
jointly all the parameters of mixed Poisson models in terms of explanatory variables
has not been explored in depth. Nevertheless, mean regression models often cannot
adequately account for the heteroscedasticity of the claim count distribution or its possible
dependence on risk factors. In addition, note that in [9], the exponential family distribution
assumption for the univariate response variable is relaxed and replaced by a general
distribution family, including distributions based on Box-Cox transformations (such as the
Box—Cox t-distribution or the Box-Cox power exponential distribution) and zero adjusted-
distributions. However, to the best of our knowledge, this is the first study to consider
regression structures on the mean and dispersion parameters of univariate mixed Poisson
models that have a probability mass function (pmf) which cannot be written in closed-
form expressions. For demonstration purposes, the Poisson-lognormal (PLN) regression
model with varying dispersion is fitted on a motor third-party liability (MTPL) insurance
claim count data set using an expectation-maximization (EM) type algorithm, which takes
advantage of the stochastic mixture representation of the proposed family of models which
have a density that cannot be written in closed form in an easy and efficient manner.
Moreover, it is worth noting that the development of stochastic algorithms, such as the EM
and stochastic gradient descent algorithms, is of particular importance in machine learning
and artificial intelligence applications, as they can be employed for efficiently calibrating
various statistical models and deep networks. Two very interesting recent articles are those
by [11,12].

The rest of this article is structured as follows. In Section 2, we present the derivation
of the proposed mixed Poisson regression model with varying dispersion for claim counts.
Section 3 deals with the ML estimation procedure for the PLN regression model with
varying dispersion based on the proposed EM-type algorithm. Section 4 contains an
application to the MTPL claim count data, and we fit the PLN claim count regression model
with varying dispersion. In addition, the negative binomial regression model with varying
dispersion and the zero-inflated (ZIP) Poisson regression model are used as benchmarks
for comparison. Finally, concluding remarks are provided in Section 5.

2. Mixed Poisson Regression Model with Varying Dispersion
2.1. Modelling Framework

Consider a non-life insurance portfolio with n policyholder contracts each involving
a particular claim type, and assume that the individual claim frequencies, k;, arising
from each insured i, for i = 1,...,n, are independent. In addition, suppose that given a
continuous random variable, z; > 0, k;|z; is distributed according to a Poisson distribution
with probability mass function (pmf) given by

k:
P(ki|zi) — p( ylkl')(,ul 1) , (1)
!
for k; = 0,1,2,..., and where y; > 0. The mean and variance of k;|z; are E(k;|z;) =

Var(ki|z;) = uiz;.
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Furthermore, consider that z; is distributed according to a C? mixing distribution,
with probability density function (pdf) g(z;; ¢;), with ¢; > 0, which is not conjugate to the
Poisson distribution given by Equation (1). Additionally, we assume that z; has a unit
mean, that is, E(z;) = 1, to ensure that the model is identifiable.

Considering the previous assumptions, we see that the resulting distribution of k; is a
mixed Poisson distribution with pmf

Plk) = [ Plkilz)g s 40 @
where ¢(z;; ¢;) is the pdf of z;. In addition, the mean and the variance of k; are given by

E(k;) = E[E(ki|z;)] = piEz[zi] = wi @)

and
Var(k;) = E,[Var(k;|z;)] + Vary, [E(k;|z;)]. 4)

Finally, under the proposed modelling framework, the mean and dispersion parame-
ters, y; and ¢;, are modelled as functions of risk factors

pi = exp(xq ;B1) (5)

and

¢; = exp(x,,;B2), (6)
where x;; and xp; are the, potentially different, vectors of explanatory variables with
dimensions p; x 1 and p; X 1, respectively, and where 1 = (11, ... ,,31,75,1)T and B, =

(B21,---/Bop,) T are vectors of regression coefficients, where we consider that the matrices
X1 and X are of full rank and are composed of the rows given by x; ; and x; ;, respectively.

2.2. Model Specification: The Poisson-Lognormal Regression Model with Varying Dispersion

For expository purposes, we specify the lognormal distribution as the mixing distribu-
tion of z; with the following pdf

1 1 2\?
8(zi; i) = \/TT(PZ exp [_N’z <log(zi) + 2l> ] , @)

where z; > 0 and ¢; > 0, with mean E(z;) = 1 and variance Var(z;) = exp(¢?) — 1.
Then, based on Equations (1) and (7), it is easy to see that the resulting distribution of
k; is the Poisson-lognormal (PLN) distribution with pmf

) 1 2\’
P Ta (log(zi) + 2’)
P(k;) = exp(—pizi) (Hizi) dz;, ®)
k;! V2 iz,
0

where y; > 0 and ¢; > 0 are given by Equations (5) and (6), respectively. Unfortunately,
since g(z;; ¢;) is not conjugate to the Poisson, the integral in Equation (8) is mathematically
intractable, but it can be easily calculated using numerical integration.

Using the results in Equations (3) and (4), we calculate the mean and the variance of
the PLN regression model with varying dispersion

E(ki) = E,[E(ki|z;)] = piEz[zi] = wi )
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and
Var(k;) = Ez, [Var(ki\Zi = Z,’)] + Varyg, [E(k,‘|Z,‘ = Z,’)]
(10)
= i+ [exp(97) —1).

3. Statistical Inference: The EM-Type Algorithm

Let (ki,x14,%24),i =1,...,n, be a sample of independent observations, where k; is the
response variable, and x; ; and x, ; are the vectors of explanatory variables with dimensions
p1 X 1 and py x 1, respectively. In addition, suppose that the data are produced according
to the mixed Poisson model with varying dispersion. Then, the log-likelihood of the model
can be written as

- élog(P(ki», a1

where 6 = (8,8, ) " is the vector of the parameters, and where P(k;) is the pmf of the
model which is given by Equation (2). It should be noted that the likelihood given by
Equation (11) is cumbersome to maximize since it is not usually tractable. Moreover, when
the mean and dispersion parameters are modelled in terms of risk factors, additional
computational challenges can be encountered.

However, ML estimation can be accomplished relatively easily via an EM-type al-
gorithm. In particular, if the unobserved data z; are augmented to the observed data
(ki,x11,X4), fori =1,...,n, then the complete data log-likelihood factorizes into two parts

n

1(8) =) {— pizi + kilog(u;) + kilog(z;) — log(k;!) ] + Zlog (zizdi)) (12
i=

where g(z;; ¢i) is the pdf of the mixing distribution which is not conjugate to the Poisson,
and where y; and ¢; are given by Equations (5) and (6) respectively.

The EM-type algorithm for the mixed Poisson regression model with varying disper-
sion can be described as follows

¢  E-Step: The Q-function, which is the conditional expectation of the complete data
log-likelihood, is given by

Q(6;0")) = Ex, (1(0)|K, 81 ) (13)
Y [ Es, (zilki; 00) + ki log (1)) (14)
i=1

f E-,[log(g(z:;9("))] (15)

where 8(") is the estimate of 6 at the rth iteration in the E-step of our EM algorithm.
Then, using the estimates 8("), calculate the pseudo-values wq, = Ez,(zilki; 6(")) and
wy, = Ez(sx(Zi)|ki; 8")) fori = 1,...,nand k = 1,...,v, where s;(.) are certain
functions which are involved in the terms needed for maximizing the part of the
Q-function which corresponds to the conditional expectation of the log-likelihood of
the mixing distribution g(z;; ¢;).

*  M-Step: Using the pseudo-values wy, and wy, from the E-Step and the Newton-
Raphson algorithm twice, find the maximum global point 8 +1) of the Q-function,

that is, obtain the updated estimates ,Bgrﬂ) and ,Bgrﬂ).
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—  Firstly, taking the necessary derivatives of the Q-function with respect to B4,

we obtain the following results

1G] n
h(B1) = M Z( wl + ki )xl,ij/ (16)

8,814 i=1

and

82Q<6'6()> "
_ g _ (r) T _ T
Hy(B1) = 91,96, —i:Zl(—m wli)xl,ijxl,i]-—xl WX, (17)

fori=1,...,nandj=1,...,p1, and where W} = dlag{ kwl}
I

Then, the iterative procedure for the Newton—-Raphson algorithm for ; goes as

follows 1
B = 50— [11 (80)] (), s

- Secondly, differentiating the Q-function with respect to B, gives

2Q(6;0%)) _ 9E: [logg(zi 4]
B2, 9B2,1

ha(B2) = (19)

and
2Q(6;01))  9E: [log g(z;: ¢
9B2,10B 9B2,1087

where for computing /1 (B2) and Hz(B2), we need to use the pseudo-values wy,
fori =1,...,nand k = 1,...,v, because in this case, the maximization of the
Q-function reduces to the maximization of the conditional expectation of the
log-likelihood of the mixing distribution g(z;; ¢;).

Then, the Newton—-Raphson iterative algorithm for 8, is as follows

HZ(ﬁZ) = ’ (20)

BT = BY) — [Hy (B T (BY), (21)
fori=1,...,nand! =1,...,ps.

Finally, iterate between the E- and the M-5Steps until some convergence criterion is
satisfied, for instance
l(r+1) _ l(r)

e < tol, (22)

where (") is the value of the log-likelihood after the r-th iteration, and where tol is
a small number usually of the form 10~™, where m € Z". The stopping criterion
refers to the progress of the likelihood function (i.e., its convergence). If the stopping
criterion is satisfied, the EM algorithm stops iterating, and the estimate of 8 is 8 *1),
Otherwise, 0 is updated by 8U*1), and the algorithm returns to the E-step.



Algorithms 2022, 15, 16

6 of 13

EM Estimation for the PLN Regression Model with Varying Dispersion

In this section, we implement the EM algorithm for finding the ML estimates of the
parameters of the PLN regression model with varying dispersion (Algorithm 1). The
complete data log-likelihood of the model is given by

™=

l(0) = [—pizi + kilog(p;) + kilog(z;) — log(k;!)] +

Il
_

n

1 29?2

1

1 1 ¢? ?
—5 log(27) ~log(¢1) ~log(zi) — 5 > | log(z) + 75 | |, (@3)

fori =1,...,n. Thus, the posterior expectations needed for the E-step are E;, [zi |ki; B(r)}

and E;; (log(zi))*|ki; 9(’)] , while at the M-step one needs to maximize the expected value

of I.(0) with respect to 6. In particular, more formally, the EM-type algorithm can be written
as follows.

Algorithm 1 EM Algorithm for the PLN Regression Model with Varying Dispersion
1. Provide initial values 8(%) = (B0, 83).
2. (E-step) Update the conditional expectations w;, = E [zi |k;; 6(7)} and wy, =

E {log(zi)2|ki; 6(7)} using ), fori = 1,...,n from the rth iteration.
3. (M-step) Find the maximum global point, 8+, of the log-likelihood function

Q(6;01).
+1) _j(r)

4.  If the criterion ‘NT < tol is satisfied, the estimate of 6 is 871 . Otherwise,

update 8") by 801 and return to step 2.

e  E-Step:
Calculate, foralli =1,...,n,

wy, = E[zi|ki;6(r)}

2
ki i v r)zi
zj exp |:_2(q),1)(7) <log(z,-) + (¢2) ) - V,( ) ]dzi

o]

= (24)
- 1 @D\ o
z;" exp _W log(z;) + ~~— | —pu; ' |dz
0
and
= E[log(zi)2|ki;9(r)}
2 ki—1 1 (4’2)(r) 2 (r)z;
(log(zi))“z;" " exp ") log(z;) + ~5— | —p; 7 |dz
= = (25)

2
2\ (1) )
zf"*l exp —ﬁ log(z;) + (47"2) — yfr)z’ dz;
0 2(¢7)

where yl@ = exp (x[iﬁg”) and 4’1@ =exp (sz,i.Bgr))'
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Note that the expectations in Equations (24) and (25) can be evaluated numerically.
Alternatively, a Monte Carlo approach can be used based on a rejection algorithm,
leading to variants of the EM algorithm, such as the Monte Carlo EM (MCEM) algo-
rithm, which do not rely on the pdf g(k;|z;), that cannot be written in closed form, but
it is sufficent to simulate from the posterior distribution g(z;|k;, x1,X2,7)-

e  M-Step:

- Firstly, the regression parameters 1 are updated using the pseudo-values wy,,
which are given by Equation (24), and the Newton—-Raphson algorithm, which is
given in Equations (16)—(18).

- Secondly, the regression parameters B, are updated using the pseudo-values wy,
and w,,, which are given by Equations (24) and (25), respectively, and the Newton—
Raphson algorithm, which, in the case of the lognormal mixing distribution, is as
follows

21 (7)
hZ(ﬁ2) = [(¢f;1(r) - ((Pl4) - 11 X2,ils (26)

i

and

Hy(B2) = Xn:

i=1

2w 2 (7)
l( 2, _ ((lbl) ]xZ,ileil = X;WZXZ, (27)

_ 2\ (r)
fori=1,...,nand! =1,...,pp, and where W, = diag{ 2 (47) }

1
R

1

Then, we can obtain the updated estimates of ﬁ(zr) as follows

R LD RGN

4. Numerical Illustration

This study was based on a subset of claim frequency data from a pool of MTPL
insurance policies observed for 3.5 years from a major Greek insurance company. A total
of 14,143 observations with complete records (i.e., with availability of all the explanatory
variables) were taken for our analysis. The response variable is the number of claims at
fault registered for each insured vehicle. In addition, a subset of explanatory variables with
the highest predictive power for the response variable was chosen based on exploratory
analysis. In particular, we considered the following covariates: the age of the driver (AD),
the horsepower (HP) of their car, and the age of their car (AC). Additionally, we grouped
the levels of each a priori rating variable with respect to risk profiles with similar claim
frequency in order to balance homogeneity as well as sufficiency of the volume of data in
each cell.

The summary of the explanatory variables and their corresponding groupings with
the number of observations in each category along with the descriptive statistics for claim
counts are shown in Table 1.

Table 1. Descriptive statistics of claim counts and the size of the different categories of the explana-
tory variables.

. .. Age of the Horsepower of Age of the
Statistic Value Driger (AD) the }éar (HP) gar (AQ)
#Obser- 143 Cl: 3238 Cl: 5042 Cl: 4318
vations

Minimum 0 C2: 10,905 C2: 9101 C2: 9825
Median 0 - - -
Mean 0.4827 - - -
Variance 0.6988 - - -
Maximum 12 - - -
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In the following subsection, we fit the Poisson-lognormal (PLN) regression model on

the number of claims. Moreover, we will compare its fit with those of the classic negative
binomial type I (NBI) distribution, which has been used in an abundance of actuarial
settings for approximating claim counts, for the case when regression components are
introduced on its mean and dispersion parameters. Finally, the high presence of zeros in the
MTPL data set motivates the use of zero-inflated models, which can provide a parsimonious
yet powerful way to handle data sets that contain a large number of zeros. In this study, the
zero-inflated Poisson (ZIP) regression model will be used as a benchmark for comparison.

The NBI regression model with varying dispersion is derived as follows. Consider pol-
icyholderi, i =1, ...,n, whose number of claims, denoted as k;, with k; =0,1,2,3, ...,
are independent. In addition, assume that k;|, z; follows a Poisson distribution with
pmf given by Equation (1), and z; follows a Gamma distribution with pdf given by

(29)

where ¢; > 0. Parameterization (29) ensures that E(z;) = 1, and hence the model is
identifiable.
Then, the unconditional distribution of k; becomes an NBI distribution, with pmf

given by
P(ki) = r(kﬁf;f)( Pitti >ki( 1 >¢1 (30)
kilf(%) T+ ipi ) \1+ ipi
The mean and the variance of the NBI distribution are given by

E(ki) = pi (31)

and
Var(ki) =M+ ]/1124)1 (32)

The mean and dispersion parameters of the NBI distribution are modelled in terms of
covariates

exp (x1T,i.B1> and (33)
exp(v1,82), (34)

Hi
¢

where x; ; and x, ; are covariate vectors with dimensions p; x 1and p, x 1, respectively,

with B1 = (B11,---, ,BLpl)T and B2 = (Bo1,--- ,/Szlpz)T the corresponding parameter
vectors, and where it is assumed that the matrices X; and X5, with rows given by x ;
and x, ;, respectively, are of full rank.

The pmf of the ZIP regression model is given by

m+ (1 —mexp(—p;), ifk;=0

P(k;) = —Zili (5. ki (35)
b (1—m) Bl ek =1,2,3...
The mean and the variance of the ZIP distribution are given by
E(ki) = pi(1 —7) (36)

and
Var(k;) = pi(1— 7)1 + p;], (37)
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where p; = exp(xlTiﬂl), and where x1 ; is a covariate vector with dimension p; x 1,

with B1 = (B11,---, ,Bl,pl)T the corresponding parameter vector, and where it is
assumed that the matrix X; with rows given by x; ;, respectively, are of full rank
(note that 7t can also be modelled in terms of covariates using the logit link function.
However, we refrain from doing this in this paper since this approach did not lead to
better fitting performances for the ZIP model for the MTPL data).

4.1. Modelling Results

The ML estimates of the parameters (all the parameters were statistically significant at
a 5% threshold) for the NBI and PLN regression models with varying dispersion and the ZIP
regression model are presented in Table 2. Note that variable selection can be performed for
all the models by selecting the best predictor for parameter y; using backward elimination.
This can be done by including all available explanatory variables present in the data set
and testing whether the exclusion of each variable will result in lower global deviance
(DEV), Akaike information criterion (AIC), and Schwartz Bayesian criterion (SBC) values.
Subsequently, in the case of the NBI and PLN models, we can take all the variables selected
for the parameter y; and continue variable selection for the parameter ¢; by performing
forward selection, where we can test which explanatory variable would lead to a further
decrease of the DEV, AIC, and SBC values when added to parameter ¢;. Additionally,
if different subsets of explanatory variables result in very similar values of DEV, AIC,
and SBC, we should chose the simpler model with less predictors to avoid overfitting.
Regarding our data, as we can see from Table 2, the explanatory variables AD, HP, and AC
were chosen for y;, and only the variable AD was chosen for ¢;.

Table 2. Parameter estimates of the ZIP regression model and the NBI and PLN regression models
with varying dispersion.

NBI Z1p PLN
Coeff. 81 Coeff. B Coeff. B4
Intercept —0.4729 Intercept -0.1277 Intercept —0.4709
AD CS CS
c2 —1.2390 2 —1.2454 c2 —1.2360
HP HP HP
2 1.0378 C2 0.9892 2 1.0469
AC AC AC
c2 —0.6481 c2 —0.6398 c2 —0.6586
Coeff. B> Coeff. B
Intercept —2.4935 Prob. 7 0.3032 Intercept —1.0969
AD CS
2 0.8878 c2 0.3481

From the results in Table 2, we observe that the values of the estimated regression
coefficients of the variables AD, HP, and AC have a similar effect (positive and /or negative)
on parameter y; in the case of all the models, and the same observation can be made for
parameter ¢; in the case of the NBI and PLN models.

Finally, we rely on normalized quantile residuals [13] as an exploratory graphical
tool to help us evaluate the adequacy of the fit of the NBI, ZIP, and PLN models. For
these discrete response distributions, the normalized (randomized) quantile residuals are
defined as #; = ®!(u;), where ®~! is the inverse cumulative distribution function of a
standard normal distribution and where u; is defined as a random value from the uniform

distribution on the interval {Pi(ki . 1|6(’+1)),Fi(ki|6<’+1))} , Where F; is the cumulative
distribution function estimated for the ith policyholder, and where 8("+1) contains the

estimated model parameters after the EM algorithm has reached the global maximum, and
k; is the corresponding observation. The fit of the claim count model can be evaluated
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Sample Quantiles

Negative Binomial Type | Q-Q Plot

by means of the usual quantile-quantile plots. Specifically, if the data indeed follow the
assumed distribution, then the residual on the quantile-quantile plot will fall approximately
on a straight line. Figure 1 shows the normalized (random) quantiles for the ZIP regression
model and the NBI and PLN claim frequency regression models with varying dispersion.

Zero-Inflated Poisson Q-Q Plot Poisson-Lognormal Q-Q Plot

Sample Quantiles
Sample Quantiles

Theoretical Quantiles

Theoretical Quantiles. Theoretical Quantiles

Figure 1. Normalized quantiles for the ZIP regression model and the NBI and PLN regression models
with varying dispersion.

From Figure 1, we observe that the residuals indicate that the NBI and PLN are better
assumptions than the ZIP model since the residuals of the former two are close to the right
tail of the claim frequency distribution. Furthermore, the PLN model seems to fit the claim
count data slightly better than the NBI model, since, as was previously mentioned, the
tail of mixed Poisson models is equivalent to the tail of their mixing distributions [7], and
in this case the lognormal mixing density has a thicker right tail than the Gamma mixing
density. Therefore, overall it is reasonable to suggest the employment of the PLN model
for modelling claim counts in our data set. As we are going to observe in what follows,
the PLN model also provides better fitting performances than the NBI and PIG models in
terms of the DEV, AIC, and SBC values.

4.2. Models Comparison

In this subsection, we compare the fit of the ZIP regression model and the NBI and
PLN regression models with varying dispersion based on DEV, AIC, and SBC, which are
classic hypothesis/specification criteria.

The DEV is defined as

DEV = —2i(), (38)

where [ is the maximum of the log-likelihood, and § is the estimated parameter vector of
the model. Furthermore, the AIC and the SBC are given by

AIC = DEV +2 x df (39)

and

SBC = DEV +log(n) x df, (40)

where df are the degrees of freedom, and # is the number of observations in the sample.
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The resulting DEV, AIC, and SBC values for the competing models are presented in
Table 3. We observe that the PLN regression model provides the best fit with respect to all
three criteria.

Table 3. ZIP regression model and NBI and PLN regression models comparison.

Specification Criteria Values

DEV AIC SBC
NBI 15,885.1 15,897.1 15,940.1
VALY 16,052.2 16,062.2 16,098
PLN 15,859.4 15,871.4 15,9144

4.3. Computational Aspects

All computing was made using the programming language R. The PLN regression
model with varying dispersion was estimated using the EM algorithm, which was presented
in Section 3. In addition, the ML estimates of the parameters of the NBI regression model
with varying dispersion and the ZIP regression model were obtained using the generalized
additive models for the location, scale, and shape (GAMLSS) package in R [14].

Note that a rather strict criterion was used, and it took the algorithm quite a large
number of iterations to converge. In particular, the stopping criterion was set as tol = 10712,
Note also that the M-step involves two Newton-Raphson iterations, and hence it is impor-
tant to identify the choice of meaningful initial values for the vectors B and B, as this can
increase increase the computational time requirements for the EM algorithm and make it
more difficult to locate the global maximum. We obtained good initial values for 1 by
fitting the simple Poisson regression. Additionally, we obtained good initial values for B,
by (i) calculating Var(k;) for the eight different risk classes which can be formed using all
available risk factors and the observations i = 1,...,n and (ii) calculating E(k;) for the
eight different risk classes and using the log-link function for ¢; (see Equation (6)), so we
solve Equation (4) with respect to 2. However, we also checked with many other starting
values for 8, in order to ensure that the global maximum had been obtained. For all cases,
the EM algorithm converged to a similar solution. The standard errors were computed by
using the standard approach of [15].

Finally, as was anticipated, in terms of CPU time, it took the NBI regression model
with varying dispersion and the ZIP regression model less than one minute, and they
both compared significantly more favorably to the PLN regression model with varying
dispersion, which exceeded 30 min of CPU time. However, it should be taken into account
that the PLN model has a density which does not exist in closed form, and that there were
14,143 observations in the sample of MTPL data that was examined in this article. For larger
data sets with more features, the computing effort can be reduced if the E- and M-steps are
executed in parallel across multiple threads to exploit the processing power of modern-day
multicore machines.

5. Conclusions, Limitations, and Future Research

In this article, we considered a family of mixed Poisson claim count regression models
with varying dispersion and dependence parameters arising from non-conjugate mixing
distributions for approximating overdispersed claim frequencies in non-life insurance. The
flexibility in the choice of the mixing distribution combined with the proposed approach,
which assumes that the mean and dispersion parameters of the model can be modelled
in terms of risk factors, can provide an advantage relative to the majority of previous
approaches in the literature, which have concentrated on mixing densities conjugate to the
Poisson mixing and assumed that only the mean parameter can vary through covariates.
From a practical business standpoint, the proposed modelling framework is beneficial for
the insurance company, as it will result in an improved risk evaluation of policyholders
who are more likely to have accidents, since the tail behaviour of mixed Poisson models is
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similar to that of the mixing density and the majority of heavy-tailed mixing distributions
are not conjugate to the Poisson.

The PLN regression model with regression specifications on its mean and dispersion
parameters was considered for expository purposes. Furthermore, we developed an
efficient EM algorithm for maximum likelihood estimation of the parameters of the model.
The implementation of the algorithm was illustrated by fitting the model to a real MTPL
insurance data set. An interesting line for further research would be to extend the model
to the multivariate case to permit inferences about the dependence structure between
different types of overdispersed claim counts from the same and/or different types of
coverage. However, it should be noted that the PLN model becomes more complicated
in the two-dimensional setting due to algebraic intractability, which is a problem that is
inherited from the univariate case. Moreover, modelling all the parameters of the PLN
model in terms of covariates can further increase the computational burden in the high-
dimensional setting. Finally, another fruitful future research direction is to include time
series components to take into account both cross-dependence between different types of
claims and time dependence.
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Abbreviations

The following abbreviations are used in this manuscript:

EM Expectation-maximization

NBI Negative binomial type I

MCEM Monte Carlo expectation-maximization
ML Maximum likelihood

MTPL  Motor third-party liability

pdf Probability density function

PLN Poisson log-normal

pmf Probability mass function

ZIP Zero-inflated Poisson
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