
����������
�������

Citation: Kedodus, F.E.; Nakib, A.

Optimal CNN–Hopfield Network for

Pattern Recognition Based on a

Genetic Algorithm. Algorithms 2022,

15, 11. https://doi.org/10.3390/

a15010011

Academic Editors: El-ghazali Talbi,

Bernabe Dorronsoro, Lionel Amodeo,

Vincenzo Cutello and Mario Pavone

Received: 9 November 2021

Accepted: 20 December 2021

Published: 27 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Optimal CNN–Hopfield Network for Pattern Recognition Based
on a Genetic Algorithm †

Fekhr Eddine Keddous and Amir Nakib *

Laboratoire LISSI, University Paris Est Creteil, 94000 Creteil, France; fekhr-eddine.keddous@univ-paris-est.fr
* Correspondence: nakib@u-pec.fr
† This paper is an extended version of our paper published in the proceedings of the 2021 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), Portland, OR, USA, 17–21 June 2021.

Abstract: Convolutional neural networks (CNNs) have powerful representation learning capabilities
by automatically learning and extracting features directly from inputs. In classification applications,
CNN models are typically composed of: convolutional layers, pooling layers, and fully connected
(FC) layer(s). In a chain-based deep neural network, the FC layers contain most of the parameters
of the network, which affects memory occupancy and computational complexity. For many real-
world problems, speeding up inference time is an important matter because of the hardware design
implications. To deal with this problem, we propose the replacement of the FC layers with a Hopfield
neural network (HNN). The proposed architecture combines both a CNN and an HNN: A pretrained
CNN model is used for feature extraction, followed by an HNN, which is considered as an associative
memory that saves all features created by the CNN. Then, to deal with the limitation of the storage
capacity of the HNN, the proposed work uses multiple HNNs. To optimize this step, the knapsack
problem formulation is proposed, and a genetic algorithm (GA) is used solve it. According to the
results obtained on the Noisy MNIST Dataset, our work outperformed the state-of-the-art algorithms.

Keywords: convolutional neural networks (CNN); recurrent neural network (RNN); Hopfield neural
network; genetic algorithm; knapsack problem; classification

1. Introduction

In the last decade, convolutional neural networks (CNNs) have become the standard
methods for pattern recognition and image analysis. Indeed, they have provided highly
successful advances in image classification problems [1–3]. CNNs are auto-encoders, which
means that they encode or extract features automatically with any specific fitting [4,5]; this
characteristic has increased their utilization in computer vision tasks, such as semantic
segmentation tasks [6–9], image retrieval [10–12], and object detection [13–15]. However,
one of main problems regarding their use in industrial systems comes from the computation
time and the use of memory resources. This is because classic CNN-based architectures
have at least one fully connected layer (FC) depending on the architecture’s depth [16,17].
Figure 1 illustrates some popular examples of CNN models, where it can be clearly seen that
the FC layer(s) contains most of the parameters of the network [1]; for instance, AlexNet [18]
has about 64 million learnable parameters, and 91.56% of these parameters belong to the
last three FC layers of the model; the same observation applies to the Lenet5 [19], VGG16 [1],
and VGG19 [1] models. The majority of learnable parameters are in their FC layers, with
89.18%, 89.58%, and 86.11%, respectively, out of the total number of parameters that can
be learned.

In the literature, some authors, such as those of [20], proposed the replacement of
the FC layer with an associative memory bank. Indeed, this use of memory overcame the
problems related to backpropagation; the features extracted from the CNN layers were

Algorithms 2022, 15, 11. https://doi.org/10.3390/a15010011 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15010011
https://doi.org/10.3390/a15010011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9620-9324
https://doi.org/10.3390/a15010011
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15010011?type=check_update&version=1

Algorithms 2022, 15, 11 2 of 18

stored in the memory and then recovered at the inference phase. However, the storage
capacity of the memory scheme remains a serious problem to be solved.

Figure 1. Ratio of the number of FC parameters to the total number of parameters in some well-known
CNN models.

To deal with this problem, many authors have proposed alternatives to the classi-
cal neural network learning rules, such as in [21–23], and they have provided valuable
information on the properties of attention heads in transformer architectures [24]. The
contributions of this paper can be summarized in the following:

• New hybrid CNN–RNN (recurrent neural network) architecture and approach and its
optimization.

• Inference acceleration of a CNN-based architecture.
• Formulation of the optimization of the architecture as a knapsack problem.

The architecture uses a pretrained CNN classification model to extract feature maps
from the input images. The use of an associative memory bank (the Hopfield neural
network) allows the replacement of the fully connected layer and, therefore, the large
number of trainable weights (parameters) while preserving the performance. In order to
increase the storage capacity and minimize the effects caused by the spurious states, several
Hopfield networks are used in parallel.

In the following, in Section 2, we present an overview of the framework, while in
Sections 3 and 4, the classical Hopfield model and a detailed description of the new
formulation of the problem are presented. In Sections 5 and 6, the dataset used for the
experimentation and the discussion of the obtained results are presented. Finally, the paper
is concluded in Section 7.

2. General Description of the Method

In this section, an overview of the architecture of the proposed method in its two
phases—the training phase and the inference phase—is presented. Then, an architecture
based on multiple parallel HNNs, which replaces the fully connected layer of the CNN,
is discussed, and the strategy for distributing the patterns among a set of HNNs in the
parallel architecture is analyzed.

Feature Extraction

As shown in Figure 2, a pretrained CNN model is used for feature extraction. These
features come from the last layer before the dense (fully connected) layers.

During the training phase, the architecture uses a pretrained CNN classification model
to extract feature maps from an input image. The process consists of:

1. Extraction of the class-specific feature set: a set of all features of an image.

Algorithms 2022, 15, 11 3 of 18

2. Averaging of the pixels’ gray level from the class-specific feature set.
3. Conversion of the training patterns into binary patterns and distribution over K

parallel Hopfield networks.

In the inference phase, the same pretrained CNN is used to extract the feature maps
from the input image. Then, the binary pattern of the input image is sent to all HNNs.The
correct network among all of the networks (which converges to a state that is very close to
the input state) is selected based on the comparison of the states of the networks with the
input pattern and the number of changes that each one has produced. Then, the network
that has produced the fewest changes in the input pattern is selected.

(a)

(b)

Figure 2. Overview of our hybrid CNN–RNN architecture. (a) training process; (b) inference process.

3. Recall of the Hopfield Neural Network

One of the well-known recurrent neural networks is the Hopfield network (HNN) [25–29].
This NN can be seen as an associative memory and has been applied in a large number
of applications, such as classification [23,30], optimization [31–33], image processing [34],
control [35], and solving blind detection problems [36,37].

A Hopfield network consists of a set of interconnected neurons N that update their
activation values asynchronously and independently of other neurons. A neuron i is
characterized by its state Si = ±1. The principle of HNNs is to save binary patterns of the
form {+1,−1}N , and then to use a rule, called Hebb’s rule, to learn them. In the inference
phase, these patterns are then predicted via a noisy input vector. Its robustness to noise is
very interesting in several kinds of applications. The “energy” of the Hopfield networks is
defined by:

E = −1
2

N

∑
i,j

SiSjwij (1)

where w is the weight associated with neurons i and j. Si is the state of neuron i. This
quantity is considered as a Lyapunov function; it remains stable or decreases when the
network states are updated. The HNN will converge to a local minimum in the energy
function under repeated updating. So, the optimal values of the weights are those that
minimize the energy function. Furthermore, the theoretical storage capacity of the HNN,
under the assumption of the stability of all the patterns, is defined by [25]:

Pmax =
N

4 ln N
(2)

where Pmax denotes the maximum number of uncorrelated patterns that can be stored in
the N-neuron recurrent network [38]. Each pattern stored corresponds to a local minimum
of the energy defined in (1). Recently, many works proposed new learning rules and new
energy functions that improved Hopfield networks’ properties. The storage capacity was

Algorithms 2022, 15, 11 4 of 18

about 0.138× N [32,33,39]. In [40], N patterns could be stored when the learning rate was
not related to Hebb’s rule. The use of new energy functions, such as interaction functions
of the form of F(x) = xn, as in [21,41], provided a storage capacity proportional to Nn−1.
A modern energy function based on interaction functions of the form of F(x) = exp(x)
yielded a storage capacity of 2N/2 in [22]. In [24], the authors proposed a new update
rule that ensures rapid global convergence, and they generalized the energy function of
Demircigil [22] to continuous patterns; thus, the HNN became differentiable and could be
integrated into deep learning architectures. In this case, the storage capacity of this model
became proportional to c

N−1
4 (for c = 1.37 and c = 3.15).

4. Knapsack Model for Pattern Recognition

The key task of our approach is to optimize the storage of the different patterns. To deal
with this problem, it is formulated as an assignment optimization problem or a knapsack
problem [42]. This optimization problem is a well-known combinatorial optimization
problem in which the objective is to find the optimal object from a set of items. The
traditional 0–1 knapsack problem is defined by N items, where N = {1, 2, 3, ..., n} is the set
of items. Each item has a weight, wn, and a value, pn. Since one knapsack can store only a
maximum capacity or weight of W, the goal is to find the items that can be packed into the
knapsack to maximize the packing. The formulation for this traditional 0–1 knapsack is
given in (3). The binary decision variable, xn, takes the value of one if the item is packed
into the knapsack and zero otherwise. Therefore, the problem can be formulated as follows:

Maximize ∑n
i=1 xi pi

subject to, ∑n
i=1 xiwi ≤W

xi ∈ {0, 1}
(3)

Then, the Hopfield network can be seen as a knapsack that can hold a set of items—in
our case, patterns to be stored. Each pattern has a weight wi corresponding to the absolute
energy of the pattern xµ computed by (1) and a value pi that can be defined by measuring
the similarity between the pattern and the other patterns. The capacity (or total weight) of
the knapsack W is defined by:

W = max{|E1|, |E2|, ..., |En|} × Pmax (4)

The estimation of Pmax can be made from the upper bound of the theoretical capacity
of the HNN computed by (2). In order to define the values of n distinct items (patterns), one
of the common similarity measures can be used. To select the most dissimilar (orthogonal)
patterns among the patterns in the dataset, principal component analysis (PCA) or a similar
method can be applied [43,44].

4.1. Similarity Measures

To compute the n values of the knapsack, a similarity/orthogonality between our
training patterns is measured. The similarity measure [45] is a distance that represents
the features of the patterns. If the distance is small, two patterns are very similar, while a
large distance means that they are more orthogonal. In this paper, the cosine similarity is
considered. It is used to calculate the similarity between vectors:

cos(θ) =
xµ · xπ

‖xµ‖ · ‖xπ‖ (5)

where xµ and xπ are two pattern vectors. The value of cos(θ) lies in the interval [−1, 1],
where the value −1 means that the two vectors are exactly opposite; the value of 1 means
that they are exactly equal, and the value of 0 means that they are orthogonal, while the
values within the range [0, 1] indicate similarity or dissimilarity. Furthermore, if elements
of the vectors are binary and not bipolar (−1 and 1), the value of cos θ is in the range [0, 1],

Algorithms 2022, 15, 11 5 of 18

so the value 0 means that the two vectors are orthogonal, while the value 1 indicates that
they are exactly the same.

4.2. Setting of the Genetic Algorithm

In this paper, we consider a genetic algorithm [46,47] to solve this problem. This choice
is motivated by the no-free-lunch [48] theorem and the success of genetic algorithms in
solving knapsack problems [49–51]. However, a comparison of different metaheuristics for
solving this problem is still in progress. The flowchart of the proposed genetic-algorithm-
based approach is shown in Figure 3.

Figure 3. Flowchart of the proposed approach [52].

The input parameters are the dimension of the problem N, the population size POP,
the maximum number of generations ITER, the crossover rate CR, and the mutation rate
MUT. The algorithm starts with a random population. Individuals are binary vectors

Algorithms 2022, 15, 11 6 of 18

evaluated by a fitness function defined in (6). The stopping criterion is defined by the
maximum number of generations. The best solution ~x∗ is the best individual of the last
population. To solve the formulated problem, binary coding is used, where each chromo-
some is a sequence of bits: 0 or 1. The chromosome can be represented in an array whose
size is equal to the number of the items. Each gene indicates whether an item is included in
the knapsack (‘1’) or not (‘0’). Regarding genetic operators, the roulette-wheel selection, the
half-uniform crossover, and the classical bitflip mutation operator were used.

The fitness value of each chromosome is defined by the total values (profits) of the
items included in the knapsack, being careful not to exceed the capacity of the knapsack. It
can be noticed that a knapsack represents an HNN and the items represent the patterns
stored in it.

When the total volume reached by a chromosome is greater than the capacity of the
knapsack, a repair operation is performed. This involves reversing one of the (randomly
selected) genes and rechecking the capacity. This repair operation is only performed once.
If the individual cannot be repaired, it is eliminated. The proposed fitness function is
defined by:

f itness(~x) =
{

∑n
i=1 xi pi i f ∑n

i=1 xiwi ≤W
0 Otherwise

(6)

Since the number of chromosomes in each generation and the number of generations
are fixed, the complexity of the program only depends on the number of items that can
potentially be placed in the knapsack.

Figures 4 and 5 illustrate the relationship between the genetic algorithm and the CNN
at the training phase and inference phase, respectively.

Figure 4. Illustration of the relationship between the genetic algorithm and the CNN at the train-
ing phase.

Figure 5. Illustration of the relationship between the genetic algorithm and the CNN at the infer-
ence phase.

Algorithms 2022, 15, 11 7 of 18

4.3. The Optimal Number of Knapsacks (K)

To increase the storage capacity of the HNN, a modular network architecture of
knapsacks (Hopfield networks operating in parallel) was developed. The idea is to split
the training dataset into subsets and distribute them among the different networks. Then,
a selection procedure is applied to choose the best network to store the pattern with the
requirement of retrieving it with high accuracy. Of course, it is necessary to point out a
some problems related to the proposed architecture.

Figures 6 and 7 show the proposed neural architecture in the training phase and the
recovery phase, respectively. In order to optimize the number of associative memories that
can be used to efficiently store the patterns, first, a naive approach is used, which can be
the basic framework or the upper bound of the final solution. Then, the proposed approach
based on a genetic algorithm is presented.

Figure 6. Block diagram of the multi-RNN architecture proposed in the training phase [52].

Figure 7. Block diagram of the multi-RNN architecture proposed in the inference phase [52].

4.3.1. Naive Approach

In this case, the accuracy of the classification is used to measure the performance of
the model. Indeed, it is the main criterion for defining the number K of networks that we
will consider. To this end, we first store all of the training patterns in a knapsack (Hopfield
network). Depending on the accuracy, the number of knapsacks is increased by 1.

Algorithms 2022, 15, 11 8 of 18

Moreover, the training patterns are randomly divided into K subsets, and each of
these subsets is then trained on these networks. In the inference phase, the selection
system compares the output of these networks to the test vector until a candidate network
converges. If these networks fail to properly recover all patterns, we increase K and
(randomly) redistribute the patterns. This procedure is repeated until the desired prediction
accuracy is achieved.

4.3.2. Heuristic Approach

The other main reason for the low memory capacity of the classical Hopfield network
is the linear combination of the patterns [53]. In this paper, a heuristic method based on a
genetic algorithm is proposed for assignment of patterns to multiple parallel HNNs.

4.4. Pattern Distribution

To distribute the training patterns over the K parallel Hopfield networks, we use the
multiple knapsack problem, which is a variant of the knapsack problem. We consider a
set of patterns N = {1, 2, 3, ..., n}, which we load into K multiple knapsacks, each with a
capacity of W. Each item (pattern) j ∈ N is characterized by its weight wj, its value Pj, and
its decision variable xij, which is equal to 1 if pattern j is loaded into knapsack i and is
equal to 0 otherwise. Then, the problem is to find K disjoint subsets of N that maximize the
total value of the selected patterns. The problem can be formulated as follows:

Max ∑K
i=1 ∑n

j=1 Pjxij

subject to ∑n
j=1 wjxij ≤W,

withxij ∈ {0, 1}, j ∈ {1, ..., n}, i ∈ {1, ..., K}

(7)

4.5. Knapsack Selection

In the inference phase, the Hamming distance [54] is used to quantify the difference
between the input test pattern and the output states of the networks at each update iteration.
The network that has changed the least is selected as the winning network that contains
the pattern we are looking for.

Consider T and S as two patterns; T is the test pattern and S is the stored aver-
age/median pattern. The Hamming distance between them is a function DH[T, S], which
is the number of bits that are different between T and S.

At the end of the inference phase, we compute the associated class by matching the
test pattern with the output pattern of the selected network by computing and comparing
the similarities using distance metrics such as the cosine similarity, Euclidean distance,
Jaccard index, etc. In this paper, the cosine similarity is considered as follows:

CosineSimilarity(T, S) =
T · S
‖T‖‖S‖ (8)

Then, the stored core pattern can be retrieved based on the following equation:

L = ArgminCosineSimilarity(T, ai
k) (9)

where ai
k is the ith stored binary pattern for the kth class. For each test pattern T in a

test image, the algorithm computes the difference between T and each stored pattern ai
k

,i ∈ {1, ..., z}, k ∈ {1, ..., n} in class k using the formula in (8). Then, (9) is used to acquire
the set of patterns R that have the minimal distance from T. In Algorithm 1, the whole
algorithm is presented.

Algorithms 2022, 15, 11 9 of 18

Algorithm 1 Classification Algorithm

1: Input: Test pattern t;
Stored patterns ai

k, i ∈ {1, . . . , z}, k ∈ {1, . . . , n}
2: Output: Class label l of test pattern.
3: Initialize: L← ϕ;
4: L = arg minai

k |i∈1...z,k∈1...n CosSimilarity
(
t, ai

k
)
;

5: Return l = label(f irst(L));

5. Datasets and Benchmarks

The experiments mainly focused on a noisy version of a commonly used handwritten
digit dataset, Noisy MNIST Dataset [55]. This is the same as the original MNIST dataset [19],
except for the added noise. Each version contains 10 classes with a total of 70,000 gray-level
images (60,000 training images and 10,000 test images) with an image size of 28× 28.

We consider three different versions of each dataset: the first with added white
Gaussian noise (AWGN) in Figure 8, the second with reduced contrast with white Gaussian
noise (Contrast) in Figure 9, and the third with motion-blur noise (Motion) in Figure 10.

Figure 8. Image samples from the MNIST dataset with AWGN.

Figure 9. Image samples from the MNIST dataset with AWGN+Contrast.

Algorithms 2022, 15, 11 10 of 18

Figure 10. Image samples from MNIST dataset with motion-blur noise.

6. Results and Discussion

In this section, we present and illustrate the performance of the proposed method.

6.1. Implementation Details
6.1.1. Pretrained CNN LeNet5-Like Model

We used a modified LeNet5 as a pretrained CNN model (trained on the Noisy MNIST
Dataset) for feature extraction. LeNet5 [19] is a simple model composed of two convolu-
tional layers, two average pooling layers, and three fully connected layers. The LeNet5
architecture is a popular network that is known to work well on digit classification tasks.
This model gives a high accuracy on MNIST datasets; nevertheless, the model suffers from
the problems of both high variance, which represents the overfitting, and high bias, which
represents underfitting of the model. In order to minimize both of them and handle the
noisy version of MNIST, some changes in the architecture need to be made:

• Maxpooling instead average pooling for reducing variance;
• Data augmentation to enhance the accuracy;
• A batch normalization layer after every set of layers (convolution + maxpooling and

fully connected) to stabilize the network;
• Addition of dropout layers with a hyperparameter of 40% after the pooling layers;
• Addition of some connected layers;
• Addition of two more convolution layers with the same hyperparameters, and the

number of filters in the convolutional layers was significantly increased from 6 to 32
in the first two layers and 16 to 100 in the next two layers to handle bias.

This new model was trained on 60,000 training images (split into a training and
validation set) for the three versions of noisy MNIST using the stochastic gradient descent
algorithm; the loss function used was the categorical cross-entropy. The total number
of trainable parameters was 324,858, of which 200,514 parameters belonged to the last
three FC layers (61.72% of the parameters were in the three FC layers). The activation
function used was Relu (rectified linear units). In our CNN–RNN architecture and during
the training phase, we chose a single representative pattern for each class. It was calculated
by averaging the brightness of the pixels from the class-specific feature set; therefore, we
only stored 10 patterns instead of 60,000 training images.

The features were pooled from the second maxpooling layer before the fully connected
dense layers of the modified LeNet-5, which had 1 × 1600 dimensions. These 10 feature
vectors were normalized and binarized with a threshold value of pth = 86, then distributed
among the networks.

Algorithms 2022, 15, 11 11 of 18

6.1.2. Defining Weights and Values of the Knapsack

The size of each network is N = 784 neurons, and the energy of each pattern wn is
calculated with (1). Therefore, we rely on McEliece’s rule [38] to estimate the capacity of
the Hopfield network and, therefore, the upper bound of the capacity of our knapsack
(Hopfield network) by applying (2). Then, the bias of the training patterns is measured from
the average of each class, and the correlation c is measured using the average covariance
between successive patterns. In order to define the vector of values P of the knapsacks, it is
necessary to identify the patterns that are correlated. To do this, one can calculate cosine
similarity matrix and perform a principal component analysis (PCA). Based on the PCA’s
2D projection of the three noisy MNIST datasets in Figures 11–13, respectively, one can
define a pair of similar objects; for instance, if we take the reduced contrast and AWGN
version (Figure 11), the pairs [item1,item2] , [item0,item6], [item4,item9], [item7,item8],
and [item3,item5] could be chosen. The obtained weights and value for three noisy MNIST
versions are presented in Tables 1 and 2.

Table 1. Weights for the three noisy MNIST versions.

Weights

Contrast 2764268, 3030404, 3083368, 3496748, 3519312,
3528504, 2773188, 3214824, 3508152, 4099424

AWG 3336168, 3425580, 3184744, 3424400, 3675664,
3653880, 3135436, 3355700, 3730228, 4031064

MotionBlur 3126420, 3498624, 3133432, 3450532, 3199344,
3243000, 3072960, 3299396, 3441172, 3760432

Table 2. Values for the three noisy MNIST versions.

Values

Contrast [1,0.403,1,0.605,1,1,0.491,1,0.449,0.722]
AWGN [1,1,0.45,1,0.649,0.406,0.437,0.365,0.384,1]

MotionBlur [1,1,0.38,1,0.442,0.588,0.52,1,0.552,0.578]

Figure 11. Two-dimensional principal component analysis projection of motion-blur noise.

Algorithms 2022, 15, 11 12 of 18

Figure 12. Two-dimensional principal component analysis projection of AWGN noise.

Figure 13. Two-dimensional principal component analysis projection of AWGN+Contrast noise.

6.1.3. Genetic Algorithm

The genetic algorithm used to solve the formulated problem and its implementation
were performed via the Pymoo Framework [56]. The different settings of the parameters
are presented in Table 3.

The quality of each chromosome was determined by the value of the fitness function.
The fitness of each chromosome was defined by the sum of the benefits of the items included
in the knapsack while making sure that the capacity of the knapsack was not exceeded.
Given the stochastic nature of the GA, we performed 20 independent runs of the algorithm.

During the inference phase, our tests were carried out on 10,000 test images (patterns);
we extracted their features and compared them to all of the outputs provided by the
networks. Therefore, the network with the closest pattern iwass selected. This network
would return the label when it reached a stable state. Figures 14–16 show the evolution of
the fitness over the first 20 generations in the cases of one, two, or three knapsacks. The
algorithm found the best solution after 20 generations. Items that were chosen for each
knapsack with the max fitness found are reported in Table 4 for the three dataset versions.

Algorithms 2022, 15, 11 13 of 18

Table 3. Parameters of the genetic algorithm.

Parameters Values

Dimension of the problem (N) K
Number of runs 20

Number of generations 20
Population size (POP) 100

Max number of generations (ITER) 100
Mutation rate (MUT) 0.1
Crossover rate (CR) 0.9

Table 4. The chosen items for different numbers of knapsacks with the max fitness found.

Contrast AWGN MOTION

Max.
Fit.

Found
Items Chosen

Max.
Fit.

Found
Items Chosen

Max.
Fit.

Found
Items Chosen

One knapsack 5 1,3,5,6,8 4 1,2,4,10 3.588 1,4,6,8

Two knapsacks 7.267 1,5,9,10
3,4,6,7,8 5.942 1,2,3,4

5,6,7,10 6.680 5,6,7,8,10
1,2,4,9

Three knapsacks 7.669
1,2,3,4,5
6,7,8,9
10

6.691
1,2,3,4
5,6,7,8
9,10

7.06
1,2,3,4
5,6,7,8
9,10

Figure 14. GA fitness vs. the number of generations for AWGN+Contrast noise.

Algorithms 2022, 15, 11 14 of 18

Figure 15. GA fitness vs. the number of generations for AWGN.

Figure 16. GA fitness vs. the number of generations for motion-blur noise.

6.2. Evaluation of the Performance

Herein, the performance of the proposed architecture for the classification task with re-
spect to the number of sets of K Hopfield networks is presented. The results in Figures 17–19
are based on the three versions of the Noisy MNIST Dataset. The proposed architecture is
compared with the naive approach.

The increased number of parallel networks used to store training patterns had a
direct impact on the classification accuracy. In fact, in our approach, we needed about
two to three networks to achieve the best performance on the three versions of the Noisy
MNIST Dataset. The performance remained relatively stable even after using more than
three networks.

Algorithms 2022, 15, 11 15 of 18

Figure 17. Classification’s accuracy on the MNIST dataset with added white Gaussian noise.

Figure 18. Classification’s accuracy on the MNIST dataset with reduced contrast + AWGN.

Figure 19. Classification’s accuracy on the MNIST dataset with motion-blurred noise.

The total number of trainable parameters was 324,858, of which 200,514 parameters
belonged to the last three FC layers, which means that 61.72% of the parameters were in the
last three FC layers. Our architecture achieved remarkable results in terms of accuracy and
memory requirements, as shown in Table 5. The inference time performance (CPU Intel
Core i3) was also kept and improved in our hybrid architecture. In order to classify a single

Algorithms 2022, 15, 11 16 of 18

test AWGN image, Lenet took 0.8368 ms, while our hybrid version only took 0.7954 ms; the
same observations were observed on the other noisy versions of the datasets (see Table 6).

Table 5. Performance (accuracy) comparison between the Lenet-like architecture (with FC layers)
and our hybrid Lenet–Hopfield architecture.

Model # of Parameters Accuracy
AWGN

Accuracy
Motion

Accuracy
Contrast

Lenet5-Like (with FC Layers) 324,858 97.12% 96.50% 93.82 %
Our approach (parallel networks) 124,344 97.52% 97.72% 94.84%

Table 6. Performance (inference time in ms) comparison between the Lenet architecture (with FC
layers) and our hybrid Lenet–Hopfield architecture.

Models AWGN Motion Contrast

Lenet 0.8368 0.7228 0.9427
Our approach 0.7954 0.7020 0.8632

Table 7 illustrates the accuracy obtained by the proposed hybrid architecture using the
Hopfield network. One can see that the results obtained exceeded those of the state of the
art by 0.75% in the case of added AWGN noise, by 0.54% in the case of added motion noise
(motion blur), and 0.28% in the case of contrast+AWGN noise, and our architecture gave
the best classification accuracies of 99.18%, 99.74%, and 97.53%, respectively.

Table 7. Comparison of the classification accuracy on the three versions of the Noisy MNIST Dataset.

Models AWGN Motion Contrast

Dropconnect [55] 96.02% 98.85% 93.24%
Karki et al. [55] 97.62% 97.20% 95.04%

PCGAN-CHAR [57] 98.43% 99.20% 97.25%
Our approach (parallel networks) 97.52% 97.72% 94.84%

7. Conclusions

In this paper, a CNN architecture was combined with an HNN for pattern recognition.
The aim of this proposal was to reduce the number of parameters of the CNN (for a
classification task) while increasing or at least keeping the same accuracy. It was pointed
out that CNN models have a large number of weights concentrated at the fully connected
layers, so we proposed the replacement of these layers while maintaining the performance.

Then, the main idea was to exchange those FC layers with associative memories
(Hopfield neural networks): a new architecture composed of multiple networks in parallel,
where the training patterns were split into subsets by applying a local search approach.
Furthermore, the assignment problem was formulated as a knapsack problem and solved
via a genetic algorithm. The efficiency of the proposed CNN–Hopfield architecture on
the Noisy MNIST Dataset was demonstrated experimentally. In this work, it was shown
that the increase in the storage capacity of the associative memory (Hopfield network)
considerably improved the performance on the classification application.

The generalization of this approach to other applications and datasets is in progress.

Author Contributions: Data curation, F.E.K.; writing—original draft preparation, A.N. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Algorithms 2022, 15, 11 17 of 18

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Simonyan, K.; Andrew, Z. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556.
2. Sultana, F.; Abu, S.; Paramartha, D. Advancements in image classification using convolutional neural network. In Proceedings

of the 2018 IEEE Fourth International Conference on Research in Computational Intelligence and Communication Networks
(ICRCICN, Kolkata, India, 22–23 November 2018.

3. Sun, Y. Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Trans. Cybern. 2020,
50, 3840–3854. [CrossRef] [PubMed]

4. Chen, Y. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans.
Geosci. Remote Sens. 2016, 54, 6232–6251. [CrossRef]

5. Liu, Y.; Hongbin, P.; Da-Wen, S. Efficient extraction of deep image features using convolutional neural network (CNN) for
applications in detecting and analysing complex food matrices. Trends Food Sci. Technol. 2021, 113, 193-204. [CrossRef]

6. Zhou, Q. Multi-scale deep context convolutional neural networks for semantic segmentation. World Wide Web 2019, 22, 555–570.
[CrossRef]

7. Bakas, S. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall
survival prediction in the BRATS challenge. arXiv 2018, arXiv:1811.02629.

8. Heller, N. The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical
outcomes. arXiv 2019, arXiv:1904.00445.

9. Simpson, A.L. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv
2019, arXiv:1902.09063.

10. Qayyum, A. Medical image retrieval using deep convolutional neural network. Neurocomputing 2017, 266, 8–20. [CrossRef]
11. Radenović, F.; Giorgos, T.; Ondřej, C. Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal.

Mach. Intell. 2018, 41, 1655–1668. [CrossRef]
12. Yu, W. Exploiting the complementary strengths of multi-layer CNN features for image retrieval. Neurocomputing 2017, 237,

235–241. [CrossRef]
13. Dhillon, A.; Gyanendra, K.V. Convolutional neural network: A review of models, methodologies and applications to object

detection. Prog. Artif. Intell. 2020, 9, 85–112. [CrossRef]
14. Ren, S. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28,

1–9. [CrossRef]
15. Du, J. Understanding of object detection based on CNN family and YOLO. In Journal of Physics: Conference Series, Volume 1004, 2nd

International Conference on Machine Vision and Information Technology (CMVIT 2018), Hong Kong, China, 23–25 February 2018; IOP
Publishing: Bristol, UK, 2018.

16. Basha, S.H.S. Impact of fully connected layers on performance of convolutional neural networks for image classification.
Neurocomputing 2020, 378, 112–119. [CrossRef]

17. Xu, Q. Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs. Neurocomputing 2019, 328, 69–74.
[CrossRef]

18. Krizhevsky, A.; Ilya, S.; Geoffrey E.H. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process.
Syst. 2012, 25, 1097–1105. [CrossRef]

19. LeCun, Y. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
20. Liu, Q.; Supratik, M. Unsupervised learning using pretrained CNN and associative memory bank. In Proceedings of the 2018

IEEE International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. .
21. Krotov, D.; John, J.H. Dense associative memory for pattern recognition. arXiv 2016, arXiv:1606.01164.
22. Demircigil, M. On a model of associative memory with huge storage capacity. J. Stat. Phys. 2017, 168, 288–299. [CrossRef]
23. Widrich, M. Modern hopfield networks and attention for immune repertoire classification. arXiv 2020, arXiv:2007.13505.
24. Ramsauer, H. Hopfield networks is all you need. arXiv 2020, arXiv:2008.02217.
25. Hopfield, J.J.; David, W.T. “Neural” computation of decisions in optimization problems. Biol. Cybern. 1985, 52, 141–152. [PubMed]
26. Löwe, M. On the storage capacity of Hopfield models with correlated patterns. Ann. Appl. Probab. 1998, 8, 1216–1250. [CrossRef]
27. Lowe, M. On the storage capacity of the Hopfield model with biased patterns. IEEE Trans. Inf. Theory 1999, 45, 314–318. [CrossRef]
28. Matsuda, S. Optimal Hopfield network for combinatorial optimization with linear cost function. IEEE Trans. Neural Netw. 1998, 9,

1319–1330. [CrossRef]
29. Wen, U.-P.; Kuen-Ming, L.; Hsu-Shih, S. A review of Hopfield neural networks for solving mathematical programming problems.

Eur. J. Oper. Res. 2009, 198, 675–687. [CrossRef]
30. Belyaev, M.A.; Velichko, A.A. Classification of handwritten digits using the Hopfield network. In IOP Conference Series: Materials

Science and Engineering; Information Technologies, Reliability and Data Protection in Automation Systems; IOP Publishing: Bristol,
UK, 2020; Volume 862, pp. 1–10.

http://doi.org/10.1109/TCYB.2020.2983860
http://www.ncbi.nlm.nih.gov/pubmed/32324588
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1016/j.tifs.2021.04.042
http://dx.doi.org/10.1007/s11280-018-0556-3
http://dx.doi.org/10.1016/j.neucom.2017.05.025
http://dx.doi.org/10.1109/TPAMI.2018.2846566
http://dx.doi.org/10.1016/j.neucom.2016.12.002
http://dx.doi.org/10.1007/s13748-019-00203-0
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1016/j.neucom.2019.10.008
http://dx.doi.org/10.1016/j.neucom.2018.03.080
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/s10955-017-1806-y
http://www.ncbi.nlm.nih.gov/pubmed/4027280
http://dx.doi.org/10.1214/aoap/1028903378
http://dx.doi.org/10.1109/18.746829
http://dx.doi.org/10.1109/72.728382
http://dx.doi.org/10.1016/j.ejor.2008.11.002

Algorithms 2022, 15, 11 18 of 18

31. Li, C. A generalized Hopfield network for nonsmooth constrained convex optimization: Lie derivative approach. IEEE Trans.
Neural Netw. Learn. Syst. 2015, 27, 308–321. [CrossRef]

32. Crisanti, A.; Daniel, J.A.; Hanoch, G. Saturation level of the Hopfield model for neural network. EPL (Europhys. Lett.) 1986, 2, 337.
[CrossRef]

33. Hertz, J. Introduction to the theory of neural computation. Phys. Today 1991, 44, 70. [CrossRef]
34. Li, J. Hopfield neural network approach for supervised nonlinear spectral unmixing. IEEE Geosci. Remote Sens. Lett. 2016, 13,

1002–1006. [CrossRef]
35. Song, Y. System parameter identification experiment based on Hopfield neural network for self balancing vehicle. In Proceedings

of the 36th IEEE Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 6887–6890. .
36. Chen, S. A Novel Blind Detection Algorithm Based on Adjustable Parameters Activation Function Hopfield Neural Network.

J. Inf. Hiding Multim. Signal Process. 2017, 8, 670–675.
37. Zhang, Y. Blind Signal Detection Using Complex Transiently Chaotic Hopfield Neural Network. J. Inf. Hiding Multim. Signal

Process. 2018, 9, 523–530.
38. McEliece, R.; Posner, E.; Rodemich, E.; Venkatesh, S. The capacity of the Hopfield associative memory. IEEE Trans. Inf. Theory

1987, 33, 461–482. [CrossRef]
39. Torres, J.J.; Lovorka, P.; Hilbert, J.K. Storage capacity of attractor neural networks with depressing synapses. Phys. Rev. E 2002,

66, 061910. [CrossRef] [PubMed]
40. Abu-Mostafa, Y.; St Jacques, J. Information capacity of the Hopfield model. IEEE Trans. Inf. Theory 1985, 31, 461–464. [CrossRef]
41. Krotov, D.; John, H. Dense associative memory is robust to adversarial inputs. Neural Comput. 2018, 30, 3151–3167. [CrossRef]

[PubMed]
42. Dudziński, K.; Stanisław, W. Exact methods for the knapsack problem and its generalizations. Eur. J. Oper. Res. 1987, 28, 3–21.

[CrossRef]
43. Van der Maaten, L.; Geoffrey, H. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
44. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [CrossRef]
45. Irani, J.; Nitin, P.; Madhura, P. Clustering techniques and the similarity measures used in clustering: A survey. Int. J. Comput.

Appl. 2016, 134, 9–14. [CrossRef]
46. E-G Talbi, Metaheuristics: From Design to Implementation; John Wiley & Sons : Hoboken, NJ, USA, 2009.
47. Singh, R.P. Solving 0–1 knapsack problem using genetic algorithms. In Proceedings of the 2011 IEEE 3rd International Conference

on Communication Software and Networks, Xi’an, China, 27–29 May 2011; pp. 591–595.
48. Ho, Y.-C.; David, L.P. Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory Appl. 2002, 115,

549–570. [CrossRef]
49. Chu, P.C.; John, E.B. A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 1998, 4, 63–86. [CrossRef]
50. Saraç, T.; Aydin, S. A genetic algorithm for the quadratic multiple knapsack problem. In International Symposium on Brain, Vision,

and Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2007.
51. Khuri, S.; Thomas, B.; Jörg, H. The zero/one multiple knapsack problem and genetic algorithms. In Proceedings of the 1994 ACM

Symposium on Applied Computing, Phoenix, AZ, USA, 6–8 March 1994; pp. 188–193.
52. Keddous, F.; Nguyen, H.-N.; Nakib, A. Characters Recognition based on CNN-RNN architecture and Metaheuristic. In

Proceedings of the 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Portland, OR,
USA, 17–21 June 2021; pp. 500–507. [CrossRef]

53. Amit, D.J.; Daniel, J.A. Modeling Brain Function: The World of Attractor Neural Networks; Cambridge University Press: Cambridge,
UK, 1992.

54. Bookstein, A.; Vladimir, A.K.; Timo, R. Generalized hamming distance. Inf. Retr. 2002, 5, 353–375. [CrossRef]
55. Karki, M. Pixel-level reconstruction and classification for noisy handwritten bangla characters. In Proceedings of the 16th

IEEE International Conference on Frontiers in Handwriting Recognition (ICFHR), Niagara Falls, NY, USA, 5–8 August 2018;
pp. 511–516.

56. Blank, J.; Kalyanmoy, D. Pymoo: Multi-objective optimization in python. IEEE Access 2020, 8, 89497–89509. [CrossRef]
57. Liu, Q.; Edward, C.; Supratik, M. Pcgan-char: Progressively trained classifier generative adversarial networks for classification of

noisy handwritten bangla characters. In Digital Libraries at the Crossroads of Digital Information for the Future—21st International
Conference on Asia-Pacific Digital Libraries, ICADL 2019, KualaLumpur, Malaysia, 4–7 November 2019; Springer: Cham, Switzerland,
2019; pp. 3–15.

http://dx.doi.org/10.1109/TNNLS.2015.2496658
http://dx.doi.org/10.1209/0295-5075/2/4/012
http://dx.doi.org/10.1063/1.2810360
http://dx.doi.org/10.1109/LGRS.2016.2560222
http://dx.doi.org/10.1109/TIT.1987.1057328
http://dx.doi.org/10.1103/PhysRevE.66.061910
http://www.ncbi.nlm.nih.gov/pubmed/12513321
http://dx.doi.org/10.1109/TIT.1985.1057069
http://dx.doi.org/10.1162/neco_a_01143
http://www.ncbi.nlm.nih.gov/pubmed/30314425
http://dx.doi.org/10.1016/0377-2217(87)90165-2
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.5120/ijca2016907841
http://dx.doi.org/10.1023/A:1021251113462
http://dx.doi.org/10.1023/A:1009642405419
http://dx.doi.org/10.1109/IPDPSW52791.2021.00082
http://dx.doi.org/10.1023/A:1020499411651
http://dx.doi.org/10.1109/ACCESS.2020.2990567

	Introduction
	General Description of the Method
	Recall of the Hopfield Neural Network
	Knapsack Model for Pattern Recognition
	Similarity Measures
	Setting of the Genetic Algorithm
	The Optimal Number of Knapsacks (K)
	Naive Approach
	Heuristic Approach

	Pattern Distribution
	Knapsack Selection

	Datasets and Benchmarks
	Results and Discussion
	Implementation Details
	Pretrained CNN LeNet5-Like Model
	Defining Weights and Values of the Knapsack
	Genetic Algorithm

	Evaluation of the Performance

	Conclusions
	References

