
algorithms

Article

Searching Monotone Arrays: A Survey

Márcia R. Cappelle † , Les R. Foulds † and Humberto J. Longo *,†

����������
�������

Citation: Cappelle, M.R; Foulds,

L.R.; Longo, H.J. Searching Monotone

Arrays: A Survey. Algorithms 2022, 15,

10. https://doi.org/10.3390/

a15010010

Academic Editor: Jesper Jansson

Received: 13 November 2021

Accepted: 22 December 2021

Published: 26 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Instituto de Informática, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; marcia@inf.ufg.br (M.R.C.);
lesfoulds@inf.ufg.br (L.R.F.)
* Correspondence: longo@inf.ufg.br
† These authors contributed equally to this work.

Abstract: Given a monotone ordered multi-dimensional real array A and a real value k, an important
question in computation is to establish if k is a member of A by sequentially searching A by comparing
k with some of its entries. This search problem and its known results are surveyed, including the
case when A has sizes not necessarily equal. Worst case search algorithms for various types of arrays
of finite dimension and sizes are reported. Each algorithm has order strictly less than the product of
the sizes of the array. Present challenges and open problems in the area are also presented.

Keywords: sequential search; monotone ordered; optimal worst-case

1. Introduction

Searching is one of the most basic, frequent and important operations performed in
tasks involving computation. A common challenge involves searching to decide whether
or not a given real value (termed a key) is present in a given multi-dimensional array of
real values. When the search must be performed sequentially and repeatedly by comparing
the key with selected entries of the array, obviously it should be carried out as efficiently as
possible by minimising the number of comparisons. This classic problem can be viewed as
determining the correct dimensional threshold function from a finite class of such functions
within the array, based on sequential queries that take the form of point samples. The
complexity of such a search is completely dependent on how the array is organised.

Clearly, when there is no information available about array organisation, every entry
must be examined. An array is termed monotone nondecreasing (nonincreasing) if its
entries never decrease (increase) when moving away from the origin along any path parallel
to an axis. Without loss of generality, from now on in the present article, the focus is on
only monotone nondecreasing arrays. When the array is already sorted so that its entries
are monotone nondecreasing, the search for a key can be conducted in a far more efficient
manner compared to the unsorted case.

The problem addressed here is to search for a given real-valued key in a monotone
nondecreasing multi-dimensional real array, that has sizes that are not necessarily equal.
The challenge is to identify among all possible suitable search algorithms, one with the
lowest complexity, i.e., requiring the minimum number of comparisons in the worst case.
The main question being addressed until the end of Section 7 of the present article is to ask
if the key is present in the array. Thus, if an instance of the key is found, there is no necessity
to identify further possible instances of the key and the search procedure is terminated.
The search for all possible occurrences of the key is briefly discussed in Section 8.

This important search problem occurs in many computation-related fields, including
computational biology, image processing, VLSI design, operations research and
statistics [1–4]. The main contributions of this survey are:

• an introduction to the problem of searching a (strictly) monotone real array;
• a discussion of known results and the description of worst-case algorithms;
• conclusions that can be drawn from the discussions and descriptions and

Algorithms 2022, 15, 10. https://doi.org/10.3390/a15010010 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1888-7802
https://orcid.org/0000-0001-7538-8263
https://orcid.org/0000-0002-0712-7376
https://doi.org/10.3390/a15010010
https://doi.org/10.3390/a15010010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a15010010
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15010010?type=check_update&version=2

Algorithms 2022, 15, 10 2 of 29

• proposals for future work on the open problems that have been identified.

Currently, asymptotic notation to express the complexity of algorithms is commonly
used. However, many of the algorithms described here were formally described and
analysed at a time when this notation was not so common. The work of Linial and Saks [5],
for example, although using asymptotic notation, proposed exact lower and upper bounds
on the number of comparisons necessary to determine the occurrence, or not, of a given
element in an ordered array. Since then, many other authors have followed the same
practice. Thus, for consistency with many of these works and due to the importance of
these bounds in understanding the efficiency of the various algorithms listed here, the
analyses of many of them are presented as originally developed by the respective authors.
However, sometimes, asymptotic notation is used as a complementary tool for describing
the complexity of algorithms.

The remainder of this paper is organised as follows. Preliminary notation, terminology
and basic concepts are provided in the next section. What has been reported in the open
literature on searching arrays to establish if a given key is present is reported in Sections 3–6.
The search of vectors (d = 1) is the object of Section 3. Seven different algorithms for this
case were identified in the literature, from basic linear search algorithms of non-ordered
vectors to binary search of ordered matrices. The other algorithms are Jump Search (Block
Search), Interpolation Search, Exponential Search, Fibonacci Search and Ternary Search
and its generalisation (k-nary Search). The search of matrices (when d = 2) is explored
in Section 4. Three algorithms are described: Saddleback Search for the case of balanced
matrices and Shen’s and Bird’s algorithms for unbalanced matrices. Two algorithms for
searching cuboids (d = 3), one for the balanced case (the L&S algorithm) and one for the
unbalanced case (an extension of Shen’s and Bird’s methods), are described in Section 5.
Section 6 contains a description of a search algorithm for hypercubes when d ≥ 4 (denoted
as Cheng-4). Section 7 discusses in some detail aspects of the worst case performance of
some of the revised algorithms.

Many of the algorithms mentioned above call a binary search algorithm as a subroutine.
This algorithm, as well its history, asymptotic complexity and some of its variants, are
discussed in detail in Sections 3 and 7.1. While the main focus of this survey is on the
problem of verifying the occurrence or not of a key in monotone arrays, the challenge of
searching for all occurrences of the key is also briefly discussed in Section 8. The paper ends
with a summary, some concluding remarks and suggestions for future work on problems
that remain open, which are presented in Section 9.

2. Preliminaries

Consider a real d-dimensional array A = {a(i1, i2, . . . , id) | i1 = 1, . . . , n1; i2 =
1, . . . , n2; . . . ; id = 1, . . . , nd}, that is monotone nondecreasing in the sense that a(i1, i2, . . . ,
id) 6 a(j1, j2, . . . , jd) if i1 6 j1, i2 6 j2, . . . , id 6 jd, for given, independent, sizes n1, n2, . . . ,
nd ∈ Z+, (i.e., the entries of A are nondecreasing along its dimensions). A can be thought
of as equivalent to the product of the chains [n1], [n2], . . . , [nd] of the partially ordered sets
{1, . . . , n1}, {1, . . . , n2}, . . . , {1, . . . , nd}.

A d-dimensional array A can be also defined by the indexes of its lower corner and
upper corner as A((1, 1, . . . , 1), . . . , (n1, n2, . . . , nd)). Similarly, a d-dimensional subarray
of A is defined as A((`1, `2, . . . , `d), . . . , (r1, r2, . . . , rd)), where 1 6 `i 6 ri 6 ni, for all
1 6 i 6 d.

The problem discussed here involves searching A in order to establish whether or
not a given key x ∈ R is a member of A. It is assumed that the search must be carried
out by sequentially comparing x with selected entries a(i1, i2, . . . , id) ∈ A. The purpose of
such comparisons is to eliminate elements of A and search the remaining subarrays in an
efficient manner. It is of interest to identify search algorithms that require the minimum
number of comparisons in the worst case.

Algorithms 2022, 15, 10 3 of 29

When comparing x and any entry a(i1, i2, . . . , id), one of the three following results
must be obtained:

x < a(i1, i2, . . . , id), (1)

in which case the entries a(j1, j2, . . . , jd) for j1 > i1, j2 > i2, . . . , jd > id, can be discarded; or

x = a(i1, i2, . . . , id), (2)

in which case x has been located and the search is terminated; or

x > a(i1, i2, . . . , id), (3)

in which case the entries a(j1, j2, . . . , jd) for j1 6 i1, j2 6 i2, . . . , jd 6 id, can be discarded. It
is clear that it is necessary to make two comparisons between x and any entry a(i1, i2, . . . , id)
to cover the three possibilities (1)–(3).

Any entry that is discarded by the comparison process as (1) and (3) above (as it
cannot possibly be x) is termed redundant. If, in carrying out the comparison process, an
entry a(i1, i2, . . . , id) of A, causes A to be divided into at least two nondegenerate subarrays,
then this entry is termed a pivot.

An array A is said to be α-balanced if ni 6 α · ni+1, 1 6 i 6 d− 1, for a given α ∈ R+,
1 6 α 6 6.4. The use of the constant 6.4 is justified in the arguments given towards the end
of Section 4.2. A 1-balanced array is termed balanced, where n1 = n2 = · · · = nd = n (> 2)
say, and is a hypercube. If ni > 6.4 · ni−1, 2 6 i 6 d, A is termed unbalanced. If the sizes
of A are strictly unequal, A is a rectangular hypercuboid. From now on, all cuboids and
hypercuboids to be searched will be assumed to be rectangular and the term rectangular
will be dropped.

Suppose A is a d-dimensional array with sizes n1, . . . , nd. Let M(A) be the the
minimum number of comparisons (taken over all possible search algorithms) needed either
to establish whether or not a given key x is in A. We denoteM(A) by.

M(A) =

{
τ(n, d), if A is balanced and n1 = · · · = nd = n;
φ(n1, . . . , nd), otherwise.

(4)

When calculating the asymptotic time complexity of an algorithm, in general, the
constant term inM(A) can be neglected. However, if an exact count of the number of
comparisons is required, the constant term should be included. This has been done when
establishing the time complexity of many of the algorithms described in this survey.

Search efficiency depends upon whether or not A is balanced. A summary of the
evolution of the best known search algorithms for the various types of arrays is given in
Figure 1.

d = 1

(200BC/1960)
Binary Search

d = 2

(1968)
Saddleback Algo.

(1997/2006)
Shen/Bird Algo.

d = 3

(1985)
L&S Algo.

d > 4

(2008)
Cheng Algo.

Unbalanced Arrays

Balanced Arrays

Figure 1. The best known algorithms for searching monotone arrays.

For 1-dimensional arrays the Binary Search algorithm is worst-case optimal (see
Section 3). For balanced 2-dimensional arrays, the Saddleback Search algorithm [1,3,6] is
worst-case optimal, and τ(n, 2) is O(n). For unbalanced 2-dimensional arrays there are

Algorithms 2022, 15, 10 4 of 29

asymptotically worst case optimal algorithms, and φ(n1, n2) is O(n2 lg(n1/n2)) [7,8] (see
Section 4).

For the general case of balanced d-dimensional arrays with d > 3, Linial and Saks [5]
demonstrated that τ(n, d) is O(nd−1) as they proved that

c2(d)nd−1 + o(nd−1) 6 τ(n, d) 6 c1(d)nd−1, (5)

where c1(d) is a monotone nonincreasing function that is upper bounded by 2 and c2(d) =√
(24/π)d−1/2 + o(d−1/2).

Linial and Saks [5] also demonstrated that for the general case of (possibly unbalanced)
arrays, with 1 6 n1 6 n2 · · · 6 nd, φ(n1, . . . , nd) is bounded as follows:

k2(d)n1 · · · nd−1 lg(
nd

nd−1
+ 1) 6 φ(n1, . . . , nd) 6 k1(d)n1 · · · nd−2 lg(

nd
nd−1

+ 1), (6)

where k1(d) and k2(d) are functions, with k1(d) monotone nonincreasing and k2(d) =
c2(d)k2(d− 1)/2d, and lg(n) = log2(n). The proofs of the upper bounds on τ(A) in the
right-hand side of (5) and (6) were established inductively by the authors by partitioning
A into n isomorphic copies of its (d − 1)-dimensional subarrays, each consisting of all
entries that have identical dth coordinates. The Linial and Saks algorithm [5] for balanced
3-dimensional arrays will be discussed in Section 5.

Cheng et al. [9] proposed an algorithm for d-dimensional hypercubes, for d > 4 (see
Section 6). Their algorithm has worst case performance upper bounded as follows:

τ(n, d) 6
(

d
d− 1

)
nd−1 +O(nd−2). (7)

3. The Search of Vectors (d = 1)(d = 1)(d = 1)

When d = 1 and n1 = n say, A is a monotone vector (a totally ordered set). Many of
the monotone vector search methods mentioned below are based on comparisons of keys
and have been described in detail by Knuth [10].

The Linear (or Sequential) Search algorithm (see the pseudocode in Algorithm 1) is a
basic method for finding a key within A, whether A is ordered or not. The algorithm starts
at the leftmost element of A and iteratively compares the key x with each element of A.
The search stops when either x matches an element of A or when all the elements have
been tested. Its running time and number of comparisons are, in the worst case, linear in n.

Algorithm 1 LINEAR SEARCH(A, x)

Input: Array A(1, . . . , n) and key x ∈ R.
Output: True if x ∈ A or False otherwise.

1. i← 1;
2. while (i 6 n) do
3. if (x = A[i]) then
4. return true.
5. else
6. i← i + 1;
7. end if
8. end while
9. return false.

The Jump Search algorithm [11], also known as Block Search [12], check fewer elements
of an ordered array A(1, . . . , n) than the Linear Search, by jumping ahead blocks of a fixed
number m of elements. It verifies the elements of A in the indexes 1, 1 + m, 1 + 2m, . . . , 1 +
km. Once is determined that A[1 + (k− 1)m] < x < A[1 + km], a linear search is done in
the interval (1 + (k− 1)m, 1 + km) to check if any of these elements is equal the key x. Its
pseudocode is shown in Algorithm 2.

Algorithms 2022, 15, 10 5 of 29

Algorithm 2 JUMP SEARCH(A, x, step)

Input: Array A(1, . . . , n) and key x ∈ R.
Output: True if x ∈ A or False otherwise.

1. i← 1;
2. j← step + 1;
3. while (j < n) and (A[j] < x) do
4. i← j;
5. j← j + step;
6. if (j > n) then
7. j← n + 1;
8. end if
9. end while

10. while (i < j) do
11. i← i + 1;
12. if (x = A[i]) then
13. return true.
14. end if
15. end while
16. return false.

Shneiderman [11] shown that the optimal value of the jump size is m =
√

n. Therefore,
if the cost of a jump is cj, and the cost of a sequential search is cs, then the optimum jump

size is
√
(cj/cs)n and the search cost is τ(n, 1) =

√
(cjcs)n. Shneiderman also describes

some variations of this algorithm, as the multi-level jumping or the variable jump size.
Jump Search traverses the array back only once, that can be an advantage in situations

where jumping back is costly. Note that Binary Search (the next described algorithm), in
the worst case, may require up to O(log n) back jumps!

The Binary Search algorithm begins with the vector A as the initial search interval,
and repeatedly divides the current search interval into two parts that are either of the same
length or differ in length by one unit. If the key x is lower than the entry in the “middle”
position of the interval (this situation is depicted in Figure 2, where p is the “middle”
position), the search space is narrowed to its lower half (positions 1 to p− 1). If the key x is
greater than the mentioned entry, the interval it is narrowed to the upper half (positions
p + 1 to n). The pseudocode of binary search is given in Algorithm 3. It is straightforward
to show that the asymptotic complexity of this version of the algorithm is

τ(n, 1) = 2blog(n)c+ 1 = O(log(n)). (8)

However, it is not strictly necessary to compare the key x with the element at position
p at each iteration of the search loop. An alternative approach, also commonly used, just
checks to see if x 6= p. If this is not so, p is returned and the procedure is terminated.
Otherwise, p is retained in the search space, which will eventually shrink to p when p = x.
However, after exiting the loop, i.e., after the search space is completely exhausted, it is
necessary to compare the final element in the space with x. The asymptotic implications of
assuming that each iteration requires only one comparison are explored in Section 7.1.

1 · · · p− 1 p p + 1 · · · n

Figure 2. Binary search vector bisection.

Algorithms 2022, 15, 10 6 of 29

Algorithm 3 BINARY SEARCH(A, x)

Input: Array A(1, . . . , n) and key x ∈ R.
Output: True if x ∈ A or False otherwise.

1. i← 1;
2. j← n;
3. while (i 6 j) do
4. p← b i+j

2 c;
5. if (x = A[p]) then
6. return true;
7. else if (x < A[p]) then
8. j← p− 1;
9. else

10. i← p + 1;
11. end if
12. end while
13. return false.

The discovery of binary search, also known as logarithmic, divide-and-conquer or
bisection search, is attributed by Knuth [10] to Inakibit-Anu of Uruk in 200BC. Binary search
was mentioned by Mauchly [13] in what may have been the first published discussion
of non-numerical programming methods, but one of the first formal descriptions of it
was given by Steinhaus [14]. Furthermore, Sandelius [15] noted that binary search is also
optimal in the average case, as cited by Reingold [16].

This history of the evolution of the Binary Search algorithm and its related bibliogra-
phy, as well as of some other search algorithms listed later here, are described in detail by
Knuth [10]. Dijkstra [17] also produced an interesting review of the evolution of the binary
search design, from an algorithmic point of view.

Some of these earlier versions of binary search considered only the case where the length
of A is a power of 2. At that time the method had become well known, but no one appeared
to have reported what should be done to accommodate a general n ∈ Z+ [15,18–20]. It
seems that Lehmer [21] was the first to publish a Binary Search algorithm that worked for
all n. Lesuisse [22] provides a detailed analysis of various published versions of the binary
search algorithm.

In these versions of binary search the position of the central element was calculated
and, in the case of fractional values, the position was set to the largest integer smaller
than the calculated value. If the sequence contained duplicates of the key value, the first
occurrence to the left of the calculated position was found. Bottenbruch [23] presented
a variation of the algorithm, that is nowadays most common. Setting the position to the
smallest integer greater than or equal to the calculated fractional value, the Bottenbruch
algorithm adjusts the left pointer, which initially references the first position of the search,
to the next position of the central element whenever the key is greater than or equal to this
element. Unlike earlier versions, Bottenbruch’s algorithm finds the rightmost occurrence of
a given key when the sequential search identifies duplicate entries of the key. Iverson [24]
also proposed a version of binary search for every n ∈ Z+, but without considering the
possibility of an unsuccessful search. Knuth [25] presented the same algorithm as an
example of using an automated system for drawing flowcharts.

Ternary search [26] (also known as dual-pivot binary search [27]) is a divide and
conquer algorithm similar to binary search. In this algorithm, the original array is initially
divided into three parts of sizes as close as possible to each other. These segments are
usually delimited by positions p1 = 1 + b(n− 1)/3c and p2 = n− b(n− 1)/3c (see the
pseudocode in Algorithm 4). By testing the values at these two positions it is possible
to discard 2

3 of the array and proceed with the same approach on the remaining 1
3 of the

array. Since a larger portion of the array’s elements are discarded, it may appear that
ternary search is faster than binary search. In fact, both algorithms have asymptotic time

Algorithms 2022, 15, 10 7 of 29

complexity ofO(lg n). However, ternary search uses more comparisons than binary search,
which adds greater constants to its asymptotic complexity. Similar arguments are also valid
for any other similar higher order search algorithms that are generalised from binary search
(i.e. k-nary search, k > 3). Section 7.1 provides some detail on the complexity analysis of
k-nary search.

Algorithm 4 TERNARY SEARCH(A, x)

Input: Array A(1, . . . , n) and key x ∈ R.
Output: True if x ∈ A or False otherwise.

1. i← 1;
2. j← n;
3. while (i 6 j) do
4. p1 ← i +

⌊
(j−i)

3

⌋
;

5. p2 ← j−
⌊
(j−i)

3

⌋
;

6. if (x = A[p1]) then
7. return true.
8. else if (x = A[p2]) then
9. return true.

10. else if (A[p1] > x) then
11. j← p1 − 1;
12. else if (A[p2] < x) then
13. i← p2 + 1;
14. else
15. i← p1 + 1;
16. j← p2 − 1;
17. end if
18. end while
19. return false.

The Interpolation Search algorithm, due to Peterson [28], performs similarly to binary
search but unlike it, which always checks the intermediate element of the search space, the
interpolation search can check different elements according to the value of the key and
the statistical distribution of the elements in the array A. For example, it is likely that the
interpolation search will start at an element either near the index n (when the key is closer
to A[n]), or near the index 1 (when the key is closer to A[1].) The pseudocode is shown in
Algorithm 5. When the values in the array A are uniformly distributed, the interpolation
search has a performance superior of that of binary search. Perl et al. [29] showed that this
algorithm requires on the average log log n array accesses to check if a key is present in the
array, assuming that the n array entries are uniformly distributed.

The Exponential Search algorithm is attributed to Bentley and Yao [30]. This search
algorithm involves a preliminary step of finding a small range of elements of the array A
(potentially containing the key x) and a secondary step of performing a binary search in
this limited range of elements. The first step starts with a subarray of size 1, compares its
unique element with the key x, then, if necessary, compares a subarray of size 2, then of 4,
and so on, until the last element, index i say, of the current subarray is not greater than the
key x. At the end of this step, the key can only be present between the indexes i/2 and i.
Therefore, a binary search is carried out in this range. The pseudocode of this algorithm is
shown in Algorithm 6. Exponential Search is particularly useful for unbounded arrays, that
is, where the size of the array to be searched is infinite. This search also works better than
binary search for bounded arrays when the key x is closer to the first element of the array.

Algorithms 2022, 15, 10 8 of 29

Algorithm 5 INTERPOLATION SEARCH(A, x)

Input: Array A(1, . . . , n) and key x ∈ R.
Output: True if x ∈ A or False otherwise.

1. i← 1;
2. j← n;
3. while (i 6 j) and (A[i] 6= A[j]) and (A[i] 6 x 6 A[j]) do
4. p← i +

⌊
(j−i)

(A[j]−A[i])

⌋
· (x− A[i]);

5. if (x = A[p]) then
6. return true.
7. else if (x < A[p]) then
8. j← p− 1;
9. else

10. i← p + 1;
11. end if
12. end while
13. if (i 6 n) and (A[i] = x) then
14. return true
15. else
16. return false.
17. end if

Algorithm 6 EXPONENTIAL SEARCH(A, x)

Input: Array A(1, . . . , n) and key x ∈ R.
Output: True if x ∈ A or False otherwise.

1. i← 1;
2. if (x = A[i]) then
3. return true.
4. end if
5. while (i 6 n) and (x > A[i]) do
6. i← i · 2;
7. end while
8. return BINARY SEARCH(A(b i

2c+ 1, min{i, n}), x).

Fibonacci Search (Ferguson [31]) splits the array A into two subarrays with sizes that
are consecutive Fibonacci numbers, which are defined as:

Fm =

{
m, if 0 6 m < 2;
Fm−1 + Fm−2, if m > 2.

(9)

This search first finds the smallest Fibonacci number, the mth one say, greater than
or equal to n, then uses the (m− 2)th Fibonacci number as the index of the array element
to be compared with the key (if it is a valid index). While there are still elements to be
inspected, the limits of the subarray that must be searched are calculated based on the three
consecutive Fibonacci numbers currently used. The pseudocode shown in Algorithm 7,
uses the mth Fibonacci number just defined and a variable offset to help to discard the
unnecessary positions of the array A.

Algorithms 2022, 15, 10 9 of 29

Algorithm 7 FIBONACCI SEARCH(A, x)

Input: Array A(1, . . . , n) and key x ∈ R.
Output: True if x ∈ A or False otherwise.

1. f ← Fm;
2. f1 ← Fm−1;
3. f2 ← Fm−2;
4. o f f set← 0;
5. while (f > 1) do
6. p← min{o f f set + f2; n};
7. if (x > A[p]) then
8. f ← f1;
9. f1 ← f2;

10. f2 ← f − f1;
11. o f f set← p;
12. else if (x < A[p]) then
13. f ← f2;
14. f1 ← f1 − f2;
15. f2 ← f − f1;
16. else
17. return true.
18. end if
19. end while
20. if (f1 > 0) and (x = A[o f f set + 1]) then
21. return true;
22. else
23. return false.
24. end if

4. The Search of Matrices (d = 2)(d = 2)(d = 2)

As illustrated in Figure 3, throughout this survey the corners (1, 1), (n, 1), (1, n) and
(n, n) of 2-dimensional arrays are termed: southwest (SW), northwest (NW), southeast (SE)
and northeast (NE) corners, respectively.

4.1. Balanced Matrices

When d = 2 and A is balanced (n1 = n2 = n), the Saddleback Search algorithm [1,3,6]
is worst-case optimal. Saddleback search begins by comparing the key x with the last entry
in the first row of A (corner SE in Figure 3). If x is lower than this entry then x cannot be in
the column n of A and this column is discarded. If x is greater than this entry then x cannot
be in the row 1 of A and this row is discarded. The process is repeated, always comparing
x with the last entry in the first row of what remains of A until either x is found or all of
the entries of A have been discarded. The pseudocode of the saddleback search is given in
Algorithm 8.

A similar argument is valid when x is compared with the last entry in the first column
(the corner NW in Figure 3). In fact, at each iteration of the saddleback search either of the
entries in the current NW and SE corners can be randomly chosen to be compared with the
key x, with the same worst-case performance.

Algorithms 2022, 15, 10 10 of 29

Algorithm 8 SADDLEBACK SEARCH(A, x)

Input: Array A((1, 1), . . . , (n, n)) and key x ∈ R.
Output: True if x ∈ A or False otherwise.

1. i← 1;
2. j← n;
3. while (i 6 n) and (j > 1) do
4. if (x = A(i, j)) then
5. return true.
6. else if (x > A(i, j)) then
7. i← i + 1;
8. else
9. j← j− 1;

10. end if
11. end while
12. return false.

n NW NE

1 SW SE

1 n

(a)

n NW NE

1 SW SE

1 n

(b)

Figure 3. Subarray elimination schemes in the saddleback algorithm. (a) Row elimination. (b) Col-
umn elimination.

The above arguments lead to the following result for the worst case performance of
saddleback search, according to Graham and Karp, 1968 (quoted in [5]):

τ(n, 2) = 2n− 1. (10)

The fact that this number is worst case optimal is easily seen through an adversary
argument by setting A as:

a(i, j) =

{
−∞, if i + j 6 n,
+∞, otherwise.

(11)

If any search procedure fails to compare x with any entry a(i, j) with i + j = n or
i + j = n + 1 (a total of n− 1 + n = 2n− 1 entries), then that entry could contain x while
still allowing A to be monotone. Thus, any search procedure must make at least 2n− 1
comparisons. Hence, saddleback search is a best possible worst-case procedure. The above
argument also holds when A is set as:

a(i, j) =

{
−∞, if i + j 6 n + 1,
+∞, otherwise.

(12)

4.2. Unbalanced Matrices

In this section it is assumed that d = 2 and A is unbalanced, i.e., n1 < n2. There is the
possibility of searching each of the n1 rows individually by binary search. This procedure

Algorithms 2022, 15, 10 11 of 29

requires O(n1 lg(n2)) comparisons, which is worst case optimal only if n1 = o(n2) [8].
Alternatively, one could divide A into dn2/n1e submatrices of dimensions at most n1 × n1
and apply saddleback search (as explained in Section 4.1) to each of them. This procedure
is worst case optimal only if n1 = Θ(n2). On the other hand, applying saddleback search
in the whole matrix lead to a worst case performance of

τ(n1, n2) = n1 + n2 − 1. (13)

Since A is unbalanced (n2 > 6.4 · n1, as justified towards the end of Section 4.2.2),
none of the aforementioned approaches performs very well in the worst case.

Fortunately, there are search algorithms for unbalanced arrays that are asymptotically
worst case optimal, with τ(n1, n2) = O(n1 lg(n2/n1)) [7,8]. These algorithms work by
iteratively applying binary search to selected vectors of A to identify pivots. The pivots
are used to eliminate redundant entries and to divide the remainder of A into (smaller)
subarrays that are searched subsequently. At each iteration, the algorithms eliminate a
maximal number of redundant entries.

4.2.1. Shen’s Algorithms

Shen [8] proposed both diagonal-searching and row-searching matrix partitioning
algorithms, which are asymptotically worst case optimal for unbalanced arrays. A slightly
different algorithm from the latter, which uses linear search instead of binary search in
the row-searching step, but achieving the same asymptotic complexity, was proposed
previously by Aggarwal et al. [32] in a context of geometric applications.

The pseudocode of Shen’s row-searching procedure is given in Algorithm 9. The
algorithm starts by comparing the key x with the two extremes of the middle row of an array
A((1, 1), . . . , (n1, n2)), initially being `1 = 1, `2 = 1, r1 = n1 and r2 = n2, which has row
index i, say. If x < a(i, 1), the submatrix A((i, 1), . . . , (n1, n2)) is discarded. If x > a(i, n2),
the submatrix A((1, 1), . . . , (i, n2)) is discarded. Otherwise, a binary search on row i
generates a pivot a(i, j) that allows the submatrices ASW = A((1, 1), . . . , (i, j)) and ANE =
A(i, j + 1), . . . , (n1, n2)) to be discarded. The algorithm proceeds by searching recursively
on submatrices ANW = A((i + 1, 1), . . . , (n1, j)) and ASE = A((1, j + 1), . . . , (i − 1, n2)).
The submatrices ANW , ANE, ASW and ASE are depicted in Figure 4a.

Algorithm 9 has time complexity given by the following recurrences:

φ(n1, n2) =

O(lg n1), if n2 = 1;
O(lg n2), if n1 = 1;
φ(bn1/2c, j) + φ(bn1/2c, n2 − j) +O(lg(n2)), otherwise.

(14)

In the diagonal-searching procedure, Shen’s algorithm [8] divides the n1 × n2 matrix
A into d n2

n1
e submatrices of dimensions at most n1 × n1 and uses binary search to find a

pivot element a(i, j) on the main diagonal of the “middle” submatrix such that a(i, j) <
x < a(i + 1, j + 1). This pivot splits the matrix into four possible non empty submatrices
ANW , ANE, ASW and ASE, as depicted in Figure 4b. Similarly to the row searching schema,
the pivot a(i, j) allows both submatrices ANE and ASW to be discarded. Therefore, the
search only needs to continue on the two matrices ANW = A((i + 1, 1), . . . , (n1, j)) and
ASE = A((1, j + 1), . . . , (i, n2)) of reduced size.

Shen’s diagonal-searching procedure has time complexity given by the following
recurrences:

φ(n1, n2) =

O(lg n1), if n2 = 1;
O(lg n2), if n1 = 1;
O(n1), if n1 = n2

φ(n1 − i, j) + φ(i, n2 − j) +O(lg(n2)), otherwise.

(15)

Algorithms 2022, 15, 10 12 of 29

Algorithm 9 SHEN(A, x)

Input: Array A((`1, `2), . . . , (r1, r2)) and key x ∈ R.
Output: True if x ∈ A or False otherwise.

1. f ound← false;
// Stop conditions.

2. if (r1 − `1 + 1 < 4) or (r2 − `2 + 1 < 4) then
3. Use BinarySearch in rows/columns; exit;
4. end if
5. i← b `1+r1

2 c;
6. if (x < a(i, `2)) then
7. f ound← SHEN(A((`1, `2), . . . , (i− 1, r2)), x); // Recursion on submatrix SW-SE.

8. else if (x > a(i, r2)) then
9. f ound← SHEN(A((i + 1, `2), . . . , (r1, r2)), x); // Recursion on submatrix NW-NE.

10. else
11. j← BinarySearch(A((i, `2), . . . , (i, r2)), x); // a(i, j) 6 x < a(i, j + 1)?

12. if (x 6= a(i, j)) then
13. f ound← SHEN(A((i + 1, `2), . . . , (r1, j)), x); // Recursion on NW.

14. f ound← SHEN(A((`1, j + 1), . . . , (i− 1, r2)), x); // Recursion on SE.

15. else
16. f ound← True;
17. end if
18. end if
19. return f ound.

Shen showed that Algorithm 9 has worst case performance when submatrices ANW
and ASE have the same size, that is, j = bn2/2c. Similarly, in the diagonal-searching
procedure the worst case occurs when i = dn1/2e. Therefore, given (14) and (15), both al-
gorithms approaches have worst case time complexity of φ(n1, n2) = O(n1 lg(2n2/n1)) =
O(n1 lg(n2/n1)), which is asymptotically optimal.

4.2.2. Bird’s Algorithm

Bird’s Algorithm [7] uses a row-searching approach that is similar to that of Shen.
A binary search is conducted on the middle row of A to find a pivot a(i, j) such that
a(i, j) 6 x < a(i, j + 1). If x > a(i, j) then the search continues only on the two matrices
ANE and ASE of reduced size. The algorithm does not perform the two first comparisons
of Shen’s Algorithm (Lines 6 and 8), proceeding directly to search in the two submatrices
of reduced size (Lines 13 and 14).

Bird provided the following recurrence to express the asymptotic worst case of his al-
gorithm:

φ(n1, n2) =

O(lg n1), if n2 = 1;
O(lg n2), if n1 = 1;
2φ(dn1/2e, dn2/2e) +O(lg(n2)), otherwise;

(16)

and hence has time complexity O(n1 lg(dn2/n1e)), which is asymptotically optimal.

Algorithms 2022, 15, 10 13 of 29

n1 · · · · · ·

...
...

...

NW NE

i · · · · · ·

SW SE
...

...
...

1 · · · · · ·

1 j n2

(a)

n1 · · · · · ·

...
...

...

NW NE

i · · · · · ·

SW SE
...

...
...

1 · · · · · ·

1 j n2

(b)

Figure 4. The two searching schemes in the algorithm of Shen. (a) The row searching scheme. (b) The
diagonal searching scheme.

We now establish an exact count of the number of comparisons required by Bird’s
algorithm in the worst case. Suppose that the algorithm is applied to a 2-dimensional
n1 × n2 array with n1 6 n2. Since n1 (n2) is an integer in a closed range delimited by
two consecutive powers of two, the complexity analysis can be done considering that
the worst case occurs when n1 (n2) is the upper bound of the range, as assumed in the
following development:

φ(n1, n2) 6 lg n2 + 2φ(n1/2, n2/2)

= lg n2 + 2 lg(n2/2) + 22φ(n1/22, n2/22)

...

= lg n2 + 2 lg(n2/2) + 22 lg(n2/22) + · · ·+ 2i−1 lg(n2/2i−1) +

2iφ(n1/2i, n2/2i)

= lg n2 + 2(lg n2 − lg 2) + 22(lg n2 − lg 22) + · · ·+ 2i−1(lg n2 − lg 2i−1) +

2iφ(n1/2i, n2/2i)

= lg n2

i−1

∑
k=0

2k −
i−1

∑
k=0

k2k + 2iφ(n1/2i, n2/2i).

When n1/2i = 1, n2/2i > 1. Thus i = lg n1 and φ(n1/2i, n2/2i) = φ(1, n2/2lg n1)
= φ(1, n2/n1) = lg(n2/n1). Then:

φ(n1, n2) 6 lg n2

i−1

∑
k=0

2k −
i−1

∑
k=0

k2k + 2iφ(n1/2i, n2/2i)

Algorithms 2022, 15, 10 14 of 29

= lg n2

lg n1−1

∑
k=0

2k −
lg n1−1

∑
k=0

k2k + 2lg n1 lg(n2/n1)

= lg n2

(
2lg n1 − 1

)
−
(

2lg n1 lg n1 − 2lg n12 + 2
)
+ 2lg n1 lg(n2/n1)

= lg n2(n1 − 1)− (n1 lg n1 − 2n1 + 2) + n1 lg n2 − n1 lg n1

= 2n1 lg n2 − 2n1 lg n1 − lg n2 + 2n1 − 2

= 2n1 lg n2 − 2n1 lg n1 + 2n1 − lg n2 − lg 4

= 2n1 lg(n2/n1) + 2n1 − lg(4n2).

Thus, Bird’s algorithm has worst case performance

φ(n1, n2) = 2n1 lg(
n2

n1
) + 2n1 − lg(4n2). (17)

A comparison of (13) and (17) leads easily to the following deductions (which also
establish the parameter 6.4 as the basis for defining the phrase unbalanced array). If
n1 6 n2 6 6.4 · n1, Bird’s algorithm has an inferior worst case performance than that of
saddleback search. Conversely, if 6.4 · n1 < n2, and thus the array is unbalanced, the
algorithm has a better worst case performance than saddleback search.

4.3. The Location of Pivots when Searching a Row of a 2-d Matrix

The purpose of this subsection is to establish the worst case performance of binary
search when it is used as a subroutine to search the middle row of a given 2-dimensional
monotone real array A as part of an algorithm that is designed to search A for a given
key x. Bird’s algorithm [7] and the first algorithm of Shen [8]) utilise such a subroutine.
More specifically, suppose that An1×n2 with n1 6 n2, is such a given array and that binary
search is applied to the ith row of A, for a given i, 1 6 i 6 n1. That is, the entries, a(i, q),
q = 1, . . . , n2; are to be searched.

We assume from now on that the binary search of row i did not find an instance of
the key x, but returned the entry a(i, j) (6= x), for some column j of A, 1 6 j 6 n2 (see
Algorithm 3). In this case a(i, j) is used as a pivot by comparing it with x in order to discard
the parts of A that now become redundant in the sense that x cannot be a member of them.
Let f (i, j) be the number elements of A that are thus discarded. The issue to be addressed
involves identifying for a given i, which j, where 1 6 j 6 n2, corresponds to the worst case
in the sense that using a(i, j) as the pivot causes the least number of elements of A, to be
discarded. That is, j is worst case if j = argmin f (i, j).

As will be seen later in the present subsection, it has been established that when:

(i) n1 is odd, f (i, j) is independent of j.
(ii) n1 is even and i = n1/2, f (i, j) is minimal when j is maximal.
(iii) n1 is even and i = n1/2 + 1, f (i, j) is minimal when j is minimal.

The above results are now investigated in some detail.
If j = 1 (j = n2), then x < a(i, q) (x > a(i, q)) for q = 1, . . . , n2; and the rectangle

A[(i, 1), . . . , (n1, n2)] (A[(1, 1), . . . , (i, n2)]) is redundant and can be discarded. Otherwise,
if 1 < j < n2, then both x > A[i, j] and x < A[i, j + 1] hold and the redundant area com-
prises the two rectangles: ANE = A[(i, j + 1), . . . , (n1, n2)] and ASW = A[(1, 1), . . . , (i, j)].
Figure 5a may aid the understanding of the following reasoning. Examples are given in
Tables 1 and 2 in which a zero (unit) entry represents a number less than (greater than) x.

Algorithms 2022, 15, 10 15 of 29

n1 · · · · · ·

...
...

...

NW NE

i · · · · · ·

SW SE
...

...
...

1 · · · · · ·

1 j n2

(a)

n1 · · · · · ·

...
...

NW NE

i · · · · · ·

SW SE
...

...

1 · · · · · ·

1 j = n2

(b)

Figure 5. The location of pivots when searching a row. (a) General row search. (b) Row search
Case 2(i).

Table 1. Case 1. n1 is odd.

Row i
Column j

1 2 3 4 5 6 7 8

7 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1
4 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

Table 2. Cases 2 (a) and 2(b). n1 is even with (a) i = 3 and (b) i = 4.

Row i
Column j

1 2 3 4 5 6 7 8

6 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1
3 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

The total number f (i, j) of redundant entries defined by the ordered pair of indexes
(i, j) is:

f (i, j) =

(n1 − (i− 1))n2, if j = 1;
n2 i, if j = n2;
ij + (n1 − (i− 1))(n2 − j), if 1 < j < n2.

(18)

A simple algebraic rearrangement of the case 1 < j < n2 leads to:

f (i, j) = (n1 + 1)n2 − n2 i− (n1 + 1− 2i)j. (19)

Clearly, the number of entries left to be searched is g(i, j) = n1n2 − f (i, j), which after
some algebraic rearrangement leads to:

g(i, j) =

(i− 1)n2, if j = 1;
(n1 − i)n2, if j = n2;
n2 i + (n1 + 1− 2i)j− n2, if 1 < j < n2.

(20)

Algorithms 2022, 15, 10 16 of 29

Suppose that the middle row of A is searched (as is done in Bird’s algorithm [7] and
in the first algorithm of Shen [8]). The special cases when j = 1 or j = n2 are such that the
values of f (i, 1), g(i, 1), f (i, n2) and g(i, n2) do not depend on the index j and are treated
separately at the end of this subsection. We first deal with the case when 1 < j < n2 and
construct the functions f (i, j) and g(i, j), on the basis of the parity of n1.

Case 1 (n1 is odd):

The index i is uniquely specified as i = dn1/2e and thus i = (n1 + 1)/2. Substituting i
in (19), It can be seen that the number of redundant entries reduces to f (i, j) = (n1 + 1)n2/2,
which is independent of j. Thus, it does not matter which entry j of the ith row of A is
identified by the binary search as the pivot (including the cases j = 1 and j = n2). Hence,
the number g(i, j) of entries left to be searched is invariant, where

g(i, j) =
(n1 − 1)n2

2
. (21)

This case is illustrated in Table 1, where n1 = 7, n2 = 8, i = 4, f (4, j) = 32 and
g(4, j) = 24, j = 1, . . . , 8.

Case 2 (n1 is even):

The index i can be specified as either i = dn1/2e (i = n1/2) or i = dn1/2e + 1
(i = n1/2 + 1). For either specification, an obvious task is to identify the column j of A
that corresponds to the worst case, where the least number of entries is made redundant.
This happens when, for a specified row i, binary search returns an index j correspond-
ing to argmin(f (i, j)) or, equivalently, to argmax(g(i, j)). The two specifications of i are
now settled.

Case 2(a) (n1 is even and i = n1/2):

It can be seen from (19) that f (i, j) reduces to (n1 + 2)n2/2− j, which is minimal when
j is as large as possible (j = n2 − 1). Thus, the number of entries left to be searched is

g(i, j) =
n1n2

2
− 1. (22)

This case is illustrated in Figure 5b.

Case 2(b) (n1 is even and i = n1/2 + 1):

Here f (i, j) reduces to (n1n2)/2 + j), which is minimal when j is as small as possible,
i.e., j = 2. Thus, the number of entries left to be searched is,

g(i, j) =
n1n2

2
− 2. (23)

Note that for the separate cases when the binary search returns either j = 1 or j = n2
as the pivot, the number of entries left to be searched is g(i, n2) = (n1n2)/2, which is higher
than those in relations (22) and (23). The cases are illustrated in Table 2, where n1 = 6 and
n2 = 8. As an example of Case 2(a), if i = 3 and j = 7, then f (3, 7) = 25 and g(3, 7) = 23.
However, if i = 3 and j = 1, then f (3, 1) = g(3, 1) = 24. As an example of Case 2(b), if
i = 4 and j = 2, then f (4, 2) = 26 and g(4, 2) = 22. However, if i = 3 and j = 8, then
f (3, 8) = g(3, 8) = 24.

Algorithms 2022, 15, 10 17 of 29

5. Searching the Cuboid (d = 3)(d = 3)(d = 3)
5.1. The Balanced Case (the n-Cube)

For the particular case where d = 3, and the array is balanced (an n-cube), Linial and
Saks [5] improved on the bounds in (5) by establishing⌊

3
2

n2
⌋
6 τ(n, 3) 6

3
2

n2 + 3n lg(n + 2). (24)

As the authors mention, the lower bound in the left-most expression of (24) can be
established as follows. The worst case instance is given by

a(i, j, k) =

−∞, if i + j + k 6 3n/2 + 1 and n is even;
−∞, if i + j + k 6 3n/2 + 3/2 and n is odd;
+∞, otherwise.

(25)

For n even, if any search algorithm fails to compare x with any element a(i, j, k),
where:

i + j + k =
3
2

n + 1 (26)

or

i + j + k =
3
2

n + 2, (27)

then that element could be equal to x even though A is monotone.
For n odd, if any algorithm fails to compare x with any element a(i, j, k), where:

i + j + k =
3
2

n +
3
2

(28)

or

i + j + k =
3
2

n +
5
2

, (29)

then that element could be equal to x even though A is monotone.
It is straightforward to compute the number of elements satisfying (26) and (27). As an

illustration, for (26) we must enumerate the number of triples (i, j, k) in the range 1, . . . , n
that sum to 3n/2+ 1. To do this, one should count the number of triples for which i, j, k > 1
and subtract from it the number of triples for which at least one of i, j, k > n.

The number of triples that sum to 3n/2 + 1 is (3n/2
2). The number of triples that sum

to 3n/2 + 1 with a term bigger than n is (3n/2
2). Thus, the total is (3n/2

2)− 3(n/2
2), which is

3n2/4.
For the expression in (27) it is necessary to count the number of triples (i, j, k), in the

range 1, . . . , n; that sum to 3n/2 + 2, which is (3n/2+1
2). The number of triples that sum

to 3n/2 + 2 with a term bigger than n is (3n/2+1
2). Hence the total is (3n/2+1

2)− 3(n/2+1
2),

which is also 3n2/4. Therefore the number of elements satisfying (26) and (27) is 3n2/2. The
number of elements satisfying (28) and (29) follows analogously, which is b3n2/2c. Thus
the first inequality in (24) is proven.

Linial and Saks [5] established the upper bound in the right-most expression of (24) by
constructing an algorithm (termed the L&S Algorithm here) with worst case performance
equal to the bound. As the constant of the right-most expression in (24) is positive, the L&S
algorithm is asymptotically tight in the worst case. An outline of the algorithm follows. It
alternates between applying binary search along a closed path of particular vectors and by
applying Saddleback Search described in Section 4.1 for a rectangle, which progressively
reduces n by two units at each iteration. At the first stage of the first iteration of the
algorithm, binary searches for x are conducted along six vectors that together form what
we call the Yellow Brick Road (The Yellow Brick Road is a fictional element in the children’s

Algorithms 2022, 15, 10 18 of 29

novel The Wonderful Wizard of Oz by United States author L. Frank Baum (1900)) (YBR)
cycle. The simplified diagram in Figure 6a illustrates this cycle, which comprises paths
that connect the following entries of A: r = a(n, n, 1), s = a(n, 1, 1), t = a(n, 1, n),
u = a(1, 1, n), v = a(1, n, n) and w = a(1, n, 1).

p

rs

t

u v

w

q

(a)

j1

i2

p

rs

t

u v

w

q

(b)

Figure 6. An example of a remaining subarray after searching part of the YBR path. (a) The “Yellow
Brick Road”. (b) The remaining subarray (the green area).

The paths of the initial YBR cycle are the vectors that connect the ordered pairs of
entries: (r, s), (s, t), (t, u), (u, v), (v, w) and (w, r). These paths can be represented as the
vectors: 〈a(n, j1, 1), j1 = 1, . . . , n〉, 〈a(n, 1, k1), k1 = 1, . . . , n〉, 〈a(i1, 1, n), i1 = 1, . . . , n〉,
〈a(1, j2, n), j2 = 1, . . . , n〉, 〈a(1, n, k2), k2 = 1, . . . , n〉 and 〈a(i2, n, 1), i2 = 1, . . . , n〉, re-
spectively.

The binary searches along these paths identify indexes j1, k1, i1, j2, k2 and i2, respec-
tively, such that x > v′, ∀ v′ ∈ {a(i1, n, 1), a(i2, 1, n), a(1, j1, n), a(n, j2, 1), a(1, n, k1),
a(n, 1, k2)} and x < v′′, ∀ v′′ ∈ {a(i1 + 1, n, 1), a(i2 + 1, 1, n), a(1, j1 + 1, n), a(n, j2 +
1, 1), a(1, n, k1 + 1), a(n, 1, k2 + 1)}. The index j1 allows to discard the two-dimensional
subarrays a((1, 1, 1), . . . , (n, j1, 1)) and a((n, i1 + 1, 1), . . . , (n, n, n)). The subarrays dis-
carded via index i2 are A((1, 1, 1), . . . , (i2, n, 1)) and A((i2 + 1, n, 1), . . . , (n, n, n)), as
depicted in the Figure 6b. Each of the other indices, similarly, allows two other two-
dimensional subarrays to be discarded.

However, in the worst case, there may remain a subarray of each of the original
six faces of A. For example, regarding the indices j1 and i2, there remains the subarray
A((i2, j1, 1), . . . , (n, n, 1)) within the original face A((1, 1, 1), . . . , (n, n, 1)), as depicted in
the Figure 6b. In the second stage, the L&S algorithm searches for x in these six subarrays
using the adaption of saddleback search for the rectangle. In the worst case, when x is
not found by any of these searches, what is left of the original array A is a subarray of
dimension (n− 2)× (n− 2)× (n− 2), to which the algorithm L&S is again applied.

The pseudocode of the L&S algorithm is given in Algorithm 10. The specialized
version of the binary search in steps 8 to 13 return both an indication of whether the key
was found (or not) and its position in the array (or the position of the first entry greater
than the key). The operator∨ in steps 9 to 13 implies that the algorithm is terminated if one
of the binary searches along the YBR path finds x. Similarly, in steps 15 to 20, the search is
terminated if one of the calls to the specialized version of the saddleback search finds x.

It is straightforward to show that the L&S algorithm has the following recurrence for
the worst-case number of required comparisons needed to search for a key x:

τ(n, 3) 6 τ(n− 2, 3) + 6 lg(n + 1) + 6(n− 1). (30)

Algorithms 2022, 15, 10 19 of 29

Solving the recurrence (30), establishes the following upper bound on the number of
comparisons required by the L&S algorithm [5].

τ(n, 3) 6 3n2/2 + 3n lg(n + 2). (31)

Algorithm 10 L&S(A, x)

Input: Array A((`1, `2, `3), . . . , (r1, r2, r3)) and key x ∈ R.
Output: True if x ∈ A or False otherwise.

1. if (`1 = r1) and (a(`1, `2, `3) = x) then // Stop conditions.

2. return true
3. end if
4. if (`1 = r1) and (a(`1, `2, `3) 6= x) then
5. return false.
6. end if

7. f ound← false; // Stage 1: Search on YBR path.

8. (i1, f ound)← BinarySearch(A((`1, r2, `3), . . . , (r1, r2, `3)), x);
9. (k1, f ound)← f ound ∨ BinarySearch(A((`1, r2, `3), . . . , (`1, r2, r3)), x);

10. (j1, f ound)← f ound ∨ BinarySearch(A((`1, `2, r3), . . . , (`1, r2, r3)), x);
11. (i2, f ound)← f ound ∨ BinarySearch(A((`1, `2, r3), . . . , (r1, `2, r3)), x);
12. (k2, f ound)← f ound ∨ BinarySearch(A((r1, `2, `3), . . . , (r1, `2, r3)), x);
13. (j2, f ound)← f ound ∨ BinarySearch(A((r1, `2, `3), . . . , (r1, r2, `3)), x);

14. if not f ound then // Stage 2: Search on A sub-faces.

15. f ound← SaddlebackSearch(A((i1, j2, `3), . . . , (r1, r2, `3)), x);
16. f ound← f ound ∨ SaddlebackSearch(A((`1, r2, `1), . . . , (i1, r2, k1)), x);
17. f ound← f ound ∨ SaddlebackSearch(A((`1, j1, k1), . . . , (`1, r2, r3)), x);
18. f ound← f ound ∨ SaddlebackSearch(A((`1, `2, r3), . . . , (i2, j1, r3)), x);
19. f ound← f ound ∨ SaddlebackSearch(A((i2, `2, k2), . . . , (r1, `2, r3)), x);
20. f ound← f ound ∨ SaddlebackSearch(A((r1, `2, `3), . . . , (r3, j2, k2)), x);
21. end if

22. if not f ound then // Recursive call of L&S algorithm.

23. f ound← L&S(A((`1 + 1, `2 + 1, `3 + 1), . . . , (r1− 1, r2− 1, r3− 1)), x);
24. end if

25. return f ound.

While the L&S algorithm is worst-case optimal, for small arrays it does not necessarily
have the best performance. The approach, denoted here by SBS3, is based on partitioning A
into n isomorphic copies of its 2-dimensional subarrays, each consisting of all entries that
have identical 3rd coordinates. Saddleback search is then used repeatedly to search each
2-dimensional subarray. SBS3 has worst case time complexity of τ(n, 3) 6 2n2− n. This
complexity is compared with that of the L&S algorithm τ(n, 3) 6 (3n/2 + 3n lg(n + 2))
in Figure 7. It can be seen that SBS3 is superior when n 6 33 and the L&S algorithm
dominates otherwise.

Algorithms 2022, 15, 10 20 of 29

10 20 30 40

2000

4000

n

f (n)

2n2 − n

(3n2)/2 + 3n lg (n + 2)

32.2 32.4 32.6 32.8 33 33.2

2050

2100

2150

(32.7016,2106.0877)

n

f (n)

2n2 − n

(3n2)/2 + 3n lg (n + 2)

Figure 7. A comparison of the worst case performance of the SBS3 and L&S algorithms.

5.2. The Unbalanced Case (the Cuboid)

Of course, the unbalanced 3-dimensional array, the cuboid, is a special case of the
hypercuboid. As given in (37) below, Linial and Saks (Theorem 5.3 in [5]) showed that
for n1 > n2 > · · · > nd; the performance φ(n1, . . . , nd) of any search algorithm of
the rectangular hypercuboid is bounded above and below by functions of the order of
O(n1 · · · nd lg(dn1/n2e)).

Furthermore, it is possible to extend to cuboids, the search methods for unbalanced 2-
arrays of Shen [8] and Bird [7] given in Section 4. For example, such an algorithm extended
from one of the Shen’s methods iteratively searches particular cuboids of smaller sizes after
discarding entries of the original cuboid A that cannot be x [33]. The algorithm identifies
a pivot (the maximum entry that is less than or equal to the key x) by applying binary
search to a particular diagonal of the middle (balanced) 3-dimensional array of maximum
possible volume of the current cuboid. Once found, the pivot is used to discard entries
of A, if possible, using (1) and (3). The remainder of the cuboid is then divided into three
smaller cuboids A1, A2 and A3 (see Figure 8).

(0, 0, 0)

(n1, n2, n3)

A1

A2

A3

Figure 8. Partition of A into A1, A2, and A3.

The same process is repeated on these three smaller cuboids, until either x is found or
all of the remaining cuboids are one- or two-dimensional subarrays. Binary search is used
to explore any remaining vectors and either Bird’s or Shen’s method [7,8] is used for any
remaining two-dimensional subarrays. This leads to the recurrence (32), given next. The
attainment of exact bounds derived from (32) remains an open problem.

Algorithms 2022, 15, 10 21 of 29

φ(n1, n2, n3) =

1, if n1 = n2 = n3 = 1;

lg(n1 + 1), if n1 > 1 and n2 = n3 = 1;

lg(n2 + 1), if n2 > 1 and n1 = n3 = 1;

lg(n3 + 1), if n3 > 1 and n1 = n2 = 1;

O(min{n1, n2} lg(max{n1,n2}
min{n1,n2} + 1)), if n1, n2 > 1 and n3 = 1;

O(min{n1, n3} lg(max{n1,n3}
min{n1,n3} + 1)), if n1, n3 > 1 and n2 = 1;

O(min{n2, n3} lg(max{n2,n3}
min{n2,n3} + 1)), if n2, n3 > 1 and n1 = 1;

O(lg(max{n1, n2, n3}+ 1) +

φ(n1, dn2/2e, bn3/2c) +
φ(bn1/2c, n2, dn3/2e) +
φ(dn1/2e, bn2/2c, n3), otherwise.

(32)

6. Searching in Higher Dimensions (d > 4)(d > 4)(d > 4)
6.1. Balanced Case (Hypercubes)

Cheng et al [9] extended the results of Linial and Saks [5] for the cube, described in
Section 5, to d-dimensional hypercubes for d > 4. The Cheng et al. algorithm is described
as a generalization of a particular algorithm (which we call Cheng-4) for the special case
d = 4. The authors use the lower bound 4/3n3− n/3 6 τ(n, 4) to the Cheng-4 algorithm,
which they showed to be asymptotically tight.

Cheng-4 first selects eight particular 2-d outer faces of the 4-d hypercube A and uses
an adaptation of the saddleback search to partition each of these eight 2-d arrays into two
surfaces, requiring at most 8(2n− 1) tests. These surfaces generate eight 3-d subarrays of
A that are then searched with at most 8n2 tests. Similarly to the L&S algorithm this process
reduces the remaining 4-d hypercube to be searched to one with sizes (n− 2). The authors
established that, for n > 2, the worst case performance of their algorithm is given by

τ(n, 4) 6 τ(n− 2, 4) + 8n2 + 8(2n− 1). (33)

This recurrence implies that τ(n, 4) 6 4/3n3 +O(n2). Therefore, using their lower
bound the authors have shown that

4/3n3− n/3 6 τ(n, 4) 6 4/3n3 +O(n2), (34)

and that the algorithm is asymptotically optimal up to the lower order terms.
The partition of each one of the eight 2-d outer faces of the 4-d hypercube generates

two subsets S and L, such that S contains entries smaller than x and L contains entries
larger than x. These subsets are derived from two 2-dimensional arrays u and v, each
containing n integers such that i1 6 u[i2] iff a(i1, i2) < x and i2 6 v[i1] iff a(i1, i2) < x.
The sets S and L, as well as the arrays u and v are illustrated in Figure 9.

Algorithms 2022, 15, 10 22 of 29

r2

L

i2 u[i2]

S
`2

`1 r1

(a)

r2

L

v[i1]

S
`2

`1 i1 r1

(b)

Figure 9. Partition of a monotone two-dimensional array An,2 corresponding to an outer 2-d face of
A 4-d hypercube. Adapted from Cheng et al. (a) Vector u and partitions S and L. (b) Vector v and
partitions S and L. [9].

The eight 2-d outer faces are defined by fixing a pair of subscripts (ip, iq), p = 1, . . . , 4
and q = (p + 1) mod 4, to either (1, n) or (n, 1) and are denoted by Mi and M∗i , i =
1, . . . , 4. For example, M1 is obtained by the indexes a(i1, i2, 1, n), i1, i2 = 1, . . . , n, and
generates the partitions S1 and L1. Similarly, M∗1 = {a(i1, i2, n, 1)}, i1, i2 = 1, . . . , n,
generates S∗1 and L∗1 .

Using some properties as to whether or not the key belongs to the 2-d partitions,
eight 3-d surfaces Qi = {a(i1, i2, i3, i4)} and Q∗i = {a(j1, j2, j3, j4)} are defined, by fixing
ik = 1 and jk = n for k = 1, . . . , 4. The search then proceeds in some subarrays of these
eight surfaces generated by the intersections induced by the partitions Si and Li (S∗i and
L∗i). An example of these intersections is depicted in Figure 10. For further details the
reader is referred to [9].

Cheng et al. [9] also showed how the algorithm Cheng-4 can be generalised to d-
dimensional hypercubes, for d > 5, in a straightforward way. As with Cheng-4, the search
is carried out in two steps. In the first step, the algorithm partitions the original matrix
An,d into 2d subsets Sk and Lk, k = 1, . . . , d; such that Sk contains entries smaller than x
and Lk contains entries larger than x. The algorithm considers 2d (d− 2)-dimensional
arrays as defined below:

Mk = {a(i1, i2, . . . , id) | ik−2 = 1, ik−1 = n} ⇒ Sk, Lk,

M∗k = {a(i1, i2, . . . , id) | ik−2 = n, ik−1 = 1} ⇒ S∗k , L∗k .

The aim of using the subsets Sk and Lk is to attempt to eliminate part of the surface of
a particular subarray by fixing (d− 3) subscripts.

The d pairs of “mutually complementary” subsets (Sk, Lk) and (S∗k , L∗k) (k = 1, . . . , d)
have the following properties:

(a) x > a(i1, . . . , id | i(k−2) mod d = 1, i(k−1) mod d = n) and x < a(j1, . . . , jd) |
j(k−2) mod d = 1, j(k−1) mod d = n) for (ik, . . . , ik+d−3) ∈ Sk and (jk, . . . , jk+d−3) ∈
Lk,

(b) x > a(i1, . . . , id | i(k−2) mod d = n, i(k−1) mod d = 1) and x < a(j1, . . . , jd) |
j(k−2) mod d = n, j(k−1) mod d = 1 for (ik, . . . , ik+d−3) ∈ S∗k and (jk, . . . , jk+d−3) ∈
L∗k ,

for all k = 1, . . . , d.

Algorithms 2022, 15, 10 23 of 29

r2 `2
`4

r4

`3

r3

i′3

L∗2

S∗2

u∗2 [i
′
3]

(a)

r2 `2
`4

r4

`3

r3

i′3

L3

S3

v3[i′3]

(b)

r2 `2
`4

r4

`3

r3

i′3

(c)

Figure 10. Searching in the three-dimensional surface Q1 = {a1,i2,i3,i4} of An,4.
Adapted from Cheng et al. (a) Partition of M∗2 = {a1,i2,i3,n} into S∗2 and L∗2 . (b)
Partition of M3 = {a1,n,i3,i4} into S3 and L3. (c) The “inverted pyramid” composed of a sequence of
three-dimensional matrices to be searched. [9].

In total, the first step produces 4d (d− 3)-dimensional arrays. At most 2n− 1 com-
parisons are needed for each fixed subscript i2, . . . , id−3 and hence at most 2dnd−4(2n− 1)
comparisons in total are required.

In the second step, the surfaces of the subarrays are searched in order to reduce the
region of uncertainty to a d-dimensional array with sizes at most (n− 2). The algorithm
searches the following 2d (d− 1)-dimensional surfaces of An,d, that are defined by fixing
one of the subscripts at either 1 or n:

Qk = {a(i1, . . . , id) | ik = 1},

Algorithms 2022, 15, 10 24 of 29

Q∗k = {a(i1, . . . , id) | ik = n},
k = 1, . . . , d.

In total, the second step requires at most 2dnd−2 comparisons.
Steps 1 and 2 reduce the original array to a d-dimensional array An−2,d, with sizes of

at most (n− 2). That is,

An−2,d = {ai1,...,id | i1, . . . , id = 2, . . . , n− 1}.

Hence the generalised recursion is:

τ(n, d) 6

1, if n = 1;
2d, if n = 2;
τ(n− 2, d) + 2dnd−2 + 2dnd−4(2n− 1), for n > 2.

(35)

Solving this recursion leads to a worst case performance of the algorithm of

τ(n, d) 6
(

d
d− 1

)
nd−1 +O(nd−2), d > 4. (36)

6.2. Unbalanced Case (the Hypercuboids)

For the general case of a d-dimensional array that is not necessarily balanced, Linial
and Saks [5] proved that, for n1 > n2 > · · · > nd; there exists a nonincreasing func-
tion k1(d) and a function k2(d) such that the performance φ(n1, . . . , nd) of any search
algorithm is bounded as follows:

k2(d)n1 · · · nd−1 lg(
nd

nd−1
+ 1) 6 φ(n1, . . . , nd) 6 k1(d)n1 · · · nd−2 lg(

nd
nd−1

+ 1), (37)

7. The Worst Case Performance of Some of the Revised Algorithms

From (8), the binary search of a sorted one-dimensional array of size n can be per-
formed with blog(n)c+ 1 comparisons in the worst case. However, there is some justifica-
tion in assuming that using (1), (2) and (3) at each iteration of such a binary search actually
requires two comparisons (not one). Some implications of making such an assumption are
now established.

7.1. Binary and k-Nary Search Revised

The worst case performance of the binary search version that uses only one comparison
at each iteration, as described in Section 3, can be stated as follows:

τ(n, 1) 6

{
1, if n = 1;
1 + τ(bn/2c, 1), otherwise.

(38)

Therefore,

τ(n, 1) 6 1 + τ(bn/2c, 1)

= 1 + 1 + τ(bn/2c/2, 1)
...

= 1 + · · ·+ 1︸ ︷︷ ︸
i

+ τ(bn/2c/2i−1, 1)

= 1 + · · ·+ 1︸ ︷︷ ︸
i

+ τ(bn/2ic, 1)

= i + τ(bn/2ic, 1).

Algorithms 2022, 15, 10 25 of 29

When bn/2ic = 1, τ(bn/2ic, 1) = τ(1, 1) = 1. Moreover,

bn/2ic = 1⇒ 1 6 n/2i < 2

⇒ 2i 6 n < 2i+1

⇒ lg 2i 6 lg n < lg 2i+1

⇒ i 6 lg n < i + 1

⇒ i = blg nc.

Thus,
τ(n, 1) 6 blg nc+ 1. (39)

This result can be generalised to k-nary versions of the algorithm, i.e., that divide the
search space into k parts, as follows:

τ(n, 1) 6

{
ck, if n < k;
bk + τ(bn/kc, 1), otherwise;

(40)

where ck is a tight upper bound on the number of comparisons necessary to check the
elements still eventually remaining after exiting the search loop and bk expresses the
complexity of dividing the search space into k parts, defined by k− 1 pivot elements, and
the necessary comparisons of the key x with those pivot elements. Thus,

τ(n, 1) 6 bkblogk nc+ ck. (41)

Thus, as k increases, the logarithm basis and the constants ck and bk also increase
since more operations are necessary to determine in which subspace to continue the search.
Therefore, in practice, the gain of performance obtained by increasing the logarithm basis
is practically cancelled out by increasing the constants ck and bk.

7.2. Shen’s Algorithm Revised

We now establish a revised exact count of the number of comparisons required by the
Shen’s row search algorithm [8] in the worst case. The worst possible location of the pivot
on the “middle” row of the matrix, discussed in Section 4.3, leads to the following revised
recurrence relation for the algorithm:

φ(n1, n2) 6

1, if n2 = n1 = 1;
2blg n2c+ 1, if n2 > 1 and n1 = 1;
2blg n1c+ 1, if n2 = 1 and n1 > 1;
(2blg n2c+ 1) +
(2blg(dn1/2e− 1)c+ 1) +
φ(bn1/2c, n2− 1), otherwise.

(42)

Note (bxc = k⇔ k 6 x < k + 1 and dxe = k⇔ k− 1 < x 6 k.) that dn1/2ie −
bn1/2ic 6 1⇒ dn1/2ie− 1 6 bn1/2ic. Moreover, blgbn1/2cc 6 lgbn1/2c. Thus:

φ(n1, n2) 6 (2blg n2c+ 1) + (2blg(dn1/2e− 1)c+ 1) + φ(bn1/2c, n2− 1)

6 (2blg n2c+ 1) + (2 lg(bn1/2c) + 1) + φ(bn1/2c, n2− 1)

= [(2blg n2c+ 1) + (2blg(n2− 1)c+ 1)] + [(2 lg(bn1/2c) + 1) +

(2 lg(bn1/22c) + 1)] + φ(bn1/22c, n2− 2)

...

= [(2blg n2c+ 1) + (2blg(n2− 1)c+ 1) + · · · + (2blg(n2− (i− 1))c+ 1)] +

Algorithms 2022, 15, 10 26 of 29

[(2 lg(bn1/2c) + 1) + (2 lg(bn1/22c) + 1) + · · · + (2 lg(bn1/2ic) + 1)] +

φ(bn1/2ic, n2− i).

Observe that bn1/2ic 6 n1/2i ⇒ lg(bn1/2ic) 6 lg(n1/2i) = lg n1 − lg 2i = lg n1 − i.
Therefore,

φ(n1, n2) 6 [(2blg n2c+ 1) + (2blg(n2− 1)c+ 1) + · · ·+ (2blg(n2− (i− 1))c+ 1)] +

[(2 lg(n1/2) + 1) + (2 lg(n1/22) + 1) + · · ·+
(2 lg(n1/2i) + 1)] + φ(bn1/2ic, n2− i)

=

[
2

i−1

∑
k=0
blg(n2− k)c+ i

]
+

[
2

i

∑
k=0

(lg n1− lg 2k) + i

]
+ φ(bn1/2ic, n2− i).

6 [2iblg n2c+ i] +

[
2

i

∑
k=0

(lg n1− k)) + i

]
+ φ(bn1/2ic, n2− i)

6 [2iblg n2c+ i] + [2(i + 1) lg n1− (1 + · · ·+ i) + i] + φ(bn1/2ic, n2− i)

= [2iblg n2c+ i] + [2(i + 1) lg n1− i2] + φ(bn1/2ic, n2− i)

6 [2i lg n2 + i] + [2(i + 1) lg n1− i2] + φ(bn1/2ic, n2− i)

There are two cases to be considered:

1. bn1/2ic = 1 and n2 − i > 1, then i 6 lg n1 and φ(bn1/2ic, n2 − i) 6 φ(1, n2 −
lg n1) 6 2blg(n2− lg n1)c+ 1 6 2 lg(n2− lg n1) + 1. Then,

φ(n1, n2) 6 [2 lg n1 lg n2 + lg n1] + [2(lg n1 + 1) lg n1− (lg n1)
2] +

[2 lg(n2− lg n1) + 1]

= 2 lg(n2− lg n1) + lg n1(2 lg n2 + 3) + (lg n1)
2.

2. bn1/2ic > 1 and n2− i = 1, then i = n2− 1 and φ(bn1/2ic, n2− i) 6 φ(n1/2n
2 , 1) 6

2blg(n1/2n
2)c+ 1 = 2blg n1− n2c+ 1 6 2(lg n1− n2) + 1. Then,

φ(n1, n2) 6 [2(n2− 1) lg n2− (n2− 1)] + [2((n2− 1) + 1) lg n1− (n2− 1)2] +

2 lg n1− 2n2 + 1

= 2n2 lg(n1n2) + 2 lg n1− lg n2− (n2
2− n2 + 1).

7.3. Bird’s Algorithm Revised

We now establish a revised exact count of the number of comparisons required by
Bird’s algorithm [7] in the worst case. Suppose that the algorithm is applied to a two-
dimensional n1 × n2 array with n1 < n2. Suppose further, that when a binary search
subroutine is called as a part of the algorithm it has worst case performance given in
Equation (39). Then, following the reasoning used to derive Equation (17), it can be
established that the worst case performance for the revised Bird’s algorithm is

φ(n1, n2) = 4n1 lg
(

n2

n1

)
+ 6n1− 2 lg(4n2). (43)

Note that the count in (43) is significantly higher than that in (17). Recall that from
(13), the worst case performance of the adaption of saddleback search for the array under
study has a worst case performance of (n1 + n2− 1). However, if it is still assumed that
two comparisons are necessary at each iteration of saddleback search, then its worst case
performance is

φ(n1, n2) = 2(n1 + n2) + 1. (44)

Algorithms 2022, 15, 10 27 of 29

A comparison of equations (43) and (44) imply that if n1 6 n2 < 8n1, Bird’s algorithm
has an inferior worst case performance than that of adapted saddleback search. Conversely,
if n2 > 8n1, the algorithm has a better worst case performance than revised saddleback
search.

7.4. The L&S Algorithm Revised

We now establish a revised exact count of the number of comparisons required by
the L&S algorithm in the worst case. Suppose that the algorithm is applied to an n-cube.
Suppose further, that when a binary search subroutine is called as a part of the algorithm
it has the worst case performance given in Equation (39). Then, following the reasoning
used to derive Equation (31) , it can be established that the worst case performance for the
revised L&S algorithm is

τ(n, 3) 6 3n2/2 + 6n lg(n + 1) + 3n + 12 lg(n + 1) + 6. (45)

Note that the count in (45) is significantly higher than that in (31).

8. Searching for All Occurrences of the Key

We now briefly discuss the extended problem of searching for all occurrences of the
key. To be meaningful, A must be redefined as a strictly monotone array, i.e., its entries
either strictly decrease or strictly increase when moving away from the origin along any
path parallel to an axis.

When d = 1, binary search is the basis for efficiently solving some variants of the
search problem, such as determining the index of: (i) the first occurrence of the key, (ii) the
last occurrence of the key, or (iii) the least element greater than the key, or (iv) the greatest
element less than the key. Some minor changes to the basic logic of the Binary Search
algorithm are enough to solve variants (i)–(iv). A simple combination of the algorithms
that solve variants (i) and (ii) or of those that solve variants (iii) and (iv) can be used to
determine all occurrences of the key.

Regarding the case d = 2, although it was included as an “existence” method, Bird’s
algorithm [7] was actually designed to search for all occurrences of the key.

For the case d > 3, the possibility searching for all occurrences of the key is not
discussed in any of the articles cited in the present work. However, certainly, the aforemen-
tioned algorithms designed to search for a single instance of the key when d > 3 can be
extended to search for all occurrences of the key, probably with an increase in complexity.

9. Conclusions

The problem of sequentially searching a real d-dimensional (d > 1) array for a given
key has been extensively investigated. The formal definition of the problem has been
revised and algorithms identified in the specialised literature for it and some of its special
cases, including those where the array has sizes not necessarily equal, have been described
in detail. Many aspects of algorithm performance complexity have also been discussed.
The known d-dimensional (balanced and unbalanced) array search algorithms with the
best performing complexities in the worst case are shown in Table 3 for 1 6 d 6 4. It can
be seen from the table that each algorithm has order strictly less than a product of the sizes
of the array, except for the d = 2 balanced case.

A present challenge is to solve recurrences such as the one in (32). Open problems
include those of finding efficient algorithms for d-dimensional unbalanced arrays with
d > 3.

Algorithms 2022, 15, 10 28 of 29

Table 3. Search algorithms and their worst case performance bounds.

d Structure Method Worst-Case Complexity

1 — Binary Search O(lg(n))
2 Balanced Saddleback Search O(n)

Unbalanced Bird/Shen algorithms O(n1 lg(n2/n1)), n1 6 n2
3 Balanced L&S algorithm O(n2)
4 Balanced Cheng-4 algorithm O(n3)

Author Contributions: Conceptualization, L.R.F. and H.J.L.; Data curation, M.R.C.; Formal analysis,
M.R.C. and L.R.F.; Funding acquisition, M.R.C.; Investigation, L.R.F. and H.J.L.; Methodology, M.R.C.,
L.R.F. and H.J.L.; Project administration, M.R.C.; Software, M.R.C. and H.J.L.; Supervision, H.J.L.;
Validation, M.R.C. and L.R.F.; Visualization, H.J.L.; Writing—original draft, L.R.F. and H.J.L.; Writing—
review & editing, M.R.C., L.R.F. and H.J.L. All authors have read and agreed to the published version
of the manuscript.

Funding: The authors are grateful to the Fundação de Amparo à Pesquisa do Estado de Goiás-
FAPEG-Brazil, for its support of this research (Call 03/2015).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baase, S.; Gelder, A.V. Computer Algorithms: Introduction to Design and Analysis, 3rd ed.; Addison-Wesley: Reading, MA, USA, 2000.
2. Cosnard, M.; Duprat, J.; Ferreira, A. Complexity of selection in X + Y. Theor. Comput. Sci. 1989, 67, 115–120. [CrossRef]
3. Gries, D. The Science of Programming; Texts and Monographs in Computer Science; Springer: Berlin, Germany, 1981.
4. Sarnath, R.; He, X. Efficient parallel algorithms for selection and searching on sorted matrices. In Parallel Processing Symposium,

International; IEEE Computer Society: Washington, DC, USA, 1992; pp. 108–111. [CrossRef]
5. Linial, N.; Saks, M. Searching ordered structures. J. Algorithms 1985, 6, 86–103. [CrossRef]
6. Dijkstra, E.W. A Discipline of Programming, 1st ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1976.
7. Bird, R.S. Improving saddleback search: A lesson in algorithm design. In Proceedings of the Mathematics of Program Construction:

8th International Conference, MPC 2006, Kuressaare, Estonia, 3–5 July 2006; Uustalu, T., Ed.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2006; Volume 4014, pp. 82–89. [CrossRef]

8. Shen, H. Optimal algorithms for generalized searching in sorted matrices. Theor. Comput. Sci. 1997, 188, 221–230. [CrossRef]
9. Cheng, Y.; Sun, X.; Yin, Y.L. Searching monotone multi-dimensional arrays. Discret. Math. 2008, 308, 2213–2224. [CrossRef]
10. Knuth, D.E. The Art of Computer Programming: Sorting and Searching, 1st ed.; Addison-Wesley Series in Computer Science and

Information Processing; Addison-Wesley Pub. Co.: Boston, MA, USA, 1973; Volume 3,
11. Shneiderman, B. Jump Searching: A Fast Sequential Search Technique. Commun. ACM 1978, 21, 831–834. [CrossRef]
12. Martin, J. Computer Data-Base Organization, 2nd ed.; Prentice-Hall Series in Automatic Computation; Prentice-Hall: Hoboken, NJ,

USA, 1977.
13. Mauchly, J.W. Sorting and collating. In Theory and Techniques for the Design of Electronic Digital Computers; Patterson, G.W., Ed.;

University of Pennsylvania: Cambridge, MA, USA, 1946; Volume 3, Lecture 22.
14. Steinhaus, H. Mathematical Snapshots, 3rd ed.; Oxford University Press: Oxford, UK, 1960.
15. Sandelius, M. On an optimal search procedure. Am. Math. Mon. 1961, 68, 133–134. [CrossRef]
16. Reingold, E.M. Establishing lower bounds on algorithms: A survey. In Proceedings of the Spring Joint Computer Conference,

Atlantic City, NJ, USA, 16–18 May 1972; ACM: New York, NY, USA, 1972; pp. 471–481. [CrossRef]
17. Dijkstra, E.W. EWD1293—Constructing the Binary Search Once More. Department of Computer Sciences, The University of

Texas at Austin: Austin, TX, USA. Available online: http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1293.PDF (accessed
on 23 December 2021).

18. Dumey, A.I. Indexing for rapid random access memory systems. Comput. Autom. 1956, 5, 6–9.
19. Halpern, M. Variable-width tables with binary-search facility. Commun. ACM 1958, 1, 1–3. [CrossRef]
20. McCracken, D.D. Digital Computer Programming; General Electric Series; John Wiley & Sons: New York, NY, USA, 1957.
21. Lehmer, D.H. Teaching combinatorial tricks to a computer. In Combinatorial Analysis; American Mathematical Society: Providence,

RI, USA, 1960; pp. 179–193.
22. Lesuisse, R. Some Lessons Drawn from the History of the Binary Search Algorithm. Comput. J. 1983, 26, 154–163. [CrossRef]
23. Bottenbruch, H. Structure and Use of ALGOL 60. J. ACM 1962, 9, 161–221. [CrossRef]
24. Iverson, K.E. A Programming Language; John Wiley & Sons, Inc.: New York, NY, USA, 1962.

http://doi.org/10.1016/0304-3975(89)90027-3
http://dx.doi.org/10.1109/IPPS.1992.223063
http://dx.doi.org/10.1016/0196-6774(85)90020-3
http://dx.doi.org/10.1007/11783596_8
http://dx.doi.org/10.1016/S0304-3975(97)00027-3
http://dx.doi.org/10.1016/j.disc.2007.04.067
http://dx.doi.org/10.1145/359619.359623
http://dx.doi.org/10.2307/2312475
http://dx.doi.org/10.1145/1478873.1478936
http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1293.PDF
http://dx.doi.org/10.1145/368699.368705
http://dx.doi.org/10.1093/comjnl/26.2.154
http://dx.doi.org/10.1145/321119.321120

Algorithms 2022, 15, 10 29 of 29

25. Knuth, D.E. Computer-drawn Flowcharts. Commun. ACM 1963, 6, 556–558. [CrossRef]
26. Hesselink, W.H. whh303—Ternary search. Dept. of Mathematics and Computing Science, Rijksuniversiteit Groningen: Groningen,

The Netherlands. Available online: http://wimhesselink.nl/pub/whh303.pdf (accessed on 23 December 2021).
27. Kostyukov, V. Dual-Pivot Binary Search. 2014. Available online: https://kostyukov.net/posts/dual-pivot-binary-search/

(accessed on 4 December 2021).
28. Peterson, W.W. Addressing for Random-Access Storage. IBM J. Res. Dev. 1957, 1, 130–146. [CrossRef]
29. Perl, Y.; Itai, A.; Avni, H. Interpolation Search—A log log N Search. Commun. ACM 1978, 21, 550–553. [CrossRef]
30. Bentley, J.L.; Yao, A.C.C. An almost optimal algorithm for unbounded searching. Inf. Process. Lett. 1976, 5, 82–87. [CrossRef]
31. Ferguson, D.E. Fibonaccian Searching. Commun. ACM 1960, 3, 648. [CrossRef]
32. Aggarwal, A.; Klawe, M.; Moran, S.; Shor, P.; Wilber, R. Geometric Applications of a Matrix Searching Algorithm. In Proceedings

of the Second Annual Symposium on Computational Geometry; Association for Computing Machinery: New York, NY, USA, 1986;
pp. 285–292. [CrossRef]

33. Cappelle, M.R.; Foulds, L.R.; Longo, H.J. A note on searching sorted unbalanced three-dimensional arrays. arXiv 2017,
arXiv:1712.02371.

http://dx.doi.org/10.1145/367593.367620
http://wimhesselink.nl/pub/whh303.pdf
https://kostyukov.net/posts/dual-pivot-binary-search/
http://dx.doi.org/10.1147/rd.12.0130
http://dx.doi.org/10.1145/359545.359557
http://dx.doi.org/10.1016/0020-0190(76)90071-5
http://dx.doi.org/10.1145/367487.367496
http://dx.doi.org/10.1145/10515.10546

	Introduction
	Preliminaries
	The Search of Vectors (d = 1)
	The Search of Matrices (d = 2)
	Balanced Matrices
	Unbalanced Matrices
	Shen's Algorithms
	Bird's Algorithm

	The Location of Pivots when Searching a Row of a 2-d Matrix

	Searching the Cuboid (d = 3)
	The Balanced Case (the n-Cube)
	The Unbalanced Case (the Cuboid)

	Searching in Higher Dimensions d>=4
	Balanced Case (Hypercubes)
	Unbalanced Case (the Hypercuboids)

	The Worst Case Performance of Some of the Revised Algorithms
	Binary and k-Nary Search Revised
	Shen's Algorithm Revised
	Bird's Algorithm Revised
	The LS Algorithm Revised

	Searching for All Occurrences of the Key
	Conclusions
	References

