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Abstract: At present, there are very few analysis methods for long-term electroencephalogram (EEG)
components. Temporal information is always ignored by most of the existing techniques in cognitive
studies. Therefore, a new analysis method based on time-varying characteristics was proposed. First
of all, a regression model based on Lasso was proposed to reveal the difference between acoustics
and physiology. Then, Permutation Tests and Gaussian fitting were applied to find the highest
correlation. A cognitive experiment based on 93 emotional sounds was designed, and the EEG data
of 10 volunteers were collected to verify the model. The 48-dimensional acoustic features and 428
EEG components were extracted and analyzed together. Through this method, the relationship
between the EEG components and the acoustic features could be measured. Moreover, according to
the temporal relations, an optimal offset of acoustic features was found, which could obtain better
alignment with EEG features. After the regression analysis, the significant EEG components were
found, which were in good agreement with cognitive laws. This provides a new idea for long-term
EEG components, which could be applied in other correlative subjects.

Keywords: emotion cognition; Lasso regression; EEG component analysis; long-term EEG;
affective computing

1. Introduction

Emotions play an essential role in human intelligence activities. The research of
affective computing has wide application prospects. A deep understanding of emotions
could help people shake off depression and improve work efficiency. Current research
on affective computing mainly focuses on voice, images, and multi-modal physiological
information [1]. The research on visual information inducing emotion started earlier,
and the results are more comprehensive and richer, including emotional pictures, facial
expressions, videos, and games [2]. Music is an art that expresses and inspires emotions by
the difference in melody, the speed of the rhythm, the height of the volume, the change
of the harmony, and the different kinds of timbre. It conveys emotional information more
directly than language [3]. Therefore, music is an ideal breakthrough for studying human
emotional activities [4].

At present, the understanding of emotion includes two levels: one is emotional expres-
sion, and the other is emotional experience. Emotional expression is mainly the emotion
expressed in music, pictures, and other works, while emotional experience includes cogni-
tive factors [5]. Research on the cognitive brain mechanism of music emotions has mainly
been completed by electroencephalogram (EEG) and functional magnetic resonance imag-
ing (fMRI) [6]. Specific brain activities can be observed by fMRI in the form of pictures.
However, due to a low temporal resolution, it cannot accurately analyze the dynamic
activities of the brain. EEG signals can be used to explore cognitive principles and to
perceive emotional states [7]. Compared with audio and visual images, EEG signals not
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only contain perceptual information, but also cognitive information, which can better
express an emotional experience. Compared with EMG, EEG is the brain’s natural re-
flection of information, which can accurately analyze the dynamic activities of the brain.
Therefore, EEG signals are selected to study long-term emotions. However, the research
on EEG emotion is still in the primary stage, and the research objects are simple notes.
The lack of intrinsic features and calculation models of long-term EEG greatly limits the
development of affective computing. Therefore, a long-term EEG signal analysis method is
necessary, which could more scientifically and accurately reflect emotional changes, and
deeply explore the cognitive principle of emotion and brain.

In this article, a long-term EEG component analysis method based on Lasso regression
is proposed, which could analyze long-term and continuous EEG signals, and find emotion-
related components.

1.1. Related Works of Emotional EEG Analysis

Temporal signals carry emotional information. The research of dynamic emotion
recognition attempts to identify an emotional state based on information before that
moment, which is also the process of people’s perception of emotions. Madsen et al. [8]
found that the temporal structure of music is essential for musical emotion cognition.
Based on the kernel Generalized Linear Model (kGLM), they obtained a lower classification
error in both continuous emotions (valence, arousal) and discrete emotion recognition.
Saari et al. [9] obtained a better emotion prediction effect by extracting long-term semantic
features. They built large-scale predictive models for moods in music based on the semantic
layer projection (SLP) technique, and obtained prediction rates from moderate (R2 = 0.248
for happy) to considerably high (R2 = 0.710 for arousal). Han’s research team found a
higher emotion recognition rate by merging frame-based timing information and long-
term global features [10]. They proposed a global-control Elman (GC-Elman) network to
combine utterance-based features and segment-based features together and obtained a
recognition rate for anger, happiness, sadness, and surprise of 66.0%. These studies have
proved that there are emotion-related cues in time-series information, which is of great
help to emotion prediction.

Then question, then, is how to describe emotional changes in long-term brain activity.
The EEG is a complex non-stationary random signal which is easily disturbed by the
external environment and subject movement [11]. At present, the most commonly used
methods of EEG analysis are event-related processing methods such as event-related
potentials (ERP), event-related synchronization (ERS), and event-related desynchronization
(ERD) [12]. The principle is that the specific stimulus could cause regular potential changes
in the brain. Therefore, neural activity in the cognitive process could be measured through
the electrophysiological changes of the brain [13]. Poikonen et al. [14] successfully extracted
the N1 and P2 components caused by music through the ERP technique. The potential
changes are similar to the same type of stimulus, while the noise in response is random.
Therefore, the ERP component could be obtained, and the random noise balanced out, by
large amounts of superposition and averages of EEG, as shown in Figure 1. The horizontal
axis represents time and the vertical axis represents voltage amplitude. Furthermore, by
analyzing the contribution of the ERP component, the EEG component that has the largest
contribution could be found. The numbers (1, 3, 4, 7, 8, 11, and 13) on the topographic
maps are the index of the independent components of EEG signals, which were obtained
by Independent Component Analysis.
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Figure 1. Schematic diagram of ERP analysis method. The curve in the figure is ERP induced by 
emotional sounds. Seven EEG components contribute the most. 

At present, most EEG signal processing methods are aimed at short-term brain activ-
ities, and there are few analysis methods for long-term EEG response. Among many anal-
ysis methods, the power spectral density analysis and Auto-Regressive (AR) model esti-
mation are frequently used. Power Spectral Density (PSD) represents a power change with 
a frequency, that is, the distribution of signal power in the frequency domain. Generally, 
the nonparametric estimation, based on Fourier transform, is used for PSD calculation. 
The power spectrum estimation method proposed by Welch [15] is widely used. Li et al. 
combined PSD and brain topographic maps for visualizing energy changes of different 
frequency bands of long-term EEG [16]. The band energies of EEG signals were calculated 
with sliding windows and plotted on brain topographic maps in chronological order. 
With music playing, the change process of brain activity could be dynamically displayed 
and measured. The Auto-Regressive (AR) Model [17] is a linear regression model that 
combines previous information to describe a random variable at a specific time. It is es-
sentially a linear prediction. Zhang et al. [18] used the AR model and empirical mode 
decomposition (EMD) to extract EEG features for emotion recognition induced by music 
videos. The average recognition rate of four kinds of emotions was 86.28%. In addition, Li 
et al. [19] extended the brain functional network method to analyze dynamic EEG changes 
during music appreciation. The dynamic brain functional network for different frequency 
bands of EEG signals was constructed by mutual information, observed over time, and 
used in emotion recognition. Based on the SVM classifier, the recognition rate of the four 
categories of emotion music classification —happy, distressed, bored, and calm—is 53.3%. 

In addition to the above processing methods, various intelligent processing methods 
have vigorously promoted emotional EEG signal analysis. In 2007, Murugappan et al. ex-
tracted two chaotic features (Fuzzy C-Means, Fuzzy K-Means) of EEG signals and applied 
them to emotion classification [20]. In 2010, Lin from the National Taiwan University used 
a differential asymmetry of electrodes to classify five types of emotions induced by music, 
and achieved a recognition rate of 82% [21]. In 2012, the Greek scholar Panagiotis pro-
posed Higher Order Crossings features to classify six types of emotions (happiness, sur-
prise, anger, fear, disgust, and sadness) and obtained a recognition rate of 83% [22]. In 
2017, Samarth et al. applied the deep neural network (DNN) and convolutional neural 
network (CNN) to recognize emotions. The recognition rate of two types of emotions 
reached 73.36%, based on multimodal physiological signals. The recognition rate of three 
kinds of emotions was 57.58% [23]. 

It is not difficult to see that most existing analysis methods are based on statistical 
analysis and machine learning techniques. There are many deficiencies in the research of 
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Figure 1. Schematic diagram of ERP analysis method. The curve in the figure is ERP induced by
emotional sounds. Seven EEG components contribute the most.

At present, most EEG signal processing methods are aimed at short-term brain ac-
tivities, and there are few analysis methods for long-term EEG response. Among many
analysis methods, the power spectral density analysis and Auto-Regressive (AR) model
estimation are frequently used. Power Spectral Density (PSD) represents a power change
with a frequency, that is, the distribution of signal power in the frequency domain. Gener-
ally, the nonparametric estimation, based on Fourier transform, is used for PSD calculation.
The power spectrum estimation method proposed by Welch [15] is widely used. Li et al.
combined PSD and brain topographic maps for visualizing energy changes of different
frequency bands of long-term EEG [16]. The band energies of EEG signals were calculated
with sliding windows and plotted on brain topographic maps in chronological order. With
music playing, the change process of brain activity could be dynamically displayed and
measured. The Auto-Regressive (AR) Model [17] is a linear regression model that combines
previous information to describe a random variable at a specific time. It is essentially a
linear prediction. Zhang et al. [18] used the AR model and empirical mode decomposition
(EMD) to extract EEG features for emotion recognition induced by music videos. The
average recognition rate of four kinds of emotions was 86.28%. In addition, Li et al. [19]
extended the brain functional network method to analyze dynamic EEG changes during
music appreciation. The dynamic brain functional network for different frequency bands
of EEG signals was constructed by mutual information, observed over time, and used in
emotion recognition. Based on the SVM classifier, the recognition rate of the four categories
of emotion music classification —happy, distressed, bored, and calm—is 53.3%.

In addition to the above processing methods, various intelligent processing methods
have vigorously promoted emotional EEG signal analysis. In 2007, Murugappan et al.
extracted two chaotic features (Fuzzy C-Means, Fuzzy K-Means) of EEG signals and applied
them to emotion classification [20]. In 2010, Lin from the National Taiwan University used
a differential asymmetry of electrodes to classify five types of emotions induced by music,
and achieved a recognition rate of 82% [21]. In 2012, the Greek scholar Panagiotis proposed
Higher Order Crossings features to classify six types of emotions (happiness, surprise,
anger, fear, disgust, and sadness) and obtained a recognition rate of 83% [22]. In 2017,
Samarth et al. applied the deep neural network (DNN) and convolutional neural network
(CNN) to recognize emotions. The recognition rate of two types of emotions reached
73.36%, based on multimodal physiological signals. The recognition rate of three kinds of
emotions was 57.58% [23].

It is not difficult to see that most existing analysis methods are based on statistical
analysis and machine learning techniques. There are many deficiencies in the research of
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long-term brain cognitive mechanisms and emotion recognition. The main reasons are
as follows:

(1) There is no long-term analysis method of EEG components, or quantitative calculation
method for EEG features;

(2) In most of the existing methods, temporal information is ignored, and the characteris-
tics of temporal variation of emotions are not considered.

1.2. The Proposed Method and Article Structure

Due to the lack of component analysis and quantitative calculation of long-term EEG
signals, a new method of time-varying feature analysis based on Lasso regression analysis
is proposed in this article.

First of all, a cognitive experiment through continuous sounds was designed, and the
EEG signals were recorded. Secondly, the emotion-related acoustic features of the sounds
were extracted and calculated. Moreover, the EEG components were separated by the
Independent Component Analysis (ICA) analysis method, and a regression model between
the EEG components and acoustic features was established to reveal long-term correlations.
Finally, the most relevant emotion-related EEG components were found by the random
arrangement test and Gaussian fitting. Compared with short-term EEG emotion prediction,
the long-term analysis method proposed in this article has the advantages of a longer
analysis time and more accurate prediction results. The probability of finding abnormal
brain waves is higher, and the chance of a missed diagnosis is reduced.

The main content is as follows: Section 2 briefly introduces the basic principles and
methods of the long-term analysis method of EEG components. Section 3 explains the
cognitive experiment and gives the experimental results. In Section 4, the advantages of
the proposed method are discussed, and possible further improvements are given.

2. Methods

The process of the method proposed in this article is shown in Figure 2. It mainly
included the following four steps: (1) extracting the acoustic features of the audio and
finding the emotion-related acoustic features based on correlation analysis; (2) ICA de-
composition and features extraction of EEG signals; (3) time-varying regression analysis
between acoustic features and EEG components; and (4) finally, looking for the most
relevant emotion-related EEG components by permutation tests and Gaussian fitting.
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2.1. Acoustic Feature Extraction

In the current auditory recognition methods, acoustic features are extracted in the
form of frames. The extraction process is as follows: (1) divide the audio signal into frames;
(2) extract features for each frame; (3) calculate the first-order difference of the frame
features; and (4) finally use the frame feature and the mean-variance of the first-order
difference as the feature of the entire audio.

There are 48 dimensions in the feature set, including low-level descriptors: the loud-
ness, root-mean-square signal frame energy, intensity, loudness, 12 MFCC, pitch (F0), its
envelope, F0 envelope, 8 line spectral frequencies, and zero-crossing rate; and the statistical
values of these features are: the maximum, minimum, range, arithmetic mean, two linear
regression coefficients, linear and quadratic error, standard deviation, skewness, kurtosis,



Algorithms 2021, 14, 271 5 of 17

quartile 1–3 and 3 inter-quartile ranges, and delta regression coefficients. These are taken
from the OpenSMILE configuration file for the IS09 emotion challenge, which were also
used in [24] and [25]. In the process of the feature extraction of the sound signal, the frame
length is set to 50 ms, and the frame shift is 10 ms, which is easy to align with the envelope
of the EEG.

The correlation analysis based on the similarity matrix is used for feature dimension
reduction. The construction method is as follows:

First of all, set the music signal as Ai, 1 ≤ i ≤ N (N is the number of samples) and
acoustic features as Fi, 1 ≤ i ≤ M (M is the feature dimension). The feature set (F) includes
low-level features such as pitch, zero-crossing rate, and loudness, as well as high-level
semantic features, such as brightness, and roughness. The behavior ratings of emotion
labels (valence and arousal) are L. As discussed above, the human brain’s response to
music is based not only on the audio information at the current moment, but also on the
time before the current moment. To preserve the time information, the audio feature Fi is
windowed and divided into frames.

Secondly, construct a feature similarity matrix (FDM) for each feature and a label
similarity matrix (LDM) for the valence and arousal ratings. The feature similarity matrix
(FDM) is built as follows:

FDMpg = dist(Fp, Fq), 1 ≤ p, q ≤ N (1)

where Fp and Fq represent the feature vector of the p-th sample and the q-th sample, and
dist(X,Y) represents the cosine similarity between X and Y.

dist(X, Y) =

→
x ·→y
‖x‖·‖y‖ (2)

The distance function could be Euclidean distance, Mahalanobis distance, and Cosine
similarity. To test the performance of distance function, 259 initial samples were divided
into two categories: living sound and nonliving sound, which have been proved to be quite
different [26]. The similarity matrices of the same feature were calculated, respectively, by
using Euclidean distance, Mahalanobis distance, and cosine similarity, shown in Figure 3.
There were two groups: the first 125 samples were living sounds and the last 134 samples
were nonliving sounds. The difference between the two groups was used as the selection
criteria. The distances with a large difference between groups, and a small difference within
groups were used. Here, cosine similarity was selected, which could better describe the
difference of specific feature vectors.
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similar and a bright color means dissimilar. The sum value of dissimilarity by cosine was higher than
the euclidean and mahalanobis distances.
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Thirdly, calculate the similarity between FDM and LDM matrices, as the similarity
score S1, the calculation formula is as follows:

S1 =
FDM · LDM

‖FDM‖ · ‖LDM‖ =

n
∑

i = 1
FDMi × LDMi√

n
∑

i = 1
(FDMi)

2 ×
√

n
∑

i = 1
(LDMi)

2
(3)

Finally, the row values of FDMi represent the distances between Ai and Aj, 1≤ j 6= i≤N
in a specific feature. It could measure the feature similarity between samples. Therefore, set
S2 is the feature similarity between samples, which could be calculated by the sum of the row
value of FDM. The final similarity score S for a specific feature is given by:

S = S1 + S2 (4)

By sorting S, the most relevant features F̂i, 1 ≤ i ≤ K of emotions could be found.

2.2. EEG Component Decomposition and Feature Extraction

It is widely known that the EEG component is very weak, and the noise is very strong.
As the EEG signal is only about 50 mV, preprocessing is necessary. The process of EEG
signal processing is shown in Figure 4.
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2.2.1. EEG Preprocessing

To reduce interference, the left mastoid is selected as the reference electrode. In
contrast, the average reference is usually used to amplify the fluctuation of amplitude
in data analysis. That is, the EEG data is obtained by subtracting the average value of
all channels.

Then, because the effective frequency of the EEG signal is mainly concentrated below
50 Hz, a band-pass filter from 0.5 to 50 Hz is applied to the EEG signal. The finite impulse
response (FIR) filters are used in signal processing. First, to remove linear trends, a high-
pass filter at 0.5 Hz is applied, which is also recommended to obtain good quality ICA
decompositions [27]. Then, a low-pass filter at 50 Hz is applied to remove the high-
frequency.

After that, the independent components of EEG signals are obtained by the Indepen-
dent Component Analysis (ICA) method [28], which decomposes the complex signal into
several independent components. Moreover, the artifacts of eye movement and muscle
constriction could be removed by an independent components rejection.

2.2.2. PSD Feature Extraction

As discussed in Section 1.1, Welch’s method is commonly used in power spectrum
estimation. It allows for the partial overlap of data segments and non-rectangular window
functions, which could improve spectral distortion [29]. If the original length of N data is
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divided into K segments, the length of each segment is L = N/K. The spectrum estimation
of each segment is the total average, which is given by:

PSD(ω) =
1
K

K

∑
i = 1

P̂i(ω) (5)

where P̂i(ω), i = 1, 2, 3, . . . , K is the power spectrum of the i-th segment, which is defined
as follows:

P̂i(ω) =
1

LV

∣∣∣∣∣ L

∑
n = 1

w(n)xc
i (n)e

−jwn

∣∣∣∣∣
2

(6)

where w(n) is the window function, in which the Hamming window is used, and V is the
normalized definition of w(n).

Finally, the power spectral density curve is obtained. The band power of the EEG
rhythm is calculated by the average of the PSD value in the corresponding frequency bands
as: δ (1–3 Hz), θ (4–7 Hz), α (8–13 Hz), β (14–30 Hz), and γ (31–50 Hz). The frequency
bands of the EEG signals are related to the different functional states of the brain: (1) the
delta band (0.5–4 Hz) usually occurs during deep sleep; (2) the theta band (4–8 Hz) often
occurs when the human brain is idle or meditating; (3) the alpha band (8–13 Hz) can
be detected in a relaxed state; (4) the beta band (13–30 Hz) is linked to logical thinking,
emotional fluctuation, vigilance, or anxiety; and (5) the low gamma band (30–50 Hz) will
appear when people are usually very excited, excited, or strongly stimulated. Frequency
bands represent different cognitive processes, which are used as indicators or features and
are mentioned in a variety of literature [30–32].

2.2.3. Contour Extraction

The Hilbert transformation (HT) is named after the mathematician David Hilbert [33].
The newer Hilbert-Huang transformation is a nonlinear and non-stationary data analysis
method that decomposes any complex signal into a limited and small number of intrinsic
modal functions [34]. It is possible to extract and calculate the instantaneous frequency of
short signals and complex signals with the Hilbert transform. Therefore, the HT is widely
used in engineering applications. It has been used to measure arrhythmia in Harvard
Medical School and measure dengue fever spread in Johns Hopkins School of Public Health.
In EEG signal processing, it could be seen in the research of long-term insomnia, depression,
attention, and others. What’s more, the HT could represent a real signal as a complex signal
with a value in the positive frequency domain. Therefore, it is of great significance to the
study of the instantaneous envelope of real signals.

For a real signal with f(t), its HT is recorded as:

f̃ (t) =
1
π

∫ ∞

−∞

f (τ)
t− τ

dτ (7)

To further understand the meaning of the Hilbert transform, the analytical function
Z(t) is introduced. If f (t) is the real part, and its HT f̃ (t) is the imaginary part, the complex
signal Z(t) = f (t) + ĩ f (t). The envelope of the real signal f (t) is given by:

|Z(t)| =
√

f 2(t) + f̃ 2(t) (8)

2.3. Lasso Regression

Regression analysis is a predictive modeling technique that studies the relationship
between dependent variables and independent variables. This technique is commonly used
for time-series models and discovering causal relationships between variables. Because
emotions change over time, an emotional value is not enough to represent the dynamic
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emotions evoked by music. Therefore, regression analysis is applied to catch the dynamic
changes in time.

Multivariable linear regression is a statistical method used to study the relationship
between variables in random phenomena [35], assuming that the dependent variable Y has
a linear relationship with multiple independent variables {X1, X2, . . . , Xk}. It is a multiple
linear function of the independent variables, which is called a multiple linear regression
model, defined as:

Y = β0 + β1X1 + β2X2 + · · ·+ βkXk + µ (9)

where Y is the dependent variable, Xj (j = 1, 2, . . . , K) are the independent variables, β j
(j = 0, 1, 2, . . . , K) is K + 1 parameters, and µ is random errors.

The linear equation between the expected value of the dependent variable Y and the
independent variables {X1, X2, . . . , Xk} is:

E(Y) = β0 + β1X1 + β2X2 + · · ·+ βkXk (10)

For n groups of observations Yi, X1i, X2i, . . . , Xki (i = 1, 2, . . . , n), the equations are in
the form:

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + µi, (i = 1, 2, . . . , n) (11)

which is: 
Y1 = β0 + β1X11 + β2X21 + · · ·+ βkXk1 + µ1
Y2 = β0 + β1X12 + β2X22 + · · ·+ βkXk2 + µ2

...
Yn = β0 + β1X1n + β2X2n + · · ·+ βkXkn + µn

(12)

where its matrix form is defined as:

Y = Xβ + µ (13)

In fact, a phenomenon is often related to multiple factors. The optimal combination of
multiple independent variables is more effective and more realistic than using only one
independent variable. Therefore, multiple linear regression has more practical value.

Least Absolute Shrinkage and Selection Operator (Lasso) regression is proposed by
Tibshirani in 1996 to obtain a better model by constructing a first-order penalty function [36].
It puts particular variables into a model to get better performance parameters, instead of
putting all the variables into the model for fitting. The complexity of the model is well
controlled by the parameter λ, which could be used to avoid over-fitting [37].

β̂ = argmin
{
(Y− Xβ)2 + λ|β|

}
(14)

where the parameter λ is a penalty factor. The larger the λ, the stronger the punishment for
the linear model with variables. Therefore, a model with fewer variables is finally obtained.

The fitting coefficient, the parameter λ, is usually defined as the smallest or standard
error (SE) value. One has the best fitting effect, and the other is the better value taking into
account the calculation. To obtain the best fitting result, the minimum value is considered
the constraint condition in this article.

2.4. Gaussian Fitting

Gaussian fitting is a fitting method that uses the Gaussian function to approximate a
set of data points. The Gaussian function is the normal distribution function. Its various
parameters have a clear physical meaning, and a simple and fast calculation. The Gaussian
fitting method is widely used in the measurement of analytical instruments. The Gaussian
statistical model uses its probability density function (PDF) as the modeling parameter,
which is the most effective feature set generation method [38].
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There is a set of experimental data (xi, yi) (i = 1, 2, 3, . . . , N), which could be described
by the Gaussian function, defined as:

yi = ymax × exp

[
− (xi − xmax)

2

S

]
(15)

The parameters to be estimated in Equation (15) are ymax, xmax, and S, which represent
the peak value, peak position, and half-width information of the Gaussian curve, respec-
tively. Taking the natural logarithm on both sides of the Equation (15), and using b0, b1, b2
to replace the multiple items, respectively, the procedure can be matrixed as:

z1
z2
...

zn

 =


1 x1 x2

1
1 x2 x2

2
...

...
...

1 xn x2
n


 b0

b1
b2

 (16)

Without considering the total measurement error, it is abbreviated as:

Z = XB (17)

According to Least-Square Principle, the generalized least-squares solution of matrix
B, formed by fitting constants b0, b1, b2, can be obtained as:

B =
(

XTX
)−1

XTZ (18)

Then, the parameters to be estimated (S, xmax, and ymax) could be calculated, and the
Gaussian function obtained by the Equation (15).

3. Experiments and Results
3.1. Cognitive Experiment and Data Description

To verify the method proposed in this article, a long-term auditory emotion cognition
experiment was firstly designed. Music is composed of short-term notes. Therefore,
93 environment sounds were selected and played randomly, which were arranged together,
and formed as a long-term sound signal. The emotional response and evaluation of sounds
are essential components of human cognition. For example, people will be irritable when
they hear noise, be pleased when they hear the sounds of birds, and be frightened when
they hear thunder.

The experimental samples were mainly considered from two aspects: one was that
short-term analysis techniques could be applied to compare with current work; and the
other was to analyze the long-term brain components through the method proposed
in this article. Finally, a total of 93 samples were selected with a length of 1–2 s, from
259 sounds among three emotional sound libraries, IADS2, Montreal, and MEB, based on
the emotional tags.

The experimental design adopted a task-independent practical method. The entire
experiment was divided into two parts: listening to the sound while collecting EEG signals;
and listening to the sound and evaluating the Valence-Arousal (VA) dimensional emotions.
The EEG acquisition experiment adopted the 1-back experimental paradigm, in which 20%
may repeat the previous sound. The experimental process is shown in Figure 5. In addition,
51 volunteers who did not participate in the experiment evaluated the emotions of each
segment online. The SAM assessment was used, which included the scores 1–9 from the
three dimensions of valence, arousal, and domination.
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Figure 5. The experimental flow of sound-induced emotion. Figure 5. The experimental flow of sound-induced emotion.

A total of 10 volunteers (undergraduates aged between 19 and 25 years old) partici-
pated in the experiment. The experiment included 12 blocks, and each block lasted about
5 min. There was a 1-min rest between the blocks. The whole experiment was about 60 min.
The EEG signal was recorded through a 128-channel EEG system (BioSemi Active Two).
The sampling frequency was 1000 Hz, and the electrode arrangement was placed according
to the international 10–20 system standard (shown in Figure 6). The left mastoid was used
as a reference to avoid asymmetry of the left and right hemispheres.
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Figure 6. Electrode location distribution.

3.2. Simulation and Results

At present, the dimensional emotion model is commonly used, in which the human
emotional state is formalized as a point in a two-dimensional or three-dimensional con-
tinuous space. The advantage of the dimensional model is that it can describe the fine
distinction of emotional states and external physical arousal [39]. The VA dimensional
model adopted in this paper was proposed by James A. Russell [40]. The model purports
that emotional states are points distributed on a two-dimensional space containing Valence
and Arousal. The vertical axis represents the valence, and the horizontal axis represents
the activation.

(1) Acoustic Feature Extraction

The 93 sound samples in Section 3.1 were used here, and 48 dimensional features were
extracted by frames. The frame shift was set to the difference between the sampling rate
of the sound signal and the EEG signal. The sound signal frame shift was set to 40 ms;
the frame length was 50 ms. Based on this set of acoustic features, the stimulus feature
dissimilarity matrix and the dissimilarity score of each feature were calculated. Finally,
10 acoustic features with high emotional correlation were selected, including ‘zero cross’,
‘pitch’, ‘centroid’, ‘brightness’, ‘spectral flux’, ‘roughness’, ‘tempo’, ‘loudness’, ‘spread’,
and ‘roll off’, as shown in Figure 7.
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The programming language was based on Matlab. The MIRtoolbox was used in the
acoustic feature extraction and the EEGLAB toolbox was used in the EEG signal processing.

(2) EEG Component Decomposition and Feature Extraction

The preprocessing was applied on the EEG signals according to the method in
Section 2.2, including re-reference, removing the artifacts, and 0.5–50 Hz band-pass filter-
ing. For calculation convenience, the EEG signals were down-sampled from 512 Hz to
100 Hz. After that, the independent components (ICs) of EEG signals were obtained by
the ICA method. After removing the artifacts of ICs, a total of 428 ICs were obtained in
the five frequency bands. According to Equation (5), the power spectrum density curve
was calculated, and the band powers of five EEG frequency bands δ, θ, α, β, and γ were
obtained. The envelopes were obtained by HT transform. As shown in Figure 8, (a) is the
original EEG signal, (b) is the preprocessed EEG signal, and (c) is the HT envelope feature.
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Then, the EEG features were aligned with the auditory features according to the onset
time. The silent parts were filled with 0. The features were extracted from frames and
spliced together to form one-dimensional time-series features, forming a long-term sound,
as shown in Figure 9.
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(3) Regression Model

The multiple regression analysis was performed based on the EEG components and
sound features of the time series. The independent variables were the acoustic features,
and the dependent variable was the EEG component of each IC and band.

Based on the previous feature selection, supposing the optimal feature set is
F̃i, i = 1, 2, . . . , K, then regression prediction equations for Valence and Arousal are
established as Equation (14), where X is the feature set, Y is the average score of Valence or
Arousal, and µ is the random error.
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Based on the Lasso regression model, the prediction equation is solved when the
fitting coefficient β̂ is the smallest.

β̂ = argmin
{(

Y− F̃iβ
)2

+ λ|β|
}

(19)

Therefore, there were a total of 428 regression models and 428 fitting parameter R-
squares were obtained. All the fitting parameters were plotted in order, as shown in
Figure 10.
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Figure 10. The R-squares of 428 regression models. (The horizontal axis represents the number of
regression equations, and the vertical axis represents the value of R-square).

As shown in Figure 10, the horizontal axis is the dependent variable, and the curve
represents the difference between the target model and the standard waveform. The ICs
with the largest difference in EEG component correlation could be found. At this point, the
most relevant EEG components of emotions were found: IC#41 in the alpha band, IC#1,
IC#2, and IC#77 in the beta band, as shown in Figure 11. As with other auditory working
memory task research [41,42], the same area on the right side of the low frequency alpha
band is activated, so it is speculated that IC#41 is a working memory task.
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Figure 11. The most relevant emotion-related long-term brain components. (a) is the IC#41 in the
alpha band, (b) is the IC#1 in the beta band.

Cong and Poikonen et al. [43,44] combined music information retrieval with spatial
Fourier ICA to probe the spectral patterns of the brain network emerging from music
listening. A correlation analysis was performed between EEG data and musical features
(fluctuation centroid, entropy, mode, pulse clarity, and key feature). They found that an
increased alpha oscillation in the bilateral occipital cortex emerged during music listening.
Furthermore, musical feature time series were associated with an increased beta activation
in the bilateral superior temporal gyrus. In addition, Anilesh et al. [45] used ICA to study
the long-term dynamic effects of music signals on the central nervous system through EEG
signal analysis. They analyzed eight components in both a pre-music state and listening to
music, and found that the frontal and central lobes were affected by music. These studies
confirm the effectiveness of the ICs extracted by this method [46].



Algorithms 2021, 14, 271 14 of 17

4. Discussions

The goal of this article is to reveal the long-term correlation between EEG components
and emotional changes. The background of this research is based on the question of how to
represent and measure the brain reflection and mood changes with music in a concert hall.
The existing component analysis methods are mostly for short-term EEG signals, and there
are very few studies on long-term EEG signals and long-term analysis methods. Through
this method, the analysis method for long-term EEG signals could be realized, the EEG
components related to mood changes could be found, and the expression of long-term EEG
and the comparison of long- and short-term components could be realized.

Considering the possible delay of the EEG response, an EEG signal could be offset
appropriately to find the best model parameter. As shown in Figure 12, two offset param-
eters were considered. Lag1 was the emotional label offset parameter, and Lag2 was the
acoustic feature offset parameter. The shift range of Lag1 was from 0 ms to 600 ms, and
the shift range of Lag2 was from 0 ms to 400 ms. In the figure, when Lag1 = 480 ms and
Lag2 = 120 ms, the fitting parameter R-square achieved the best results.
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Secondly, to verify the signature of the IC with the highest correlation, we performed
200 calculations on the regression model of each subject. The histogram of the fitting
parameter R-square was plotted, as shown in Figure 13.
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Figure 13. The result of Gaussian Fitting.

The ICs distributed on the right side of the Gaussian fitting curve were the ICs with
the highest correlation degree. Therefore, the significant brain components were IC#82
in the delta band, IC#1 and #5 in the alpha band, IC#12 in the beta band, etc. shown in
Figure 14. The results are essentially consistent with studies [44,45].
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5. Conclusions

Aiming at the lack of any long-term analysis method of EEG signals, a long-term EEG
component analysis method based on the Lasso regression analysis is proposed in this
article. To consider the temporal variation of emotions, a cognitive experiment based on
environmental sounds was designed, and the EEG data of 10 volunteers were collected.
In total, 48 dimensional acoustic features and 428 EEG components were extracted, rep-
resenting different emotional and psychological activities. Then, a new analysis method
based on the time-varying characteristics of different spaces (acoustics, physiology) was
proposed. The relationship between the time-varying brain component parameters and
acoustic features could be found through this method. According to the temporal relations,
an optimal offset of acoustic features was found, which enabled better alignment of EEG
features. After the regression analysis, the significant EEG components were found, which
were in good agreement with cognitive laws.

The method proposed in this paper effectively solves the problem that existing analysis
methods cannot be applied to long-term EEG components. The above work has achieved
phased results and provides a basis for the study of auditory emotional cognition. In the
future, more in-depth research will be carried out on auditory emotional cognition and
calculation methods to explore the universal principles of affective computing. When
experimental data is adequately accumulated, the classification model can be carried out.
Then, an automatic emotion prediction and recognition system with an auditory and
physiological response could be built.
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