
algorithms

Article

Multi-Class Freeway Congestion and Emission Based on
Robust Dynamic Multi-Objective Optimization

Juan Chen 1,2,* , Qinxuan Feng 1 and Qi Guo 1

����������
�������

Citation: Chen, J.; Feng, Q.; Guo, Q.

Multi-Class Freeway Congestion and

Emission Based on Robust Dynamic

Multi-Objective Optimization.

Algorithms 2021, 14, 266. https://

doi.org/10.3390/a14090266

Academic Editors: Lorenzo

Salas-Morera and Laura

Garcia-Hernandez

Received: 13 August 2021

Accepted: 9 September 2021

Published: 13 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 SHU-UTS SILC Business School, Shanghai University, Shanghai 201899, China;
deepblue00@shu.edu.cn (Q.F.); iguoqi@i.shu.edu.cn (Q.G.)

2 Smart City Research Institute, Shanghai University, Shanghai 201899, China
* Correspondence: chenjuan82@shu.edu.cn; Tel.: +86-10-6998-0028

Abstract: In order to solve the problem of traffic congestion and emission optimization of urban
multi-class expressways, a robust dynamic nondominated sorting multi-objective genetic algorithm
DFCM-RDNSGA-III based on density fuzzy c-means clustering method is proposed in this paper.
Considering the three performance indicators of travel time, ramp queue and traffic emissions,
the ramp metering and variable speed limit control schemes of an expressway are optimized to
improve the main road and ramp traffic congestion, therefore achieving energy conservation and
emission reduction. In the VISSIM simulation environment, a multi-on-ramp and multi-off-ramp
road network is built to verify the performance of the algorithm. The results show that, compared
with the existing algorithm NSGA-III, the DFCM-RDNSGA-III algorithm proposed in this paper
can provide better ramp metering and variable speed limit control schemes in the process of road
network peak formation and dissipation. In addition, the traffic congestion of expressways can be
improved and energy conservation as well as emission reduction can also be realized.

Keywords: robust dynamic; nondominated sorting multi-objective genetic algorithm; multi-class;
traffic congestion and emissions

1. Introduction

The urban expressway system is the main framework system of the urban road system,
and its operation service level directly affects the efficiency of urban road traffic. Taking
Beijing, Shanghai and other big cities in China as an example, the problem of congestion on
expressways is becoming increasingly serious [1]. At the same time, the on and off ramps
of urban expressways are also closely related to the traffic efficiency of the main road. In
the entrance and exit area of the ramps, the impact of the incoming area of the ramp on the
mainline traffic can be reduced by active management and control of the incoming vehicles.
Therefore, the traffic efficiency of the expressway can be improved, and the emission as
well as fuel consumption can be reduced. Relevant studies show that these vehicle exhaust
pollutants are one of the main factors causing urban haze [2].

Since the 1870s, abundant research results have been achieved by scholars in the
field of expressway traffic control. Taking the traffic control strategy as an example, many
countries already have quite scientific variable speed limit control technology. However,
research in China is still lagging behind and is unable to take advantages of variable speed
limit control technology. From the beginning of the 1990s, when variable speed limit control
technology was put into practice, to now, despite the ramp control technology currently
implemented in Shanghai, the ideal control effect still cannot be obtained. Therefore, this
paper will focus on better traffic control by proposing a more practical algorithm.

Active management and control of multi-class expressway systems are studied in
this paper. Through adopting effective control strategies, congestion and traffic efficiency
can be improved, and vehicle exhaust emissions and fuel consumption can be reduced.
In addition, considering the dynamic variation of the traffic process, it is particularly
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important to optimize control strategies while balancing both robustness and dynamic
requirements and to implement a control strategy with strong stability and adaptability to
the dynamic variation of traffic flow. Based on the above considerations, a robust dynamic
nondominated sorting multi-objective genetic algorithm, DFCM-RDNSGA-III, based on
densities and the fuzzy C-means clustering method is proposed in this paper. A robust
control strategy for the multi-on-ramp expressway network can then be provided; this
strategy can help solve the congestion situation in the peak h of the road network and
make a positive contribution to environmental protection.

Specifically, DFCM-RDNSGA-III is designed to optimize the variable speed limit
strategy and ramp control scheme of urban expressway networks. Considering the three
performance indicators of travel time, ramp queue and traffic emissions, it combines the
improved multi-class freeway macroscopic traffic flow model Multi class METANET with
the multi-class emission and fuel consumption model Multi-class VT-macro. The variable
speed limit and ramp metering strategy of the expressway system with multi-on-ramps and
multi-off-ramps are optimized, and finally, the effect of the algorithm is verified through
building road network under the VISSIM simulation environment.

The contributions of this paper are as follows:
1. A new robust dynamic multi-objective optimization algorithm is designed to si-

multaneously optimize the travel time, ramp queue and traffic emissions of expressway
networks. In the proposed robust dynamic multi-objective optimization algorithm, the
density fuzzy c-means clustering algorithm DFCM is adopted to explore the irregular
Pareto fronts in the multi-objective optimization algorithm. This can lead to more rea-
sonable reference point setting, therefore improving the diversity of Pareto solutions and
accelerating the convergence speed of the optimization algorithm;

2. Based on the improved multi-class freeway macroscopic traffic flow model, multi-
class METANET and the multi-class emission and fuel consumption model ulti-class
VT-macro, the algorithm can optimize the variable speed limit and ramp metering rate of
the expressway system with multiple on-ramps and off-ramps at the same time. Moreover,
the ramp inflow rate and main road variable speed limit control scheme can be obtained
with strong robustness and adaptability to the dynamic variation of traffic flow. Therefore,
the main road and ramp traffic congestion can be improved at the same time and energy
conservation as well as emission reduction can be achieved;

3. By building the actual road network in the VISSIM simulation environment, the
algorithm proposed in this paper is compared with the existing algorithms. It is verified that
the proposed algorithm, DFCM-RDNSGA-III, can provide better traffic control strategies,
and the freeway traffic congestion and environmental pollution can be improved effectively.

2. Literature Review

Considering the problems solved in this paper, a literature review will be conducted
below from four aspects: freeway models, freeway traffic control strategies, robust dynamic
multi-objective optimization algorithms and Pareto front exploration.

Traffic flow theory is fundamentally applied in fields such as intelligent traffic system,
traffic management and control, traffic engineering design, and so on [3]. In general,
traffic flow models can be divided into microscopic and macroscopic models. Macroscopic
models often contain fewer parameters than microscopic models, which will be used in
this paper. Partial differential equations are used to describe the macroscopic traffic flow
models. These macroscopic traffic flow models can be classified into first-order, second-
order or higher-order models. Some models, such as the Lighthill–Whitham–Richards
(LWR) [4] and cell transmission model (CTM) [5], are representative of first-order models,
while the METANET model is a common second-order traffic flow model [6]. Since the
speed variations of vehicles and the reaction time of drivers are not considered, capacity
decreases and oscillations due to freeway congestion cannot be reflected in first-order
models. However, such deficiencies can be remedied in second-order traffic flow models,
since second-order models can reproduce highly realistic traffic phenomena. In second-



Algorithms 2021, 14, 266 3 of 22

order models, the real traffic networks can be reproduced by the METANET model more
accurately. For instance, the paper [7] extended a multi-class macroscopic traffic flow
model, METANET, and proved that the model can lead to better fitting results because the
heterogeneity of the traffic flow network structure was taken into account. Based on the
above, this paper integrates the multi-class model proposed in paper [7] and a dynamic
model proposed in paper [8]; therefore, a more comprehensive multi-class macroscopic
traffic flow model is proposed.

Variable speed limits (VSL) and ramp metering (RM) are the most common strategies
used in traffic control [9]. Based on fixed speed limits, VSL is a mainline control strategy
where both frequent and incidental traffic congestion are considered. By using this strategy,
dynamic speed limit suggestions can be provided to drivers in advance; therefore, the
mainline flow upstream of the bottleneck can be well-managed to maximize the traffic
throughput and prevent traffic congestion effectively [10]. In paper [7], a VSL-based cell
transmission model was proposed to control the main roadway of a freeway, and the travel
time was found to be reduced effectively. RM considers the traffic conditions and capacity
on the downstream of the mainline. By using this strategy, the vehicle proportion of the
ramp inflow can be determined without causing mainline traffic breakdown, therefore
improving the network operation efficiency [11]. However, freeways still cannot be well-
managed and controlled based on a single traffic control strategy due to the sophistication
of expressway systems. Therefore, integrated control strategy is one of the present research
directions [12]. The main idea is to regulate the expressway through coordinating more
than one traffic control method. In paper [13], an integrated strategy was developed to
coordinate multiple on-ramps and maximize the motorway bottleneck throughput. The
limitations of the model in paper [13] include that only the throughput was taken into
account, while the differences in vehicle classes were neglected. In conclusion, there are
few studies on the integrated control strategy of VSL and RM on the aspect of multi-class
expressways. Therefore, the research in this paper is meaningful.

In the process of optimizing practical problems, normally the original problem will
be described as dynamic optimization problems (DOPs) when the environment changes
dynamically [14]. In general, due to the real-time traffic flow variations on the entrance
of the mainline and ramps, real-time oscillations often occur on the aspect of the traffic
network states, such as density, flow, and speed, while dealing with the optimization
problems of multi-class freeway congestion and emissions simultaneously. Therefore,
freeway network control schemes need to be changed accordingly. The real-time variations
of the demands, the network states and the control schemes were denoted in the form of
parameters or performance indicators in DOPs. Moreover, the paper [15] described that
historical environmental conditions and corresponding optimal solutions needed to be
recorded and stored in the optimization process of DOPs. Therefore, obvious improvements
in the evolution efficiency and search performance of the algorithm can be obtained through
reusing these reserved solutions when detecting a similar dynamic environment. At present,
robust dynamic optimization methods have been adopted by many researchers to solve
DOPs, mainly including dynamic single-objective methods [16] and static multi-objective
robust optimization methods [17]. However, research on robust dynamic multi-objective
optimization methods is still limited. Hence, it is necessary to extend the research on robust
dynamic multi-objective optimization algorithms extensively. While dealing with DOPs,
the major challenge is to determine the distribution of Pareto fronts because of the irregular
Pareto optimal front distribution nature. This is due to the fact that the robust dynamic
solution sets, which constitute the Pareto optimal front, often change with the environment
during the robust dynamic optimization process. Therefore, the research on the exploration
of Pareto fronts will be reviewed below.

In paper [18], it is pointed out that clustering methods can help multi-objective op-
timization algorithms describe the Pareto front, detect the distribution of the solutions
over the objective space, track the Pareto front continuously and guide search directions
by the use of cluster centers, thereby leading to an increase in population diversity and
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convergence speed. The k-means method, proposed in paper [19], is one of the most
widely used clustering algorithms which belongs to hard clustering. The principle of hard
clustering is to divide data points into specific clusters, and the corresponding relation-
ship between data points and clusters is unique. In paper [20], the k-means clustering
algorithm was used to determine the irregular Pareto front shapes in a multi-objective
optimization algorithm. By dividing the population into several cluster sets, the overall
structure of the Pareto front can be discovered, which makes the population evolve in
different cluster centers, thereby improving the diversity and convergence speed of the
NSGA-II algorithm. However, the number of initial cluster centers in the k-means method
needs to be determined by empirical methods. Moreover, random generation of initial
cluster centers may lead to unstable clustering results. It is proposed in paper [21] that
fuzzy clustering is one of the most widely used soft clustering algorithms which can accu-
rately describe the mediation of the data samples. Among the fuzzy clustering methods,
the fuzzy c-means clustering method, which combines traditional clustering algorithms
with fuzzy theory, can provide more flexible clustering results [22]. Considering the large
dimension of the objective spaces in the multi-objective optimization problems, in most
cases, the solutions contained in the Pareto front are difficult to classify into a specific
cluster center. Therefore, in this case, it is not reasonable to use hard clustering methods to
divide the solutions into a specific cluster. Accordingly, it might be a better choice to use
soft clustering methods instead to divide the samples into each cluster center according
to a certain proportion. However, there are still two issues which need to be remedied.
First, the fuzzy c-means clustering algorithm needs to initialize the cluster center, which
will affect the clustering results. If the generated initial cluster centers are relatively poor,
the algorithm may be trapped in local optima rather than obtain global optima. Second,
when solving high-dimensional optimization problems, some marginal solutions may not
be effectively covered by the randomly initialized cluster centers, which may reduce the
diversity of solutions. In conclusion, the research on using clustering methods to determine
the Pareto front is still not suitable. More in-depth research needs to be carried out due to
the fact that the accuracy of the final Pareto front will be affected by the different selections
of clustering algorithms and cluster centers.

3. Robust Dynamic Multi-Objective Optimization Problem in Freeway Traffic
Congestion and Emission

Normally the optimization problem in the traffic field has the characteristics of high
dimension, dynamic variation, and certain stability of the implemented optimization
scheme. In this paper, the traffic congestion and emission optimization problems of multi-
class expressways are described as robust dynamic multi-objective optimization problems.
The traffic efficiency and environmental effects of expressways are measured based on the
three indexes of travel times, traffic emissions and ramp queues. All the abbreviations can
be found in Table A1 and relevant notations are concluded in Table A2.

3.1. Robust Dynamic Performance Indicators

When solving robust dynamic multi-objective optimization problems, the objective
function can be designed to ensure the robustness of the solutions in a continuously chang-
ing environment. In this paper, the performance indicators are designed as follows in the
robust dynamic multi-objective optimization problems of multi-class freeway congestion
and emission.

3.1.1. Robust Dynamic Travel Times

The length of temporal windows is defined as T, and the number of the temporal
windows is denoted as A. The robustness of travel times in continuous variable temporal
windows with each length T and total number A can be demonstrated by this performance
indicator. It can be denoted as the average travel time spent in the predesigned temporal
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windows, where two parts are included: the travel time spent in the mainstream and the
waiting time spent at the ramps. Therefore, the objective function can be defined as:

minJ1(k) = 1/A
A−1

∑
t=0

∑
k

T ·
[
∑

i
∑

c
ρi,c(k) · Li · λi + ∑

o
∑

i
∑

c
lo,i,c(k)

]
, (1)

where c denotes the vehicle classes, i denotes the indexes for freeway sections and the
freeway on-ramps are indicated by o. The time horizon is divided into K time steps, and
k = 0, 1, 2, . . . , K indicates the temporal step counter, which relates to the time kT with
sample time interval T (h). In addition, lo,i,c(k) is the queue length of class c in section i of
on-ramp o in time interval (kT, (k + 1)T)). ρi,c(k) is the traffic density of class c in section i in
time interval (kT, (k + 1)T)). Additionally, Li and λi represent the length of section i and the
number of lanes in section i, respectively.

3.1.2. Robust Dynamic Traffic Emissions

To calculate robust dynamic traffic emissions, the length of temporal windows is
denoted as T, and the number of them considered by decision maker is described as A
analogously. This indicator is denoted as the average emissions generated by the total
vehicles in A continuous variable temporal windows with the length T. This objective
function can be calculated as:

minJ2y,c(k) = 1/A
A−1

∑
t=0

{
∑
k

∑
i

∑
c
(Jt

y,i,c(k) + Js
y,i,c(k)) + ∑

k
∑
o

∑
c

∑
o∈Ramp

Jy,on,o,c(k)

}
(2)

where A denotes the total number of temporal windows and k is the time step counter.
The freeway stretch is divided into i sections, and the vehicle classes are indexed

by c. In addition, the index y ∈ {CO, HC, NOx, FC} denotes the set of all the emission
categories. Jt

y,i,c(k) indicates the emissions generated by class c travelling in section i in
time interval (kT, (k + 1)T), in which the superscript t represents the normal travelling state.
Js
y,i,c(k) denotes the emissions generated by class c waiting in section i in time interval (kT,

(k + 1)T), in which the superscript s denotes the stopping state. Jy,on,o,c(k) represents the
emissions generated by class c at on-ramp o in time interval (kT, (k + 1)T), in which the
on-ramp is denoted as on and indexed by the notation o.

3.1.3. Robust Dynamic Ramp Queues

Similarly, the temporal window length is denoted as T, and the number of these
temporal windows is described as A. Robust dynamic ramp queues can be denoted as the
average number of vehicles waiting at the on-ramps in the continuous variable temporal
windows. This performance indicator can be expressed as:

minJ3i,c(k) = 1/A
A−1

∑
t=0

∑
k

∑
c

∑
i
(li,c(k) + T[di,c(k)− ri,c(k)]), (3)

where k denotes the time step counter, i denotes the on-ramp i of the freeway and the total
number of temporal windows is described as A. The length of the temporal window or the
sample time interval can be denoted as T (h). Additionally, li,c(k) denotes the queue length
of vehicle class c at on-ramp i in time interval (kT, (k + 1)T). di,c(k) indicates the allowed
traffic volume of class c entering mainstream at on-ramp i in time interval (kT, (k + 1)T),
whereas ri,c(k) represents the actual traffic volume of class c entering the mainstream at
on-ramp i in time interval (kT, (k + 1)T)).

3.2. Constraint

The detection of environmental variations, traffic safety requirements, and the range
of variable values to meet actual demands are the three main constraints of this robust
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dynamic optimization problem of multi-class, multi-on-ramp, and multi-off-ramp freeway
congestion and emission.

3.2.1. Environmental Variation Detection

It is judged whether the entering traffic volume at the on-ramps exceeds the variable
range compared with the former time instant. This can also be expressed as the variations
of ri,c(k), the allowed on-ramp traffic volume of vehicle class c entering the mainstream,
which can be computed as:

ri,c(k + 1)− ri,c(k) ≥ σ (4)

ri,c(k) = µi,c(k)ri,c(k), (5)

where ri,c(k) denotes the allowed on-ramp traffic volume of class c entering section i at
time instant kT, which can be obtained as the ramp control flow of the last time in the
optimization algorithm. ri,c(k) indicates the demanded on-ramp traffic volume of class
c entering section i at time instant kT, and µi,c(k) is the metering rate, which can also be
described as the portion of the flow allowed to enter the mainstream under ramp metering.
In addition, three on-ramps are set in this paper; therefore i = 1, 2, 3, and σ denotes the
threshold of the detection, which is set equal to 0.1 in this paper.

It is also judged whether the entering traffic volume in the mainstream exceeds the
variable range compared with the last time, which can be expressed as:

qi,c(k + 1)− qi,c(k) ≥ σ, (6)

where qi,c(k) denotes the traffic volume of class c entering section i in time interval (kT,
(k + 1)T). Analogously, σ denotes the threshold of the detection. Variations are regarded to
occur in the environment if the difference between two adjacent times exceeds the setting
threshold. Additionally, the threshold σ is suitable to be set equal to 0.1 by multiple trials.

3.2.2. Traffic Safety Requirements

It is required that the variable range of the two variable speed limits should be
constrained within 20 km/h, so that traffic incidents can be avoided though preventing the
two continuous variations from being too large. It can be expressed as:

VSLc,i(k + 1)−VSLc,i(k) ≤ 20, (7)

where VSL can be described as the value of the variable speed limit and VSLc,i(k) denotes
the variable speed limit of vehicle class c in section i at time kT.

It is also required that the difference between two adjacent sections should be con-
strained within 20 km/h, so that traffic breakdowns, such as rear-end collisions, can
be avoided through preventing the deviation from being overlarge. It can be defined
analogously as:

VSLc,i+1(k)−VSLc,i(k) ≤ 20, (8)

3.2.3. Range of Variables

The range of variables is required to meet the actual demands; therefore in this paper,
the VSL of cars is set between 60 and 90 km/h and the VSL of trucks is set between 50
and 80 km/h, which can be expressed respectively as: VSL1 ∈ (60, 90) (km/h) and
VSL2 ∈ (50, 80) (km/h). Additionally, both the ramp metering rates are set in the range
(0, 1).

4. The Robust Dynamic Nondominated Sorting Multi-Objective Genetic Algorithm
Based on Density Fuzzy C-Means Method DFCM-RDNSGA-III

The nondominated sorting multi-objective genetic algorithm NSGA-III proposed in
paper [23] is mainly used to solve traditional static multi-objective optimization problems.
This paper needs to solve the robust dynamic multi-objective optimization control problems
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of the freeway system. Therefore, the original NSGA-III algorithm needs to be improved
to meet the requirements of providing robust solutions in a dynamic environment. At
the same time, due to the difficulty in determining the Pareto fronts in the optimization
process, a clustering algorithm is used in this paper to obtain the specific distribution
of Pareto fronts. The clustering centers are used to describe the Pareto fronts and detect
the distribution of the solutions in the target space. Through continuously tracking the
Pareto fronts, the search is guided forward to the optimal Pareto fronts, and the population
diversity and convergence speed can also be increased. Therefore, this paper improves
the nondominated sorting multi-objective genetic algorithm NSGA-III in paper [23], and a
robust dynamic nondominated sorting multi-objective genetic algorithm, RDNSGA-III, is
proposed based on the concept of robust optimization and dynamic optimization.

Based on the original NSGA-III algorithm, the environment detection operator is intro-
duced to store the environment information and the set of optimal solutions corresponding
to the current environment. Additionally, the robust dynamic objective function is set to
meet the needs of robust dynamic optimization. Secondly, in order to solve the problem
of the difficulty of determining the Pareto fronts in the optimization process, a density
fuzzy c-means clustering algorithm DFCM is proposed to determine the distribution of
Pareto fronts. This algorithm can detect the distribution of solutions in the target space,
track the Pareto front continuously, and guide the search direction of the algorithm. Finally,
combining the robust dynamic optimization algorithm given in this section with den-
sity fuzzy c-means clustering algorithm DFCM, a robust dynamic nondominated sorting
multi-objective genetic algorithm based on the density fuzzy c-means clustering algorithm
DFCM-RDNSGA-III is proposed. The details of the proposed algorithm are shown in
the following.

4.1. Robust Dynamic Nondominated Sorting Multi-Objective Genetic Algorithm RDNSGA-III

In the robust dynamic nondominated sorting multi-objective genetic algorithm
RDNSGA-III proposed in this section, there are two main improvements:

1. In terms of dynamic characteristics, an environment detection operator is introduced
based on the NSGA-III algorithm to test whether the external environment has changed. If
environmental variations are detected, optimization will be restarted to obtain the optimal
solutions which satisfy the current environment. Moreover, in the process of the algorithm
operating, the environment information and the optimal solution sets corresponding to
the current environment will be stored. It is ensured that repeated optimization under a
similar environment can be avoided during the dynamic optimizing process;

2. In terms of robustness, the robust dynamic objective function is introduced to
measure the robustness of the solutions in the nondominated sorting, i.e., the robust
dynamic objective function is used to sort the solutions. By minimizing the average value
of the objective function in multiple continuous temporal windows, the solution with
stronger robustness is not only applicable to the current dynamic environment, but also
applicable to multiple continuous dynamic environments. The robust dynamic objective
function setting has been described in detail in Formula (1) to Formula (3) above.

The framework of the RDNSGA-III algorithm is described as follows:
Step 1: Initialize the environment detection parameter, set the environmental detection

counter t = 1, the maximum environmental detection times tmax, and bestpop f inal = ∅ to
store the current environment information and corresponding optimal solutions.

Step 2: If the environment detection counter t = 1, or if the environment detection
counter t > 1 and the environment has changed, go to step 3. Otherwise, copy the current
population P1, and go to step 12.

Step 3: Initialize algorithm parameters, including the maximum iterations Genmax, the
number of the population pop, the current generation gen = 0, initialize the population
P0 = {x(1), . . . , x(pop)}, nondominated solution set St = ∅, archive set Dt = ∅, and
reference point set Zs = ∅.
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Step 4: Recombine, crossover and mutate the population Pt to generate offspring
population Qt, Qt = Recombination(Pt) + Mutation(Pt).

Step 5: Combine archive set Dt and offspring population Qt to generate the combined
population Rt, Rt = Dt ∪Qt.

Step 6: Perform the nondominated sorting operation on the combined popula-
tion Rt and generate the nondominated solution set Rt = {F1, F2, F3, . . . , Fl , . . .}. Per-
form nondominated sorting on the nondominated solution set Rt to obtain the set Ut,
Ut= Non-dominated-sort(Rt), where F1, F2, F3, · · · , Fl , · · · denotes the nondominated solu-
tion sets with nondomination level 1, 2 . . . l, . . ., respectively, F1 � F2 � F3 � · · · � Fl � · · · .

Step 7: Generate nondominated solution set St.
Step 8: Generate the next-generation population Pt+1. If the number of solutions in

St is exactly equal to N, i.e., |St| = N, the next generation of parent population Pt+1 is
generated directly, Pt+1 = St, and t = t + 1, return to step 2; otherwise, structure Pt+1 with
F1, F2, . . . , Fl−1, i.e., Pt+1 = ∪l−1

j=1Fj. The remaining K solutions need to be selected from the
layer Fl according to the niche count, i.e., the number of solutions that the population Pt+1
needs to select from Fl is K = N − |Pt+1|.

Step 9: Generate reference points; the reference point set Zr = Normalize( f n, St, Zs, Zr).
Step 10: Associate the solutions in the solution set St with the reference points.
Step 11: Calculate the niche count of each reference point j in the reference point set

Zr, select elements according to the niche count to construct the population Pt+1, and select
K solutions from Fl to join the population Pt+1.

Step 12: Reserve the existing population, randomly take out half of the solutions and
store them in the archive set Dt+1. Let gen = gen + 1; if gen < Genmax, go to step 4. if
gen = Genmax, output the final solution set Pf inal , and go to step 13.

Step 13: Save the current environment information and the final optimal solution
Pf inal to the optimal solution set bestpop, and add it to bestpop f inal(t). Let t = t + 1; if
t < tmax, go to step 2. If t = tmax, output the final optimal solution set.

4.2. The Robust Dynamic Nondominated Sorting Multi-Objective Genetic Algorithm Based on
Density Fuzzy C-Means Method DFCM-RDNSGA-III

In the paper [24], it is pointed out that the main challenge of solving the Pareto front
distribution problem is the unknown distribution of Pareto optimal fronts in multi-objective
optimization algorithms. The paper [25] pointed out that clustering algorithms can help
multi-objective optimization algorithms detect the distribution of solutions in the objective
space and guide the search to the Pareto fronts. However, the randomness of initial cluster
generation and the difficulty of determining the number of initial cluster centers occur
when using fuzzy c-means clustering algorithm. Therefore, a density-based clustering
method (DBSCAN) [26] is adopted in this paper to conduct density clustering of the initial
cluster centers when initializing the cluster centers.

The reasons to adopt this method can be explained from three aspects. Firstly, the
spatial characteristics of data points can be reflected, and the rationality of cluster center
distribution can be ensured when using density clustering, therefore improving the quality
of the initial cluster centers of the fuzzy c-means clustering algorithm. Secondly, the
number of cluster centers does not need to be set in advance because cluster centers can be
generated automatically according to the specific density distribution of the population,
which can solve the problem of setting the number of cluster centers by trial and error in
fuzzy c-means clustering algorithm. In addition, through the fuzzy c-means clustering
algorithm, the given initial cluster center set is continuously optimized, and the position of
the cluster center is adjusted; therefore the shape information of more real Pareto fronts
can be obtained.

Based on the RDNSGA-III algorithm in Section 4.1 and the DFCM algorithm proposed
in paper [26], a robust dynamic nondominated sorting multi-objective genetic algorithm
based on density fuzzy c-means method DFCM-RDNSGA-III is proposed in this section.
The major improvement of this algorithm is that, in the following description of the
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DFCM-RDNSGA-III algorithm, specifically in Steps 9 and 10, the difficulty of determining
Pareto fronts during the algorithm optimization process is solved based on density fuzzy
c-means method DFCM. Specific distribution of the Pareto fronts can be acquired through
adopting this clustering method. By describing the Pareto fronts through cluster centers,
the distribution of the solutions over the objective space is detected, and the Pareto fronts
can be tracked continuously [27]. Therefore, the search direction can be guided towards
the Pareto fronts, leading to an increase in population diversity and convergence speed.
Additionally, the details of the improvement are presented in sub-algorithm 1 and sub-
algorithm 2 in this section.

The flowchart of the proposed algorithm DFCM-NSGA-III is given in Figure 1. The
framework of the proposed algorithm DFCM-NSGA-III will be described first, then sub-
algorithm 1 and sub-algorithm 2 used in the proposed algorithm will be discussed later.
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Figure 1. Flow chart of the algorithm DFCM-RDNSGA-III.

Specifically, the execution steps of the DFCM-RDNSGA-III algorithm are as follows:
Step 1: Initialize the environment detection parameter, set the environmental detection

counter t = 1, the maximum environmental detection times tmax, and set bestpop f inal = ∅
to store the current environment information and corresponding optimal solutions.

Step 2: Initialize the optimization process of the algorithm, or if t > 1 and the
environment has changed, go to Step 3. Otherwise, copy the current population P1, and go
to Step 11.

Step 3: Initialize algorithm parameters, including the maximum iterations Genmax, the num-
ber of population pop, the current generation gen = 0, the population P0 = {x(1), . . . , x(pop)},



Algorithms 2021, 14, 266 10 of 22

the nondominated solution set St = ∅, the archive set Dt = ∅, and the reference point set
Zs = ∅.

Step 4: Recombine, crossover and mutate the population Pt to generate the offspring
population Qt, Qt = Recombination(Pt) + Mutation(Pt).

Step 5: Randomly select half of the solutions as the set Dpast from the current archive
set {Dt}. Combine the parent population Pt and offspring population Qt to generate the
combined population Rt, Rt = Pt ∪Qt ∪ Dpast.

Step 6: Perform the nondominated sorting operation on the combined popula-
tion Rt, and generate the nondominated solution set Rt = {F1, F2, F3, . . . , Fl , . . .}. Per-
form nondominated sorting on the nondominated solution set Rt to obtain the set Ut,
Ut = Non-dominated-sort(Rt), where F1, F2, F3, · · · , Fl , · · · denotes the nondominated solu-
tion sets with nondomination level 1, 2 . . . l, . . ., respectively, F1 � F2 � F3 � · · · � Fl � · · · .

Step 7: Generate nondominated solution set St.
Step 8: Generate the next generation population Pt+1. If the number of solutions in

St is exactly equal to N, i.e., |St| = N, the next generation of parent population Pt+1 is
generated directly, Pt+1 = St, and t = t + 1, go to Step 2; otherwise, construct Pt+1 with
F1, F2, . . . , Fl−1, i.e., Pt+1 = ∪l−1

j=1Fj. The remaining K solutions need to be selected from the
layer Fl according to the niche count, i.e., the number of solutions that the population Pt+1
needs to be selected from Fl is K = N − |Pt+1|.

Step 9: Generate reference points according to the density fuzzy c-means clustering
algorithm DFCM and construct the reference point set Zr. The specific process is described
in sub-algorithm 1.

Step 10: Associate the solutions in the solution set St with the reference points. Calcu-
late the niche count of each reference point j in the reference point set Zr, select elements
according to the niche count to construct the population Pt+1, and select K solutions from Fl
as set {rest} to join the population Pt+1. The specific process is shown in sub-algorithm 2.

Step 11: Reserve the existing population, randomly take out half of the solutions and
store them in the archive set Dt+1. Let gen = gen + 1. If gen < Genmax, return to step 4. If
gen = Genmax, output the final solution set Pf inal , and go to Step 12.

Step 12: Save the current environment information and the final optimal solution
Pf inal to the optimal solution set bestpop, and add it to bestpop f inal(t). Let t = t + 1; if
t < tmax, go to Step 2. If t = tmax, output the final optimal solution set.

(1) Sub-algorithm 1: Calculate the cluster centers of Fl and generate reference point
set Zr according to the algorithm DFCM.

Step 1: Initialize the radius of neighborhood ε, and the minimum number of samples
MinPts.

Step 2: Generate the initial cluster center set {Center1}. Calculate the initial mem-
bership degree µij of all solutions to the initial cluster center set {Center1} in the current
situation, µi,j =

1
H
∑

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

. H denotes the number of cluster centers; m(m > 1) de-

notes the fuzzy allocation matrix index used to control the degree of fuzzy overlap. xi
refers to the ith solution and cj denotes the jth cluster center.

Step 3: Calculate the initial adaptiveness function J of fuzzy c-means clustering
algorithm, J = ∑G

i=1 ∑H
j=1 µij‖xi − cj‖2, where G denotes the number of all solutions in the

Fl and H denotes the number of cluster centers.
Step 4: If the adaptiveness function J does not reach the acceptable extent or if the

maximum number of iterations is satisfied, go to Step 5; otherwise, end the procedure and
output the clustering result.

Step 5: Update the cluster centers to form a new cluster center set cj =
∑D

i=1 µijxi

∑D
i=1 µij

.

Step 6: Update the membership degree µij and adaptiveness function J according
to the new cluster centers and repeat Steps 3–5 until the output conditions are satisfied.
Finally, output the final clustering results {Center} = {c1, c2, . . . , cH}, i.e., the reference
point set Zr.
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Step 7: Generate the solution set {xci} of the corresponding solutions included in the
ith cluster center ci according to the cluster center set {Center}. Define the set of all the
cluster centers and the solutions included as {xc}.

(2) Sub-algorithm 2: Solution selection method based on the density fuzzy c-means
clustering algorithm DFCM.

Sub-algorithm 2 provides the solution selection method based on the density fuzzy c-means
clustering algorithm DFCM. The purpose is to select K solutions from Fl, K = N − |Pt+1|, and
join them to the set {rest} to construct the next generation population. The specific process
is described as follows.

Step 1: Calculate the distance of all the solutions {x1, x2, . . . , xG} in Fl and each
reference point in reference point set Zr = {c1, c2, . . . , cH}. Distance = ‖xi − cj‖2, xi
denotes the ith solution in Fl , while cj denotes the jth reference point in the reference point
set Zr.

Step 2: Initialize the number of all the solutions of Fl distributed by cj, ncj = 0. xi

being dominated by cj can be denoted as xj
i = argmin

(
Distance

(
xi, cj

))
. If xi is dominated

by cj, set ncj = ncj + 1.

Step 3: For j = 1 : H reference points, if ncj > 0, select the solution xj
imin

among
all the solutions that has the closest distance to the reference point, and join it to set
T1 = T1 ∪

{
xj

imin

∣∣∣argmin
(

Distance
(

xj
i , cj

))}
. If ncj ≥ 3, except the solutions in T1, the

remained solutions are put into the set T2 = T2 ∪
{

xj
i

∣∣∣xj
i 6= xj

imin

}
. Otherwise, add all the

solutions except the solutions in T1 and T2 to the set T3 = T3 ∪
{

xj
i

∣∣∣xj
i 6= xj

imin

}
.

Step 4: If the number of the solutions in T1 is equal to K(K = N− |Pt+1|), i.e., |T1| = K,
then {rest} = T1. If the number of solutions in T2 is greater than or equal to K subtracted
by the number of solutions in T1, i.e., |T2| > K− |T1|, then randomly select the remained
solutions in T2 and construct the solution set {T2rest}, {rest} = T1 ∪ {T2rest}. If the
number of solutions in the set T3 is greater than or equal to K subtracted by the number
of solutions in T1 and T2, i.e., |T3| > K− |T1| − |T2|, then randomly select the remaining
solutions in T3 and construct the solution set {T3rest}, {rest} = T1 ∪ {T2rest} ∪ {T3rest}.
Finally, output the set {rest} of K solutions selected from Fl .

Taking into account the computational complexity of the existing and proposed algo-
rithms, the worst-case computational complexity of NSGA-III is O

(
N2 logM−2 N

)
, [23]. The

algorithms RDNSGA-III and DFCM-RDNSGA-III are both proposed on the basis of NSGA-III.
Therefore, the computational complexity of the two algorithms can be computed analogously
by following the method in the paper [23]. The nondominated sorting of a population of
size 2N having M-dimensional objective vectors requires O

(
N2 logM−2 N

)
(usually M < N).

For DFCM-RDNSGA-III, calculating the cluster centers in step 9 requires O
(

N2) (sub-
algorithm 1). The density determination of the reference points requires O(N). In step 10 of
DFCM-RDNSGA-III, the solution selection based on the density fuzzy c-means clustering
method requires O

(
MN2) (sub-algorithm 2). Therefore, the computational complexity of

DFCM-RDNSGA-III in the worst case is O(N2 logM−2 N + MN2), which is a little larger
comparable to NSGA-III and RDNSGA-III.

5. Simulation

The simulation network and parameters are introduced in this section, then the
traffic control strategy is described, and finally the experimental results are compared
and analyzed.

5.1. Simulation Network

The multi-on-ramp and multi-off-ramp expressway network in paper [6] is adopted
in this experiment. This freeway network has an 18 km main road, and there are three
on-ramps (O1, O2, O3) and three off-ramps (O4, O5, O6). Two lanes are subsumed in the
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main road, which are equally divided into 18 sections. Each section is 1 km. Additionally,
the on-ramp and off-ramp are all single-lane ramps, and the length of both on-ramps and
off-ramps is 1 km. The specific network diagram is as shown in Figure 2.
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5.2. Network Overview and Parameter Setting
5.2.1. Network Overview and Model Parameters

In order to simulate the peak hour curve of traffic inflow, the time span of the sim-
ulation time needs to be enough long to cover the whole process. Therefore, 2 h is the
appropriate value. As for the sampling period, and control period, the experiment needs
to collect enough data for calculation. On the one hand, it needs to quickly respond to
changes in the current traffic flow. On the other hand, it cannot issue control commands
very frequently, as this could result in traffic accidents. Based on the above considerations,
the classical value is adopted, which can be seen in the paper [8]. To sum up, the simulation
time is 2 h, the sampling period T is 10 s and the control period is 5 min. The implemented
control variables are adjusted according to the detection of environmental change and the
robustness of the solution in the proposed DFCM-RDNSGA-III algorithm. The proportion
of vehicles in the simulation road network is 80% cars and 20% trucks, assuming that the
driver compliance rate for the control variables is 100%. The metering rate of the off-ramp
is 10% of its adjacent mainline flow. The control parameter settings are shown in Table 1.

Table 1. Multi-ramp expressway network simulation parameters.

Parameter Name Parameter Value

Simulation time 2 h
Sampling period (T) 10 s
Control period (KT) 5 min

Table 2 is the actual value of the model simulation parameters. The multi-on-ramp
and multi-off-ramp expressway network in paper [6] is adopted in this experiment, and
all the actual values in Table 2 are set according to this expressway network. In Table 2, τ1
denotes the car lag time parameters, η1 denotes the car correction coefficient, v1 denotes
the car expectation constant, k1 denotes the car ramp influence coefficient, τ2 denotes the
truck lag time parameters, η2 denotes the truck correction coefficient, v2 denotes the truck
expectation constant, and k2 denotes the truck ramp influence coefficient. In the freeway
network, the real-time variations of the mainline car inflow and the truck inflow are shown
in Figure 3. The real-time variations of the on-ramps (O1, O2, O3) car and truck inflow are
shown in Figure 4.

Table 2. Traffic flow model time-phased parameters.

τ1 η1 v1 k1 τ2 η2 v2 k2

0.315 60.00 25.00 0.45 0.3 65.00 20.00 0.40
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5.2.2. Algorithm Parameter Setting

Two existing multi-objective optimization algorithms, NSGA-III and RDNSGA-III, are
used in this paper for comparison of results with the proposed DFCM-NSGA-III algorithm.
The parameter setting of the three algorithms are shown in Table 3, where the vacancy
value indicates that the type of parameter is not involved in the corresponding algorithm.
Among them, the NSGA-III algorithm is a static multi-objective optimization algorithm
that optimizes the variable speed limit and the ramp control strategy without involving the
environmental detection parameters. Through several tests, it is shown that a satisfactory
solution with better robustness can be obtained if the number of continuously changed
temporal windows is set to be 3. To ensure safety in actual traffic driving, the control period
implemented by each variable speed limit is 5 min.

Table 3. Parameter setting.

Parameters NSGA-III RDNSGA-III DFCM-RDNSGA-III

Population size 100 100 100
Iteration numbers 100 100 100
Sampling period 10 s 10 s 10 s

Environment detection threshold - 10% 10%
Environment detection period - 5 min 5 min
Temporal window numbers - 3 3

DFCM iteration numbers - - 100

5.3. Control Strategy

The variable speed limit of cars is set as (60, 90), the variable speed limit of trucks is set
as (50, 80) and the ramp metering rate is set in the range (0, 1). A specific schematic diagram
of control strategy implementation is shown in Figure 5, where VSL represents the section
of variable speed limit control and ramp control indicates the on-ramp implementing the
ramp control strategy.
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By adopting the robust dynamic multi-objective optimization algorithm, a set of
optimal solutions will finally be obtained, therefore leading to the problem of choosing
the optimal solution. Three performance indicators are considered in this paper: robust
dynamic travel time, robust dynamic ramp queue and robust dynamic traffic emissions,
which correspond to the patency degree of the main road, the patency degree of the ramps
and the environmental influence. The optimal solution is selected by the weight method.

5.4. DFCM Clustering Analysis

Fuzzy c-means clustering is an unsupervised clustering method, so the following two
indicators can be considered in judging its clustering effect:

1. The silhouette coefficient (SC) [28] is a way to evaluate the clustering effect, which
can evaluate clustering results for different algorithms based on the same original data.
The SC of clustering results is in the range (−1, 1). The greater the value, the closer the
same samples are and the further the different samples are, therefore leading to a better
clustering effect.

2. The Davies–Bouldin Index (DBI) [29], also known as the classification and suitability
indicator, was proposed by David Davies and Donald Bouldin to evaluate the effect of
the clustering algorithms. This index measures the mean value of maximum similarity of
each cluster. A smaller DBI value represents that the clustering results are close within
the cluster interior, and the different clusters are farther separated; that is, the smaller the
distance is within the class, and the greater the distance is between the classes.

The two indicators are calculated as follows:

SC =
b(i)− a(i)

max{a(i), b(i)} , (9)

where a(i) denotes the average distance from sample i to other samples in the same cluster.
The smaller it is, the more sample i should be clustered into this cluster. It can be regarded
as the dissimilarity of sample i within the cluster. Similarly, b(i) denotes the average
distance from sample i to all samples in other cluster centers

{
cj
}

, which can be described
as the dissimilarity between sample i and other cluster centers

{
cj
}

.

DBI =
1
N

N

∑
i=1

max
j 6= 1

(
Si + Sj

‖wi − wj‖2

)
, (10)

where N denotes the number of clusters. Variables i and j denote the cluster class i and
cluster class j. Si and Sj indicate the average distance from the data of cluster class i and
cluster class j to the cluster center, respectively, which represent the dispersion degree
of samples in cluster class i and cluster class j. ‖wi − wj‖2 denotes the distance between
cluster class i and cluster class j.

In this paper, DFCM-RDNSGA-III, a robust dynamic nondominated sorting genetic
algorithm based on density fuzzy c-means clustering is proposed. The whole generated
population in the iterative process of the algorithm is used as the test set. The clustering
effect of the DFCM algorithm is compared with that of the basic fuzzy c-means clustering
algorithm. The number of samples in the data set is 100, the number of iterations is 100,
and the data dimension is 3. The initial number of cluster centers is set according to the
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number of cluster centers generated by density clustering. The two algorithms are clustered
10 times, where EX is the mean of 10 times, DX is the variance of 10 times, DFCM denotes
the density fuzzy c-means clustering algorithm, and FCM denotes the basic fuzzy c-means
clustering algorithm. The comparison of indicators is shown in Table 4.

Table 4. DFCM actual clustering effect analysis.

Number
SC DBI

DFCM FCM DFCM FCM

1 0.726883 0.561823 0.739189 0.624791
2 0.837247 0.767561 0.730389 0.853588
3 0.802877 0.712170 0.747989 0.791989
4 0.844320 0.625127 0.756789 0.695190
5 0.735415 0.640953 0.712790 0.712790
6 0.841398 0.648866 0.659990 0.721590
7 0.799813 0.696344 0.730389 0.774389
8 0.791686 0.815039 0.668790 0.906387
9 0.813086 0.783387 0.677590 0.871187
10 0.819470 0.720083 0.686390 0.800788
EX 0.797736 0.697135 0.711030 0.775269
DX 0.001502 0.005603 0.001112 0.006929

It can be seen from Table 4 that the density fuzzy c-means clustering algorithm DFCM
has a better clustering effect than the basic fuzzy c-means clustering algorithm FCM in
terms of SC and DBI among the 10 clustering results. From the 10 running results, the
average score of the DFCM algorithm in SC increased by 14%, which shows that the
distance between different samples in DFCM is further and the clustering effect is better.
Compared with FCM, DFCM improves 8% on DBI, which shows that DFCM has a closer
distance within clusters and further distance between clusters; that is, DFCM generates a
better clustering effect. Secondly, DFCM is relatively stable. Comparing the variance of 10
results, it can be found that the variance of DFCM in the SC and DBI is increased by 73%
and 84%, respectively, which indicates that DFCM can be more stable in the final clustering
results, and it is difficult to have a large difference in clustering results. Therefore, the
density fuzzy c-means clustering algorithm DFCM can deal with the overall structure
distribution of Pareto fronts more stably and accurately.

5.5. Results

Each experiment was run for 5 times and the results of the three indicators are the
average results. The results of three objective functions, including travel time, ramp
queue, and traffic emission of the three algorithms, NSGA-III, RDNSGA-III and DFCM-
RDNSGA-III, are compared in Table 5. Among these three algorithms, a static optimization
framework is adopted in algorithm NSGA-III to statically optimize the variable speed limit
and metering rate in the whole simulation, while a dynamic optimization framework is
adopted to dynamically optimize these variables according to the environmental changes
in the RDNSGA-III algorithm and the DFCM-RDNSGA-III algorithm.

It can be concluded from Table 5 that: (1) The travel time and traffic emission indica-
tors performed the worst on the algorithm NSGA-III with a static optimization framework.
Compared to NSGA-III, the two indicators decreased by 14.64% and 16.72%, respectively,
in the algorithm RDNSGA-III, as well as 19.04% and 21.64%, respectively, in the algorithm
DFCM-RDNSGA-III. (2) Although NSGA-III performs poorly on the travel time and traffic
emission indicators, it performs the best on the aspect of the ramp queue indicator. Com-
pared to NSGA-III, the ramp queue indicator increased by 20.51% and 30.36%, respectively,
in the algorithm RDNSGA-III and DFCM-RDNSGA-III.
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Table 5. Comparison of algorithm results.

Algorithms Travel Time (h) Ramp Queue (veh) Traffic Emission (kg)

NSGA-III 2002.48 37.15 194.62

RDNSGA-III
1709.39 44.77 162.07
−14.64% +20.51% −16.72%

DFCM-RDNSGA-III
1621.26 48.43 152.5
−19.04% +30.36% −21.64%

The above comparison results show that, under the control scheme of NSGA-III, which
has a static optimization framework, the ramp-entering vehicles are not limited when the
main road capacity is relatively tight. Therefore, the pressure on the main road will be
aggravated due to the excessive ramp-entering, which increases the total travel time and
traffic emissions but decreases the ramp queue. For the algorithms under robust dynamic
optimization frameworks, including RDNSGA-III and DFCM-RDNSGA-III, although the
ramp queue of the DFCM-RDNSGA-III algorithm is improved by 9% compared with the
former, the travel time and traffic emission are both improved by more than 5%. The
reason is that the inflow of part of the ramp vehicles to the main road is sacrificed in the
DFCM-RDNSGA-III algorithm, contributing to the improved traffic efficiency of the main
road and the reduced environmental pollution caused by gas emissions.

The VSL and RM control schemes during the peak forming period and peak subsiding
period of the RDNSGA-III and DFCM-RDNSGA-III algorithms are shown in Tables 6 and 7,
while the niche detection threshold is set as ε = 0.1. The environment detection is carried
out every 5 min. When it is detected that the environment has not changed, i.e., the
threshold before and after the change is set within the predefined range, the optimization
does not need to be performed again and the current control scheme continues to be used.
This also means that the situation where the control scheme has not changed represents
that the optimization need not to be restarted. Therefore, the robustness of the control
scheme of the RDNSGA-III and DFCM-RDNSGA-III algorithms can be compared under
the same environment detection threshold through the change of control schemes. A static
framework is adopted in the basic algorithm NSGA-III to optimize the VSL and RM, so the
change of the control scheme is not involved in it.

The variation in traffic control schemes of the RDNSGA-III algorithm and the DFCM-
RDNSGA-III algorithm according to the change of the environment in the processes of peak
hour and dissipation hour are shown in Tables 6 and 7. It can be seen that the average ramp
metering rate of the RDNSGA-III algorithm at the three on-ramps is 68% within 0 min to
5 min of the peak formation process, and the ramp metering rate of the DFCM-RDNSGA-III
algorithm is 48%. In the early stages of peak formation, the DFCM-RDNSGA-III algorithm
begins to limit the ramp entry, so as to ensure the patency of the main road in the process
of peak formation. After that, the ramp metering rate of the RDNSGA-III algorithm is still
maintained at more than 60% within 5–15 min. At 15–20 min, it starts to limit the ramp
entry, and the average ramp metering rate is set to 56%, while the ramp metering rate of
the DFCM-RDNSGA-III algorithm is always set at about 50% during this period. Therefore,
in the early peak formation process, the inflow of the DFCM-RDNSGA-III algorithm is
maintained within the scope of environmental detection by limiting the ramp entry. While
the ramp inflow in the RDNSGA-III algorithm is not restricted well in the early stage, the
flow changes at the last and next time exceed the detection threshold. Therefore, within
20 min of peak formation, the control strategy is continuously adjusted before it starts to
maintain stability. Similarly, RDNSGA-III has a certain conservative setting of VSL within
60 min to 75 min of peak dissipation. At the beginning of the peak dissipation process, the
VSL is still controlled below 70 km/h. However, the DFCM-RDNSGA-III algorithm starts
to maintain the VSL above 70 km/h after 60 min to 65 min of early peak dissipation process,
therefore ensuring the rapid outflow of the main road in the process of peak dissipation. In
general, the DFCM-RDNSGA-III algorithm has better control optimization stability than
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the RDNSGA-III algorithm in the process of peak formation. The control strategy can be
better dealt with in the process of peak formation, and solutions with better robustness can
be generated under the same environmental sensitivity.

Table 6. Implementation of a variable speed limit control scheme.

Car VSL 1 Car VSL 2 Car VSL 3 Truck VSL 1 Truck VSL 2 Truck VSL 3

RDNSGA-III

Time Interval Peak Forming

0–5 min 76.03 66.93 61.67 65.25 68.05 68.17
5–10 min 72.76 60.32 77.92 67.60 68.55 63.83
10–15 min 70.73 77.00 62.84 66.70 63.15 66.34
15–20 min 61.71 61.35 77.77 68.73 69.38 61.40
20–25 min 60.03 60.06 61.75 63.41 65.41 69.26
25–30 min 60.03 60.06 61.75 63.41 65.41 69.26

Time Interval Peak Subsiding

60–65 min 64.14 71.52 77.39 61.03 65.47 0.79
65–70 min 67.40 68.09 68.56 63.37 63.49 0.33
70–75 min 67.40 68.09 68.56 63.37 63.49 0.33
75–80 min 71.19 71.65 79.14 66.59 62.15 0.50
80–85 min 71.19 71.65 79.14 66.59 62.15 0.50
85–90 min 76.19 74.59 70.71 60.21 65.38 64.52

DFCM-RDNSGA-III

Time Interval Peak Forming

0–5 min 79.28 62.31 61.03 69.01 65.41 64.32
5–10 min 77.97 68.58 66.69 63.77 67.35 69.54
10–15 min 77.97 68.58 66.69 63.77 67.35 69.54
15–20 min 61.42 63.64 61.86 66.43 60.01 60.30
20–25 min 61.42 63.64 61.86 66.43 60.01 60.30
25–30 min 60.17 74.54 67.08 60.49 60.50 60.91

Time Interval Peak Subsiding

60–65 min 64.36 66.51 76.59 64.53 62.92 63.56
65–70 min 70.57 68.46 76.30 64.32 66.48 64.48
70–75 min 70.57 68.46 76.30 64.32 66.48 64.48
75–80 min 72.19 75.03 73.35 62.82 65.36 69.05
80–85 min 74.09 77.49 60.55 67.26 65.63 65.86
85–90 min 74.09 77.49 60.55 67.26 65.63 65.86

Figures 6 and 7 show the heat map of car speed and car flow in each road section of
the three algorithms, in which the ordinate denotes the main road section number link
1 to link 18, and the abscissa denotes the time interval. In Figure 6, the speed heat map,
it can be noticed through comparison that in the process of peak formation, the speed
of each road section in DFCM-RDNSGA-III can be maintained at a relatively high level
compared with the other two algorithms, which can better help control the ramp metering
rate. Therefore, the traffic efficiency and vehicle speed of the main road can be improved.
As can be seen from the flow heat map in Figure 7, the overall process of traffic flow is
smoother from link1 to link18 in the DFCM-RDNSGA-IIII algorithm. The flow variation in
each road section is within 500 veh, and the flow difference between each road section is
small. However, the traffic flow of the NSGA-III algorithm and the RDNSGA-III algorithm
have quite obvious and abrupt variations in the ramp merging section, especially at the
ramp merging part of link 10. The traffic flow of NSGA-III algorithm suddenly changes
from 2000 veh to 3000 veh, and the traffic flow of RDNSGA-III algorithm also increases by
more than 500 veh. In the ramp merging section, the traffic flow surge indicates that in the
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on-ramp area, there is too much traffic flow at the on-ramp entrance, which leads to traffic
congestion due to a significant variation in the traffic flow of the front and rear sections.

Table 7. Implementation of ramp control strategies.

Car RM
O1

Car RM
O2

Car RM
O3

Truck RM
O1

Truck RM
O2

Truck RM
O3

RDNSGA-III

Time Interval Peak Forming

0–5 min 0.87 0.45 0.73 0.95 0.18 0.35
5–10 min 0.72 0.49 0.77 0.55 0.54 0.31
10–15 min 0.67 0.49 0.77 0.30 0.75 0.83
15–20 min 0.58 0.55 0.56 0.51 0.75 0.30
20–25 min 0.45 0.60 0.39 0.39 0.88 0.32
25–30 min 0.45 0.60 0.39 0.39 0.88 0.32

Time Interval Peak Subsiding

60–65 min 0.47 0.31 0.52 0.58 0.64 0.26
65–70 min 0.52 0.20 0.76 0.33 0.68 0.22
70–75 min 0.52 0.20 0.76 0.33 0.68 0.22
75–80 min 0.63 0.34 0.74 0.41 0.44 0.73
80–85 min 0.63 0.34 0.74 0.41 0.44 0.73
85–90 min 0.66 0.75 0.58 0.63 0.86 0.38

DFCM-RDNSGA-III

Time Interval Peak Forming

0–5 min 0.73 0.13 0.58 0.86 0.32 0.62
5–10 min 0.55 0.35 0.69 0.28 0.20 0.37
10–15 min 0.55 0.35 0.69 0.28 0.20 0.37
15–20 min 0.56 0.43 0.77 0.27 0.21 0.84
20–25 min 0.56 0.43 0.77 0.27 0.21 0.84
25–30 min 0.39 0.38 0.91 0.74 0.23 0.88

Time Interval Peak Subsiding

60–65 min 0.31 0.88 0.74 0.45 0.98 0.68
65–70 min 0.54 0.98 0.77 0.90 0.50 0.83
70–75 min 0.54 0.98 0.77 0.90 0.50 0.83
75–80 min 0.66 0.31 0.57 0.49 0.32 0.49
80–85 min 0.78 0.73 0.29 0.60 0.91 0.48
85–90 min 0.78 0.73 0.29 0.60 0.91 0.48

Figures 8 and 9 show the heat map of truck speed and truck flow in each road section
of the three algorithms. As can be seen in Figure 8, in the second half of the road, that is,
after link 10, the overall speed of the trucks in the DFCM-RDNSGA-III algorithm is slightly
better than the other two algorithms. The main reason is that the DFCM-RDNSGA-III
algorithm performs relatively better in the control of the last two ramps, which ensures the
speed of the trucks on the main road. As can be seen in Figure 9, the performance of the
heat map of the truck flow on the aspect of the three algorithms is basically the same as
that of the car flow. The flow of the NSGA-III algorithm changes greatly before and after
link 10. Compared with the RDNSGA-III algorithm, the DFCM-RDNSGA-III algorithm
is smoother in the flow transmission and has a gradual increase process. In general, the
control effect of the DFCM-RDNSGA-III algorithm is better than the other two algorithms.
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6. Conclusions

In this paper, the robust dynamic traffic multi-objective optimization problem of a
multi-class expressway is studied. By considering three traffic indicators—travel time,
ramp queue and traffic emissions—at the same time, the implementation of variable speed
limits and ramp metering strategies on an urban expressway is explored in this paper.
Based on the multi-class macroscopic traffic flow model multi-class METANET and the
multi-class emission and fuel consumption model multi-class VT-macro, a multi-on-ramp
and multi-off-ramp expressway model is proposed. The multi-on-ramp and multi-off-
ramp expressway system optimization problem is described as a robust dynamic multi-
objective optimization problem. The DFCM-RDNSGA-III algorithm is proposed to solve
the variable speed limit and ramp metering scheme under this problem, and the algorithm
effect is verified based on VISSIM simulation. In general, compared with NSGA-III and
RDNSGA-III, DFCM-RDNSGA-III, a robust dynamic genetic algorithm based on density
fuzzy c-means clustering method, can better deal with the robust dynamic optimization
problem which considers environmental factors and traffic congestion.

In future research, the robust dynamic multi-objective optimization algorithm needs
to be improved in the following aspects: the high evolution pressure when the dimension is
high, the insufficient factors considered in the evolution process to adapt to the complexity
of high-dimensional problems, the irregular Pareto front exploration, and the balance
between dynamic capabilities and robustness. Moreover, the existing traffic flow model
does not match the actual traffic operation completely. Factors affecting the traffic condition
must be studied from more aspects, and a traffic flow model better matching the actual
road network must be designed.
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Appendix A

Table A1. Acronym List.

Acronym List

English Abbreviation English Full Name

VSL variable speed limit
RM ramp metering

DOPs dynamic optimization problems
DFCM density fuzzy c-means clustering algorithm

NSGA-III fast and elitist multiobjective nondominated sorting genetic algorithm
RDNSGA-III robust dynamic nondominated sorting multi-objective genetic algorithm

DFCM-RDNSGA-III robust dynamic nondominated sorting multi-objective genetic algorithm
based on density fuzzy c-means method

SC silhouette coefficient
DBI Davies–Bouldin index

Table A2. Notation List.

Notation List

Notation Meaning

T length of temporal windows
A number of the temporal windows
c vehicle classes
i index for freeway section
o index for freeway on-ramps
k simulation time step counter

lo,i,c queue length of class c in section i of on-ramp o
ρi,c traffic density of class c in section i
Li length of section i
λi number of lanes in section i
y set of emission categories

Jt
y,i,c emissions generated by class c travelling in section i at normal travelling state

Js
y,i,c emissions generated by class c waiting in section i at stopping state

Jy,on,o,c emissions generated by class c at on-ramp o
li,c queue length of vehicle class c at on-ramp i
di,c allowed traffic volume of class c entering mainstream at on-ramp i
ri,c actual traffic volume of class c entering mainstream at on-ramp i
ri,c demanded on-ramp traffic volume of class c entering section i
µi,c portion of the flow allowed to enter the mainstream under ramp
σ threshold of detection

qi,c traffic volume of class c entering section i
VSLc,i variable speed limit of vehicle class c in section i

t environmental detection counter
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