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Abstract: High parking accuracy, comfort and stability, and fast response speed are important
indicators to measure the control performance of a fully automatic operation system. In this paper,
aiming at the problem of low accuracy of the fully automatic operation control of urban rail trains, a
radial basis function neural network position output-constrained robust adaptive control algorithm
based on train operation curve tracking is proposed. Firstly, on the basis of the mechanism of motion
mechanics, the nonlinear dynamic model of train motion is established. Then, RBFNN is used to
adaptively approximate and compensate for the additional resistance and unknown interference of
the train model, and the basic resistance parameter adaptive mechanism is introduced to enhance the
anti-interference ability and adaptability of the control system. Lastly, on the basis of the RBFNN
position output-constrained robust adaptive control technology, the train can track the desired
operation curve, thereby achieving the smooth operation between stations and accurate stopping.
The simulation results show that the position output-constrained robust adaptive control algorithm
based on RBFNN has good robustness and adaptability. In the case of system parameter uncertainty
and external disturbance, the control system can ensure high-precision control and improve the
ride comfort.

Keywords: fully automatic operation system (FAO); radial basis function neural network (RBFNN);
position output constrained control; adaptive control; tracking error

1. Introduction

Urban rail transit’s FAO (fully automatic operation system) is a direct control unit to
ensure the safe operation of a train, and its advanced control algorithm is the core to ensure
train control accuracy, comfort, and safe operation [1]. The use of an FAO controller with
high control accuracy, less braking or traction switching times, and fast response speed is
the key to ensure the safe and efficient operation of an urban rail train under a changeable
operating environment and time-varying system status [2].

In the process of the development of the train FAO, FAO control algorithms have
mainly included PID control [3], fuzzy control [4], neural network control [5], adaptive
control [6], sliding mode control [7], predictive control [8], iterative learning [9], and the
combination of various control methods [10]. The authors of [11] applied a train control
algorithm based on fuzzy prediction to ensure the train’s accurate tracking of the desired
operation curve; however, the quadratic programming algorithm used in predictive control
was time-consuming in the solution process, and the real-time performance was not easy
to guarantee. The authors of [12] proposed an adaptive iterative learning control based
on iterative variable parameters and measurement noise, which realized train operation
control via the online modification of control parameters, but the real-time performance
of continuous iteration was poor. The authors of [13] designed a sliding model using PID
control for an automatic train operation system, which constrained the train operation
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to the sliding hyperplane so as to realize tracking and accurate parking of the desired
operation curve, but the influence of unknown disturbances on the train operation control
was not considered, and the control accuracy could not be guaranteed under complex
road conditions. The authors of [14] proposed an accurate parking control algorithm of
an urban rail transit train based on adaptive terminal sliding mode control, which can
adaptively adjust the control input according to the model parameter changes caused by
the uncertainty of train dynamic model parameters and unknown disturbance to ensure
that the train can accurately track the desired parking curve. However, too many control
parameters were designed, which affected the response speed and control accuracy of
the system. The authors of [15] proposed an automatic train operation speed control
method based on active disturbance rejection control (ADRC). The unknown part of the
train dynamics model was taken as the extended state to design a second-order ADRC.
Although it had the advantages of strong anti-interference and small tracking error, the
algorithm only considered the influence of basic resistance on the train operation when the
train was operating on straight routes, whereas it did not consider the additional resistance
caused by route conditions such as route curve and slope. However, the FAO control
and optimization were typical nonlinear problems. On the one hand, the train operation
is affected by many complex factors such as route conditions, external environment, un-
known disturbances, and train performance. The complex and changeable train operation
environment and the inevitable existence of modeling errors lead to the uncertainty and
time-varying characteristics of system parameters, which increases the difficulty of control
design. On the other hand, the strict requirements of simplicity and real-time operation of
the FAO control algorithm ensure the engineering practicability of the designed algorithm.
Therefore, in order to ensure the control performance indices of high-precision control,
smooth operation, and fast response of the FAO, the above aspects must be fully considered
in the design of FAO controller, so that the designed FAO control algorithm can be applied
in engineering [16].

According to a review of a large number of FAO references, the existing control
methods do not consider the complexity of the control or optimization algorithm structure,
and they mostly use feedback to construct the control law, generating the control input
through the deviation of the train operation status information. However, when the
deviation of the train operating state from tracking the desired curve is large, the controller
will generate a large fluctuating control input, which will affect the control accuracy of
the train operation and the comfort of passengers. Therefore, this paper starts from a
new perspective; based on the output-constrained adaptive control theory, while ensuring
the minimum structural complexity of the algorithm, the upper and lower bounds of the
output value of the train position are directly restricted, so as to ensure that the error of the
train operation position is within the allowable error, the desired position curve is tracked
with small position error or 0 error, and the control accuracy of the FAO is improved. Due
to the influence of factors such as parameter uncertainty and external disturbance in the
FAO, this paper introduces the additional resistance and unknown disturbances that cannot
be accurately modeled in the train dynamics model into the position output-constrained
adaptive controller in the form of disturbance by RBFNN, so as to enhance the ability of
the system to deal with disturbances such as ramps and curves, as well as realize accurate
tracking control of the urban rail train operation curve. This is of great significance for
guaranteeing the safety of multi-train tracking operations and station fixed-point parking.
The main elements of this paper are summarized below.

• A position output-constrained robust adaptive control algorithm based on RBFNN
(RBFNN-POCRAC) is proposed. The algorithm combines position output constraints,
RBFNN, and adaptive control, explicitly considers the complexity of the algorithm
structure, the initial tracking, and approximation errors of the system, and gives the error
boundary that can be adjusted to any small value by selecting appropriate parameters.
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• Considering the unknown and time-varying coefficients of the basic resistance Davis
equation, the adaptive control law is designed to estimate the basic resistance of the
train and enhance the engineering practicability of the control algorithm.

• The additional resistance and unknown disturbance are introduced into the position
output-constrained adaptive controller in the form of disturbance by RBFNN, which
can usefully decrease the acquisition of data such as route slopes, curves, and turnouts,
as well as have a strong inhibitory effect on the disturbance caused by train operation
in open routes or tunnels.

• In order to test and verify the availability of the designed FAO controller, complex
route conditions are selected for MATLAB simulation. The results show that the FAO
control algorithm proposed in this paper can track the desired curve with higher
control accuracy in a shorter time and has good control performance.

2. Train Dynamics Model

Considering the additional resistance and external disturbances in the process of train
fully automatic operation, according to the principle of Newton dynamics, the time-based
dynamic model of train single-particle motion can be described as follows:{ .

p(t) = v(t)
m

.
v(t) = F(t)− g(v(t))− f (p(t), v(t), t)

, (1)

where m is the total mass of the whole train, p(t) is the train position, v(t) is the train
speed,

.
v(t) is the train acceleration, F(t) is the train traction or brake force, g(v(t)) is the

basic resistance during train fully automatic operation, and f (p(t), v(t), t) is the additional
resistance and other unknown disturbances that cannot be modeled.

The basic resistance refers to the resistance suffered by the train when running along
the straight track, which is commonly described by the Davis Equation [17].

g(v(t)) = a0 + b0v(t) + c0v2(t), (2)

where a0, b0, and c0 are the basic resistance coefficients. The coefficients vary with different
trains, operating environments, weather conditions, and other factors, leading to uncer-
tainty in the parameters of the train dynamics model. Therefore, this paper introduces an
adaptive control mechanism to cope with changes in train model parameters and ensure
the control performance of the control system.

The additional resistance mainly refers to the route resistance affecting the train due
to curves, ramps, or tunnels on the running route.

f (p(t), v(t), t) = ωr + ωi + ωs, (3)

where ωr, ωi, and ωs denote the additional resistance of the route curve, ramp, and tunnel.
Due to the effect of route curves, ramps, and tunnels, it is impossible to build an

accurate model. In this paper, we consider the bounded time-varying dynamics and
use RBFNN to approximate the unknown nonlinear additional resistance and unknown
disturbance function.

Define x1 = p(t), x2 = v(t); thus, Equation (1) is rewritten as follows:{ .
x1 = x2.
x2 = u + g + f (x)

, (4)

where x1 = p(t) and x2 = v(t) are the train position and train speed, u = F(t)
m is the control

input of the FAO controller, g = − g(x2)
m is the basic resistance, and f (x) = − f (x1,x2,t)

m is the
additional resistance and other unknown disturbances that cannot be modeled.

Assumption 1. The dynamics system of train operation given in Equation (4) is an input-state
stable system.
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3. Resistance Analysis Based on RBFNN

When the train operates under the actual route conditions with large slopes and small
curves, the additional resistance and unknown disturbances caused by the complex route
may be large, leading to a low accuracy of train control and affecting the safety of train
operation. Therefore, RBFNN is used to learn and estimate the additional resistance and
unknown disturbance in the train dynamics model, which mainly solves the problem
of the large position and speed tracking error caused by factors such as dynamic model
simplification, model parameter uncertainty, and external environment change in order to
enhance the adaptability and anti-interference performance of the FAO.

RBFNN is a locally convergent forward network, which has simple structure, fast learn-
ing speed, and good generalization ability. Theoretically, it can approximate any smooth
function with any precision, which can be regarded as a universal approximator [18,19].
There are many research results in the adaptive control of nonlinear systems [20–22].

The structure of RBFNN is shown in Figure 1, which is composed of three layers of
a forward network. The input layer is composed of signal source nodes. The number
of neurons in the hidden layer depends on the exact requirements of the approximation
function. The output layer outputs the response to the input layer. The mapping from
input to output is nonlinear, while the mapping from hidden layer to output space is linear,
which speeds up learning and effectively avoids the local minimum problem [23–26]. The
output of the output layer is the linear weighted sum of the output signals of the hidden
layer, and the ‘weight’ represents the adjustable parameters of the network structure. By
adjusting the appropriate output weight, the RBFNN can realize the approximation of the
unknown nonlinear additional resistance and disturbance function.
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In Figure 1, x = [x1, x2, · · · , xn]
T ⊂ Rn is the network input, n is the dimension of

the input vector, W = [w1, w2, · · · , wm]
T is an adjustable weight parameter vector, m is

the number of neurons in the hidden layer, h(x) = [h1(x), h2(x), · · · , hm(x)]T is the output
vector of Gaussian function for the hidden layer, and hj(x) is the output of the j-th neuron
in the hidden layer. hj(x) can be expressed as follows:

hj(x) = exp

(
−
∥∥x− cj

∥∥2

2b2

j

)
j = 1, 2, · · · , m, (5)

where ‖ · ‖ is a Euclidean norm, and cj and bj are the center parameter and width parameter
of the Gaussian function of the j-th neuron in the hidden layer. The width vector of the
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hidden layer Gaussian function is b = [b1, b2, · · · , bm]
T, and bj > 0. The coordinate vector

of the center point of the hidden layer Gaussian function is as follows:

c =
[
cj1, cj2, · · · , cji, · · · , cjn

]T i = 1, 2, · · · , n. (6)

RBFNN can approximate the unknown nonlinear additional resistance and inter-
ference function with any precision in the compact working domain Θx ⊂ Rn. f (x) is
as follows:

f (x) = W∗Th(x) + ε(x), (7)

where W* is the weight vector that minimizes ε(x) among all the estimated weights,
in which

W* = arg min
W∈Rm

{
sup
x∈Θx

∣∣∣ f (x)−WTh(x)
∣∣∣}, (8)

where ε(x) is a bounded approximation error; that is, there is a small normal ε∗ number
satisfying |ε(x)| ≤ ε∗.

The performance index of the RBFNN output layer is as follows:

E = 0.5
[

f (x)− f̂ (x)
]2

, (9)

where f̂ (x) is the RBFNN output.
In the RBFNN structure, appropriate selection of the hidden layer node center, basis

function width, and weight parameters can enhance convergence speed and approximation
accuracy. According to the gradient descent method, the iterative algorithms of output
weight, node center, and node basis function width parameters are as follows:

∆wj(t) = η
[

f (x)− f̂ (x)
]

hj, (10)

wj(t) = wj(t− 1) + ∆wj(t) + v
[
wj(t− 1)− wj(t− 2)

]
, (11)

∆bj = η
[

f (x)− f̂ (x)
]
wjhj

∥∥x− cj
∥∥2

b3
j

, (12)

bj(t) = bj(t− 1) + ∆bj + v
[
bj(t− 1)− bj(t− 2)

]
, (13)

∆cji = η
[

f (x)− f̂ (x)
]
wjhj

xi − cji
2

b2
j

, (14)

cji(t) = cji(t− 1) + ∆cji + v
[
cji(t− 1)− cji(t− 2)

]
, (15)

where η ∈ (0, 1) is the learning rate, and v ∈ (0, 1) is the momentum factor.
The RBFNN input is x =

[
x1 x2

]T, and the output is as follows:

f̂ (x) = ŴTh(x) (16)

The error function is defined as

f̃ (x) = f (x)− f̂ (x) = W∗Th(x) + ε(x)− ŴTh(x) = −W̃
T

h(x) + ε(x), (17)

where W̃ = Ŵ−W* is the estimation error of the weight vector.

Assumption 2. f (x) is time-varying and bounded; that is, there is an unknown constant f ∗, which
satisfies | f (x)| ≤ f ∗.
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4. Design of Position Output-Constrained Robust Adaptive Control

The control problem of a constrained system is one of the most studied fields in
control theory and engineering application [27]. In FAO, in order to ensure the safety of
multiple train tracking operation and station fixed-point parking, it is necessary to make
strict restrictions on the upper and lower bounds of the train position output value. The
theoretical basis for designing the position output-constrained robust adaptive controller is
as follows:

Lemma 1 ([28]). Consider the following error system:

.
e = f(t, e), (18)

where e = [e1 e2]
T, e1 and e2 are the position error and speed error.

These are functions with continuous differentiable and positive definite V1 and V2,
k > 0, where x1 is position output, and xd is desired position output. The position error
e1 = x1 − xd is defined, when the following conditions are satisfied:

1. When e1 → −k or e1 → k , V1(e1)→ ∞ ;
2. χ1(‖e2‖) ≤ V2(e2) ≤ χ2(‖e2‖), where χ1 and χ2 are K∞ class functions.

It is assumed that |e1(0)| < k, taking V(e) = V1(e1) + V2(e2), if V(e) can satisfy

.
V =

∂V
∂x

f ≤ −µV + l, (19)

where l > 0 and is bounded.
Thus, |e1(t)| < k, ∀t ∈ [0, ∞).
Consider the following symmetric Barrier Lyapunov function [29]:

V1(e1) =
1
2

log
k2

k2 − e2
1

, (20)

where log(·) is natural logarithm.
It can be seen that the Lyapunov function satisfies the V(0) = 0, V(x) > 0 (x 6= 0)

Lyapunov design principle.
It can be seen from

.
V ≤ −µV + λ that V is a bounded. Due to V being a continuous

function, V1 = 1
2 log k2

k2−e2
1
. The initial state satisfies |e1(0)| < k, and e2

1 6= k2; that is,

∀t ∈ [0, ∞), |e1(t)| < k.
In this paper, the maximum position error is constrained as e1(t) = 0.2, due to

|e1(t)| < k; taking k = 0.21, the input and output results of the symmetric Barrier Lyapunov
function are shown in Figure 2.

Algorithms 2021, 14, x FOR PEER REVIEW 7 of 20 
 

In this paper, the maximum position error is constrained as 1(t)=0.2e , due to 

1( )e t k< ; taking =0.21k , the input and output results of the symmetric Barrier Lyapunov 
function are shown in Figure 2. 

Lemma 2 ([28]). For 0k > , if 1( )e t k< , [ )0,t∀ ∈ ∞ , then 

22
1

2 2 2 2
1 1

log ek
k e k e

<
− −

. (21) 

 
Figure 2. Symmetric barrier Lyapunov function. 

5. RBFNN Design and Analysis of Position Output-Constrained Robust Adaptive 
Controller 

The objectives of the FAO controller design are as follows: 
• When the coefficients of the basic resistance Davis equation are uncertain or time-

varying, the additional resistance cannot be accurately modeled, and the disturbance 
is unknown, the train can track the desired speed and position curve with high pre-
cision, ensuring that the tracking error during train operation converges to a suffi-
ciently small area quantified by the control parameter. 

• The FAO is stable; that is, all closed-loop signals are bounded. 

5.1. Control Algorithm Design 
In order to achieve the above control objectives, on the basis of the backstepping 

method and Lyapunov integration analysis and design, the adaptive control law and pa-
rameter learning update law were designed to ensure the adaptability and robustness of 
the designed controller. 

The position tracking error and its derivative signal are defined as follows: 

1 1 de x x= − , (22) 

2 2e x r= − , (23) 

where r is the virtual control law to be designed, and dx  is the known train position 
information, i.e., the desired position. 

Figure 2. Symmetric barrier Lyapunov function.



Algorithms 2021, 14, 264 7 of 19

Lemma 2 ([28]). For k > 0, if |e1(t)| < k, ∀t ∈ [0, ∞), then

log
k2

k2 − e2
1
<

e2
1

k2 − e2
1

. (21)

5. RBFNN Design and Analysis of Position Output-Constrained Robust
Adaptive Controller

The objectives of the FAO controller design are as follows:

• When the coefficients of the basic resistance Davis equation are uncertain or time-
varying, the additional resistance cannot be accurately modeled, and the disturbance is
unknown, the train can track the desired speed and position curve with high precision,
ensuring that the tracking error during train operation converges to a sufficiently
small area quantified by the control parameter.

• The FAO is stable; that is, all closed-loop signals are bounded.

5.1. Control Algorithm Design

In order to achieve the above control objectives, on the basis of the backstepping
method and Lyapunov integration analysis and design, the adaptive control law and
parameter learning update law were designed to ensure the adaptability and robustness of
the designed controller.

The position tracking error and its derivative signal are defined as follows:

e1 = x1 − xd, (22)

e2 = x2 − r, (23)

where r is the virtual control law to be designed, and xd is the known train position
information, i.e., the desired position.

Assumption 3. The desired position xd and its first-order derivatives
.
xd and second-order deriva-

tives
..
xd are known and bounded.

The two-side differential of e1 is obtained as follows:

.
e1 =

.
x1 −

.
xd = x2 −

.
xd. (24)

The two-side differential of
.
e2 is obtained as follows:

.
e2 =

.
x2 −

.
r

= u + g + f (x)− .
r

= u− a0
m −

b0
m x2 − c0

m x2
2 + f (x)− .

r.
(25)

By differentiating the two sides of the symmetric Barrier Lyapunov function V1 of
Equation (20), it can be obtained that

.
V1 =

e1
.
e1

k2 − e2
1
=

e1(x2 −
.
xd)

k2 − e2
1

=
e1(e2 + r− .

xd)

k2 − e2
1

. (26)

The design virtual control law is expressed as

r = −αe1 +
.
xd, (27)

where α > 0 represents the control parameters to be designed.
The two-side differential of r is obtained as follows:

.
r = −α

.
e1 +

..
xd. (28)
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By substituting Equation (27) into Equation (26), we can get

.
V1 = −

αe2
1

k2 − e2
1
+

e1e2

k2 − e2
1

. (29)

The Lyapunov function is defined as

V2 = V1 +
1
2

e2
2. (30)

The two-side differential of V2 is obtained as follows:

.
V2 =

.
V1 + e2

.
e2 = −

αe2
1

k2 − e2
1
+

e1e2

k2 − e2
1
+ e2

.
e2. (31)

By substituting Equation (25) into Equation (31), we can get

.
V2 = −

αe2
1

k2 − e2
1
+

e1e2

k2 − e2
1
+ e2[u−

a0

m
− b0

m
x2 −

c0

m
x2

2 + f (x)− .
r]. (32)

Assumption 4. The control input u is time-varying and bounded; that is, there is an unknown
constant u∗ satisfying |u| ≤ u∗.

The control law and adaptive law are designed as follows:

u = â + b̂x2 + ĉx2
2 − f̂ (x) +

.
r− βe2 −

e1

k2 − e2
1

, (33)

.
â = −λ1(e2 + σ1 â), (34)

.
b̂ = −λ2(x2e2 + σ2b̂), (35)
.
ĉ = −λ3(x2

2e2 + σ3 ĉ), (36)
.

Ŵ = χe2h(x)− χŴ, (37)

where â, b̂, and ĉ are the estimated values of a0
m = a∗, b0

m = b∗, and c0
m = c∗, respectively,

ã = â− a∗, b̃ = b̂− b∗, and c̃ = ĉ− c∗ are the estimated error values, β > 0 and χ > 0
are design parameters, f̂ (x) is the estimated value of f (x), and λi and σi, i = 1, 2, 3 are
adaptive parameters.

Assumption 5. The parameters satisfy |a∗| ≤ a†,|b∗| ≤ b†, and |c∗| ≤ c†, where a†,b†, and c†

are unknown and bounded values.

5.2. System Stability Analysis

Theorem 1. According to the train dynamics model in Equation (4), under all assumptions, based
on RBFNN, adaptive and position output-constrained control theory, the adaptive control laws in
Equations (27) and (33), adaptive laws of the basic resistance coefficients in Equations (34)–(36),
and adaptive law of weight vector in RBFNN approximating additional resistance and unknown
disturbance in Equation (37) are designed. Then, the train can track the given train operating curve
with high precision in real time under the condition of the uncertain basic resistance coefficient,
additional resistance, and unknown disturbance, and the tracking error will converge to a small
enough neighborhood quantified by the designed control parameter, whereby the FAO is stable. The
initial state of the closed-loop FAO system is as follows:

1
2

log
k2

k2 − e2
1(0)

+
1
2

e2
2(0) +

1
2χ

W̃
2
(0) +

1
2λ1

ã2(0) +
1

2λ2
b̃2(0) +

1
2λ3

c̃2(0) ≤ ζ,
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where, ζ is any positive constant, and α, β, χ, λi σi, and i = 1, 2, 3 are control parameters.

Proof of Theorem 1. The Lyapunov function is chosen as follows:

V =
1
2

log
k2

k2 − e2
1
+

1
2

e2
2 +

1
2χ

W̃
T

W̃ +
1

2λ1
ã2 +

1
2λ2

b̃2 +
1

2λ3
c̃2. (38)

The two-side differential of V is obtained as follows:

.
V = −

αe2
1

k2 − e2
1
+

e1e2

k2 − e2
1
+ e2

.
e2 +

1
χ

W̃
T .

Ŵ +
1

λ1
ã

.
â +

1
λ2

b̃
.
b̂ +

1
λ3

c̃
.
ĉ. (39)

By substituting the control law of Equation (33) into Equation (25), we can get

.
e2 = â + b̂x2 + ĉx2

2 − f̂ (x) +
.
r− βe2 − e1

k2−e2
1
− a∗ − b∗x2 − c∗x2

2 + f (x)− .
r

= ã + b̃x2 + c̃x2
2 + f̃ (x)− βe2 − e1

k2−e2
1

= ã + b̃x2 + c̃x2
2 − βe2 − e1

k2−e2
1
− W̃

T
h(x) + ε(x)

(40)

By substituting Equation (40) and the designed adaptive laws of Equations (34)–(37)
into Equation (39), we can get

.
V = − αe2

1
k2−e2

1
+ e1e2

k2−e2
1
+ e2

[
ã + b̃x2 + c̃x2

2 − βe2 − e1
k2−e2

1
− W̃

T
h(x) + ε(x)

]
+ 1

χ W̃
T[

χe2h(x)− χŴ
]
+ 1

λ1
ã[−λ1(e2 + σ1 â)]

+ 1
λ2

b̃
[
−λ2(x2e2 + σ2b̂)

]
+ 1

λ3
c̃
[
−λ3(x2

2e2 + σ3 ĉ)
]

= − αe2
1

k2−e2
1
+ e1e2

k2−e2
1
+ e2

[
ã + b̃x2 + c̃x2

2 − βe2 − e1
k2−e2

1
− W̃

T
h(x) + ε(x)

]
+ e2W̃

T
h(x)− W̃

T
Ŵ− ãe2 − σ1 ãâ− b̃x2e2 − σ2b̃b̂− c̃x2

2e2 − σ3 c̃ĉ

= − αe2
1

k2−e2
1
− βe2

2 + e2ε(x)− W̃
T

Ŵ− σ1 ãâ− σ2b̃b̂− σ3 c̃ĉ

(41)

According to Lemma 2, we know that

−
αe2

1
k2 − e2

1
< −α log

k2

k2 − e2
1

. (42)

According to Young’s inequality properties, we can get

e2ε(x) ≤ 1
2

e2
2 +

1
2

ε∗2, (43)

− W̃
T

Ŵ = −W̃
T
(W̃ + W∗) = −W̃

T
W̃− W̃

T
W∗ ≤ −1

2
W̃

T
W̃ +

1
2

W∗2, (44)

− σ1 ãâ ≤ −1
2

σ1 ã2 +
1
2

σ1a∗2, (45)

− σ2b̃b̂ ≤ −1
2

σ2b̃2 +
1
2

σ2b∗2, (46)

− σ3 c̃ĉ ≤ −1
2

σ3 c̃2 +
1
2

σ3c∗2. (47)
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By substituting Equations (42)–(47) into Equation (41), we can get

.
V ≤ −α log k2

k2−e2
1
− (β− 1

2 )e
2
2 −

1
2 W̃

T
W̃− 1

2 σ1 ã2 − 1
2 σ2b̃2 − 1

2 σ3 c̃2

+ 1
2 ε∗2 + 1

2 W∗2 + 1
2 σ1a∗2 + 1

2 σ2b∗2 + 1
2 σ3c∗2

(48)

Accordingly, the following can be defined:

µ = min[2α, 2β− 1, χ, λ1σ1, λ2σ2, λ3σ3], (49)

l =
1
2

ε∗2 +
1
2

W∗2 +
1
2

σ1a∗2 +
1
2

σ2b∗2 +
1
2

σ3c∗2. (50)

Thus,

.
V ≤ −µ

[
1
2 log k2

k2−e2
1
+ 1

2 e2
2 +

1
2χ W̃

T
W̃ + 1

2λ1
ã2 + 1

2λ2
b̃2 + 1

2λ3
c̃2
]
+ l

≤ −µV + l
(51)

By selecting the appropriate control parameters α, β, χ, λi and σi, µ > l
ζ can be

satisfied. If V > ζ, then
.

V < 0; that is, V ≤ ζ is an invariant set. If V(0) ≤ ζ holds, then
∀t ≥ 0; that is, V(t) ≤ ζ.

According to Lemma 1, we can know that V is bounded, and |e1| < k. Accordingly, all
error signals e1, e2, W̃, ã, b̃, and c̃ are bounded; thus, Ŵ, â, b̂, and ĉ are bounded. According
to Equation (51), it can be concluded that

0 ≤ V(t) ≤ l
µ
+ [V(0)− l

µ
] exp−µt . (52)

The inequality in Equation (52) means that there is a moment T, and, for ∀t > T,
0 ≤ V(t) ≤ l

µ is always established. According to Equation (38), we can get that e2, W̃, ã, b̃,
and c̃ converge to the following compact sets, respectively:

Ωe2 =

{
e2

∣∣∣∣∣|e2| ≤
√

2l
µ

}
, (53)

ΩW̃ =

{
W̃

∣∣∣∣∣∣∣∣W̃∣∣∣ ≤
√

2χl
µ

}
, (54)

Ωã =

{
ã

∣∣∣∣∣|ã| ≤
√

2λ1l
µ

}
, (55)

Ωb̃ =

{
b̃

∣∣∣∣∣∣∣∣b̃∣∣∣ ≤
√

2λ2l
µ

}
, (56)

Ωc̃ =

{
c̃

∣∣∣∣∣|c̃| ≤
√

2λ3l
µ

}
. (57)

From the above content, it can be seen that the tracking error of the FAO can be
adjusted to any small value by selecting the appropriate control parameters. In addition,
the initial estimation errors W̃(0), ã(0), b̃(0), and c̃(0), and their influence on the system
performance can also be adjusted to any small value by selecting appropriate control
parameters. �
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6. Simulation Experimental Results

In this paper, MATLAB 2018a simulations were divided into two parts. The first
used the actual parameters of urban rail trains to carry out the RBFNN position output-
constrained robust adaptive control (RBFNN-POCRAC) design and desired curve tracking.
Then, with the same train parameters and desired curve, the position output-constrained
robust adaptive control (POCRAC) without RBFNN approximation of additional resistance
and unknown disturbance, using the PID controller and the RBFNN-PID controller in the
literature [30], was selected for performance comparison. The desired speed and position
curve of the train tracking target is shown in Figure 3. The parameter information of
the train route such as the slope and curve radius is shown in Table 1. Equation (4) was
selected as the train dynamics model. The basic resistance simulation parameters were set
as a∗ = 0.3, b∗ = 4× 10−3, c∗ = 1.6× 10−4.
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Figure 3. Desired speed and position profiles of train operation.

Table 1. Parameters for route condition.

Parameters Range Value

Slope/(‰)

0–3800 2
3800–9200 −1.5

9200–21,400 0
21,400–23,900 5
23,900–29,900 2.5
29,900–32,300 −3
32,300–50,000 0
50,000–53,880 1.2

Curve (m)

0–4600 1000
4600–18,000 1200

18,000–24,200 800
24,200–29,300 1500
29,300–34,000 700
34,000–48,000 1300
48,000–53,880 1200

The additional resistance caused by the route condition.
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6.1. Simulation of RBFNN Position Output-Constrained Robust Adaptive Controller

In the simulation environment of Theorem 1, the input variable of RBFNN was
x = [x1 x2]

T, η = 0.2, v = 0.04. The control parameters were set as α = 0.5, β = 0.51,
λ1 = 0.01, λ2 = 0.01, λ3 = 0.01, σ1 = 0.005, σ2 = 0.005, σ3 = 0.005, χ = 0.1, k = 0.21. The
initial state was selected as x1(0) = 0, x2(0) = 0. The initial parameters were â = 0.25,
b̂ = 0, and ĉ = 0. For the desired speed and position curve given in Figure 3, the tracking
simulation results of the RBFNN-POCRAC controller are shown in Figures 4–8.
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Figure 8. Control input.

It can be seen from Figure 4 that the position tracking curve was closely attached
and there was no system overshoot phenomenon, indicating that the tracking effect of
the controller was good. At the same time, it can be seen from Figure 5 that, under the
system model parameters and complex route conditions of the train operation, the results
could converge quickly, and the position signal was bounded, thus identifying the given
train position curve with high precision. When the train operated on a route with a large
slope and complex curve, the control accuracy of RBFNN-POCRAC controller decreased
due to the strong additional resistance and external interference, but the position tracking
error was still less than 0.2 m, thus meeting the requirements of train parking accuracy.
Therefore, the RBFNN-POCRAC controller not only ensures the stable operation of the
train on the route with a large slope and complex curve, but also achieves a final parking
accuracy of almost 0, thereby meeting the control requirements.

According to the speed tracking performance in Figure 6 and the speed tracking
error in Figure 7, when the initial speed was 0, the controller could track the given train
speed curve with small error, and the speed signals were bounded. When the train was
operating on a complex route with a large slope and smaller curve radius, the speed
tracking fluctuated due to the strong disturbance from the outside, and the speed error was
−0.24 m/s to 0.26 m/s, but the speed tracking error of the remaining routes was almost
zero. Therefore, the RBFNN-POCRAC algorithm proposed in this paper can ensure the
safety of train operation.

Figure 8 shows the train control input curve of the RBFNN-POCRAC algorithm,
i.e., the acceleration curve of train operation. When the train started, it needed to overcome
its own gravity and other unknown disturbances, and the maximum acceleration value
was 0.48 m/s2. When the train was operating from 52 s to 248 s, in order to overcome the
interference of the slope and curve, the controller quickly switched the control input to
maintain the control accuracy. When the train was operating in the common route section,
the change in acceleration of the control train operation was small, and it was basically
kept at about 0.6 m/s2, which improved the comfort of the train operation to a certain
extent. At the same time, for the whole train’s fully automatic operation, the switching
times of traction and braking were less, which effectively improved the service life and
effective period of the traction or braking mechanism.



Algorithms 2021, 14, 264 15 of 19

6.2. Controller Performance Comparison

As we all know, the PID control algorithm is widely used in train operation control,
such as the Beijing Metro Yizhuang Line. In order to prove the advantages of the RBFNN-
POCRAC controller in terms of control accuracy and anti-interference, this paper chose
position output-constrained robust adaptive control (POCRAC), PID control, and RBFNN-
PID control in the literature [30] as the comparison objects, loaded the same desired tracking
curve shown in Figure 3, and compared the tracking error of the four controllers.

It can be seen from Figure 9 that the RBFNN-POCRAC controller converged quickly
to the whole process of desired position tracking in the face of strong additional resistance
and external interference. When the train ran to 158 s, the position error reached the
maximum value of 0.142 m, and the position tracking error at other times was almost
zero, showing strong anti-interference ability. When the POCRAC controller faced external
interference, the position error convergence was slow, and the maximum position error
was 0.2 m. PID control and RBFNN-PID control exhibited a large position error throughout
the process of train operation, being far greater than the 0.2 m position error defined in this
article. The position error of PID control fluctuated greatly, and the control performance
was poor. Compared with PID, RBFNN-PID control effectively reduced the position error
of train operation control; however, under the condition of uncertain model parameters
and external interference, the position error was significantly larger than the controller
designed in this paper.
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Figure 9. Position error comparison.

It can be seen from Figure 10 that when the four controllers faced strong additional
resistance and external interference, the train running speed error of the RBFNN-POCRAC
controller was the smallest, and the train running speed error and fluctuation of the PID
controller were the largest. Compared with the PID control method, RBFNN-PID control
obviously alleviated the speed error, but it was still greater than the speed tracking error of
the POCRAC controller and RBFNN-POCRAC controller. The POCRAC controller lacked
the ability to adapt to the strong additional resistance and external interference, leading to
a certain overshoot of the operation speed, and the control performance was not ideal.
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It can be seen from Figures 9 and 10 that the RBFNN-POCRAC controller had the
fastest convergence speed and the smallest overall position error and speed error in the face
of the uncertain model parameters, strong additional resistance, and external interference,
and it had good control performance and strong adaptive ability, which could ensure the
safe and reliable operation of the train, has along with universal engineering practicability.

In order to further illustrate the control effect of the RBFNN-POCRAC controller, this
paper changed the train model parameters of the four controllers within the range of ±10%
and performed 100 simulation runs. The comparison results of the position error range,
speed error range, and average parking accuracy are shown in Table 2. It can be seen that
the RBFNN-POCRAC controller had the best position and speed tracking performance
and the highest parking accuracy, and it could adapt to the external environment of
train operation and the changes in train dynamics model parameters, thus meeting the
requirements of FAO’s high-precision operation control.

Table 2. Performance comparison of control methods.

Control Method Position Error
(m)

Speed Error
(m/s)

Average Stopping
Accuracy (m)

RBFNN-POCRAC [−0.084, 0.178] [−0.28, 0.32] 0.0016
POCRAC [−0.162, 0.2] [−0.95, 0.77] 0.048

RBFNN-PID [−0.46, 0.52] [−0.98, 0.84] 0.229
PID [−1, 1.5] [−1.04, 0.92] 0.387

Table data obtained by 100 simulation runs.

7. Discussion

FAO is a new-generation rail transit control system that realizes automation of the
whole process of train operation. It is the development direction of the automatic train
operation system (ATO) toward artificial intelligence. FAO is based on an unmanned
driving function, combined with on-board information and route information, according
to the desired speed and position curve, thus automatically controlling the operating
process of the train and realizing functions such as the automatic adjustment of train speed,
operating time, and precise parking so as to ensure the train’s operation in the best state.
In recent years, urban rail transit systems around the world have been applied, such as
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Beijing Yanfang Line. The control method applied in FAO is still commonly represented
by PID control in ATO, as well as the combination of PID and other control algorithms.
Although it can meet the requirements of the train safe operation, the control input of
the PID controller fluctuates frequently and the control accuracy is not high, especially in
regions with complicated slopes and curves, which affects the control performance of train
operation and the comfort of passengers.

The key to the design of an FAO controller is to establish an accurate train dynamics
model. However, the dynamic process of train operation is related to multiple factors, and
it is impossible to establish an accurate train dynamics model. In addition, different train
types, routes, passenger capacity, weather, and temperature will cause changes in model
parameters. Therefore, the train dynamics model in FAO mostly adopts a single particle,
as the factors considered in multiparticle train dynamics models are too complicated,
which is not conducive to the design of an FAO controller and the automatic control of
train operation.

In summary, in future FAO design, single-particle dynamics models should be selected
as much as possible, and an adaptive mechanism should be introduced to deal with
the uncertainty of model parameters and the variability of the external environment of
train operation. At the same time, control algorithms that can improve the response
speed, control accuracy, and passenger comfort should be selected to improve the FAO’s
control performance and provide strong technical support for urban rail transit to become
more intelligent.

8. Conclusions

Because different train types, routes, and even different weather conditions affect
the establishment of a train dynamic model, and because the relationship between train
resistance and speed is highly nonlinear, it is not feasible to accurately obtain a dynamic
model of train motion. Thus, RBFNN was used to approximate the additional resistance
and unknown disturbance dynamics of train operation, and the adaptive mechanism of the
Davis equation coefficient of basic resistance was introduced to enhance the robustness and
adaptability of the control system. At the same time, aiming at precise control technology
in the FAO, the RBFNN-POCRAC algorithm was proposed, and a simulation platform
was used to verify the proposed control algorithm. When the FAO had parameter uncer-
tainty, time-varying parameters, strong additional resistance, and external disturbance,
the proposed control algorithm could achieve smooth, fast, and accurate tracking for the
desired curve.

Combined with the research content of this paper, future research work will mainly
include two aspects:

• Research on FAO control methods based on deep learning and knowledge automation.
The existing control methods do not fully utilize the massive data generated by the
train operation. However, the deep learning method can generate “strategic” data
for the train operation control system. Combining deep learning and knowledge
automation control methods, mining rules from the “strategic” data, and making
accurate predictions will help real-time monitoring and automatic adjustment of the
train operation status.

• Research on coordinated control methods for multi-train tracking operation. The
purpose of multi-train coordinated control is to increase the traffic density by adjusting
the minimum safe interval between the preceding train and the following train. FAO
combined with multi-train cooperative control can effectively reduce the overall
energy consumption and life-cycle cost of the system, which is the future development
direction of urban rail transit.
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