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Abstract: Feature selection is crucial to the credit-scoring process, allowing for the removal of
irrelevant variables with low predictive power. Conventional credit-scoring techniques treat this as a
separate process wherein features are selected based on improving a single statistical measure, such
as accuracy; however, recent research has focused on meaningful business parameters such as profit.
More than one factor may be important to the selection process, making multi-objective optimization
methods a necessity. However, the comparative performance of multi-objective methods has been
known to vary depending on the test problem and specific implementation. This research employed a
recent hybrid non-dominated sorting binary Grasshopper Optimization Algorithm and compared its
performance on multi-objective feature selection for credit scoring to that of two popular benchmark
algorithms in this space. Further comparison is made to determine the impact of changing the
profit-maximizing base classifiers on algorithm performance. Experiments demonstrate that, of the
base classifiers used, the neural network classifier improved the profit-based measure and minimized
the mean number of features in the population the most. Additionally, the NSBGOA algorithm gave
relatively smaller hypervolumes and increased computational time across all base classifiers, while
giving the highest mean objective values for the solutions. It is clear that the base classifier has a
significant impact on the results of multi-objective optimization. Therefore, careful consideration
should be made of the base classifier to use in the scenarios.

Keywords: multi-objective optimization; profit scoring; feature selection; credit evaluation

1. Introduction

Credit-scoring evaluations are an important part of the lending process, allowing
financial institutions to manage risks [1]. Feature selection, a crucial part of the credit-
scoring process, typically aims to minimize the number of features, thereby reducing
model complexity, data acquisition costs, and computation time [2]. Traditionally, feature
selection is conducted as a separate step before model training and is used to improve a
single statistical measure, such as the area under the receiver operating curve (AUC) [3].
Beyond this, other factors, such as the profitability of the resulting model [4,5], have
been the focus of the feature-selection process. These factors, which depend on data
and applications, can be incorporated into the feature-selection process as objectives in
multi-objective optimizations (MOOs).

MOO algorithms allow designers to balance several, often conflicting, objectives [6].
These methods have been applied to simultaneously consider the number of features and
another training objective, such as profit, in feature selection [7]. Several algorithms have
been developed to handle MOO problems, including the Strength Pareto Evolutionary
Algorithm (SPEA-II), non-dominated sorting genetic algorithm (NSGA-II) [8,9], and its
reference-based adaptation for many-objective problems, NSGA-III. Hybrid algorithms,
which integrate aspects of two or more optimization methods, have also been employed. An
example is the adaptation of the continuous Grasshopper Optimization Algorithm (GOA)
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for filter-based feature selection through the introduction of binary conversion [10,11]. Fur-
ther examples used non-dominated strategies to convert Cuckoo Optimization Algorithm
(COA) [12]. A non-dominated sorting binary GOA, NSBGOA, was proposed for feature
selection with optimization of multiple objective [13].

Existing research has shown that even for closely related multi-objective algorithms,
performance varies depending on the test problem [14]. However, there is limited research
comparing performance of different multi-objective algorithms for feature selection. In
particular, existing research tends to use on one base classifier, with the base classifier
used depending on the analyst’s discretion. Changes in performance due to different base
classifiers require further examination. This research aims to fill the gap by comparing
the performance of several multi-objective methods on feature selection in credit scoring,
namely NSGA-II, NSGA-III, and the newly proposed hybrid meta-heuristic, NSBGOA.
Secondly, the effect of different base classifiers on performance is considered to determine
the most suitable. Third, these multi-objective methods are compared to conventional
feature-selection techniques. Three common objectives for credit-scoring feature selection
are employed: maximizing profit, selecting features that are more easily explained to
stakeholders, and minimizing number of features [4,15].

Related research is considered in Section 2, while Section 3 introduces the methods
used in this research. Detailed in Section 4 is the problem formulation and empirical
evaluation. Results of the evaluation are shown in Section 5 and discussed in Section 6.
Lastly, the conclusion is given in Section 7.

2. Related Work
2.1. Profit Scoring

Credit scoring is defined as “ . . . a set of decision models and their underlying
techniques that aid lenders in granting consumer credit” [1]. Its core purpose is to assess
the risk of lending to a prospective borrower. Historically, credit decisions were based the
lender’s knowledge of the borrower. In modern times, statistical and machine learning
approaches have taken precedence. The goal of these approaches to credit scoring is to
distinguish borrowers who are likely to show some negative behavior. Recent research
has trended towards evaluation of profit as part of the credit-scoring process because it
allows for improved decision-making by lenders. A profit measure comprised of benefits
versus losses due to misclassification was proposed, with varying data variable acquisition
costs also being considered [5]. The Internal Rate of Return (IRR) was used to measure
profitability of peer-to-peer loans [16]. A new measure, expected maximum profit (EMP),
which is composed of the benefits of correct classification and costs of misclassification,
was suggested [17] and reworked for consumer credit scoring [18].

2.2. Feature Selection

The selection of input features is an important part of model building. Typically, the
process aims to ensure optimum model performance with minimum features. This reduces
noise, data costs, and the risk of overfitting. Feature-selection methods are generally classi-
fied into wrapper, filter, and embedded methods [2]. With wrapper methods, models are fit
with subsets of the features, and the resulting model performance is evaluated. However,
due to the high computational cost, they are difficult to run on datasets with a large number
of features. Examples include backward and forward selection. For filter methods, features
are selected based on inherent properties, such as variance. Analysis of variance (ANOVA)
is an example of this [19]. Finally, embedded methods, such as LASSO [20] and ridge
regression, perform feature selection and model fitting simultaneously.

Feature selection has been conducted by using support vector machines based on EMP
in an embedded method [4]. A profit-based measure was applied with a Holdout Support
Vector Machine (HOSVM) to extract the features with highest profitability [5]. Feature
selection was conducted by using mixed-integer linear programming models with varying
acquisition costs as constraints [15]. The orthogonal transform was used for dimensionality
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reduction, thus reducing the number of features for model training, leading to faster
convergence and better performance [21]. Feature selection is carried out by integrating a
multicriteria optimization classifier (MCOC) with a one-norm regularization term inspired
by the LASSO regression method to create a sparse feature vector [22].

Multiple objectives have also been optimized in feature selection through multi-
objective feature analysis. Existing literature has several examples of optimizing the
feature-selection process with two objectives. A non-dominated sorting genetic algorithm-
II (NSGA-II) fitted to maximize the expected maximum profit (EMP) and minimize the
number of features was demonstrated [7]. Mutual information and entropy were op-
timized for filter-based feature selection with a non-dominated sorting binary Particle
Swarm Optimization (NSBPSO) [23]. Binary Grasshopper Optimization Algorithms were
applied for filter-based feature selection based on error rate and number of features in
References [10,11]. A wrapper based multi-objective evolutionary algorithm optimized
feature selection with three objectives: default prediction, exposure at default, and number
of features [24]. Two objectives, number of features and root mean square error (RMSE),
were optimized in feature selection with multi-objective genetic algorithm and neurofuzzy
models [25].

2.3. Multi-Objective Optimization

Multi-objective evolutionary algorithms (MOEAs), including Strength Pareto Evolu-
tionary Algorithm (SEPA-II) and binary non-dominated sorting genetic algorithm (NSGA-
II), have been applied for problems with two objectives [8,9]. Non-dominated sorting
has also been incorporated with meta-heuristic optimizers for multi-objective problems.
For instance, the Particle Swarm Optimizer [26] and the Ant Colony optimizer [27] have
both been adapted to multi-objective problems. A binary version of the Grasshopper
Optimization Algorithm has been developed for feature selection [11].

For many-objective optimizations (MaOP), which typically involve three or more
objectives, their performance degrades with the increase in objectives due in part to the
large number of mutually non dominated solutions [28]. As such, indicator, aggregation,
and reference-based methods have been proposed to tackle MaOps. Examples include
NSGA-III, a reference-based extension of NSGA-II for many-objective problems [29]. When
compared on several test problems with different numbers of objectives, it was determined
that the NSGA-III does not always outperform NSGA-II. In fact, the performance is affected
by the number of objectives and the specific test problem evaluated [14].

3. Methods
3.1. Multi-Objective Optimization

The Pareto-optimal set is a non-dominated set of solutions which allows decision-
makers to find a trade-off where more than one objective is involved [30]. Multi-objective
optimization (MOO) methods guide the search for solutions towards the Pareto-optimal
set. MOOs are especially important for feature selection where more than one objective
must be considered. For instance, maximizing profit while minimizing number of features.
Mathematically, multi-objective optimization problems may be expressed by Equations
(1)–(3) below:

minimize F(x) = ( f1(x), f2(x), . . . , fm(x))T (1)

where vector X = ( x1, x2, . . . , xn) (2)

and vector X ∈ Ω (3)

The objective functions vector F(x) maps F: Ω→∧. Here the decision space and vector
are Ω and X, respectively. For many-objective optimization problems (MaOP), m ≥ 3.
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3.2. Non-Dominated Genetic Algorithm (NSGA-II)

NSGA-II is a popular multi-objective optimization algorithm that can applied to
feature-selection problems [8]. The algorithm begins by evaluating the fitness of the initial
population of potential solutions. From these, “parent solutions” are selected and crossed
to generate “child solutions”. Mutation may occur where some components of the solutions
are randomly altered. If the stopping criteria are not met, a non-dominated sorting scheme
is used to select the best solutions, with diversity maintained by calculating and maximizing
the crowding distance between solutions. The result of this sorting process becomes the
population for the next round of evaluation. In this manner, the population converges
towards the set of overall best, non-dominated solutions known as the Pareto frontier.
NSGA-II can be adapted to feature selection by denoting the individuals as different
feature combinations and setting the number of features as an objective in addition to the
main objective such as profit. The process is given in Algorithm 1.

Algorithm 1 Pseudo code for NSGA-II. Algorithm for NSGA-II

Initialize population, Pt, of size N

Q0 = Ø

F0 = Fitness evaluation of P0

(F1, F2, . . . ) = Non dominated sorting of P0 to establish rank

Determine crowding distance of (F1, F2, . . . )

while stop criterion not satisfied do

Qt = selection, crossover, mutation, recombination of Pt

Rt = Qt ∪ Pt

Ft = Fitness_Evaluation(Rt)

(F1, F2, . . . ) = Non dominated sorting of Rt to establish rank

Determine crowding distance

Pt+1 = select new population of size N based on rank and highest crowding distance

end while

3.3. Non-Dominated Genetic Algorithm (NSGA-III)

Deb and Jain [29] proposed the NSGA-III algorithm as an extension of NSGA-II to
deal with MaOPs. NSGA-III generates a reference set from virtual points in the objective
space to measure the quality of solutions. A population, composed of potential solutions, is
initialized. As with genetic algorithms, the fitness of the solutions is assessed by computing
the fitness or objective functions. So-called “parent” solutions are selected and crossed
over to obtain “child” solutions.

Mutations may also occur where components of the solutions may be altered. The
population is normalized and associated to the reference set by the orthogonal distance to
reference lines. During selection, rather than preserving diversity by using the crowding
distance, as is the case with NSGA-II, NSGA-III uses niche-preservation based on the
reference set [31]. This process is shown in Algorithm 2.

3.4. Non-Dominated Binary Grasshopper Optimization Algorithm (NSBGOA)

NSBGOA is a hybrid meta-heuristic proposed to handle multi-objective feature se-
lection [13]. It adapts the Grasshopper Optimization Algorithm (GOA) [32], a swarm
intelligence based optimizer that models the behavior of grasshoppers in a swarm. Each
individual grasshopper’s position is a possible solution, and the velocity of the individual
grasshoppers as they attempt to swarm into the so-called “comfort zone” is updated with
each iteration. This velocity is a function of their social interaction and movement towards
the target.
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Algorithm 2 Pseudo code for NSGA-III. Algorithm for NSGA-III

Initialize reference points

Initialize population, P0, of size N

while stop criterion not satisfied do

St = Ø, i =1

Qt = selection, crossover, mutation, recombination of Pt

Rt = Qt ∪ Pt

(F1, F2, . . . ) = Non dominated sorting (Rt)

while |St| < N do

St = St ∪ Fi

i = i + 1

end while

Fl = Fi (Fl last front included)

if |St| = N then

Pt+1 = St

else

Pt+1 = ∪l−1
j=1Fj

Individuals to be chosen K = N − | Pt+1 |:

Normalize objectives

Associate each member s of St with a reference point

Compute niche count of reference point

Choose K members chosen one at a time from Fl to obtain Pt+1

end if

end while

For feature selection, the continuous GOA algorithm is converted to a binary GOA
by introducing the sigmoidal transfer function of Equation (4) [10]. The velocity, ∆X, is
adapted to Equation (5), where dij is the distance between two grasshoppers, the function
s is the strength of the social forces, parameter c decreases the comfort zone with each
iteration, and ubd and ibd are the upper bound and lower bound in the dth dimension.
Equation (6) gives the dth dimension of a grasshopper in the next iteration. Additionally,
non-dominated sorting is integrated into the algorithm to allow for comparison of multiple
objectives. This results in the algorithm of Algorithm 3.

T(∆Xt) =
1

1 + e−∆Xt
(4)

∆X = c1


N

∑
j = 1
j 6= i

c2
ubd − lbd

2
s
(∣∣∣xd

j − xd
i

∣∣∣) xj − xi

dij


(5)

Xd
t+1 =

{
1 i f r < T(∆Xd

t+1)

0 i f r ≥ T(∆Xd
t+1)

(6)
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Algorithm 3 Pseudo code for NSBGOA. Algorithm for NSBGOA

Input:

• Population size, N

• maxIter

Steps

T = 0
Gt = Initialize grasshopper positions
Pt = Gt

Ft = Fitness wvaluation of population, Pt

bestFrontt, fitnessOfBestFrontt = non-dominated sorting of Pt and Ft

while t < maxIter do:

Update c

for grasshopper in Gt

normalize the distances between grasshoppers in References [1,4]

Gt = compute and update new grasshopper positions

Pt = Gt

Ft = evaluate fitness of population, Pt

bestFrontt, fitnessOfBestFrontt = non-dominated sorting of Pt and Ft

Zt = Sort Pt by position on fronts

Gt+1 = Ø

i =1

while i <= N do:

Gt+1 = Gt+1 ∪ ith member of Pt

i = i + 1

end while

bestFrontt+1, fitnessOfBestFrontt+1 = non-dominated sorting of Gt+1 and Ft

t = t +1

end while

S = bestFront

Output

• set of non-dominated solutions, S

3.5. Expected Maximum Profit (EMP)

Expected maximum profit (EMP), the maximum profit obtainable, is a profit-based
metric [18] that is applicable to credit scoring. Four potential classification outcomes exist,
as per Table 1. When a good borrower is rejected, the lender loses the return on investment
(ROI). Additionally, accepting a bad borrower results in loss of the benefit, b ∈ [0, 1],
expressed by the Equation (7), with exposure at default (EAD), loss given default (LGD),
and principal amount (A) of the loan [33].

b =
LGD ∗ EAD

A
(7)

The benefit, b, depends on how much of the loan is repaid in full.

• b = 0 with probability p0 that the loan is repaid in full,
• b = 1 with probability p1 that no portion of the loan is repaid,
• b is uniformly distributed within (0,1) with g(b) = 1 − p0 − p1.

Finally, EMP is given by equation 8 below with prior probabilities of default (π0),
prior probabilities non-default (π1), predicted cumulative density functions (F0 and F1),
and constant ROI.
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EMP =
∫ 1

0
(b ∗ π0F0 − ROI ∗ π1F1)∗g(b) db (8)

Table 1. Confusion matrix for Expected Maximum Profit.

Predicted Class

Non-Default Default

Actual

Non-default Benefit: ROI
Probability: π1 (1 − F1)

Cost: -ROI
Probability: π1 F1

Default Cost: -LGD × EAD/A
Probability: π0 (1 − F0)

Benefit: LGD × EAD/A
Probability: π0 F0

3.6. Performance Metrics

To evaluate the output of many- and multi-objective optimizations, the hypervolume
indicator (HV) may be used. HV, which can be used to evaluate convergence and distribu-
tion, is denoted by Equation (9), where λm is the m-dimensional Lebesgue measure and m
is the number of objectives [34]. It calculates the volume of objective space dominated by
the Pareto Front approximation, P, and delimited from above by the reference point r such
that z ∈ P, z dominates r.

HV(P, r) = λm( ∪
z ε P

[z; r]) (9)

4. Empirical Evaluation
4.1. Problem Formulation

With credit-scoring data identified, objectives may be listed. To achieve this, the
following definitions are given:

1. Available features X, (Equation (10)) a set of j variables that could be used to predict
loan repayment.

2. Cardinality (number of features), N, (Equation (11)) is the number of selected features
per solution.

3. Expected Maximum Profit, EMP, (Equation (8)) a profit-based measure for credit scoring.
4. Ease of explanation, C, (Equation (12)) a vector representing the ease of explaining each

variable to stakeholders.
5. Default status, D, (Equation (13)) is a vector with loan repayment information for each

borrower.
6. Borrower information, B, (Equation (14)) a matrix with feature values for each borrower.

Available Features, X =
{

x1, x2, x3, . . . xj
}

(10)

Cardinality, N = {n1, n2, n3, . . .} (11)

Ease o f explanation, = {c1, c2, c3, . . .} (12)

De f ault status, D = {d1, d2, d3, , . . . di} (13)

Borrower In f ormation, B =


b11 b12 · · · b1j
b21 b22 · · · . . .

...
...

. . .
...

bm1 · · · · · · . . .

 (14)

possible solution, P = {x1, x2, x3, . . . xn} (15)

Each solution, P (Equation (15)) is comprised of n features such that P ⊂ X. The goal is
to select a set, S =

{
s1, s2, s3, , . . . sp

}
so that each element is a distinct subset of X resulting

in non-dominated objective values.
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4.2. Contribution

NSGA-II was used for feature selection in credit scoring with two objectives, profit
and number of features [7], and different base classifiers were applied. However, its per-
formance on different base classifiers was not compared to that of other multi-objective
methods. Feature selection was conducted by introducing data-acquisition costs as con-
straints to a support vector machine (SVM) classifier for credit scoring [15]. Although
the performance of NSGA-II and NSGA-III on different problems was compared, these
comparisons were limited to test problems, not feature selection. Interestingly, it was found
that their performance varied depending on the test problem and number of objectives.
This leaves open the question of which multi-objective method and base classifier is most
suitable for credit-scoring problems. Furthermore, the performance of the NSBGOA algo-
rithm with different base classifiers is still in question. This research aims to answer these
open research questions.

4.3. Data and Objectives

To test the various algorithms, the German credit dataset [35], which contains 1000
entries with 700 being non-default and 300 being default. There are 20 features in the initial
dataset: 13 qualitative and 7 numerical. For the purposes of this evaluation, the variables
that were judged to have ambiguous definitions were given ease of explanation values
of 0, namely V2, V3, V12, V14, V17, and V18. Meanwhile, the remaining variables were
assigned values of 1. The targets of the optimization are given in Table 2.

Table 2. Objectives.

Objective Optimization Function

Expected maximum
profit (EMP) maximize EMP =

∫ 1
0 (b ∗ π0F0 − ROI ∗ π1F1)∗g(b) db

Number of features
(cardinality) maximize −n/j

Ease of explanation
per feature set maximize c = ∑

j
p=1 individual variable valuep/j

4.4. Analysis

Numeric variables went through max–min rescaling, and class imbalance was achieved
with the random over-sampling examples technique (ROSE). An assortment of packages
in CRAN R was used to conduct analysis. The NSGA-III and NSGA-II algorithms were
implemented with the “rmoo” package. The analysis of NSBGOA was implemented with an
appropriately modified version of the GOA function from the “metaheuristicOpt” package.
To calculate the objective values for each subset, three classifiers from the “caret” package
were trained by using tenfold cross-validation, and the best model was selected based
on the EMP (“EMP” package). The parameters for EMP evaluation were set to p0 = 0.55,
p1 = 0.1, and ROI = 0.2644, as proposed by the authors in Reference [18]. The three base
classifiers were regression (LR), support vector machine with a linear kernel (SVM LIN),
and artificial neural networks (NN). Following this, the values of the remaining objectives
were calculated according to Table 2. For comparison, a LASSO [20] regression model with
alpha = 1 and lambda = 0 was fit on the data, using tenfold cross-validation to maximize
EMP. Additionally, a single-objective genetic algorithm (GA) [36] was used for feature
selection with the fitness function being a tenfold cross-validation classifier trained to max-
imize EMP. Lastly, the three base classifiers were also trained on all the original features to
maximize EMP. Population size of 10 and maximum iteration number of 50 was used for
NSGA-III, NSBGOA, NSGA-II, and GA methods.
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5. Results

The mean hypervolumes of the final populations from five runs of the NSGA-III,
NSGA-II, and NSBGOA algorithms are given in Figure 1. Further, Figure 2 shows the mean
computational time from five runs of each algorithm on a computer with 8GB RAM and
an Intel(R) Core(TM) i5-7200U CPU 2.50GHz, while the objective values of the feature set
with max EMP are shown in Figure 3. For a single run of each algorithm, the distribution
of points in the outputs of the multi-objective algorithms is shown with scatter plots in
Figure 4. For the same run, a statistical summary of the final populations is given in Table 3,
and the three algorithms trained to optimize a single objective have their results given in
Table 4. The nadir point, which describes the solution set, is also given.

Figure 1. Mean hypervolumes.

Figure 2. Mean computational times.

Figure 3. Max EMP from each algorithm.
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Figure 4. Scatter plots of final population.
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Table 3. Statistical summary of multi- and many-objective results.

Algorithm Mean # of
Features/Solution Objective Min Max SD Mean Nadir

Point

NSGA-II with
Logistic Regression 11.8

emp 0.083 0.093 0.087 0.087 0.093
cardinality −0.8 −0.4 −0.59 −0.59 −0.4

ease of explanation 0.15 0.5 0.31 0.31 0.5

NSGA-II with
Neural Network

9.1
emp 0.084 0.096 0.09 0.09 0.096

cardinality −0.65 −0.2 −0.455 −0.455 −0.2
ease of explanation 0.15 0.4 0.245 0.245 0.4

NSGA-II with Linear
Support Vector

Machine
12

emp 0.082 0.095 0.088 0.088 0.095
cardinality −0.8 −0.3 −0.6 −0.6 −0.3

ease of explanation 0.15 0.5 0.34 0.34 0.5

NSGA-III with
Logistic Regression 12.4

emp 0.084 0.09 0.087 0.087 0.09
cardinality −0.8 −0.5 −0.62 −0.62 −0.5

ease of explanation 0.2 0.5 0.335 0.335 0.5

NSGA-III with
Neural Network

11.5
emp 0.09 0.104 0.093 0.093 0.104

cardinality −0.8 −0.35 −0.575 −0.575 −0.35
ease of explanation 0.1 0.5 0.28 0.28 0.5

NSGA-III with
Linear Support
Vector Machine

11.9
emp 0.084 0.091 0.087 0.087 0.091

cardinality −0.75 −0.45 −0.595 −0.595 −0.45
ease of explanation 0.15 0.45 0.31 0.31 0.45

NSGBOA with
Logistic Regression 10

emp 0.091 0.096 0.093 0.093 0.096
cardinality −0.65 −0.25 −0.5 −0.5 −0.25

ease of explanation 0.25 0.45 0.35 0.35 0.45

NSGBOA with
Neural Network

9.5
emp 0.088 0.104 0.097 0.097 0.104

cardinality −0.7 −0.25 −0.475 −0.475 −0.25
ease of explanation 0.2 0.6 0.356 0.356 0.6

NSGBOA with
Linear Support
Vector Machine

11.7
emp 0.087 0.097 0.094 0.094 0.097

cardinality −0.75 −0.45 −0.586 −0.586 −0.45
ease of explanation 0.3 0.45 0.393 0.393 0.45

Table 4. Single-objective results.

Algorithm Number of Features Objective Value

Lasso 20
emp 0.1

cardinality −1
affordability 0.25

All features with Logistic
Regression 20

emp 0.1
cardinality −1

affordability 0.7

All features with Neural
Network 20

emp 0.103
cardinality −1

affordability 0.7

All features with Linear
Support Vector Machine 20

emp 0.098
cardinality −1

affordability 0.7

GA with Logistic
Regression 17

emp 0.099
cardinality −0.85

affordability 0.6

GA with Neural Network 17
emp 0.103

cardinality −0.85
affordability 0.6

GA with Linear Support
Vector Machine 13

emp 0.1
cardinality −0.65

affordability 0.5
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6. Discussion
6.1. Base Classifier

The performance of three base classifiers, namely logistic regression, neural network
classifier, and linear support vector machine, was compared. To achieve this, each multi-
objective optimization (MOO) algorithm was evaluated with the three base classifiers in
turn. The neural network classifier gave the smallest mean number of features per solution
(Table 3), with the best EMP values across all multi-objective methods. It is possible that
the neural network classifier’s ability to consider non-linear interactions in the data leads
to better performance with fewer features. Additionally, this classifier required the greatest
computational time (Figure 2), regardless of the MOO algorithm applied. This is to be
expected as the neural network method has a higher computation complexity than the
other two classifiers.

Based on the results given in Figure 1, the base classifier does not appear to have a
uniform impact on hypervolume across all multi-objective methods. The hypervolumes
obtained by the neural network and linear support vector machine classifiers were similar
for NSGA-III and NSGA-II algorithms. On the other hand, for the logistic regression
classifier, the hypervolume was higher for NSGA-III. Where number of features and EMP
are more of a concern than computational time, the neural network may be the best option,
with NSGA-II or NSGOA for reduced hypervolume.

6.2. Feature Selection Algorithm

Several feature-selection algorithms were compared, namely LASSO, Genetic Algo-
rithm, NSGA-II, NSGA-III, and NSBGOA. Of the methods that focused on optimizing one
objective, LASSO and logistic regression gave the poorest values for cardinality, even when
the other two objectives performed well. As observed in Table 4 and Figure 3, LASSO
regression gave a high EMP value at the expense of cardinality and explainability. Ad-
ditionally, each of the base classifiers gave high values for explainability and EMP with
poor cardinality when computed with all the available features. This was as expected and
highlights the insufficiency of such methods when multiple objectives are to be optimized.
Furthermore, it is observed that GA methods achieved improved cardinality compared
to the LASSO and all feature evaluations. However, the multi-objective methods gave
better cardinality than GA in all but two cases (GA with linear support vector machine out-
performed NSGA-II and NSGA-III with linear support vector machine). The GA method
would be the best option where a single solution is required, and where a high EMP is the
main concern with at least some reduction in the number of features.

Among the multi-objective algorithms (NSGA-II, NSGA-III, and NSGOA), NSBGOA
had the longest computation time regardless of base classifier (Figure 2). It was able
to produce the smallest hypervolume compared to the other multi-objective methods
(Figure 1). The NSBGOA methods also gave the smallest average number of features per
feature set (Table 3). In addition, in most cases, the mean objective values were higher than
those obtained with NSGA-II and NSGA-III, using comparable base classifiers. Of the multi-
objective methods, the NSGOA algorithm would work best where computational time was
not a concern, minimizing the number of feature of features was a major consideration,
and multiple solutions were required.

6.3. Application

Overall, the multi-objective methods were more efficient in reducing the number of
features; however, this led to lower EMP and explainability in some cases. This demon-
strates the ability of multi-objective methods to balance several factors. Such methods may
be advantageous in cases where the decision-maker is willing to make slight sacrifices in
EMP and explainability to reduce the number of features, which could result in reduced
data-acquisition costs. Furthermore, it should be noted that the multi-objective methods
produce several non-dominated solutions or feature sets with different objective values
for each. From the business perspective, these methods give the benefit of a posteriori
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decision-making. To apply these results, the decision-maker would consider the objective
values obtained from each subset of features and select the final solution based on these
objectives and priorities.

7. Conclusions

A comparison was made of the effect of different base classifiers on multi-objective
feature-selection methods in credit scoring. Of the base classifiers used (neural network,
logistic regression and linear support vector machine), the neural network classifier im-
proved the profit-based measure and reduced the number of features the most. However,
it also significantly increased computational time. Further, the base classifier was found
to have an uneven impact on the hypervolume of multi-objective optimization output. It
was found that all the multi-objective methods gave a better balance of objectives than the
single-objective methods. Additionally, the NSBGOA algorithm gave relatively smaller
hypervolumes and increased computational time across all base classifiers. It also resulted
in better mean objective values in most case. This study showed that the performance of
the multi-objective method is affected by the base classifier chosen. As such, the imple-
mentation of multi-objective methods should carefully consider the base classifier used
for evaluation.
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