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Abstract: Many smart city and society applications such as smart health (elderly care, medical
applications), smart surveillance, sports, and robotics require the recognition of user activities,
an important class of problems known as human activity recognition (HAR). Several issues have
hindered progress in HAR research, particularly due to the emergence of fog and edge computing,
which brings many new opportunities (a low latency, dynamic and real-time decision making, etc.)
but comes with its challenges. This paper focuses on addressing two important research gaps in
HAR research: (i) improving the HAR prediction accuracy and (ii) managing the frequent changes in
the environment and data related to user activities. To address this, we propose an HAR method
based on Soft-Voting and Self-Learning (SVSL). SVSL uses two strategies. First, to enhance accuracy,
it combines the capabilities of Deep Learning (DL), Generalized Linear Model (GLM), Random
Forest (RF), and AdaBoost classifiers using soft-voting. Second, to classify the most challenging data
instances, the SVSL method is equipped with a self-training mechanism that generates training data
and retrains itself. We investigate the performance of our proposed SVSL method using two publicly
available datasets on six human activities related to lying, sitting, and walking positions. The first
dataset consists of 562 features and the second dataset consists of five features. The data are collected
using the accelerometer and gyroscope smartphone sensors. The results show that the proposed
method provides 6.26%, 1.75%, 1.51%, and 4.40% better prediction accuracy (average over the two
datasets) compared to GLM, DL, RF, and AdaBoost, respectively. We also analyze and compare the
class-wise performance of the SVSL methods with that of DL, GLM, RF, and AdaBoost.

Keywords: human activity recognition (HAR); machine learning; deep learning; ensemble methods;
smartphones; smartwatches; smart wearables; Internet of Things (IoT); soft-voting; smart cities

1. Introduction

Smart cities and societies, also known as Artificially Intelligent cities [1], are character-
ized by their ability to allow us “to “engage” with our environments, analyze them, and
make decisions, all in a timely manner” [2,3]. We “engage” with our environments using a
range of sensors, including smartphones, the Internet of Things (IoT), cameras, GPS, social
media, etc. [4]. The data produced by these sensors are analyzed for timely analysis and
decision-making using a range of mathematical methods and simulations. Increasingly,
artificial intelligence methods, particularly machine and deep learning methods, have
become the methods of choice in smart city applications [5–7].

Many smart city and society applications, such as smart health (elderly care, medical
applications), smart surveillance, sports, and robotics require recognition of node and user
activities, a class of problems known as human activity recognition (HAR) [8–10]. The
increasing importance of HAR is due to the many smart city applications that allow for the
dynamic optimization of services based on the user location and the activity being carried
out by the user at a particular time, which is made possible by smartphones, smartwatches,
smart wearables, etc. Today’s smartphones, smartwatches, and other smart wearables are
equipped with several sensors. Wearable sensors are small hardware devices. These could
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be standalone devices that people carry with them or wearables that may be embedded in
smart devices, such as smartphones, smartwatches, etc. People carry these smart devices
with them while performing daily activities, such as walking, running, standing, eating, etc.
Sensors such as a gyroscope, accelerometer, global positioning system (GPS), microphone,
magnetometer, and barometer can sense and record a user’s physical condition, location
change, velocity change, elevation, and other characteristics and activities. Smartphones,
smartwatches, smart healthcare bands, cameras, infrared devices, etc. can record various
parameters that can help to understand our environment in a way that enhances our
ability to make smart decisions. Therefore, HAR has become critical in a wide arrange of
important application domains. For instance, it has been used for the elderly and in child
care [11], to improve exercise performance in healthcare [12], to optimally recommend
the mode of content delivery in distance learning [13], for entertainment, security, and
surveillance applications [14], and to monitor social distancing for COVID-19 pandemic
prevention [15].

The data used for human activity recognition include numerical data (e.g., location
coordinates and magnetic field coordinates) and visual data, such as images and videos. A
significant challenge in processing visual data for HAR requires extensive communication
and computation resources in terms of CPU, storage, network bandwidth, specialized
hardware, etc. [16] On the other hand, location coordinates data used for HAR are less
resource-demanding than visual HAR data.

Machine learning plays a key role in developing our understanding of HAR data and
applying the acquired knowledge to various application domains. The prediction accuracy
of HAR algorithms has been significantly improved over the last decade due to the manu-
facturing of highly sophisticated, reliable, and accurate sensors and the development of
specialized HAR methods that leverage machine learning and deep learning through the
use of high-performance computing and big data technologies [17]. However, several chal-
lenges are still hindering the progress in improving HAR performance, mainly due to the
emergence of fog and edge computing, which bring many new opportunities (low latency,
dynamic and real-time decision making, etc.) but come with their challenges [18–20].

In this paper, we focus on addressing two important research gaps in HAR research.
Firstly, most of the work on HAR is based on the use of a single classifier, such as neural
networks, decision trees, bagging, and boosting. These classifiers can, individually, provide
good performance for certain types of data patterns; however, they may fall short for
specific other data patterns. Combining these classifiers’ prediction probabilities together
in ensembles is known to have improved classification performance [21,22]. However, the
selection of classifiers in ensembles requires a careful design process and is challenging.
Secondly, data and the environment in which they are sensed change rapidly in real-world
applications, and in these cases, frequent updates of the models are required based on the
changing patterns in the data being sensed.

Accordingly, to address the above-mentioned challenges, in this paper, we propose a
human activity recognition method based on Soft-Voting and Self-Learning (SVSL). SVSL
uses two strategies to improve the overall performance of the HAR method. First, it
combines the capabilities of Deep Learning (DL), Generalized Linear Model (GLM), and
Random Forest (RF) classifiers using soft-voting. Secondly, the SVSL method is equipped
with a self-training mechanism that generates training data and retrains itself. Soft-voting
helps to enhance accuracy, while self-training helps to classify the most challenging data
instances. We investigate the performance of our proposed SVSL method using a dataset
that is publicly available on the UCI data repository, provided by Anguita et al. [23] The
data contain six human activities related to lying, sitting, and walking. The results show
that the proposed method provides 6.26%, 1.75%, 1.51%, and 4.40% better prediction
accuracy (average over the two the datasets) compared to GLM, DL, RF, and AdaBoost,
respectively. We also analyze and compare the class-wise performance of the SVSL methods
with that of DL, GLM, RF, and AdaBoost, showing that SVSL produces a comparatively
better classification for some activity classes, as DL, GLM, RF, and AdaBoost produce a
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higher number of misclassification instances (an observation that we plan to investigate
further in the future, with the expectation of further success). We also show that the
self-training mechanism of the proposed SVSL method increases the average prediction
accuracy from 99.26% to 99.37% for dataset I, and 97.15%, to 97.59% for dataset II.

The rest of the paper is organized as follows. A review of the relevant literature is
given in Section 2. The proposed SVSL method is described in Section 3. In Section 4, the
proposed SVSL method is evaluated using the provided results. Finally, in Section 5, we
conclude the paper and provide a direction for future work.

2. Literature Review

The most straightforward and practical application of human activity recognition
(HAR) involves using wearable devices to track individuals while they perform their
daily activities. Humans perform many exercises every day, such as walking, running,
football games, dozing, and eating, and are constantly expanding these exercises. Therefore,
these data have an enormous significance in educating us about different parts of human
existence and what they mean in people’s lives. HAR has many applications and can
be used in various domains, for example, smart cities [24], elderly and child care [11],
physical rehabilitation [25], identifying criminal behavior and violence [26], real-time
content delivery [13], surveillance [14], etc. The two types of sensors that are usually used
for human activity recognition include visual sensors, such as cameras, which produce
video as data, and non-visual sensors, such as accelerometers and gyroscope sensors, which
generate numerical data. Machine learning strategies are on the leading edge and play a
key role in HAR. Over time, these AI-based HAR techniques have improved the accuracy
in prediction and working on complex information. RF, Support vector machine (SVM),
decision tree, and DL are the most well-known decision-making strategies for HAR.

Palaniappan et al. [27] focused on recognizing strange human practices. Unusual
exercises are sudden occasions that occur arbitrarily. Human practices can be perceived
using a variety of methods. The most commonly used method is multi-class SVM. Pala-
niappan et al. [27] proposed a new plan to address human practices in the form of a state
progress table. The changing table helps keep the classifier away from the states that are
inaccessible from the current state. By staying away from unreachable states, the computa-
tional time for grouping is radically reduced compared to that using conventional methods.

Many classifiers face the constraints of a long training time and large feature vector size.
Chaturmali and Rodrigo [28] proposed a method based on the SVM classifier, addressing
the problems in human activity recognition using an existing spatio-temporal feature
descriptor. A comparison of the system proposed in [28] with existing classifiers using two
standard datasets shows that the system in [28] is much better in terms of computational
time and either exceeds the existing recognition rates or is equal to it. Several other
SVM-based methodologies have been proposed in the literature [29–32], referred to for
further information.

Computing feature importance is a critical task in HAR problems, as it helps to de-
crease the features that do not hold any relevance, and removable features can increase
classification performance. Uddin and Udiny [33] proposed a random forest-based fea-
ture importance method for HAR problems. The first step is to train a conventional RF
algorithm on the HAR dataset to compute the feature importance. In the second step,
the feature importance values are transferred to the directed RF algorithm. The authors
used the directed RF algorithm because trees are not dependent on each other, and parallel
computation decreases the training time and minimizes the prediction time. The algorithm
developed only two ensembles and showed a high selectivity with a small sample. Further,
this helped to maintain high prediction accuracy. In [33], five widely used HAR datasets
were used, and the authors noted that the directed RF can find smaller feature sets while
maintaining a high HAR accuracy.

Different functions exist for further improving the HAR prediction, including like,
display, and circle [34–36]. In recent years, deep learning has rapidly grown in all applica-
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tion domains (natural science, computer science, multimedia, networking, security, finance,
etc.) due to its ability to efficiently understand complex and non-linear data [30]. Human
actions need to be accepted as a specific activity that helps to identify different types of
human development and behavior. HAR uses information gathered from different types
of sensors. Wang et al. [12] proposed a deep learning-based method that can perceive
two different exercises and transitions between them. This has a very important practical
use, particularly for medical care applications. In [12], the authors first designed a deep
convolutional neural (CNN) model to extract distinguishing parameters from the sensed
data. Then, to capture the conditions of two different exercises, a long transient memory
network was used. This step improved the HAR accuracy for two exercise activities. With
the fusion of CNN and LSTM, a model was introduced for wearable devices that can
precisely deduce exercises and switching one exercise to another. With the fusion of CNN
and a long transient memory network, a model was introduced for wearable devices that
can precisely deduce one exercise and then switching to another successfully. The test
results showed that the proposed method is highly accurate, with a correct classification
rate of up to 95.87% and a correct classification rate for changes of over 80%, which is
superior to comparable HAR models. Another deep LSTM neural network method for
HAR is introduced in [37], where IMU sensor data are used.

DL techniques are used for the classification problem but perform very well for time-
series problems too. Alawneh et al. [38] examined the pros and cons of time series data
augmentation to enhance the accuracy of DL models for HAR from smartphone-based
accelerometer data. Alawneh et al. critically analyzed Gated Recurrent Units, Long–
Short Term Memory, and Vanilla and tested them using three publicly available HAR
datasets. They used double cross arrangement information augmentation procedures
and studied their effect on the accuracy of the objective model. The analysis proved that
using gated intermittent units produces the best accuracy and preparation time results and
enables long-transient memory processing. Furthermore, the results showed that the use
of information extension essentially improves the quality of the acknowledgment. Similar
to [8], Ronald et al. [39] focused on the importance of the low computational power of
mobile devices while performing HAR using DL models. A very interesting framework of
feature fusion is proposed by Chen et al. [40], where handcrafted features are fused with
automatically generated features through DL for HAR.

HAR is of great importance when managing and controlling pandemics like that of
COVID-19 today and in the future. Applications for contact tracing, social distancing,
and information dissemination have grown significantly during COVID-19 to effectively
manage and control the pandemic. Contact tracing applications help to determine the
near history of an infected person, such as where the infected person went and whom
the infected person met in the last week. On the other hand, social distancing applica-
tions assist in determining whether people follow social distancing guidelines. Location
coordinates, proximity data, and HAR data play an important role in contact tracing and
social distancing applications. Countries around the world have successfully used these
applications. D’Angelo and Palmieri [41] introduced a human movement classifier based
on convolutional deep neural networks to improve the exposure of COVID-19 to the above-
stated applications. Specifically, the raw information from a cell phone’s accelerometer
sensor was arranged to frame a picture, including some channels (HAR-images) used as
fingerprints for progress action, which can be extrapolated to the following applications,
constituting one of the contributions of the present study. The experimental results from
examining anecdotal information revealed that HAR images are potent attractants for
human action acceptance. The novel coronavirus devastated the world and forced re-
searchers to find solutions for controlling and irradicating this infection. These researchers
include virologists, clinical specialists, and doctors attempting to find answers and develop
solutions to deal with the COVID-19 pandemic, for example, techniques that can improve
the diagnosis of COVID-19, healing protocols, drugs, and vaccines.
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The late progress in non-contact detection for improving medical care and regulating
COVID-19 flare-ups is the motivation for this investigation. Khan et al. [42] attempted to
explain an imaginative answer to the early analysis of COVID-19 signs, such as strange
breathing rates, hacking, and other inevitable medical issues. To develop a compelling
and practical arrangement of the existing phases, Khan et al. [42] identified the existing
methods used for health monitoring based on human activity data. The paper presented
data collection methods, data preprocessing and processing methods, data preparation,
feature selection and extraction, and prediction methods for non-contact applications. The
preliminary findings of Khan et al. [42] regarding COVID-19 manifestations and the obser-
vation of human practices and well-being during isolation play a critical role in determining
how the infection will spread and with what intensity. There have been several advances in
non-contact sensing to improve health care. As previously discussed, the study of D’Angelo
and Palmieri [41] was also inspired by this, and their work has contributed to preventing
the COVID-19 outbreak. This investigation aims to explain an imaginative answer to the
early analysis of COVID-19 signs, such as abnormal breathing rates, hacking, and other
underlying medical conditions. To obtain a feasible and achievable system based on the
existing steps, we differentiate the current techniques used to examine humans’ function
and well-being in a non-contact manner. This efficient audit presents the performance of
information classification innovation, information preprocessing, information readiness,
highlight extraction, order counting, and various non-contact detection steps. This ex-
amination proposes a non-contact detection phase for the early conclusion of COVID-19
side effects and the observation of human exercise and well-being during detachment
or isolation periods. From the literature mentioned above, it is clear that there has been
no work on the potential of soft-voting and self-learning mechanisms to improve HAR
accuracy. In Table 1, we provide a comparative analysis of the HAR literature.

Table 1. A Comparison of the Related Works.

Paper Avg. Accuracy (%) Disadvantages Advantages

Braganca et al. [8] 93 Accuracy can be higher Lightweight with low
computational cost.

Gao et al. [9] 91 Accuracy can be higher, and
smartphone position may vary.

Addresses two different problems in
a single solution which are HAR and

smartphone position recognition.

Ogbuabor et al. [11] 93.5 Smartphones need to be carried which
is not practical always

Have life-saving
healthcare application

Wang et al. [12] 95.85 Prediction accuracy must be higher,
particularly for healthcare applications

Can recognize HAR and
activities transitions

Mehmood et al. [13] 87 Tested on the small dataset HAR concept used for adaptive
content delivery

Alam et al. [24] 97.1
Validation needs to be performed on

more extensive and diverse
IoT datasets.

Better accuracy, memory efficiency,
and relatively higher

processing speed

Kańtoch [25] 82

The proposed prototype is not suitable
for the final confirmation of a

performed activity. Additionally,
further study is needed to investigate

other features that will allow for
improved activity differentiation.

A prototype of a battery-operated
wearable health-tracking device that

tracks body temperature and
body motions

Mai et al. [26] 74.1

A personal reidentification approach to
discriminate the owner from the thief is

needed for enhancing the accuracy
level, and work needs to be carried out

to recognize complex activities.

System proposal for motorbike theft
detection in video

surveillance systems
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Table 1. Cont.

Paper Avg. Accuracy (%) Disadvantages Advantages

Palaniappan et al. [27] 94.4

Data from environmental and
physiological sensors are not

considered. A varied form of the sensor
can be used to understand the context
information and the patient’s health

condition to provide better assistance.

The computational time for
classification is reduced significantly

when compared to conventional
approaches. The precision and

sensitivity of the proposed system
are better.

Chathuramali et al. [28] 100

When the number of training examples
is few due to an imbalance, the

proposed system performs marginally
inferior to the existing

established system

The proposed system is superior in
terms of computational time in terms

of human activity recognition.

Supriyatna et al. [29] 90.6 Accuracy level decreases with distance.
The proposed system can be used as
home automation input for the home

security system.

Zheng [30] 95.6

Placement of sensors for correct
detection is an issue, and there is no

involvement of an unsupervised
approach for automatic

activity recognition.

The proposed system recognized a
number of human activities like
walking considerably, running,
jumping, standing, sitting, and

sleeping using only a single
triaxial accelerometer.

Kerboua et al. [31] 95.3
Improvement in the action recognition

score is needed, and decreasing the
detection time.

The proposed approach maintains a
good accuracy score even using

limited frame numbers.

Subasi et al. [32] 99.9

More considerable dataset validation is
required, decrease the use of a number

of sensors. The use of a more robust
algorithm is needed.

Activity recognition using
wearable sensors.

Uddin et al. [33] 95
More benchmark activity recognition

data sets are needed for further
validation of the study.

The proposed study allows parallel
computing and offers low

computational costs with high
recognition accuracy. Additionally, it

can select a minimal set of
high-quality features without losing

classification accuracy.

Balli et al. [34] 97.3
Human activities such as eating,

smoking, cooking, handshaking, and
hand waving are not considered.

Classification of human motions with
motion sensor data.

Nurwulan et al. [35] 84.5
When a dataset is larger, RF is a

time-consuming method for building
a model.

Random forest is better for HAR
when compared to KNN, LDA, NB,

and SVM.

Bustoni et al. [36] 96
Feature selection and feature scaling to
optimize the classification process are
not considered in the proposed study.

To identify the most effective method
using performance comparison of

machine learning methods for
classifying sensor data on human

motion activities.

Alawneh et al. [38] 95 A larger dataset is needed to further
validate the proposed study.

The proposed study enhances
recognition quality by using data

augmentation. Additionally, accuracy
and training time is enhanced

D’Angelo et al. [41] 99.9
Telemedicine or personal fitness
monitoring fields also need to

be investigated.

Enhance the performance of the
COVID-19 tracking apps by

using HAR.
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3. Methodology

Machine learning is playing a significant role in understanding complex human
activity patterns relating to the problems of HAR. In this paper, we propose a machine
learning-based method that works in two phases. In the first phase of the method, the
prediction probabilities are combined by soft voting. Later, the method is periodically
capable of training itself. All the simulations are performed using R machine learning
and a statistical platform. All the experiments are performed on the Dell Precision M4800
workstation with Intel Core i7 (Santa Clara, CA, USA), which has eight cores and 16 GB
RAM. We used multiple cores for parallel processing to speed up the training of the models.

3.1. Datasets

We used two datasets in this paper. However, the main focus has been given to
dataset-I. The dataset-I we used in this work is freely available on the UCI data repository.
The dataset is recorded by conducting experiments on 30 people aged between 19 and
48 years old by Anguita et al. [23]. Six activities were performed by each person, including
walking, walking up the stairs, walking down the stairs, standing, lying, and sitting. The
training data consist of 7209 rows, and the testing dataset consists of 3090 rows. The data
were sensed using the accelerometer and gyroscope sensors of the Samsung Galaxy S II
smartphone. However, in this work, we only used the accelerometer data. The dataset
contains 562 feature, subject, and activity vectors. The crucial aspect of this dataset is
that it has a vast feature set, which can be challenging for machine learning algorithms
from the perspective of training time, feature importance, and resource requirements, such
as processors and RAM. Further, we used an HAR dataset-II to have more convincing
evidence of the proposed method’s performance [43].

3.2. Proposed Method

HAR is a problem of great interest due to its wide array of applications, including
healthcare, surveillance, adaptive content delivery, tracking, etc. Machine learning is at the
forefront of it. We called our HAR method Soft-Voting and Self-Learning (SVSL). The idea
is to use the power of combined decision-making rather than limiting it to a single classifier.
For this purpose, we used soft voting, where we combined the prediction probabilities and
took weighted probability as the deciding factor in SVSL.

Further, to enhance the prediction accuracy, the SVSL method was integrated with a
self-training mechanism. By self-training mechanism, we mean that the SVSL method trains
itself again periodically, without the need for any data from the user side and any human
interference. We believe that this trick could help us understand and correctly classify the
data instances that are the most difficult to predict and efficiently accommodate dynamic
environments. A functional block diagram of the SVSL method is shown in Figure 1, and
the self-training process is shown in Figure 2. Further, for an in-depth understanding, the
Algorithm 1, is given, which is self-explanatory.

The SVSL works in two phases: (1) Soft-voting and (2) Self-training phases. Figure 1
depicts the processing steps of the SVSL method. First, we divided the dataset into training
and test data by 0.7 and 0.3 ratios. First, DL, GLM, RF are trained separately. For DL, Tanh
is used as an activation function. Figure 3 depicts that the model with 40 epochs and two
hidden layers with 64 neurons each produced the best training results. Hence the model
with these parameters is selected from the eight trained DL models.

Then, using soft-voting, we obtained the final model (Finalmodel) using the formulation
of soft-voting given in Equations (1)–(4), where the activity class is denoted by i = (Walking;
Standing, etc.), the predicted class probabilities are denoted by ρ, and the classifiers used
for voting are denoted by j ← RFp, GLMp, DLp .

p(i1|x) ←
RFp1 + GLMp1 + DLp1

3
(1)
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p(i2|x) ←
RFp2 + GLMp2 + DLi2

3
(2)

p(in|x) ←
RFpn + GLMpn + DLpn

3
(3)

Labels ← argmax ∑m
j=1 wi pij (4)

Algorithms 2021, 14, x FOR PEER REVIEW 8 of 18 
 

𝑝(𝑖2|𝑥)  ←
𝑅𝐹𝑝2

+ 𝐺𝐿𝑀𝑝2
+ 𝐷𝐿𝑖2

3
 (2) 

𝑝(𝑖𝑛|𝑥)  ←
𝑅𝐹𝑝𝑛

+ 𝐺𝐿𝑀𝑝𝑛
+ 𝐷𝐿𝑝𝑛

3
 (3) 

𝐿𝑎𝑏𝑒𝑙𝑠 ←  𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝑤𝑖𝑝𝑖𝑗

𝑚

𝑗=1
 (4) 

Once the 𝐹𝑖𝑛𝑎𝑙𝑚𝑜𝑑𝑒𝑙  is obtained, as given in Figure 1 and further in Algorithm 1, we 

use it to predict the activity class. 𝐹𝑖𝑛𝑎𝑙𝑚𝑜𝑑𝑒𝑙  is trained periodically from a buffered da-

taset, which is obtained autonomously from the predicted data. Buffered data are the 

saved data from the previous ten predictions from 𝐹𝑖𝑛𝑎𝑙𝑚𝑜𝑑𝑒𝑙 , which is updated periodi-

cally. The periodically trained model is used to predict human activity labels. Figure 2 

depicts the self-training process, which is an iterative task. After every ten executions, 

𝐹𝑖𝑛𝑎𝑙𝑚𝑜𝑑𝑒𝑙  is replaced by the retained 𝐹𝑖𝑛𝑎𝑙𝑚𝑜𝑑𝑒𝑙 . 

 

Figure 1. Workflow of the SVSL method. 

  

Figure 1. Workflow of the SVSL method.

Algorithms 2021, 14, x FOR PEER REVIEW 9 of 18 
 

 

Figure 2. Self-training mechanism of the SVSL method. 

 

Figure 3. Prediction accuracy (%) of different DL models. 

  

Figure 2. Self-training mechanism of the SVSL method.



Algorithms 2021, 14, 245 9 of 17

Algorithms 2021, 14, x FOR PEER REVIEW 9 of 18 
 

 

Figure 2. Self-training mechanism of the SVSL method. 

 

Figure 3. Prediction accuracy (%) of different DL models. 

  

Figure 3. Prediction accuracy (%) of different DL models.

Once the Finalmodel is obtained, as given in Figure 1 and further in Algorithm 1, we
use it to predict the activity class. Finalmodel is trained periodically from a buffered dataset,
which is obtained autonomously from the predicted data. Buffered data are the saved
data from the previous ten predictions from Finalmodel , which is updated periodically. The
periodically trained model is used to predict human activity labels. Figure 2 depicts the
self-training process, which is an iterative task. After every ten executions, Finalmodel is
replaced by the retained Finalmodel .

Algorithm 1. SVSL Method

#
1.

Enter independent variables
Input Data: d

# Predicted Activity Label
2. Result: L
3. Begin
# Predicted activity labels with RF, GLM, and DL trained models
4. RF ← RF(d), GLM ← GLM(d), DL ← DL(d)
# Use Soft Voting function to combine predicted probabilities
# Obtain Final model and prediction
5. Finalmodel ← svote(RFd, GLMd, DLd)
6. End
# Self-Train periodically with buffer datasets
7. RFd ← RF(dbuffer), GLMd ← GLM(dbuffer), DLd ← DL(dbuffer)
8. Update models at Step 4
9. Move to Step 5 and repeat whole process again

4. Results and Analysis

To evaluate the performance of the SVSL HAR method, we used the confusion matrix
as a performance-measuring benchmark, which can be used to compute the prediction
accuracy percentage, sensitivity, and specificity [44]. To demonstrate the validity of the
performance of the SVSL method, we compared the results of four state-of-the-art classifiers:
DL, GLM, RF, and AdaBoost. RF is based on bagging, which is an ensemble learning
technique that can perform classification and regression. RF is a highly capable classifier
that can handle high-dimensionality datasets, compute variable importance, and avoid
overfitting [45]. However, RF is not very capable of performing regression tasks with good
accuracy. GLM was proposed by John Nelder and Robert Wedderburn [46] in 1972. It is
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a linear regression generalization. It allows the linear model to include the dependent
variable with the help of a linking function.

Furthermore, it enables the variance magnitude of every data instance to be its pre-
dicted value function. This paper used Feed Forward Deep Neural Networks, also known
as a multi-layered perceptron, for DL [47]. They consist of an input layer (data), hidden lay-
ers (neurons), and an output layer. All three classifiers, RF, GLM, and DL, are implemented
using the H2O deep learning library in R [48], which supports parallel and distributed
programming. Further, we also compared results with a state-of-the-art boosting classifier
known as AdaBoost as it falls in the Ensemble class of algorithms.

4.1. Dataset I

Figure 4 shows that the SVSL method achieved an average accuracy of 99.26%, which
is better than that of the other three classifiers, RF, GLM, DL, and AdaBoost, with 98.09%,
90.84%, 97.90%, and 96.13%, respectively. Furthermore, the SVSL method showed a 0.14%
gain with the self-training mechanism, which indicates that the SVSL method can correctly
classify the most challenging data instances.
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The normalized confusion matrices of the SVSL method, DL, GLM, RF, and AdaBoost
are shown in Figures 5–9. Each confusion matrix contains the sum of the rightly classified
and misclassified classes. The diagonal of the matrix represents the rightly classified
class details.
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Figure 5 depicts the conventional and normalized confusion matrix for the deep-
learning classifier, as we know that the matrix values in the figure can be used to compute
the percentage values of the class-wise prediction accuracy. The deep-learning classifier
produced the highest class-wise accuracy of 100% for the walking down the stairs and
lying activities. The lowest accuracy, 93.9%, produced by the deep-learning classifier was
for the standing class. The deep-learning classifier produced accuracies of 99.6%, 98.5%,
98.30%, and 96.1% for the other four activities—walking, walking up the stairs, walking
down the stairs, and sitting, respectively. It should be noted that, as shown in Figure 4, the
deep-learning classifier produced an average accuracy of 97.90% for all the classes.

Figure 6 depicts the normalized confusion matrix for the GLM. Using the confusion
matrix values in the figure to compute the percentage values of the class-wise prediction
accuracy, we note that the GLM classifier produced the highest accuracy of 99.3% for the
lying position. The lowest accuracy, 83.3%, was for the standing activity. The GLM classifier
produced accuracies of 88.8%, 92.1%, 93.6%, and 88.4% for the other four activities—
Walking Up the stairs, Walking, Walking Down the stairs, and Sitting, respectively. It
should be noted that, as shown in Figure 4 the GLM classifier produced an average
accuracy of 90.84% for all the classes.

Figure 7 depicts the conventional and normalized confusion matrix for the RF classifier.
Using the confusion matrix values in the figure to compute the percentage values of the
class-wise prediction accuracy, we note that the RF classifier produced the highest accuracy
of 100% for the lying position. The lowest accuracy, 94.7%, was for the standing activity.
The RF classifier produced accuracies of 98.5%, 99.2%, 99.5%, and 97.1% for the other four
activities—walking up the stairs, walking, walking down the stairs, and sitting, respectively.
It should be noted that, as shown in Figure 4, the RF classifier produced an average accuracy
of 98.09% for all the classes.

Figure 8 depicts the normalized confusion matrix for the AdaBoost classifier. Using
the confusion matrix values in the figure to compute the percentage values of the class-wise
prediction accuracy, we note that the AdaBoost classifier produced the highest accuracy
of 99.4% for the lying position. The lowest accuracy, 90.9%, was for the standing activity.
The AdaBoost classifier had accuracies of 98.2%, 97.6%, 98.5%, and 92.2% for the other
four activities—Walking Up the stairs, Walking, Walking Down the stairs, and Sitting,
respectively. It should be noted that, as shown in Figure 4, the AdaBoost classifier produced
an average accuracy of 96.13% for all the classes.

Figure 9 depicts the conventional and normalized confusion matrix for the SVSL
method. Using the confusion matrix values in the figure to compute the percentage values
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of the class-wise prediction accuracy, we note that the SVSL method produced the highest
accuracy of 100% for the lying position. The lowest accuracy, 98.3%, was for the standing
position. The SVSL method produced accuracies of 99.1%, 99.6%, 99.8%, and 98.9% for the
other four activities—walking up the stairs, walking, walking down the stairs, and sitting,
respectively. It should be noted that, as shown in Figure 4, the SVSL method produced an
average accuracy of 99.26% for all the classes.

The SVSL method performed better than all the other five classifiers: DL, GLM,
RF, AdaBoost, and Stacking. The proposed method outperformed GLM and performed
better than DL and RF, producing a prediction accuracy that was 8.24%, 1.36%, and 1.17%
better, respectively, before the execution of the self-training mechanism. After self-training,
the accuracy further increased, but very slightly. However, this topic requires further
investigation. From Figures 4–9 it can be seen that the SVSL method not only produced a
better HAR accuracy, but it could also predict the classes of sitting and standing far more
accurately than DL, GLM, and RF.

Figure 10 depicts the average accuracy gain after every self-training. Without re-
training, the SVSL method produced an average accuracy of 99.26% for all the classes.
The average accuracy of the SVSL method increased by 0.11% after five executions of the
self-training mechanisms.
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4.2. Dataset II

For giving more convincing evidence of the performance of the SVSL, we also tested
it on another dataset [43]. We are keeping this subsection precise to avoid any further
increase in paper length. Figure 11 shows that the SVSL and self-trained SVSL methods
achieved an average accuracy of 97.15% and 97.59%, which is better than that of the other
four classifiers, RF, GLM, DL, and AdaBoost, with 95.29%, 93.04%, 95.01%, and 91.47%,
respectively. Furthermore, the SVSL method showed a 0.44% gain with the self-training
mechanism, which indicates that the SVSL method can correctly classify the most difficult
data instances.

4.3. Execution Time

Figure 12 depicts the training and testing time of all the methods. The SVSL method
consumed the maximum time in training time, which is 2640 and 9772 s for dataset-I and
dataset-II. This is expected as it comprises multiple phases. The fastest training time is of
RF, 245 and 849 s for dataset-I and dataset-II. Further, GLM, AdaBoost, and DL remain in
second, third, and fourth position in terms of training time. Similar patterns are observed
for the testing times as depicted in Figure 12. All these methods with their current testing
performance cannot be applied to real-time applications. These can be used in applications
where we need activity recognition periodically or in near real-time predictions.
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5. Conclusions

With the exponentially growing number of smart devices today, we can sense and
record data that we could not even imagine a decade ago. We can benefit from wearable
devices and smartphones through sensing, storing, and processing the stored data. One
of the important and popular uses of this type of data is in HAR. This is a problem of
great interest due to its wide array of applications, which include but are not limited to
healthcare, surveillance, adaptive content delivery, and tracking. The use of wearable
technology is rapidly increasing, and its effects have been positively observed by users in
relation to follow-up healthcare appointments.

In this paper, we identified crucial research gaps in the area of HAR and investigated
them. Firstly, the individual classifiers belong to a particular family of algorithms, such
as neural networks, decision trees, bagging, and boosting. However, each of them can
perform efficiently for certain types of data patterns, with associated weaknesses. Secondly,
data and the environment in which they are sensed are dynamic, and there is a need to
frequently update the models according to the changing sensed data patterns.

In this paper, we addressed the problem of HAR. Machine-learning algorithms play a
significant role in developing our understanding of HAR data and applying the acquired
knowledge to various application domains. We proposed a Soft-Voting and Self-Learning
(SVSL)-based HAR method, which uses a soft-voting and self-learning mechanism to clas-
sify human activities. The SVSL method produced better results for dataset-I than the four
other state-of-the-art classifiers: DL, GLM, RF, and AdaBoost. SVSL outperformed GLM
and AdaBoost by almost 9%, and 3% and had a prediction accuracy that was more than
1% higher than that of DL and RF, respectively. Similar prediction accuracy patterns have
been seen for dataset-II. We also noticed that the SVSL method had an improved prediction



Algorithms 2021, 14, 245 15 of 17

accuracy for the classes where the other three state-of-the-art classifiers produced a higher
misclassification. Further, the average accuracies for both datasets increased by 0.11% and
0.44% after five executions of the self-training mechanisms for the proposed method.

In the future, we plan to work toward enhancing the performance of the proposed
method using additional diverse datasets. Additionally, we planned to develop an au-
tomated system to collect HAR data. This area has an enormous real-world application
scope and must be exploited for the sake of better understanding human behaviors and
our surroundings, which will enhance decision making.
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