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Abstract: It is a common phenomenon in real life that individuals have diverse member relationships
in different social clusters, which is called overlap in the science of network. Detecting overlapping
components of the community structure in a network has extensive value in real-life applications.
The mainstream algorithms for community detection generally focus on optimization of a global
or local static metric. These algorithms are often not good when the community characteristics are
diverse. In addition, there is a lot of randomness in the process of the algorithm. We proposed a
algorithm combining local expansion and label propagation. In the stage of local expansion, the
seed is determined by the node pair with the largest closeness, and the rule of expansion also
depends on closeness. Local expansion is just to obtain the center of expected communities instead
of final communities, and these immature communities leave only dense regions after pruning
according to certain rules. Taking the dense regions as the source makes the label propagation reach
stability rapidly in the early propagation so that the final communities are detected more accurately.
The experiments in synthetic and real-world networks proved that our algorithm is more effective
not only on the whole, but also at the level of the node. In addition, it is stable in the face of different
network structures and can maintain high accuracy.

Keywords: complex networks; overlapping community; local expansion; label propagation

1. Introduction

In real-world social networks, the individual behavior is not simply obedient to the
collective. Restricted by diverse social relations, they often naturally gather into some
social structure, named a community in network research [1]. The community structure
is considered to be the functional unit in a network system, as it often accounts for the
functionality. Although there is no unified definition of community, many technologies
have been developed to detect community, such as modularity maximization [2], random
walks [3], particle swarm optimization [4], spectral clustering [5], etc. In the early studies of
community detection, much of the focus was on disjoint communities, where individuals
have only one membership [6]. However, it is obvious that people’s social memberships
are not singular. For example, a person could be a member of family while also belonging
to other social groups, such as those of friends and colleagues. Moreover, in large-scale
social networks, the membership of an individual is more complex.

In general, the characteristic of nodes being able to belong to multiple communities
is called overlap. There are extensive works on detecting overlapping communities [7] for
which we provide a more detailed introduction in the next section. However, these studies
are still insufficient in some ways. First, the static local optimization goal for detecting
overlapping communities is adopted generally, such as fitness function in local expansion [8],
optimization for modularity [9] and local Nash equation [10] in the game algorithm. The
density, scale and edge distribution of different communities in real social networks are
diverse. A static optimization goal can just be applied to detect some communities, and
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not to the whole. Second, there is a lot of randomness in the detection. For example, the
integration order of a clique has no rules in most algorithms based on clique percolation.
The selection of the start position in local expansion is always random. Some updated
rules of labels in label propagation are not strict when nodes face the same degree of label
influence, which may lead to unstable results. The existence of randomness often means
that the algorithm performance can be optimized by some beneficial rules.

In this paper, an algorithm that combines local expansion and label propagation
(LELP) is proposed. We use an extended local expansion to obtain the immature communi-
ties instead of the final communities so that the disadvantages of static optimization are
avoided. The seed of local expansion is selected based on the node pair with the highest
closeness, an index expanded from the Jaccard coefficient [11], which governs the direction
of expansion. The immature communities detected by local expansion are pruned to be
dense regions in order to conduct label propagation, a speaker-listener-based information
propagation process. As the source of propagation, these dense regions can reduce the
process of reaching local stability in the early stage of label propagation, making this
dynamic process more accurate. We conduct experiments on both synthetic and real-world
networks to compare our algorithm with others. The experimental results show that our
algorithm generally performs well and is stable in different conditions.

2. Related Works

In this section, several detection algorithms for overlapping community are reviewed
and classified based on characteristics that reflect how communities are detected.

The idea of local expansion is to generate natural communities based on the local
structure. This kind of algorithm constantly expands the seed by optimizing the fitness
function. The form of fitness function and the rules for selecting the seed have a great
influence on the performance; the two are diverse in different algorithms. Iterative scan
(IS), a two-step local expansion process, was proposed by Baumes et al. [8], where nodes
are ranked according to the page rank [12] first and then removed in order of ranking. The
part of the nodes that are far away from each other serve as seeds. The fitness function
adopted is the following:
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where w, and wg, are the total weight of the internal and external edges of the community,
respectively. After each expansion, nodes in the current cluster are removed if the fitness
function can be optimized. This action often divides a community into several disconnected
parts, which could lead to interruption of the expansion before optimization. So, Kelly
proposed an improved algorithm—connected iterative scan (CIS) [13]—where only the one
that maximizes the fitness function is reminded after the community is split. In addition,
CIS extends the fitness function with Ae,, where A controls how the algorithm behaves in
areas with different sparsity of edges, and e, is the edge probability. The resolution problem
of local expansion was pointed out by maximization of local fitness (LFM) [14], which
argues that the size and internal density of a community are diverse. It is unreasonable to
adopt the same fitness function to control expansion on different networks. Therefore, it
proposed a fitness function that can adjust the resolution, as follows:
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where kf, and k{ , are the total internal and external degree of the community. Parameter «
controls the algorithm performance in different sparsities, but the setting rules of « cannot
be interpreted. It determines the range of « by a grid search with high computation costs.
In addition, LFM takes random nodes as initial seeds. It is obvious that a single node
must expand successfully at the first attempt. For this reason, the merging of overlapping
natural communities (MONC) adds a constant 1 to the denominator of Equation (2),
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which makes the algorithm more stable [15]. Neighborhood-inflated seed expansion
(NISE) develops new seeding strategies based on Page Rank that optimizes the community
score [16]. Its main idea is embodied in the step of neighborhood inflation, where seeds
can represent the characteristics of their entire neighborhood. In general, local expansion
algorithms usually expand from the dense area of edge or degree to the sparse area so
that the seed always plays an important role. The number, quality and location of the
seed will affect the partitions significantly. If we can determine the seed in the center of
the expected community at the beginning, the detection quality could be naturally higher.
The optimization objective of local expansion is static, where the same fitness function is
applied from beginning to end, so the quality of the communities detected are often poor,
due to the diversity in the size and structure in the networks.

Label propagation is a dynamic algorithm based on the speaker-listener information
spread process. Nodes can propagate and accept labels with information of the local
structure. Through the interaction of labels, nodes with the same structure are classified into
one community. Label propagation algorithm (LPA), proposed by Barber et al., is a classical
algorithm based on this idea [17]. Initially, each node is given a unique label. In each
propagation, the label of a node i is replaced by the most common label in neighborhood c,
as shown in the following:

1) = Hmax{1())}) ®
jec

The labels are updated constantly until they reach a stable state, and nodes with the
same label form a community. The community overlap propagation algorithm (COPRA)
allows nodes to have multiple labels [18]. The membership of a node is no longer hard
but rather a series of labels with different attribution coefficients. However, the maximum
number of communities that a node can belong to is limited. In the speed label propagation
algorithm (SLPA), proposed by Xie, nodes update their labels based on pairwise interaction
rules [19]. In each propagation, the node no longer passively receives the neighbors’ labels
to update its own, but interacts with the neighbors and shares information. In addition,
the history labels of each iteration are recorded and nodes update labels based on the
previous information. The label propagation algorithm can adapt to the diverse community
structure, but the general issue is that local label always reaches stability quickly in the
simple structure. Given that stable nodes in the early stages have a significant impact on
the subsequent propagation, the performance of algorithms will be poor if propagation
starts from an inappropriate place, such as the border of the expected community and
several dense substructures in the expected community. Contrarily, if the labels of nodes in
the center area of the expected community reach stability first, the communities could be
detected more accurately.

The clique percolation method (CPM) argues that a community is composed of many
small cliques, and there are common members among adjacent cliques [20]. Through
these shared members, small cliques are connected together to form a community. CFinder
proposed by Palla is an implementation of CPM [1]. First, it searches for maximal cliques
of size K. If two adjacent k-cliques share k-1 members, they will merge into a new com-
ponent. In the process of percolation, more cliques connect together and nodes shared by
multiple cliques are regarded as overlapping. Agglomerative hierarchical clustering based
on maximal clique (EAGLE) takes maximal k-cliques as the seeds and simply employs
the aggregate framework to detect the community [21]. Specially, there is a step called
community merging for aggregating two cliques with plenty of identical nodes in case
too many nodes are treated as overlapping. However, this kind of algorithm depends on
parameter K. Too- large K could lead to a lot of trivial, isolated cliques, which hinders the
detection of large communities. Otherwise, it also fails to terminate in many large social
networks when the K is too small.

There are other interesting algorithms. For example, a game-theoretic framework is
proposed in Chen et al. [22]. In this theory, each node is regarded as an agent who can
choose to join, quit and change his/her community affiliation. The goal of each agent is to
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maximize his/her own utility, which is determined by the gain function and loss function.
A community is associated with a Nash local equity. When the local equilibrium is reached,
the members of the community are determined. Zhou et al. proposed an extended method
of Chen’s work [23]. They take two strategies instead of the action set for obtaining a
new label of each agent, and a gain function with similarity is adopted. The difference
between the detection algorithms based on game theory mainly lies in the utility functions.
In order to prevent confusion, the algorithm named Game mentioned in this paper refers to
that of Zhou et al. Another kind of algorithm is based on generative stochastic modeling,
such as internal and external association to detect communities (IEDC), whose general
framework is based on the principle of dividing each community into non-overlapping
and overlapping parts [24]. The probabilistic membership of a primary node consists of
the internal association degree along with the external association degree, which, together,
control the membership of nodes.

Different from the above algorithms, our algorithm combines the advantages of
dynamic and static algorithms. We extend the local expansion with a new fitness function
based on a new metric named closeness to obtain a dense region rather than the final
community in [13-15]. Although the community detected by local expansion in the face
of diverse structures is not good due to static optimization objectives, the local expansion
that is provided with an appropriate seed by closeness can expand from dense to sparse
region, orderly. To ensure that the density region is almost the same as the center of the
expected community, a process called prune is adopted to remove some unimportant
nodes from the immature community generated by local expansion, which provides a more
accurate starting point for the label than the models in [18,19]. Moreover, label propagation
that takes the density region as the source is conducted, where the labeled set of nodes is
updated by those labels whose frequency is greater than the average to reduce randomness.

3. Algorithm

The essence of our algorithm is the combination of local expansion and label prop-
agation (LELP). It first intends to detect immature communities based on the improved
local expansion. These immature communities are pruned to obtain dense regions that are
likely to be the central area of the expected communities. Then, the label propagation that
takes the dense regions as a source is conducted, where nodes are allowed to carry multiple
labels. After propagation, nodes with the same label form a community and nodes with
multiple labels are identified as overlapping.

In the stage of local expansion, a new fitness function, different from the previous
ones that are related to only edges, is adopted to evaluate expansion. The basic assumption
behind it is that a community essentially comprises local structures, involving those close
nodes. It is difficult to determine the relationship between two nodes depending only on
edges. Therefore, we introduce a new metric named closeness to measure the relationship
of nodes. The closeness is defined as the number of neighbors shared by two nodes divided
by the number of neighbors in their union, shown as follows:

cover(i,d) N cover(j,d)
cover(i,d) U cover(j,d)’

closenessg) (i, j) =

4)

where cover(i,d) is the neighborhood of node i and parameter d is a positive integer
governing the range of neighbors. The closeness is the same as the Jaccard coefficient when
d is equal to 1 [25]. The larger the d, the wider the range of neighbors considered. However,
the relationship of the population will decline with distance in the real world, so d should
be set to a small integer. In addition, two nodes that are not directly connected to each other
may have common second-order neighbors, which means that their second-order closeness
is not 0. For this case, the closeness between two nodes without direct edges is uniformly
set to 0. In this way, we can weight edges by the closeness according to Equation (4) and
generate a new weighted network.
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Local expansion is no longer dependent on random seeds in LELP. Random seeds
mean that the starting position of the local expansion is random, which leads to unstable
results in repeated experiments. There is no guarantee that the local expansion could start
from an appropriate place, so the quality of the partition is often poor. In general, the node
pairs with a high ratio of common neighbors tend to be located in the center of the expected
community, while those with a low ratio of common neighbors tend to be located in the
border. For this reason, node pairs are sorted according to closeness, and those with the
largest closeness are determined as seeds first in order to ensure an optimal starting point
of the local expansion. Therefore, the fitness function is modified as follows:

Cc
closeness;,

fle)= (5)
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where closeness;, and closeness,; are the total internal and external closeness of the cluster.
When a round of local expansion ends, the next round starts from another seed that has
not yet expanded.

In the previous works of detecting an overlapping community based on local expan-
sion methods, such as CIS, LFM, MONC, the detection is over after the above process.
These algorithms always have low quality because the fitness function is static during
the entirety of the detection. In fact, the effect of detecting is not always good when the
same fitness function is used to detect communities with different sizes. A diverse scale
of communities in networks affects the algorithm accuracy, especially at the border of
communities. Unlike previous algorithms, the purpose of local expansion adopted in
LELP is not to generate the final communities, but to obtain the central area of expected
communities, which are named the dense region. These dense regions are used as the
source for label propagation in the following.

Then, we adopt an operation called prune to remove the unimportant component of
immature community detected by local expansion. All nodes in one immature community
are scanned, and the nodes for which more than half its neighbors are not inside are
removed first. Then, those nodes that can increase the fitness function if they are removed
are removed as well. In this way, the immature communities could be pruned to the dense
regions, of which the number is close to that of the final communities. Nodes inside the
dense regions are regarded as internal nodes that are closely related to each other, and
nodes outside the dense regions are named boundary nodes.

Finally, label propagation is conducted based on the dense regions. Initially, the
internal nodes in each dense region are labeled with the same label and set to a passive
state, while each external node is labeled with a unique label and is set to an active state. In
the process of label propagation, each active node updates its own label, according to the
frequency of its neighbors’ labels. A node is allowed to have multiple labels when there are
several labels whose frequency is larger than or equal to the average. If the label of a node
does not change after a propagation, the node becomes passive, and it no longer accepts
the labels of its neighbors. This process is repeated until all nodes in the network become
passive. When label propagation stops, the labels of the nodes indicate the memberships.
Nodes with the same label form a community, and nodes with multiple labels overlap.

Because the dense regions obtained from the local expansion are taken as the source,
label propagation could spread from the center of the expected communities to the border
in an orderly way. It could avoid the labels of nodes in the border of the communities
with a simple structure reaching stability first, which would lead to the failure of the label
propagation, locally. At the same time, the labels of nodes inside dense regions are already
stable before label propagation, so it does not cost a lot of time to reach local stability. In
short, the combination of local expansion and label propagation can complement each other.

In this way, the process of LELP can be interpreted as the following procedure:

Step 1. Local expansion based on closeness. The closeness between each pair of directly
connected nodes are measured by Equation (4). If there is no direct edge between two
nodes, the closeness is set to 0. Then, node pairs are sorted according to closeness and local
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expansion is conducted from the pair with the largest closeness. An immature community
is generated when a round of expansion is optimal, and the next pair in order of closeness
that has not been expanded is selected as the seed. Local expansion is iterated until all
nodes in the network are tried. The two immature community with more than half the
same components are merged into one.

Step 2. The immature community is pruned to the dense region. Each node in the
immature community generated by Step 1 is scanned. Those nodes for which more than
half of its neighbors are not in the same immature community are removed. In addition,
nodes are also removed if the fitness can be improved. This process is called pruning. The
immature communities that are pruned are defined as dense regions. Nodes inside dense
regions are called internal nodes and the rest are called boundary nodes.

Step 3. Label propagation. The internal nodes in a dense region are labeled with
the same label and set to be passive, while the external nodes are labeled with unique
labels and set to be active. In the process of label propagation, each active node updates
the label by the frequency of its neighbors’ labels. A node is allowed to have multiple
labels. Label propagation is repeated until all nodes reach a stable state. The nodes with
the same label are grouped into a community, and those with multiple labels are identified
as overlapping.

4. Experimental Result
4.1. Evaluation Criteria

The normalized mutual information (NMI) is used to evaluate algorithms by compar-
ing the similarity between the ground truth and detected community [26]. The extended
NMI to evaluate the algorithm for overlapping communities was proposed by Lanci-
chinetti [14]. The membership of the node i that belongs to multiple communities can be
regarded as a binary array with |C'| entries, which is the community number of partition .
The k-th entry can be represented as a random variable X = (X)y. If node i belongs to the
k-th community C;(, (x;)k = 1; otherwise, (x;)k = 0. Then, the probability distribution can
be obtained by the number of nodes in C,/c and all nodes. The same holds for the random
variable Y] associated with the community ClN of partition C". Due to the independence of
X and Y], the joint distribution and conditional distribution can be obtained. We can define
the amount of information to infer X given a certain Y; as H(Xy|Y;) = H(Xy, Y;) — H(Y)),
and its minimum can be defined as the conditional entropy of X} with respect to all the com-
ponents of Y for which the average is H(X|Y)uorm. Finally, the extended NMI is defined
as follows:

N(XIY) = 1= STHXY ) om + HXY o], ©

which is between 0 and 1. The function N(X[Y) is equal to 1 if and only if X = f(Y;) for a
certain I, and vice versa.

The extended NMI can only evaluate the algorithm of detecting overlapping commu-
nities at the overall level, but it cannot work at the node level. Therefore, we adopt the
F-score to measure the accuracy of the algorithms at the node level [27]. The F-score is
defined as the harmonic mean of precision and recall, as follows:

2 - precision - recall

F-score = — ,
precision + recall

@)

where precision represents the proportion of the detected overlapping nodes that are true
overlapping nodes, and recall is defined as the number of correctly detected overlapping
nodes divided by the true number of overlapping nodes. The F-score accounts for the
balance between the detection quantity and quality, and it reaches its best and worst values
at 1 and 0, respectively.

The performance of algorithms can be measured by NMI and the F-score when the
ground truth of the community is known. Given that the ground truth of most real-
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world networks are not available, we adopted an extended modularity: the overlapping
modularity Qf, proposed in [28], as our measure. Q¢ takes the membership of a node as a
weight for modularity. The function is as follows:

l] ]-
ZZ 7@ (8)

¢ ijec

where O; is the number of memberships that node i owns. One may argue that Qf, is
close to extended modularity QJ, proposed by Nepusz et al. [29], where the degree of
membership of node i in the community is the substitution of O; in Q5.

4.2. Synthetic Networks

It is necessary to have benchmarks to observe the performance of our algorithm and
compare it with others. Due to the lack of ground truth, real-world networks do not show
clear contrast results but the synthetic networks are adaptable. We adopt LFR benchmarks
proposed in [30] and set the parameters of the LFR generator referring to [14]: the size of
networks are between 1000 and 5000. The average degree is set to 10, which is the same as
most real-world social networks. The node degree and community size are governed by
power law distributions with exponents 7 = 2 and 1, = 1, respectively. The maximum
degree is kyqx = 50, and community sizes vary within a small range s = (10,50) or large
range | = (20,100). The mixing parameter  is set to 0.1 or 0.3. O, and O, together control
the overlap, where the former is the number of overlapping nodes, while the latter is
the number of communities to which each overlapping node belongs. O, is set to 10%
or 50% of the total nodes so as to indicate the low or high density of overlapping nodes,
respectively. Oy, varies from 2 to 8, indicating the diverse membership of overlapping
nodes. By changing the combination of O, and O,,, we create detection tasks with different
difficulties so that we can compare the performance of the algorithms in greater detail.
The specific parameter settings of LFR benchmarks are shown in Table 1. For each set
of parameters, we generate 100 instantiations and adopted the average performance of
each algorithm. For each set of parameters, we generated 100 instantiations and 100 times
experiments were carried out on each instantiation. We adopted the average of all these
experiments as the algorithm performance.

Table 1. The detailed parameters of LFR benchmarks are shown. LFR 1 to LFR 4 are grouped to test
the performance of algorithms under different network sizes and mixing parameters, while LFR 4 to
LFR 7 are governed by different community sizes and overlapping ratios.

Name N k maxy 7 min, max, O, (0
LFR 1 1000 10 50 0.1 20 100 100 2-8
LFR 2 1000 10 50 0.3 20 100 100 2-8
LFR 3 5000 10 50 0.1 20 100 500 2-8
LFR 4 5000 10 50 0.3 20 100 500 2-8
LFR 5 5000 10 50 0.3 10 50 500 2-8
LFR 6 5000 10 50 0.3 20 100 2500 2-8
LFER7 5000 10 50 0.3 10 50 2500 2-8

We compare LELP with some representative algorithms. For algorithms with tunable
parameters, the setting that can obtain the best result is selected. For CFinder, k varies from
3 to 8. For LFM, « ranges from 0.8 to 1.6 with an interval of 0.1. For SLPA, parameter r
varies from 0.05 to 0.5 with an interval of 0.05. For LELP, we measure its performance
with different d, which controls the range of node neighbors in closeness. In general, the
local structure information around the nodes is not fully reflected if d is small, while the
local details may be ignored if d is too large. Therefore, we set d from 1 to 4 to observe
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the performance of LELP as shown in Figure 1. These parameters are still retained in
real-world networks.

1o (a)LFR 1 o (b)LFR 2 o (C)LFR 3 N (d)LFR 4
0.8 \\ 0.8 O.E&_ 0.8
—06 S — —06 — 06 — 06
s — = &~ s S S
204 204;’—%\ 204 204 TTTT———
02 0.2 02 02
002 3 4 5 6 7 0 2 3 4 5 6 7 o 2 3 4 5 6 7 o 2 3 4 5 6 7
Om Om Om Om
1o (e)LFR 5 . (fLFR 6 o (q)LFR 7
08 08 08
S0 K S0 S0
Z04 Z04 N Z 0.4
02 02 T ] 02 —
00 3 4 5 6 7 00 3 4 5 6 7 o 3 4 5 6 7
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—d=1 d=2 d=3 d=4

Figure 1. In the sub figure (a-g), the curves with different colors represent the NMI of LELP when d
is different.

It can be seen that the performance of LELP with d = 4 is the worst in most cases and it
is very close to that when d = 3. This may be due to the fact that the smaller local structure
is ignored when the neighborhood is large. In addition, the ratio of shared neighbors tends
to be stable as the scale of neighbors expands. The performance of LELP withd = 1is
slightly better than the former two cases in the face of small communities. In the cases
where the proportion of the external edge is small (¢ = 0.1), there is little difference among
LELP with different d (the four curves are very close in Figure 1a,c). In the networks where
there are more external edges of nodes (y = 0.3), the LELP with d = 2 performs far better
than others, especially when the community size is large and the membership is complex
(the red curve is much higher than the others in Figure 1b,d, respectively). In general,
the LELP with d = 2 performs better in most cases. Therefore, in the following of this
paper, we choose the result of our algorithm with d = 2.

We first detect the performance of algorithms in the cases where there are different
mixing parameter y and network size N. The former controls the proportion of the internal
edge to the external edge of nodes. Generally, the larger the y, the fuzzier the community
structure. When p is close to 0.5, the community structure is not prominent at all. Obviously,
the experimental results are in line with this fact. When u = 0.1 but other conditions are
the same, the NMI of all algorithms are almost better than those when p = 0.3 (the yellow
and blue curves are at the top of most LFRs). For LELP, high p does not weaken its
performance greatly (the curves are very close in Figure 2a). Parameter N determines
the network size, that is, the total number of nodes in the network. The performance of
algorithms in larger networks is slightly better than that of small networks, except EAGLE,
which deteriorates greatly with large N. O, represents the membership of nodes. When
Oy, is large, the task of the algorithm is difficult. As shown in Figure 2, the majority of the
NMI curves of each algorithm gradually decreases with the increase in Oy;,.

Then, the NMI of the algorithms is measured in the cases where the number of
overlapping nodes O, and community size are different. As expected, there is a serious
decline in the performance of algorithms when there are a large number of overlapping
nodes in networks (yellow and green curves are much lower than blue and red curves for
most LFRs in Figure 3). This is because O, can indirectly determine the overlapping size
among communities. A high overlapping size will hinder the accuracy of algorithms in
detecting a community. Then, most algorithms perform better in the LFR with smaller
communities. The reason may be that the structural characteristics of a community become
blurred as the community size increases, which is also mentioned in [31,32]. This feature
has a great influence on simple local expansion or label propagation. For the former, the
sensitivity of the fitness function lowers as the community size increases. For the latter,
there are so many dense structures within a large community that the labels can reach
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stability at many places, which leads to the detection failure. Unlike others, LELP is less
affected by the community size than ther other algorithms as shown in Figure 3a. This is
because local expansion is only used in the first stage of LELP to locate dense regions, not
the final community. These dense regions are small but have high density of edges, which
prevents accuracy degradation. These dense regions determine the initial seed of label
propagation in the following process, which can ensure that the label propagates from the
dense to sparse regions. Usually, these two regions are likely to be the center and border of
the expected community, respectively. Using the dense region instead of single node as the
seed makes the labels reach stability more quickly in the early propagation.

N (a)LELP N (b)COPRA N (c)CFinder 10 (d)LFM
0.8 \ 0.8 0.8 0.8
=06 _o.a\ =06 —OSK‘
s S — s \/\/_ s
Zo04 Zo04 . Zo04 Zo04 E—
02 02 02 02
o 3 4 5 6 7 o 3 a4 5 6 7 o 3 4 5 6 7 o 3 4 5 6 7
Om Om Om Om
N (e)CIS 1 (filGame N (9)SLPA 10 (h)EAGLE
0.8 \ 08 0.8 \ 0.8
S0 - sos \\ | = 0.6 So6 \x
Z04 Zo04 Zo04 Z04
0.2 0.2 0.2 0.2
o 3 4 5 6 7 o 3 4 5 6 7 o 3 4 5 6 7 o 3 4 5 6 7
Om Om Om Om
N (i)NISE N ()IEDC
08 08 \
—06 \ —06 —
= = —
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Figure 2. Sub figure (a—j) represent the NMI of different algorithms in the LFR 1 to LFR 4, where
there are different mixing parameter y and network size N.
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Figure 3. Sub figure (a—j) represent the NMI of different algorithms in the LFR 4 to LFR 7, where
there are different overlapping nodes O, and community size.
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The NMI of algorithms on each LFR are compared in Figure 4. It can be seen that
LELP is better in most cases (the blue curve is usually at the top, except Figure 4a,c).
However, in the networks with = 0.1 the two label propagation algorithms, COPRA and
SLPA, obtain higher NMI as a result of the rapid stability of the labels during early
propagation. IDEC also obtains a better result, which may be because the division of
overlapping and non overlapping regions is clear in this case. For the networks where there
are many overlapping nodes, LELP significantly outperforms other algorithms, excluding
COPRA. This is because the closeness can more accurately reflect the distance between
the nodes than the edge, so the impact of complex memberships is not serious. The
performance of Game, EAGLE and CFinder are worse than other algorithms in most cases.
This shows that algorithms based on cliques are not suitable for large networks where the
clique is much smaller than the community.

10 (a)LFR 1 10 (b)LFR 2 N (c)LFR 3 N (d)LFR 4
08 08 OS\ 08
N = h \ \

—06 ——— —06 —06 — =06/
= B = S — = = —
Z04 Zo4] — Z04 Z04 —————

0.2 0.2 02 02

o 3 4 5 6 7 00 3 4 5 6 7 0 3 4 5 6 7 o 3 4 5 6 7

Om Om Om Om
. (e)LFR 5 10 ()LFR 6 N (Q)LFR 7

02[ =~

5 6 7 3 4 5 6 7 3 4 5
Om Om Om
—— LELP COPRA CFinder LFM cs Game —— SLPA EAGLE NISE IEDC

6 7

Figure 4. Sub figure (a-g) represent the NMI of different algorithms in the same LFR.

NMI focus only on providing the measure of overlapping size in each community.
It might not be sensitive enough to depict what is going on regarding nodes. It is possible
that the overlapping scale detected by algorithms is close to the ground truth, but the
overlapping nodes detected are not true. For this reason, measuring the overlapping nodes
detected is essential for evaluating the accuracy of detection algorithms. We measure
the F-score of algorithms in Figure 5. It can be seen that the F-score of LELP is much
higher than that of other algorithms when Oy, is small. In particular, in LFR 4 and LFR 5,
all algorithms are far behind LELP, except for SLPA in the case of large O,. In LFR 6
and LFR 7, LELP declines sharply with the increase in Oy, but it is still higher than
most algorithms. This trend of the F-score is due to the sharp decrease of the precision
as Oy, increases. The reason is that the precision of LELP is sensitive to O,,, which has
little influence on recall. The recall of LELP is relatively stable in the face of different
Op, and even ascend slightly with the rise in O,,. This shows that LELP can correctly
detect most of the true overlapping nodes, but some non-overlapping nodes are wrongly
detected as overlapping nodes. Meanwhile, almost all the non-overlapping nodes are
detected correctly.
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Figure 5. Sub figure (a,d,g,j) represent the F-score of algorithms in LFR 4 to LFR 7. Sub figure
(b,e,h k) represent the precision of algorithms in LFR 4 to LFR 7. Sub figure (c,f,i1) represent the
recall of algorithms in LFR 4 to LFR 7. In LFR 4 to LFR 7, there are different overlapping nodes O
and community sizes but other conditions are the same.

4.3. Real-World Networks

We tested on a series of real-world networks, whose main information is listed in
Table 2. The dolphins and football network are commonly used social network. Email
is the core of e-mail communication network from a large European research institution.
CA-GrQc is a co-authorship network based on papers in General Relativity publishing
in Arxiv. cit-HepTh is the citation graph of high energy physics theory in Arxiv. P2P
is the Gnutella peer-to-peer file sharing network. Due to the unknown ground truth of
these real-world networks, the algorithms’ performance is measured by Q¢,, as shown in
Figure 6a. In each sub-figure of Figure 6, networks are arranged from left to right along the
x-axis, according to the size and symbols of points representing different algorithms. The
number of overlapping nodes and the average membership of the nodes are illustrated in
Figure 6b,c, respectively.

Table 2. The basic features of real-world networks in the experiments are shown in the Table 2, in-
cluding the number of nodes and edges, average degree, average clustering coefficient and reference.

Name N E k CcC Ref.
dolphins 62 3162 51 0.258 [33]
football 115 1219 10.6 0.403 [34]
Email 1005 25,571 25.4 0.399 [35]
CA-GrQc 5242 14,496 2.8 0.530 [36]
cit-HepTh 27,770 352,807 12.7 0.312 [37]
P2P 62,586 147,892 24 0.006 [36]

It can be seen that the performance of algorithms in different real-world networks is
not constant, but the ranking of algorithms is relatively stable in each network. In most
cases, Q, of LELP and SLPA are generally the best two, especially in large networks, while
EAGLE and CIS are always the worst two. In addition, the performance of COPRA is also
in the forefront. It illustrates that the algorithms utilizing label propagation are effective
because the label propagation is similar to a simulation of information spreading in social
networks. Given a good source of propagation, labels are more easily and accurately stable
in a community through iterative propagation. In LELP, local expansion can generate
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some dense regions closer to the center of expected communities as the source of label
propagation. This is why our algorithm performs well.

(a) (b) (9]

a

08

average Op,

S
/.

¢ -
>
A

02 p, 02

—N — e o
©P  FB EM CA CH  P2P OP  FB_EM CA CH PP OF  FB _EM  CA  CH  P2p
—e— LELP 4~ COPRA CFinder LFM - CIS Game  —— SLPA +— EAGLE NISE ~— IEDC

Figure 6. Sub figure (a—c) respectively represent overlapping modularity Q5,, the proportion of

overlapping node O, /N and average number of community memberships Q™ of different algorithms
in 6 real-world networks.

As can be seen in Figure 6b, some algorithms may over-detect the overlap, such as
CFinder, CIS and EAGLE. The proportion of overlapping nodes that they detect in all
nodes is far greater than that in other algorithms, and even more than 40% in some
cases. This is why these algorithms do not perform well in Qf,. Too many nodes are
detected as overlapping nodes, which indicates that these algorithms fail. In contrast, this
proportion of other algorithms is usually below 20%, and even COPRA is often lower than
5%. For a detection algorithm, too high of an overlapping proportion detected means that
the precision is too rough; too low of a proportion usually means that it does not work.
The overlap detected by LELP can be considered meaningful because the proportion of
overlapping nodes detected in all nodes is appropriate at about 8%. Meanwhile, LELP,
LFM, NISE and SLPA fluctuate a little as a result of insensitivity to specific structures, and
all remain around 10%, except for the small networks. These algorithms also perform well
in LFR. The stable performance makes it possible for LELP to be applied to most networks.
Otherwise, the diversity of membership in the tested networks is relatively small, and most
nodes have only two or three community memberships, as shown in Figure 6¢.

5. Conclusions

In this paper, we propose an overlapping community detection algorithm named
LELP that is a combination of local expansion and label propagation. It first conducts
local expansion based on closeness to generate some immature communities, which are
pruned to retain a dense structure called the dense region. These dense regions are very
close to the center of the expected communities and so are taken as the source for label
propagation. The experiments in diverse synthetic networks and real-world networks
show that LELP is excellent, compared with other algorithms. The results in the synthetic
networks demonstrate that LELP is better than the current mainstream algorithms in
general. The performance of LELP is less affected by the network size, mixing degree
and community size. The proportion of overlapping nodes has a great influence on LELP,
which is similar to the contrast algorithms. The accuracy of LELP is high at the node
level. Most of the true overlapping nodes are correctly detected; a few nodes may be
misjudged as being overlapping nodes. Almost all non-overlapping nodes are correctly
detected. In the real-world networks, LELP also performs better than other algorithms.
It can be applied to most real-world networks as the result of its stability in the face of
different network structures. The number of overlapping nodes detected by LELP is in an
appropriate range for the detection to be of practical significance.
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