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Abstract: In practical engineering, due to the lack of information, it is impossible to accurately
determine the distribution of all variables. Therefore, time-variant reliability problems with both
random and interval variables may be encountered. However, this kind of problem usually involves a
complex multilevel nested optimization problem, which leads to a substantial computational burden,
and it is difficult to meet the requirements of complex engineering problem analysis. This study
proposes a decoupling strategy to efficiently analyze the time-variant reliability based on the mixed
uncertainty model. The interval variables are treated with independent random variables that are
uniformly distributed in their respective intervals. Then the time-variant reliability-equivalent model,
containing only random variables, is established, to avoid multi-layer nesting optimization. The
stochastic process is first discretized to obtain several static limit state functions at different times.
The time-variant reliability problem is changed into the conventional time-invariant system reliability
problem. First order reliability analysis method (FORM) is used to analyze the reliability of each
time. Thus, an efficient and robust convergence hybrid time-variant reliability calculation algorithm
is proposed based on the equivalent model. Finally, numerical examples shows the effectiveness of
the proposed method.

Keywords: interval variables; random variables; time-variant reliability analysis; hybrid uncer-
tain model

1. Introduction

Structural reliability is regarded as the ability of the device or structure to complete the
required functions under the specified conditions within the prescribed design period [1–5].
Since the advent of this concept in engineering and industrial applications, structural
reliability analysis in the probabilistic framework has been developed rapidly. Although a
series of effective methods, including the first-order second-moment method [6,7], second-
order second-moment method [8] and system reliability analysis [9], have been proposed.
However, there are several time-variant uncertain parameters in practical structures such
as external dynamic loads, degradation of material properties and changes of geometric
characteristics that affect the time-variant reliability of structures [10]. Accordingly, it is
significant importance to conduct to carry out a time-variant reliability analysis for the
engineering structures.

Conventional time-variant reliability analyzing methods can be mainly divided into
five categories [11–13], i.e. the first-passage method, numerical methods, extreme value
density methods, surrogate methods and the quasi-static methods.

The time-variant reliability problem mainly originates from the first-passage method
proposed by Rice [14] in the 1940s, which lays the foundation for the development of the
subsequent crossing rate method. It should be noted that the calculation of the outcross-
ing rate is essential in Rice’s method. Studies show that, although the Rice method has
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remarkable advantages over other methods from the computational point of view, this is
accounted for by the hypothesis that the outer crossover is statistically independent. How-
ever, this assumption results in the relatively low accuracy of the time-variant reliability
approaches. In order to resolve this shortcoming, Andrieu Renaud et al. [15] transformed
the calculation of the outcrossing rate into the reliability problem of a static parallel system
and established the pHi2 method. Accordingly, they provided a good scheme to determine
the span rate efficiently and analyze the time-variant reliability. On this basis, Sudret [16]
presented the PHI2+ approach to achieve an analytical solution for the crossover rate.

The second scheme is the numerical simulation method. Mori and Ellingwood [17]
and Singh et al. [18] developed sampling methods and subset simulation methods, respec-
tively [19–21]. Moreover, studies show that the Monte Carlo simulation (MCS) method
can be used to sample a random process or random variable in a limited state function
of a structure and bring these random numbers into a function to compute time-variant
reliability. Further investigations show that although the Monte Carlo simulation method
has high accuracy, it has a relatively low computational efficiency.

The third method is the extreme value density method, which uses the probability
distribution of the response extremum of the time-variant problem to change the time-
variant problem into an invariant problem. In this fashion, Chen and Li [22] utilized an
improved probability density evolution method. Furthermore, Hu and Du [23] transformed
the time-variant reliability analysis into a reliability problem and proposed an innovative
sampling method for the response extreme value distribution. It should be pointed out
that the proposed method does not require time-variant parameters, thereby improving
the calculation efficiency.

The fifth method is the surrogate model, which is based on constructing an analytical
expression between the input variables and the structural response [24]. Then, an appro-
priate interpolation algorithm is applied to obtain the analytical expression that meets
the accuracy requirements. Accordingly, Wang and Wang [25,26] embedded the efficient
global optimization (EGO) method [27] in an extreme value surrogate model and pro-
posed a nested extreme value response method to identify the extreme values. Moreover,
Zhang et al. [28] proposed a new response approximation model for the time-dependent
reliability analysis of uncertain structures under stochastic loads.

Finally, the main objective of the quasi-static method is to change the time-variant
reliability issue into a constant reliability issue. In this method, time-variant uncertain
parameters are discretized to transform the complex time-variant reliability problem into
a problem independent of time-variant parameters. In this regard, Li et al. [29] and
Cazuguel et al. [30] transformed the time-variant reliability model into a static reliability
model through representing the Gaussian process as multiple independent normal distri-
butions. Gong and Frangopol [31] proposed the NEWREL method based on stochastic
discretization method. Jiang et al. [10,32] developed the reliability calculation method for
discretizing time-variant uncertain parameters (TRPD) and extended it to system reliability.
Subsequently, an improved version of TRPD [33] was proposed in which time-variant
reliability analysis was performed only at the component level. This paper focuses on the
TPRD approach.

Known by references aforementioned, the majority of investigations in the field of
time-variant reliability are confined to conventional structural reliability problems with
random variables [34]. This kind of time-variant reliability analysis requires a large number
of experimental samples to construct accurate probability distributions of random variables.
However, experimental sample data is limited in many engineering applications. In this
case, the boundary of the uncertain variable is easy to determine, and the uncertain variable
is suitable to be described by the non-probabilistic interval variable. For reliability analysis
problems with interval variables, non-probabilistic methods can be used to measure relia-
bility [34]. There may be both random and non-probability interval-uncertain variables
in structural systems. Therefore, it is necessary to develop effective methods to solve the
mixed uncertainty problems [35,36]. However, only a few researchers studied time-variant
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reliability problems of mixed variable structures. Specifically, a multi-layer nested analysis
approach has been adopted to solve mixed time-variant reliability problems [29,37]; the
outer layer is used to discretize the stochastic process in the time-variant function, while the
inner layer is nested optimized at each time step. Accordingly, the computational efficiency
is extremely low, which adversely affects its practicability in industrial applications. To this
end, it is vital to develop efficient algorithms to significantly decrease the computational
burden of the time-variant reliability method with mixed variables.

In the present study, it is intended to presented a novel approach to analyze the
structural time-variant reliability with mixed variables. To this end, the existing time-
variant reliability theory is combined with the interval uncertainty analysis. The rest
of this paper is organized as follows: the structural time-variant reliability model with
random variables is introduced in Section 2. Then, the structural time-variant reliability
model with mixed variable and traditional solution method are discussed in Section 3. In
Section 4, a new method is proposed to analyze the structural time-variant reliability. For
evaluating the effectiveness of the presented approach, it is applied to several numerical
and engineering case studies and then the obtained results are presented in Section 5.
Finally, Section 6 summarizes the main results and conclusions of this study.

2. Structural Time-Variant Reliability Model with Random Variables

Generally, time-variant reliability models are an account of the generalized force
model and contain one random variable. Let g be the limit state function composed of the
general random process of structural resistance R(t) and the stochastic process of structural
load effect S(t). This function, which can be linear or nonlinear, can be given as:

g(R(t), S(t)) = R(t)− S(t) (1)

where t is the time variable. Generally, the stochastic process S(t) of structural load effect
contains the permanent load A (usually n-dimensional random vector) and the stochastic
process Q(t) of the variable load. Accordingly, Equation (1) can be rewritten as follows:

g(R(t), Q(t), A) = R(t)−A−Q(t) (2)

In practical engineering problems, the common degradation forms of structural re-
sistance stochastic process R(t) include exponential and logarithmic degradation forms,
which can be mathematically expressed through Equations (3) and (4), respectively.

ϕ(R0, t) = R0 exp(−εt) (3)

ϕ(R0, t) = R0[1 + ln(1− εt)] (4)

where R0 and ε denote the initial resistance and the attenuation coefficient, respectively.
Based on the definition of reliability, reliability Ps(t) and failure probability Pf (t) of the
structure within the design service period T can be expressed in the form below:

Ps(t) = P{g(R(t), Q(t), A) > 0, t ∈ [0, T]} (5)

Pf (t) = P{g(R(t), Q(t), A) < 0, t ∈ [0, T]} (6)

3. Analysis Method of Structural Time-Variant Reliability Model with Random and
Interval Variables
3.1. Time-Variant Reliability Model of Structures with Random and Interval Variables

Studies show that structural models in the majority of practical engineering problems
contain random and interval variables. Accordingly, the time-variant reliability model of
structural mixed variables can be changed into the following expression:

g(R(t, Y), S(t, Y)) = R(t, Y)− S(t, Y) (7)

Y ∈
[
YL, YU

]
, Yj ∈

[
YL

j , YU
j

]
, j = 1, 2, . . . , n (8)

where Y is an n-dimensional interval variable.
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Under the generalized stress intensity model, the limit state function is expressed as

g(R(t, Y), Q(t, Y), A) = R(t, Y)−A−Q(t, Y) (9)

within the design service period T, instantaneous reliability and failure probability of the
structure are as follows:

Ps(t) = P{g(R(t, Y), Q(t, Y), A) > 0, t ∈ [0, T]} (10)

Pf (t) = 1− Ps(t) = 1− P{g(R(t, Y), Q(t, Y), A) > 0, t ∈ [0, T]} (11)

3.2. Formulation of Stochastic Process Discretization with Mixed Variables

According to the definition of time-variant reliability [13,32,38], the design reference
period T can be divided into m uniformly equal periods. Consequently, each period can be
τ = T/m. The resistance stochastic process R(t) and dynamic load Q(t) can be discretized
to obtain m random variables. It should be noted that the median value of the resistance in
the i-th period equals the Ri value. Figure 1 illustrates distributions of resistance R(t) and
variable load Q(t) over time.

Figure 1. Distribution of resistance R(t) and variable load Q(t) over time.

The instantaneous value of the dynamic load Qi can be obtained statistically in the
period. Generally, Qi can be regarded as an independent and identically distributed
function. Based on the reliability theory of the series system, Equation (11) can be rewritten
in the form below:

Pf (T) = 1− P
{

m
∩

i=1
[g(Ri(t, Y), Qi(t, Y), A) ≥ 0]

}
(12)

From the engineering point of view, Q′ is Qi’s s the maximum value. It should be
indicated that Qi is independently and evenly distributed. Based on the principle of
mechanism statistics, the probability distribution function FQT (x)of the maximum load
effect QT in the reference period T can be formulated as:

FQT (x) =
[
FQτ (x)

]m (13)

In practical problems, the loading effect Qi is usually approximated to the extreme
value type I distribution with parameters ατ and uτ , subjected to the extreme value type
I distribution with parameters αT and uT . This can be mathematically expressed in the
form below:
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αT = ατ

uT = uτ +
ln m
ατ

}
(14)

Then probability distribution function FQ′(q′) and a new random variable Q’ with
a probability density function fQ′(q′) and is defined. Accordingly, Equation (12) can be
rewritten in the form below:

Pf (T) = 1− P
{

m
∩

i=1
Qi(t, Y) < Ri(t, Y)−A

}
= 1−

∫ +∞
0

∫ +∞
0 . . .

∫ +∞
0

m
∏
i=1

FQτ
(ri − a) fR1,R2,··· ,Rm (r1(Y), r2(Y), · · · , rm(Y))

× fA(a)dr1dr2 · · · drmda

(15)

where fR1,R2,...,Rm(r1, r2, . . . , rm) denotes the joint probability density function of R1, R2, . . . , Rm
variables, and f A(a) is the probability density function of A. Meanwhile, FQτ

denotes the
probability distribution function of Qi.

Equation (15) is a multi-dimensional integral problem, which requires a large amount
of computation. In order to improve the computational efficiency, a new random variable
Q′ is introduced

Pf (T) = 1−
∫ +∞

0

∫ +∞
0 . . .

∫ +∞
0 fQ′(q′)
Ω

fR1,R2,··· ,Rm(r1(Y), r2(Y), · · · , rm(Y))

× fA(a)dq′dr1dr2 · · · drmda

= P{F−1
Q′ [

m
∏
i=1

FQτ
(Ri(Y)−A)]−Q′ < 0}

(16)

where Ω stands for the following integral field:

Ω =

{
(Q, R, A, Y)|Q′ < F−1

Q′

m

∏
i=1

FQτ (Ri(Y)−A)

}
(17)

F−1
Q′ is the inverse function of FQ′ . Accordingly, the limit state function can be expressed as:

g(R1, R2, . . . , Rm, Q′, A, Y) = F−1
Q′ [

m

∏
i=1

FQτ
(Ri(Y)−A)]−Q′ (18)

when the random variable Q′ is introduced, the general distribution form of Q′ is not
specified. In other words, when Equation (18) is used as the limit state function to calculate
the reliability index, the expression only contains the FQ′(Q′) term. In this case, FQ′(Q′)
can be used as a variable so that the Q′ distribution is not required anymore in the whole
analysis. However, in order to coordinate with the current unified design standard of
structural reliability and make Q′ of engineering significance, Q′ is the maximum QT of Qi.
Accordingly, Equation (18) can be rewritten as the following:

g(X, Y) = F−1
QT [

m

∏
i=1

FQT (Ri(Y)−A)]−QT (19)

where X = [R1, R2, . . . , Rm, Q′, A] is a random variable.

3.3. Double-Layer Nesting Optimization Method

There are both random and interval variables in Equation (19). At present, some
methods have been proposed to solve this kind of problem. It is necessary to standardize
the random variables.

In the analysis and calculation, the random variables need to be standardized. Equa-
tion (19) can be converted into:

φ(U) = FX(X, Y),X = F−1
X (φ(U), Y) (20)
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where φ is the standard normal distribution function and U is the standard normal
space variable.

By substituting Equation (20) into Equation (19), the limit state function in standard
normal space can be obtained:

G(U, Y) = g′
(

F−1
X (φ(U), Y, ti)

)
(21)

As the coexistence of random and interval variables, the limit state function (21) turns
into a band in the parameter space as shown in Figure 2. The lower and upper boundaries
are as follows:

SL : min
Y

g(U, Y, ti)

SU : max
Y

g(U, Y, ti)
(22)

where SL and SU represent the lower and upper boundaries, respectively.

Figure 2. Limit state region.

The limit state region in Figure 2 shows failure probability Pf and reliability index β
obtained from different Y-values of the limit state function on SL and SU planes. It should
be indicated that both of these parameters are range values, in the form below:

β ∈
[

βL, βU
]

(23)

Pf ∈
[

Pf
L, Pf

U
]
=
[
φ
(
−βU

)
, φ
(
−βL

)]
(24)

where βU , βL, PU
f and PL

f represent the upper and lower interfaces of the reliability index
and the upper and lower boundaries of failure probability, respectively.

Generally, the following two optimization problems are set to calculate the values of
βL and -βU :

βL = min
U
‖U‖

s.t. min
Y

G(U, Y, ti) = 0
(25)

βU = min
U
‖U‖

s.t. max
Y

G(U, Y, ti) = 0
(26)
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It should be reminded that time-variant failure probability falls in an interval. In
most practical engineering problems, only the maximum failure probability is concerned.
Consequently, only Equation (25) needs to be solved and the governing equations are
reduced to the following expression:

Outer Optimization:
βL = min

U
‖U‖

s.t. min
Y

G(U, Y∗, ti) = 0
(27)

Inner layer optimization:

G(U, Y∗, ti) = min
Y

G(U, Y, ti)

s.t. YL
i,j ≤ Yi,j ≤ YU

i,j j = 1, 2, . . . , n
(28)

Equation (27) is a two-level nested optimization problem with complicated calcula-
tions and high computational expenses. Therefore, the optimization efficiency is difficult
to meet the needs of engineering. Although decoupling strategies have been successfully
applied to static hybrid reliability analysis problems, such as sequential single-loop strate-
gies. It is a difficult problem to solve the time-variant reliability problem, because of time
discretization, and inner and outer layer iteration. Also, a rigorous mathematical proof for
decoupling strategy is lacking. Therefore, it is challenging to develop time-variant hybrid
reliability decoupling strategies with good robustness and convergence.

4. A New Analysis Method of Structural Time-Variant Reliability with Random and
Interval Variables
4.1. Establishment of Equivalent Model

In time-variant reliability analysis, uncertainty is divided into two kinds of uncertain
variables, namely the random variable X and interval variable Y. In the present study,
a novel method is initially presented. The random variable X is kept stable, while the
interval variable Y obeys the uniform distribution. Therefore, it can be transformed into
the following conventional time-variant reliability problem with only random variables:

βL = min
U,V

√
‖U‖2 + ‖V‖2

s.t. G′(U, V, ti) = 0
(29)

where U and V denote the standard normal space, vectors transformed by X and Y,
respectively. Moreover, G′ is the limit state function of the transformation in the U-V
space. For the equivalent model after transformation, the most probable point (MPP) in
the standard normal space random variable (U + V) and its corresponding optimal value
(X
′
,Y
′
) can be calculated according to Equation (29).

4.2. Model Equivalence Proof

According to the studies of Breitung [39] on the asymptotic approximation of poly-
nomial integrals, Madsen et al. [40] on first-order and second-order reliability analysis of
series structures, and Madsen [41] on structural safety methods, it is seen that MPP has the
highest probability density at all points on the limit state function. Therefore, (X

′
, Y

′
) is

also the optimal solution to the following problem: max
X,Y

fX,Y(X, Y)

s.t. g(X, Y, ti) = 0
(30)

where fX,Y denotes the probability density function (PDF) of random variables X and Y.
Since all variables in the limit state function are independent of each other, Equation

(30) can be modified as the following equation, based on the processing approach of the
series system:
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 max
X,Y

fX(X) fY(Y)

s.t. g(X, Y, ti) = 0
(31)

Since the random variable Y is uniformly distributed, the probability density function
fY(Y) of the above-mentioned equation is a normal number. Therefore, Equation (31) can
be rewritten into the following equation:

max
X,Y

fX(X)

s.t. g(X, Y, ti) = 0

YL
j ≤ Yj ≤ YR

j , j = 1, 2, . . . , n

(32)

For the constrained optimization problem of Equation (32), Nocedal and Wright [42]
proposed a numerical optimization approach according to the Karush-Kuhn-Tucker neces-
sary conditions. Therefore, the optimal (X

′
, Y
′
) must meet the following equation:

−∇Xk fX(X) + λ1∇Xk g(X, Y, ti) = 0, k = 1, 2, . . . , n

λ1∇Yi g(X, Y, ti) + λ3j − λ2j = 0, j = 1, 2, . . . , n

λ2j

(
YL

j −Yj

)
= 0, j = 1, 2, . . . , n

λ3j

(
Yj −YR

j

)
= 0, j = 1, 2, . . . , n

g(X, Y, ti) = 0

YL
j ≤ Yj ≤ YR

j , j = 1, 2, . . . , n

(33)

where, λ1, λ2i, λ3i represent Lagrange multipliers.
Secondly, the reliability of the original mixed time-invariant model is investigated.

As described above, in order to compute the maximum failure probability through the
first-order second-moment approach, the MPP U′ and the corresponding optimal value X

′

should be obtained. Moreover, the following optimization issues should be resolved:
β = min

U
‖U‖

s.t. min
Y∈Yl

g(U, Y, ti) = 0
(34)

Therefore, according to the properties of MPP, X
′

is the optimal solution of the follow-
ing problem: 

max
X,Y

fX(X)

s.t. min
Y∈Yl

g(X, Y, ti) = 0
(35)

where Y is the interval variable. In the above mentioned equation, there is a sub-optimization
problem min

Y∈Yl
g(X, Y, ti), represented by an interval variable Y in the constraint, and the

Karush–Kuhn–Tucker necessary condition is mathematically expressed as follows:

∇Yi g(X, Y, ti) + λ3i − λ2i = 0, i = 1, 2, . . . , n

λ2i

(
YL

i − Yi

)
= 0, i = 1, 2, . . . , n

λ3i

(
Yi − YR

i

)
= 0, i = 1, 2, . . . , n

YL
j ≤ Yj ≤ YR

j , j = 1, 2, . . . , n

(36)

By substituting Equation (36) into Equation (35), the following optimization problem
can be obtained:
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

max
X

fX(X)

s.t. g(X, Y, ti) = 0

∇Yi g(X, Y, ti) + λ3i − λ2i = 0, i = 1, 2, . . . , n

λ2i

(
YL

i − Yi

)
= 0, i = 1, 2, . . . , n

λ3i

(
Yi − YR

i

)
= 0, i = 1, 2, . . . , n

YL
j ≤ Yj ≤ YR

j , j = 1, 2, . . . , n

(37)

Then, the Karush–Kuhn–Tucker necessary condition of Equation (37) is obtained,
which is expressed the same as Equation (33). Therefore, it is mathematically proved that
the original problem and the equivalent problem have the same solution when calculating
reliability in this form. It should be indicated that the interval variable is treated with
the uniform distribution, which is regarded as a random variable. in this situation, the
limit state function of the time-variant reliability model with mixed uncertainties only
contains random variable. Complex nested optimization problems for time variance can be
successfully avoided.

4.3. Procedure

Based on the equivalent analysis above, the original structural time-variant reliability
model of mixed variables is transformed into the equivalence model of the structural
time-variant reliability model of mixed variables. As shown in the Figure 3, the specific
steps are as follows:

(1) The uncertainty in the structure is simply divided into two types according to the
information given, including the probability random vector X and the non-probability
vector Y (interval vector).

(2) The interval variable Y is treated as a uniform distribution, which is regarded as a
random variable.

(3) The limit state function of the time-variant reliability model of the mixed uncertainties
only contains the random variables X and Y. Then, the equivalent substitution model
of the mixed reliability analysis is established.

(4) The time parameters are discretized into m periods ti by the static transformation
method. Meanwhile, the generalized resistance random process R(t) and the variable
load Q(t) can be discretized. Therefore, the time-variant problem is changed into a
time-invariant problem.

(5) FORM is adopted to compute and solve the transformed equivalent mode in Equation (19).
Then, an optimum (X

′
, Y
′
) can be obtained in each period.

(6) The minimum reliability and the maximum failure probability of the model in each
period is obtained.
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Figure 3. Algorithm flow chart.

5. Numerical Examples

In this section, the presented approach is applied to four examples, which include a
mechanical part, a reinforced concrete short column of a structure, a roof truss structure,
and a wing structure. In addition, the Monte Carlo Simulation approach (MCS) is employed
to verify the feasibility of the presented method. The number of random numbers of each
parameter generated by MCS in this study is ns = 1 × 106.

5.1. Time-Variant Reliability Analysis of the Structure of a Mechanical Part

The change rule of the resistance of a mechanical part [10] with time is R(t) = R0exp(-at) MPa.
Where a is the attenuation coefficient and interval variable, and R0 is the initial resistance,
obeying the lognormal distribution of

(
µR0 , σR0

)
MPa. µR0 and σR0 are 336.3 MPa and

33.63 MPa, respectively. It is worth noting that the permanent load effect A follows the
normal distribution of (µA, σA) MPa. µA and σA are 66.25 MPa and 4.738 MPa. Taking
τ = 1000 h as a period, the statistical value Qi of the dynamic load Q(t) in the ith period
follows the extreme value I distribution. Parameters ατ and uτ equal ατ = 0.04493 MPa−1

and uτ = 49.77 MPa, respectively. Attenuation coefficient a I is interval variables.
a I ∈ [1.9,2.1] × 10−5 .

As can be seen from the Table 1, the reliability index when the sample number is
20,000, 50,000 and 100,000 is gradually close to the result when the sample number is
3,000,000. When the sample is 500,000, 1,000,000, 2,000,000 and 3,000,000, the calculation
results in convergence. The sample number is 100,000, which can meet the accuracy
requirement. However, in order to make the results more accurate and stable, this paper
selected 1,000,000 times. With the increase of samples, the calculation time increases
gradually. The calculation time is proportional to the number of samples. For example,
when the number of samples is 3,000,000 and 1,000,000, the calculation time is 870.69 s and



Algorithms 2021, 14, 229 11 of 20

300.82 s, respectively. The number of samples is three times larger, and the calculation time
is nearly three times longer.

Table 1. Calculation results of Monte Carlo method under different sample numbers.

ns
Design Reference Period (h) Time

(s)1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

20,000 3.481 3.390 3.156 2.989 2.903 2.776 2.669 2.628 2.530 2.457 5.26

50,000 3.673 3.470 3.279 3.179 3.062 2.921 2.802 2.708 2.624 2.556 15.78

100,000 3.719 3.414 3.291 3.102 2.970 2.870 2.794 2.694 2.604 2.519 30.37

500,000 3.580 3.350 3.211 3.104 2.999 2.901 2.793 2.697 2.603 2.515 149.68

1,000,000 3.622 3.393 3.219 3.094 2.979 2.876 2.781 2.690 2.600 2.510 300.82

2,000,000 3.612 3.388 3.223 3.099 2.984 2.877 2.782 2.688 2.597 2.508 561.31

3,000,000 3.599 3.370 3.215 3.094 2.981 2.880 2.786 2.692 2.597 2.509 870.69

Figure 4 and Table 2 show the reliability index curve of a mechanical part in the design
reference period. When the design reference period is 1000, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000 and 10,000 respectively, the reliability indices are 3.600, 3.379, 3.227, 3.102,
2.991, 2.889, 2.793, 2.699, 2.608 and 2.518 respectively. Therefore, it is observed that as the
design base period extends, the reliability of this part decreases gradually. Correspondingly,
the failure probability will gradually increase, which is consistent with the actual situation.

Table 2. Reliability index of the mechanical part in each design reference period.

Methods
Design Reference Period (h)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

MCS 3.622 3.393 3.219 3.094 2.979 2.876 2.781 2.690 2.600 2.510
Proposed method 3.600 3.379 3.227 3.102 2.991 2.889 2.793 2.699 2.608 2.518

Deviation/% 0.62 0.41 0.25 0.27 0.40 0.45 0.43 0.34 0.31 0.32

Figure 4. The reliability index curve of a mechanical part in the design reference period.



Algorithms 2021, 14, 229 12 of 20

MCS is a more accurate method to solve structural reliability problems, which is
generally adopted as an accurate result to verify the accuracy of other methods. In Table 2,
when t = 1000, the maximum error is 0.62%, and when t = 4000, the minimum error is 0.27%,
which is within the engineering allowable range. The results of the proposed method are
very close to those of MCS method, which indicates that the proposed method is effective
and feasible. In this study, the limit state function only needs to be called 72 times, while
it needs to be called 9,984,164 times through MCS method. The running time of the MCS
method is 300.82 s, while the running time of the current method is 0.089s. The total
number of calls to limit state functions in this method is many orders of magnitude less
than that in the MCS method.

5.2. A Short Column of the Reinforced Concrete of a Structure

The example discussed in this section is modified according to the literature [43].
The width and height of the cross-section of the reinforced concrete short column of a
structure are denoted as B and h, respectively. Moreover, the parameter values of the width
and height of the cross-section are interval values, whose parameter values are [270 mm,
330 mm] and [315 mm, 380 mm], respectively.

The strength grade of the concrete is C30 and the area of the steel bar in the column
is 1811.28mm2, which is a grade II steel bar. Moreover, R(t), G and Q denote the random
resistance process of the reinforced concrete short column, the permanent load effect and the
variable load effect, respectively. Table 3 presents the specific parameters and distribution.

Table 3. Variable distribution of reinforced concrete short columns of a structure.

Parameter Mean µ Standard Deviation σ Type of Distribution

G(kN) 530 37.1 normal
QT(kN) 700 203 Extreme I type

fc(N/mm2) 26.1 4.437 normal
fy(N/mm2) 384 28.591 normal

R(t) is mathematically defined as:

R(t) = bh fc(t) + As fy(t) = bh fc ϕc(t) + As fy ϕy(t) (38)

where fc and fy denote the compressive strength of the concrete and the yield strength of
reinforcement, respectively.

The resistance variation coefficients ϕc(t) and ϕy(t) are:{
ϕc(t) = 1− 8.0× 10−7t3

ϕy(t) = 1− 2.2× 10−6t3
(39)

The limit state function is mathematically expressed as:

g = R(t)− G−Q (40)

From Table 4, it is proved once again that the results of MCS method are convergent.
With the increase of the number of samples, the calculation time increases linearly. Figure 5
illustrates that as the design reference period exceeds, the reliability of the structure or
product gradually decreases. As can be seen from Table 5, the errors of the current method
and MCS method are as follows: 1.02%, 1.33%, 1.36%, 1.67%, 1.99%, 2.02%, 2.06%, 1.80%,
2.15% and 1.89%. The maximum error is 2.02 and the minimum error is 1.02. The error can
meet the needs of engineering, moreover the accuracy of the present method is proved
again. From viewpoint of computational efficiency, the total number of calls to limit state
functions in this method is only 171, while it is 9,997,832 times for the MCS method. The
MCS method runs in 673.8 s, and the current method runs in 0.12 s. Therefore, it is proved
that the computational efficiency of the presented approach is much higher than that
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of the MCS method. The results of an example show that the proposed method is an
effective approach.

Figure 5. Reliability index curves of reinforced concrete short column of a structure in design
reference period.

Table 4. Calculation results of Monte Carlo method under different sample numbers.

ns
Design Reference Period (Year) Time

(s)5 10 15 20 25 30 35 40 45 50

30,000 3.72 3.59 3.54 3.40 3.38 3.35 3.31 3.29 3.23 3.18 8.5

100,000 4.10 3.81 3.69 3.61 3.54 3.49 3.43 3.37 3.32 3.22 32.4

500,000 3.94 3.78 3.68 3.58 3.50 3.46 3.40 3.34 3.27 3.18 157.4

1,000,000 3.94 3.77 3.67 3.59 3.52 3.46 3.40 3.34 3.26 3.17 673.8

2,000,000 3.94 3.78 3.68 3.60 3.53 3.47 3.41 3.35 3.27 3.17 734.8

3,000,000 3.94 3.77 3.66 3.58 3.52 3.46 3.39 3.34 3.26 3.16 1153.8

Table 5. Reliability index of each design reference period of the short column.

Methods
Design Reference Period (Year)

5 10 15 20 25 30 35 40 45 50

MCS 3.94 3.77 3.67 3.59 3.52 3.46 3.40 3.34 3.26 3.17
Proposed method 3.98 3.82 3.72 3.65 3.59 3.53 3.47 3.40 3.33 3.23

Deviation/% 1.02 1.33 1.36 1.67 1.99 2.02 2.06 1.80 2.15 1.89

5.3. A Roof Truss Structure

Figure 6 shows that the bottom and tension members are made of steel, and the top
and pressure members are reinforced with concrete [44,45].
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Figure 6. Roof truss model.

The roof is subjected to evenly distributed load q(t), where q(t) can be converted to the
equivalent nodal force P = q(t)l/4. Moreover, the vertical displacement at node C can be
expressed as follows:

∆C =
q(t)l2

2

(
3.81

ACEC
+

1.13
ASES

)
(41)

where AC and AS denote the cross-sectional areas of the cement and steel rods, respec-
tively. It should be indicated that AC and AS are interval variables with the ranges of
[0.0323 m2, 0.0357 m2] and [8.93 × 10−4 m2, 9.87 × 10-4 m2], respectively. Moreover, EC
and ES denote their elastic modulus, respectively. During the loading process, the vertical
displacement of node C should be less than D(t) that decays with time. The decay rule
is: D(t)=D0[1 + ln(1 – 0.0002t)], and D0 is the initial displacement. Table 6 lists the specific
situation of the random variable in this problem. The design base period is assumed to be
T = 10 years. The limit state function is defined as:

g(t) = D(t)− ∆C (42)

Table 6. Distribution of random variables of the roof truss structure.

Parameter Mean µ Standard Deviation σ Type of Distribution

q(N/m) 20,000 1600 Extreme I type
D0(m) 0.022 0.001 normal
l(m) 12 0.24 normal

ES(N/m2) 2×1011 1.4×1010 normal
EC(N/m2) 3×1010 2.4×109 normal

It can be seen again from Table 7 that the calculation results based on MCS method
are convergent, and the calculation time increases linearly with the increase of the number
of samples. As shown in Figure 7 and Table 8, the reliability indices are 3.35, 3.15, 3.04, 2.95,
2.88, 2.83, 2.78, 2.74, 2.70 and 2.67, which decreases significantly with time. Table 7 presents
that the maximum error between the results obtained by this method. It can be seen that
the errors are 1.52%, 1.29%, 1.67%, 1.72%, 1.77%, 1.80%, 1.83%, 2.24%, 2.27% and 2.30%,
respectively. Compared with MCS method, the maximum error is 2.30%. Once again, it
should be indicated that the results obtained by this method are very accurate. From the
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viewpoint of computational efficiency, this method only calls the limit state function 511
times, while MCS method calls the limit state function 9,999,463 times. The running time
of MCS method is 384.4 seconds, while the running time of the current method is 0.115 s.
This shows the effectiveness of the presented method.

Figure 7. Reliability index curve of roof structure in design reference period.

Table 7. Calculation results of Monte Carlo method under different sample numbers.

ns
Design Reference Period (Year) Time

(s)1 2 3 4 5 6 7 8 9 10

30,000 3.41 3.20 3.10 2.94 2.88 2.82 2.76 2.72 2.68 2.66 9.9

100,000 3.34 3.15 3.04 2.94 2.85 2.78 2.73 2.69 2.65 2.62 38.4

500,000 3.33 3.13 3.02 2.92 2.83 2.78 2.73 2.68 2.65 2.62 205.5

1,000,000 3.30 3.11 2.99 2.90 2.83 2.78 2.73 2.68 2.64 2.61 384.4

2,000,000 3.31 3.11 2.99 2.91 2.83 2.78 2.73 2.68 2.64 2.61 763.8

3,000,000 3.31 3.11 2.99 2.90 2.83 2.77 2.72 2.68 2.64 2.61 1153.8

Table 8. Reliability index of the roof truss structure in each design reference period.

Methods
Design Reference Period (Year)

1 2 3 4 5 6 7 8 9 10

MCS 3.30 3.11 2.99 2.90 2.83 2.78 2.73 2.68 2.64 2.61
Proposed method 3.35 3.15 3.04 2.95 2.88 2.83 2.78 2.74 2.70 2.67

Deviation/% 1.52 1.29 1.67 1.72 1.77 1.80 1.83 2.24 2.27 2.30

5.4. A Wing Structure

The reliability problem of the wing structure [45] is adopted to verify the application
of the presented approach in actual engineering. Figure 8 shows that the wing structure
consists of three ribs and a skin. The load F is applied to the left side of the wing, and the
other side is constrained in three directions.
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Figure 8. A wing structure.

The young’s modulus of the rib as an interval variable, the Poisson’s ratio and the
density, are E1, 0.35 and 4.0 × 103 kg/m3, respectively. Moreover, the young’s modulus
of the skin as an interval variable, the Poisson’s ratio and the density are E2, 0.35 and
1.8 × 103 kg/m3, respectively. It is worth noting that the rib thickness and skin thickness
are recorded as th and s, respectively.

The variables {th, s, E1, E2}T are independent from each other: th~N(3.0, 0.022),
s~N(3.0, 0.022) E1∈[42,750 MPa, 4,7250 MPa] E2∈[28,500 MPa, 31,500 MPa]. The wing
structure requires that during the design baseline period T = 10 years, the vertical de-
formation D(t) of the wing surface during the loading process should not exceed
D(t) = D0[1 + ln(1 − 0.0002t)], and D0 is the initial displacement. D0~N(85, 7.52).When
the design life is 5 years, the time-variant load is the F, and the maximum variable load
FT is subjected to an extreme value I distribution, µFT = 3000N, σFT = 350N. Therefore,
the limit state function of the wing structure can be defined as:

g(t) = D(t)− Dmax(E1, E2, F(t), s, th) (43)

where Dmax() denotes the maximum displacement of the structure, which can be achieved
through the finite element method (FEM).

Figure 9 shows that the wing structure adopts the finite element model composed
of hexahedron elements and four-node shell elements. The model has 2899 elements and
2869 nodes, respectively. Opstruct software is used to calculate this finite element model.
Then, the second-order response surface model is constructed through the Latin square
experimental design, which is mathematically expressed as follows:

Dmax(E1, E2, F(t), s, th) = 45.8996263360021 + 4.26848205843078× 10−5 × E1

−0.00148621547290688× E2 + 0.038913641543905× F(t)

−14.8883552537885× s− 0.91139115939223× th

−3.02398909744693× 10−10 × E2
1 + 1.59448056099034× 10−8 × E2

2

+4.91682235848162× 10−7 × F(t)2 + 1.66001878817579× s2

+0.0239216893925098× th2 + 1.30009641471656× 10−10 × E1 × E2

−1.57829880943195× 10−8 × E1 × F(t)− 4.75441415091528× 10−7 × E1 × s

−2.09147436555016× 10−6 × E1 × th− 4.38849189706437× 10−7 × E2 × F(t)

+0.00016322598362916× E2 × s + 1.10267118769858× 10−5 × E2 × th

+0.00450034073967354× F(t)× s + 0.000245652575761249× F(t)× th

+0.0447098069737952× s× th

(44)

Five sampling points are randomly chosen in the design space to verify the accuracy
of the approximate model. As shown in Table 9, the relative errors between the response
surface results based on these points and the simulation model results are 0.0077%, 0.0026%,
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0.0162%, 0.0214% and 0.0035%. The maximum error is much less than 0.1%, and the
response surface approximation model has high accuracy, which is completely acceptable
in engineering.

Figure 9. Finite element model of the wing structure.

Table 9. Accuracy verification of the response surface.

Test Point (E1, E2, F(t), s, th)
Relative Error of Finite Element Model

Dmax

(42,750, 29,500, 1130.833, 2.9832, 2.9832) 0.0077%
(43,250, 28,833.3333, 1156.389, 3.1167, 2.9499) 0.0026%

(43,750, 31,500, 1169.167, 3.15, 3.15) 0.0162%
(44,250, 30,833.3333, 1207.5, 2.8833, 3.0834) 0.0214%
(45,250, 30,166.6667, 1092.5, 3.0168, 3.1167) 0.0035%

Figure 10 and Table 10 present reliability indices under the design reference period for
a certain wing surface structure. The reliability indexes calculated by the current method
are 3.63, 3.45, 3.34, 3.26, 3.20, 3.14, 3.10, 3.06, 3.02 and 2.99. The calculation results show that
due to the attenuation of dynamic load and maximum displacement, the reliability index is
no longer a fixed value, but gradually decreases from 3.63 to 2.99 with the design lifetimes
increase. Comparing the obtained results with calculations through the MCS demonstrates
that the maximum error between the two methods is 0.91%, indicating the high accuracy
of the presented approach. In terms of computational efficiency, the total number of calls
to the response surface approximation model of limit state function is only 83, while MCS
needs to call 9,991,818.

Figure 10. Reliability index curve of machine wing surface structure in design reference period.
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Table 10. Reliability index of the wing surface structure for different design periods.

Methods
Design Reference Period (Year)

1 2 3 4 5 6 7 8 9 10

Proposed method 3.63 3.45 3.34 3.26 3.20 3.14 3.10 3.06 3.02 2.99
MCS 3.63 3.44 3.32 3.24 3.17 3.12 3.07 3.03 3.00 2.97

Deviation/% 0.02 0.29 0.45 0.56 0.71 0.74 0.79 0.88 0.91 0.84

6. Conclusions

In the present article, a time-variant reliability analysis method is proposed for mixed-
variable structures. The time-variant reliability problem of structures with mixed variables
is transformed into a time-variant reliability problem of structures with random variables.
Then the stochastic process is discretized and the static limit state functions of different
periods are obtained. After the original problem is changed into an invariant reliability
problem, the first-order second-moment method is applied to solve the problem. Finally,
the reliability index under the design base period is obtained.

In order to evaluate the performance of the presented approach, it is applied to three
numerical and one engineering case studies. Obtained results show that in the studied
cases, the performance of the presented approach is very close to that of the Monte Carlo
method. Moreover, it is found that the proposed algorithm avoids multi-layer nesting
optimization and greatly improves computational efficiency.

The present method can be extended to time-variant reliability analysis problems with
convex set variables and probability variables, and to multidisciplinary reliability analysis
problems. When the range of interval parameters are big, the computational expenses of
the proposed method cannot be justified. In order to resolve this shortcoming, improving
the efficiency of time-variant hybrid reliability analyses will be discussed in the near future.
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