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Abstract: This paper proposes a hybridized simheuristic approach that couples a greedy randomized
adaptive search procedure (GRASP), a Monte Carlo simulation, a Pareto archived evolution strategy
(PAES), and an analytic hierarchy process (AHP), in order to solve a multicriteria stochastic permuta-
tion flow shop problem with stochastic processing times and stochastic sequence-dependent setup
times. For the decisional criteria, the proposed approach considers four objective functions, including
two quantitative and two qualitative criteria. While the expected value and the standard deviation of
the earliness/tardiness of jobs are included in the quantitative criteria to address a robust solution
in a just-in-time environment, this approach also includes a qualitative assessment of the product
and customer importance in order to appraise a weighted priority for each job. An experimental
design was carried out in several study instances of the flow shop problem to test the effects of the
processing times and sequence-dependent setup times, obtained through lognormal and uniform
probability distributions with three levels of coefficients of variation, settled as 0.3, 0.4, and 0.5. The
results show that both probability distributions and coefficients of variation have a significant effect
on the four decision criteria selected. In addition, the analytical hierarchical process makes it possible
to choose the best sequence exhibited by the Pareto frontier that adjusts more adequately to the
decision-makers’ objectives.

Keywords: permutation flow shop; simheuristic; multicriteria; PAES; GRASP; AHP

1. Introduction

The flow shop problem (FSP) is a largely studied scheduling problem, as it mod-
els a wide set of industrial manufacturing environments [1], such as in the chemical,
food-processing, automobile, and assembly industries. The purpose of solving the stated
problem lies in determining the best processing sequence from n production jobs to pro-
cess on m machines placed in series, aiming to optimize one or several KPIs such as the
flowtime, makespan, earliness, or tardiness. A permutation flow shop scheduling problem
(PFSP), which is an extension case of the FSP, considers only permutation schedules, i.e., the
processing sequence of the jobs is the same for all m machines. The PFSP is considered
an NP-complete problem for three or more machines [2] and an NP-hard problem for
one or more machines when minimizing tardiness [3]. Furthermore, this problem aug-
ments the complexity when the uncertainty is considered for its resolution. From several
approaches, a preliminary approach for tackling the stochastic permutation flow shop prob-
lems is elaborating a systematic procedure that includes uncertainties within the scheduling
problems [4]. In fact, the scheduling problem and the associated complexity could be as
important for designing a proper systematic technique to solve these problems [4].

After analyzing the literature on the FSP and PFSP, four aspects should be highlighted.
At first, a set of approaches in the literature considers a single performance indicator as the
objective function. The most common approaches are related to the makespan, due date, or
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just-in-time characteristics. The makespan or the expected makespan indicator, which is an
absolute performance indicator, focuses on minimizing the lapsed time from the start to the
end of the execution [5,6]. The due date indicator, which is a relative performance indicator,
compares the objective function regarding the expected processing completion. The just-
in-time indicator, which is an accuracy performance indicator, indicates the positive or
negative deviation occurring from an expected completion time. Certainly, the use of each
performance indicator depends on the aim from the scheduling perspective.

Second, another set of approaches is focused on single-objective problems rather than
multicriteria problems. Certainly, even industrial problems must solve various objectives
simultaneously [7], and researchers have focused on optimizing a single objective function
rather than multiple ones. This issue can be addressed by considering earliness and
tardiness objectives jointly in a JIT environment.

Third, most studies consider only quantitative decision criteria. However, researchers
have recently become interested in qualitative criteria as this approach might reduce the
gap between the theoretical concept of problems and the execution. Some examples are
Chang and Lo [8] and Chang et al. [9]. These authors studied a multicriteria job shop,
whereas the customers’ strategic importance was considered as a qualitative criterion.
While Chang and Lo [8] proposed a hybridized genetic algorithm, tabu search, analytic
hierarchy process, and fuzzy theory to solve the problem, Chang et al. [9] proposed a
hybridization of an ant colony algorithm and an analytic hierarchy process for solving
the FSP. Another approach minimized the expected costs of tardiness as a quantitative
criterion and strategic customer importance as a qualitative criterion in a stochastic hybrid
FSP [10]. The authors employed a GRASP metaheuristic and a Monte Carlo simulation
method with a stochastic multicriteria acceptability analysis to handle both qualitative and
quantitative criteria.

Finally, some research approaches consider scheduling under uncertain conditions,
and these are generally divided into two approaches: the stochastic approach, in which
parameters are modeled with probability distributions (PDs) aiming to minimize the
expected value of a selected metric, and the robust approach (RA), in which uncertain
parameters are modeled with intervals and the schedule obtained is more stable and less
variable. Nonetheless, previous studies have not dealt with a combination of stochastic and
robust approaches for solving the flow shop problem. Companies can collect production
data in a short time, yielding enough data to accurately estimate the probability distribution
of uncertain parameters. Then, we believe that the latter approach leverages the robust
schedule as it can be more easily adjusted than other schedules in which uncertainties are
modeled with intervals.

One of the recent approaches to solve stochastic combinatorial optimization problems
is simheuristics. These hybridize a metaheuristic approach with a simulation to obtain
solutions for stochastic problems. Simheuristics have been successfully used in vehicle
routing problems [11-13], inventory routing problems [14], facility location problems [15],
and scheduling problems [16-19].

In this sense, this paper attempts to contribute to the literature by proposing a system-
atic technique for solving the stochastic permutation flow shop problem (SPFSP) consider-
ing stochastic processing times and sequence-dependent setup times to optimize multiple
criteria. To the best of our knowledge, no previous study has included the simultaneous
analysis of a JIT environment with stochastic parameters, quantitative metrics, and quali-
tative metrics for obtaining robust solutions. Therefore, the current research proposes a
multicriteria simheuristic approach to solve an SPESP, including both quantitative and
qualitative objectives, providing robust solutions. On the one hand, for quantitative ob-
jectives, the proposed approach addresses the expected earliness/tardiness (E[E/T]) and
the standard deviation of earliness/tardiness (SD(E/T)), for estimating the JIT metrics and
obtaining several robust schedules. On the other hand, as qualitative metrics, this research
considers the expected customer importance of jobs (E[CI]) and the expected product im-
portance (E[PI]), favoring the job priority for the company. Then, this paper considers both
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customer and product importance as a company might be more interested in delivering
high-profitability products regardless of the customer or, conversely, it might be more
interested in delivering frequently with high-spending customers rather than sporadic
ones. This paper is an extension of a previous conference work [20] that only considered
one qualitative criterion and solved a partial set of benchmark instances. This work in-
cludes one more qualitative criterion (the maximization of the accomplishment of product
importance) and executes more computational experiments by evaluating 180 instances
proposed by [21] and analyzing the behavior of Pareto frontiers with more coefficients of
variation of processing times and sequence-dependent setup times.

The remainder of this paper is organized as follows. Section 2 presents a literature
review of the single-objective stochastic FSP (SFSP), robust FSP, and multi-objective SFSP.
Section 3 describes the proposed solution for the SPFSP under qualitative and quantitative
decision criteria. Section 4 provides the results of the computational experiments that
validate the proposed approach. Finally, conclusions and recommendations for future
work are presented in Section 5.

2. Literature Review

The deterministic FSP is one of the most frequently studied problems in the schedul-
ing literature, but the stochastic version has been addressed less often. The FSP under
the conditions of uncertainty has received more attention recently because it is closer
to real manufacturing environments. Nevertheless, there are fewer FSP studies under
uncertain conditions than there are deterministic FSP studies. For the literature reviews,
deterministic FSPs and its solution methods have more than ten literature reviews, includ-
ing Yenisey and Yagmahan [7], Pan and Ruiz [22], Arora and Agarwal [23], Nagano and
Miyata [24], Rossit et al. [25], and Fernandez-Viagas et al. [26]. Meanwhile, their stochastic
and uncertain counterparts have had only two literature reviews in the past 18 years, Gour-
gand et al. [5] and Gonzalez-Neira et al. [27]. Studies of the FSP with uncertainty generally
use one of three approaches to deal with uncertain parameters: the stochastic approach,
the robustness approach, and the fuzzy approach. The most frequently used approach is
stochastic, with the uncertain parameters modeled using probability distributions. Exam-
ples of this approach can be found in Framinan and Perez-Gonzalez [28], Lin and Chen [29],
and Qin et al. [30]. For the robustness approach, there is no need for acknowledging the
distribution of the data of uncertain parameters due to this being modeled with intervals
or datasets. Examples of this approach can be found in Fazayeli et al. [31] and Ying [32].
For the fuzzy approach, uncertain parameters are modeled using fuzzy numbers, as in
Behnamian and Fatemi Ghomi [33] and Huang et al. [34].

The aim of this paper is to obtain robust schedules for the stochastic permutation
flow shop problem (SPFSP), considering both quantitative and qualitative objective criteria.
Then, the literature review in this paper is organized into four subsections: Section 2.1
presents the literature review for single-objective SFSPs. Section 2.2 presents an overview
of studies using the robust FSP with a single objective. Section 2.3 examines current ap-
proaches for a multi-objective FSP under uncertain conditions, including robust, stochastic,
and fuzzy approaches. Section 2.4 presents a review of qualitative production criteria.

2.1. Single-Objective SFSP

Since the 1950s, the deterministic FSP has received considerable attention, but the SFSP
has been less studied because it is more difficult to solve than the deterministic version.
Nevertheless, with the advances in computation, the SFSP has been studied more in the
last few years. Therefore, we present in chronological order the most important studies on
the SFSP since its beginnings.

From the early days of this topic until the 2010s, the following approaches have
been found. Makino [35] presented an optimal solution for the expected makespan in
an SFSP with two jobs and general distributions for two machines, as well as with three
machines, considering the exponential and Erlang distributions of the processing times.
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Talwar [36] proposed a rule to optimally sequence n jobs and two machines with expo-
nentially distributed processing times, and this was proved optimal by Cunningham and
Dutta [37]. Alcaide et al. [38] developed a dynamic procedure for considering stochas-
tic machine breakdowns in an SFSP. This procedure can obtain an optimal solution for
the initial stochastic problem when the associated without-breakdowns stochastic partial
problems are solved optimally. Gourgand et al. [39] proposed simulated annealing with a
Markovian model to solve the SPFSP with stochastic processing times and limited buffers.
Wang et al. [40] presented a genetic ordinal optimization approach that hybridizes ordinal
optimization, optimal computing budget allocation, and a genetic algorithm with uni-
formly distributed processing times. Kalczynski and Kamburowski [41] developed a new
rule that enables optimal solutions when processing times are Weibull distributed. This
rule includes Johnson’s and Talwar’s rules as special cases. Portougal and Trietsch [42]
proposed a heuristic called API that consists of two steps: (1) the ordering of jobs with
expected processing times through Johnson’s rule and (2) applying all possible interchanges
of two jobs in the sequence.

Then, in the early 2010s, Baker and Trietsch [43] compared Talwar’s, Johnson’s, and the
API rules, testing different types of probability distributions. The authors concluded that for
a high coefficient of variation, Talwar’s and Johnson’s rules yield better results, but when
the coefficients of variation are low, Johnson’s rule alone provides good results. Baker and
Altheimer [44] compared three heuristic procedures adapted from rules that performed
well in deterministic counterparts. The procedures used were CDS/Johnson, CDS/Talwar,
and NEH. The authors found that NEH had the best results. Elyasi and Salmasi [45] solved
the SFSP considering normally distributed processing times and variances proportional to
their means, as well as gamma distributed processing times with the same scale parameter
for all jobs. The authors aimed to minimize the expected tardy jobs by using chance
constraint programming. Elyasi and Salmasi [46] proposed a dynamic method to solve the
SFSP in which the stochastic parameters were the due dates of jobs, in order to minimize
the expected tardy jobs. Juan et al. [18] developed a simheuristic that involves an iterated
local search metaheuristic considering stochastic processing times distributed lognormally.
Framinan and Perez-Gonzalez [28] compared well-known heuristics through a simulation
procedure with a variable number of iterations and different probability distributions.
The procedures compared were stochastic NEH, stochastic CDS/Talwar, deterministic
NEH, deterministic CDS/Talwar, and deterministic NEH using CDS/Talwar as the initial
solution. These authors found that stochastic NEH obtained the best results.

Finally, in the late 2010s and the beginning of the 2020s, Gonzalez-Neira et al. [47]
minimized the expected makespan in a distributed assembly PFSP with stochastic pro-
cessing times through a GRASP simheuristic, evaluating the robustness of the problem as
well. Gonzélez-Neira et al. [48] compared thirteen dispatching rules through a simulation
procedure with variable iterations for ten different objective functions (five expected values
and five standard deviations of the makespan, flowtime, tardiness, maximum tardiness,
and tardy jobs) under lognormal, uniform, and exponential distributions of processing
times. Hatami et al. [17] addressed a parallel SFSP where products had components pro-
duced in different parallel flow shops. The authors developed a simheuristic that embeds
an iterated local search algorithm to minimize the expected makespan and makespan
percentiles. Marichelvam and Geetha [49] considered uncertain processing times and
machine breakdowns to minimize the makespan. To solve the problem, a hybridization of
a firefly algorithm and a variable neighborhood algorithm was designed, demonstrating
promising results with extensive computational experiments. Villarinho et al. [50] proposed
a simheuristic that integrates a biased randomized heuristic into a variable neighborhood
descent with Monte Carlo simulation to maximize the expected payoff in an SFSP that
considers stochastic processing times.
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2.2. Robust FSP

Such as the studies on the SFSP, few studies have addressed the robustness for the FSP.
Table 1 presents the main characteristics of previous studies in this field. As the table shows,
most of them studied the makespan as a single objective, and only three works addressed
multiple objectives. These three studies included only one parameter under uncertainty
conditions. While Liu et al. [51] studied stochastic machine breakdowns, dynamic job
arrivals, and unexpected job availability, Liao and Fu [52] and Goli et al. [53] considered
uncertain processing times. It is important to note that none of these works simultaneously
studied stochastic sequence-dependent setup times and stochastic processing times while
considering robustness.

2.3. Multi-Objective FSP under Uncertainty Conditions

Few works have examined uncertainties simultaneously with multi-objective decisions
in comparison with a single objective. Table 2 presents the main characteristics of the studies
performed in this area. Makespan, tardiness, and flowtime are the most analyzed measures,
and earliness is not widely studied. In addition, stochastic setup times are not considered.
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Table 1. Modeling approaches for the stochastic flow shop problem (SFSP) that address robustness.

Reference

Objective Function(s)

Problem Characteristics

Solution Approach

Remarks

Azadeh et al. [54]

Makespan.

Normally distributed process-
ing times.

Genetic algorithm.

Considered that jobs have different expected completion times or
different expected due dates.

Liu et al. [55]

Makespan.

Processing times with a nor-
mal probability distribution.

Improved genetic algorithm with a new generation
scheme, which can preserve the good characteristics
of the parents in the new generations. Robustness
is achieved by maximizing Prob(Cmax < expected
completion time)

No recommendations given.

Kasperski et al. [56]

Makespan.

Two-machine PFSP. Process-
ing times modeled through
scenario sets.

2-approximation algorithm.

The 2-approximation algorithm may be improved to find results
better than the 2 worst-cases’ ratio for the unbounded min-max
version.

Goren and Pierreval [57]

Makespan.

Machine breakdowns gener-
ated by a generic probability
distribution.

The multimodal optimization approach generates dif-
ferent schedules, and the most robust solution is se-
lected depending on the negative effects of machine
breakdowns.

High flexibility given to the decision-maker for dealing with addi-
tional concerns. The inclusion of preference aggregation methods
with social choice theory is recommended.

Rahmani and Heydari [58]

Makespan.

Dynamic arrivals. Processing
times under a uniform distri-
bution.

Proactive-reactive approach.  Proactive robust
method and reactive phase that incorporates dynamic
arrivals that minimize the deterministic makespan.

No recommendations given.

Ying [32]

Makespan.

Two-machine flow shop. Inter-
val processing times.

Simulated annealing and iterated greedy algorithm
implemented independently.

The iterated greedy algorithm achieved better results in small in-
stances, and simulated annealing performed better in large instances.

Fazayeli et al. [31]

Makespan.

B-robustness criterion.

Simulation-optimization algorithm that incorporates
genetic and simulated annealing algorithms.

No recommendations given.

Shahnaghi et al. [59]

Makespan.

Interval processing times/
interval setup times.

Particle swarm optimization hybridized with the Bert-
simas and Ben-Tal robust models.

The Bertsimas model performed better than the Ben-Tal model for
large instances. Implemented these models for other scheduling
problems.

Liuetal. [51]

Flowtime and dissatisfaction
of managers, operators, and
customers.

Uncertain machine breakdown.

Proactive-reactive approach that hybridizes a non-
dominated sorting genetic algorithm, a multi-
objective evolutionary algorithm, and a multi-
objective memetic algorithm.

The robustness measure is determined by the expected flowtime
and its stability by the dissatisfaction of managers, operators, and
customers.

Gholami-Zanjani et al. [60]

Weighted mean completion
time.

Interval setup times and pro-
cessing times.

Ben-Tal and robust optimization and fuzzy optimiza-
tion.

Comparison of robust, fuzzy, and deterministic solutions, obtaining
that the robust method gives better solutions regarding variability.

Cwik and Jozefczyk [61]

Makespan.

Interval processing times.

Minimax regret criterion hybridized with a new pro-
posed greedy algorithm.

The greedy algorithm outperforms the middle and evolutionary
interval approaches (OSP).

Liao and Fu [52]

Makespan and tardiness.

Interval processing times

Min-max regret criterion hybridized with a meta-
heuristic.

According to the authors, this manuscript compensated the lack
of the consideration of tardiness.

Goli et al. [53]

Weighted completion times
and costs of outsourcing.

Interval processing times.

Robust mixed-integer linear programming model.

The authors evaluated the model against a nonlinear programming
model, demonstrating the effectiveness of their development.
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Table 2. Modeling approaches for the multi-objective stochastic flow shop problem (MO-SFSP).

Reference

Objective Function(s)

Problem Characteristics

Solution Approach

Remarks

Forst [62]

Total weighted tardiness and total
weighted flowtime.

Stochastic processing times and
common due dates.

Theorem.

Optimal solutions can be obtained by sequencing the
jobs in increasing stochastic order of their processing
times. Study other measures as the expected tardy
jobs of expected variation in flowtimes.

CELANO et al. [63]

Makespan and maximum tardi-
ness.

Fuzzy processing times and
fuzzy due dates.

Genetic algorithm.

No recommendations given.

Temiz and Erol [64]

Fuzzy makespan, fuzzy maximum
tardiness, and fuzzy total flowtime.

Fuzzy processing times and
fuzzy due dates.

Genetic algorithm.

The algorithm produces efficient solutions for
medium- and large-sized problems in a reasonable
amount of time.

Qiang Zhou and Xunxue Cui [65]

Flow time and delay time of jobs.

Stochastic processing times and
stochastic machine breakdowns.

Hybrid multi-objective genetic algorithm.

No recommendations given.

Azadeh et al. [66]

Makespan and mean completion
time.

Stochastic  processing times,
stochastic machine breakdowns,
and stochastic setup times.

Artificial neural network.

The advantage of the proposed solution approach is
the reduction in the number of simulations runs and,
consequently, a reduced run time. Furthermore, this
is the first study that introduced an intelligent and
flexible algorithm for handling the stochastic two-
machine FS problem.

Liefooghe et al. [67]

Makespan and total tardiness.

Stochastic processing times.

Evolutionary algorithm.

The authors demonstrated that an uncertainty-
handling strategy is a key issue to obtain good-quality
solutions and that the algorithm’s performance is
strongly related to the level of uncertainty about the
environment.

Rahmani et al. [68]

Fuzzy makespan, flowtime, and to-
tal tardiness.

Stochastic processing times and
stochastic release times.

Chance constrained.

The genetic algorithm was allowed to solve large in-
stances with relatively good solutions in a reasonable
computational time.

Mou et al. [69]

Hamming distance, adjustment of
total completion times, and adjust-
ments of processing times.

Inverse permutation flow shop
scheduling problem and stochas-
tic processing times.

Hybrid multi-objective evolutionary algorithm
with the NEH-based insertion method.

The algorithm presents better results than a nondom-
inated sorting genetic algorithm. The study can be
extended by adding other measures.

Fu et al. [70]

Expected makespan and expected
tardiness.

Stochastic processing times with
deteriorating and learning ef-
fects.

Multi-objective discrete fireworks algorithm.

The algorithm presents good results in comparison
with the MILP model for small instances.

Gonzalez-Neira et al. [16]

Expected tardiness and standard
deviation of tardiness.

Stochastic processing times.

Simheuristic that hybridizes the Pareto archive
evolution strategy with tabu search.

The algorithm presents good results for the determin-
istic case and obtains the Pareto frontier of expected
tardiness and standard deviation of tardiness.

Faraji Amiri and Behnamian [71]

Makespan and energy consumption.

Stochastic processing times.

Mathematical formulation and scenario-based es-
timation of the distribution algorithm.

The algorithm obtains the Pareto frontier of the
makespan and energy consumption and presents
good results in comparison to another algorithm.
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2.4. Qualitative Criteria

Within organizations, main processes have their own objectives, which are often in
conflict. For instance, the objectives of marketing involve maximizing service levels and
sales; procurement seeks the prioritization of products and order replenishment; and pro-
duction and manufacturing aim to maximize throughput and minimize costs. That is why
it is important to use an approach that takes into account all of these objectives simultane-
ously [72]. In this context, production should consider marketing criteria (often qualitative)
in the decision-making process in order to improve customer service and reduce conflicts
between marketing and production [73]. Among the marketing objectives, production
planning is affected by the product importance and customer importance. Georgakopoulos
and Mihiotis [74] analyzed these two aspects in a distribution network design. Considering
the product importance, aspects such as turnover, profit rate, image, and discount policies
must be considered in order to categorize the product. With regard to customer importance,
aspects such as turnover, image, and customer requirements must be considered in order
to categorize the customer. For instance, Gonzalez-Neira et al. [10] included the customer
importance in a hybrid FSP through the integral analysis method Garcia Céceres et al. [75]
based on stochastic multicriteria acceptability analysis Lahdelma et al. [76].

The academic literature includes very few studies on scheduling problems that consid-
ered qualitative decision criteria. As stated above, Chang and Lo [8] and Chang et al. [9]
proposed a multicriteria objective function that included qualitative aspects such as mar-
keting considerations, the strategic importance of customers, and order profit/risk in a job
shop environment with fuzzy parameters. Chang and Lo [8] proposed a GA /TS approach
hybridized with AHP, while Chang et al. [9] examined an ant colony optimization with an
AHP process to solve job shop problems. In our opinion, some possible reasons for the few
studies on this research topic are the lack of objectivity while measuring these metrics and
the difficulty of having unbiased indicators.

3. Proposed Approach

This paper proposes a simheuristic technique that integrates Monte Carlo simulation
into a GRASP metaheuristic hybridized with the Pareto archived evolution strategy (PAES)
technique for optimizing multiple objectives. Interested readers may consult Resende
and Ribeiro [77] for the GRASP metaheuristic and Knowles and Corne [78] for the PAES
technique. In addition, an AHP methodology is integrated with the simheuristic to assess
the Pareto solutions under different weight arrays for the selected criteria. The algorithm is
named multicriteria simheuristic with GRASP (MC-SIM-GRASP). A GRASP metaheuristic
for optimization purposes was selected due to it having the advantage of constructing its
own initial solution and the no memory characteristic, which makes it useful for scheduling
problems. PAES was selected because it has the advantage of avoiding favoring a search
direction in the local search and exploring different solutions across the Pareto front.

3.1. MC-SIM-GRASP: Construction Phase

The purpose of the construction phase in GRASP and in the proposed algorithm is
to construct a solution by the sequential aggregation of jobs to the solution from a set
of possible jobs ranked through a greedy or fitness function. Even though the studied
problem is a multicriteria objective, a pure strategy was selected for the construction phase,
meaning that a unique objective function guides the entire construction [79]. Then, for this
phase, an earliest due date (EDD) rule was selected to deal with the earliness/tardiness
objective as a single greedy function. However, considering the other functions, a respective
penalization was included for the customer and product importance functions regarding
each job, each depending on customer importance or product importance, in comparison
with the position of the job in the sequence. Table 3 shows the penalization for the customer
importance criterion for an example of 10 jobs with five levels of customer importance.
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These penalization scores are based on the following criteria: A job that is not belated has
a score of zero. If a job is delayed, the penalization is greater if the customer importance
is high and lower if the customer importance is low. Then, the job penalization increases
if the job is taking the place of a job that has greater importance. The case study for
this paper defines five levels of customer importance, where Level 1 corresponds to the
most important customers and Level 5 to the least important. For the instances tested
in this research, the customer importance for each job was randomly assigned using the
probabilities indicated in Table 4. Naturally, this scale for customer importance and the
probability of the importance level were established here for testing purposes. In real
scenarios, the assignment of customer importance will not be probabilistic, but rather
deterministic according to the views of the decision-maker. A similar procedure was
conducted to assign a product importance for each job and the corresponding penalization.

Table 3. Job sequence position penalization depending on customer importance.

Job ID 5 4 100 1 3 7 2 6 9 8
Customer Importance 1 2 2 2 3 3 4 4 4 5
1 1 5 5 5 7 7 7 7 7 5
2 6 1 1 1 4 4 5 5 5 4
3 6 1 1 1 4 4 5 5 5 4
4 6 1 1 1 4 4 5 5 5 4
b ition i 5 11 5 5 5 1 1 3 3 3 3
Job position in sequence 6 1 5 5 5 1 1 3 3 3 3
7 16 9 9 9 4 4 1 1 1 2
8 16 9 9 9 4 4 1 1 1 2
9 16 9 9 9 4 4 1 1 1 2
10 21 13 13 13 7 7 3 3 3 1
Table 4. Customer importance probability.
Customer Importance 1 2 3 4 5
Probability of Occurrence 8% 12% 20% 28% 32%

The main contribution of the construction phase of the proposed approach is the
alternation of three different greedy functions at each iteration of GRASP. For instance,
the first iteration begins the construction phase with an EDD rule criterion; the second
iteration continues using the customer importance; and the third iteration continues using
the product importance. These iterations are repeated in the same order until the solu-
tion/schedule is completed. It is important to note that the EDD rule criterion is used
to guide the constructions for both the earliness/tardiness mean and standard deviation
objectives at the same time. Inside each step of construction, the restricted candidate list
(RCL) is defined as the subset of jobs with the best value of 10% of the total range of the
greedy function values obtained. A job is then randomly selected from the RCL to form
part of the solution. The method continues iteratively until all jobs have been scheduled,
included in the solution. After the sequence is completed, a Monte Carlo simulation is
performed with as many runs as needed to obtain confidence intervals of at least 1% for
the four objective functions (expected earliness/tardiness, standard deviation of earli-
ness/tardiness, customer importance, and product importance). In the first iteration of the
construction phase, this solution is included in the nondominated solutions (NDS) archive,
which is initially empty. In the remaining iterations, this solution is evaluated using PAES
to determine whether it is considered within the set of NDS. Figure 1 presents the flow
diagram of the construction phase of the proposed approach.
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Yes

Use a Monte Carlo simulation of the required runs to obtain
confidence interval of £1% around expected earliness/tardiness,
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Archive

GRASP _Iterations = 1?

Figure 1. Flowchart of the GRASP construction phase.
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3.2. MC-SIM-GRASP: Local Search Phase

The purpose of the local search phase in GRASP and in the proposed algorithm is to
execute consecutive iterative improvements of the solution obtained from the construction
phase to obtain a better solution. In this paper, the local search phase consists of 2-
opt interchanges between jobs. Each time an interchange is performed, a Monte Carlo
simulation is executed to estimate the four objective functions with a confidence interval
accuracy of at least 1% for each value and a confidence of 95%. The solution is then
evaluated to decide whether it should be placed in the NDS archive. If so, the other
solutions already saved in the NDS archive are evaluated to determine whether they
should remain in the NDS archive. If the solution does not belong in the NDS archive, it is
discarded. This procedure is conducted according to the PAES proposed by Knowles and
Corne [78]. A MC-SIM-GRASP iteration ends when no interchanges can enter into the NDS
archive, and a new iteration is begun, maintaining the actual NDS archive. The simheuristic
stop time is established as the number of jobs x number of machines x 1.0 second. Figure 2
presents the flowchart of the local search phase.

| Countl = I and Count2 = Countl + 1 |

[ Tnterchange jobs in positions Countl and Count2 and save this |
] new sequence as SQ’ ™

Use a simulation of many runs as needed to estimate expected
earliness/tardiness, standard deviation of ealiness/tardiness,
expected customer importance penalization, expected product
importance penalization of SQ” with an error or +-1% around
mean and a confidence of 95%

Discard SQ —Yes

Countl + 1

[

‘ Countl = 1 and Count2 =

Replace SQ with SQ’and save it
to the archive of pareto
solutions
A

Count2 = Count2
+1 B

ount2 <= number’
of jobs?

Q’ is dominated by any member
of the Archive of Pareto solutions?.

Add SQ’ to the
archive

Count] = Countl

+1

Count2 = Countl
+1

Is SQ’in a less
crowded region of the archive
than SQ?

aximunTiTe 1 Add SQ’ to the archive in the position of such
reached? member X that is in the most crowded region

Yes

Evaluate each solution of the pareto Archive
with the vector of weights of AHP

Print archive of Pareto Solutions
with its respective AHP score

End

Figure 2. Flowchart of the GRASP local search phase.
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3.3. NDS Archive Solution Selection Using the AHP Methodology

After the MC-SIM-GRASP has finished, the entire Pareto sequence is scored using the
AHP methodology. As is shown in Table 5, eight vectors are used for the criteria weights
for the four objectives. First, a 4 x 4 pairwise comparison matrix is created for scoring
each ith objective function versus the jth objective, on a scale from 1 to 9, as indicated in
the AHP technique. An example of the obtainment of a criteria weight vector is shown in
Table 6. Then, eight different comparisons are performed to obtain the eight mentioned
different vectors of the criteria weights. Considering the usage of each weight vector,
the Pareto frontier solution that presents the best AHP score can be selected. In order
to compute the matrix of option scores, for each pair of sequences s; and s, we divided
the expected earliness/tardiness of s; by the expected earliness/tardiness of s,, so if the
division is greater than 1, the earliness/tardiness of s; is worse than the earliness/tardiness
of 55, and vice versa. Similar divisions are performed for the other two objective functions
(standard deviation of earliness/tardiness and customer importance).

Table 5. Criteria weights for Pareto solutions.

Weights Vector
Objective Function 1 2 3 4 5 6 7 8
E[E/T] 57.64% 25.56% 5.07% 5.07% 11.72% 11.72% 25.56% 57.64%
SD(E/T) 25.56% 57.64% 57.64% 25.56% 5.07% 5.07% 11.72% 11.72%
CI 11.72% 11.72% 25.56% 57.64% 57.64% 25.56% 5.07% 5.07%
PI 5.07% 5.07% 11.72% 11.72% 25.56% 57.64% 57.64% 25.56%

Table 6. Example of AHP scores and the resultant priority vector.

E[E/T] SD(E/T) CI PI Resulting Weight Vector
E[E/T] 1 1/3 3 5 25.56%
SD(E/T) 3 1 5 9 57.64%
CI 1/3 1/5 1 3 11.72%
PI 1/5 1/9 1/3 1 5.07%

4. Computational Experiments and Statistical Analysis

For experimentation purposes, a set of 180 benchmark instances proposed by
Ciavotta et al. [21] were selected to evaluate the effects of different probability distributions
(PDs) and coefficients of variation (CVs) of the processing and setup times in the objective
functions. Specifically, the 180 instances were 10 instances for each combination of 20, 50,
and 100 jobs with 5, 10, and 20 machines and a size of sequence-dependent setup times of
50% and 125%. Two PDs, lognormal, uniform, and three CVs, 0.3, 0.4, and 0.5, were selected
to model both the stochastic processing and setup times. This corresponds to 6480 NDS
archives. The proposed method was implemented in Java and run on an Intel Core i7-4770
with a 3.4 GHz processor and 8GB of RAM. The stopping criterion for MC-SIM-GRASP
was established as numberOf Jobs - numberO f Machines - 1.0 s. The best-qualified solution
of each NDS archive was selected by using the AHP method. This results in a total of 51,840
solutions, each of which has an AHP score and a value for the four objective functions.
Four ANOVAs were conducted to jointly analyze the effect of the eight factors on the four
selected objective functions (E[E/T], SD[E/T], E[CI], and E[PI]). The factors selected for the
experimental design are: probability distribution of processing times (PDPT), coefficient
of variation of processing times (CVPT), probability distribution of setup times (PDST),
coefficient of variation of setup times (CVST), the vectors of criteria weights of the AHP
(WV), number of jobs, number of machines, and generation size of the standard deviation
of sequence-dependent setup times (SDST). The factors and their levels are presented in
Table 7.
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Table 7. Factors of the experimental design and their corresponding levels.

Factor Levels

PD of processing times (PDPT) lognormal [Ign] and uniform [unf]

CV of processing times (CVPT) 0.3,0.4 and 0.5
PD of setup times (PDST) lognormal [lgn] and uniform [unf]

CV of setup times (CVST) 0.3,0.4,and 0.5

vectors of criteria weights of AHP (WV) 1,2,3,4,5,6,7,and 8
number of jobs 20, 50, and 100
number of machines 5,10, and 20
generation size of SDST SSD50, and SSD125

The results showed that all main effects are statistically significant on the four objective
functions except PDPT for E[CI] and E[PI] and the PDST and CVST for E[PI]. Neverthe-
less, some double and triple interactions that include the PDPT, PDST, and CVST have a
significant effect on E[CI] and E[PI]. In fact, for at least one of the four objective functions,
the double interaction effects are also significant (see Table 8). This shows that the WV
discriminates among the Pareto solutions, helping the decision-maker select a solution
from the Pareto frontier. We identified in addition that as the CVPT and CVST increase,
the expected value of earliness (E[E/T]) and the standard deviation of earliness tardiness
indicator (SD[E/T]) augment as well. The same occurs with E[CI], but not to the same
degree. Additionally, the measures tend to be greater for the lognormal distribution than
for the uniform distribution. This shows the importance of accurately fitting the PD to
obtain adjusted robust measures.

Figures 3 and 4 show the main effect plots of the factors WV, PDST, PDPT, CVST,
and CVPT on E[E/T] and SD[E/T], respectively. The axes of the main effect plots are the
levels of each factor. It can be seen that for different weight vectors, the objectives E[E/T]
and SD[E/T] imply that the AHP is capable of selecting a different solution of the Pareto
frontier according to the preferences given by the decision-maker in the AHP method.
In the case of the probability distributions (the PDST and PDPT factors), the lognormal
distribution presents a slightly greater E [E/T] and SD[E/T] in comparison with the
uniform distribution, which gives the idea that despite using the same expected values
of the processing and setup times under the same coefficient of variation, the solutions
vary with the change of the distribution used. Additionally, as expected, as the coefficient
of variation of the setup and the processing times increase (the CVST and CVPT factors)
the objectives E[E/T] and SD[E/T] also increment, indicating a higher variability in the
obtained solutions of the Pareto frontier. These aspects led us to highlight the importance
of including uncertainty in the optimization problem when it is really present, and the
value of making an accurate distribution fitting to make adequate decisions.



Algorithms 2021, 14,210

14 of 22

Table 8. p-values and R2, j of the ANOVAs for each objective function.

Source E[E/T] SD(E/T) E[CI] E[PI]
WV 0.0000 0.0000 0.0000 0.0000
PDST 0.0000 0.0000 0.0000 0.1750
PDPT 0.0000 0.0000 0.0530 0.1920
SizeSDST 0.0000 0.0000 0.0000 0.0000
CVST 0.0000 0.0000 0.0160 0.1620
CVPT 0.0000 0.0000 0.0030 0.0460
Jobs 0.0000 0.0000 0.0000 0.0000
Machines 0.0000 0.0000 0.0000 0.0000
WV*PDST 0.0000 0.0000 0.0000 0.0000
WV*PDPT 0.0030 0.9150 0.0210 0.9510
WV*SizeSDST 0.0040 0.0000 0.0000 0.0000
WV*CVST 0.0580 0.0040 0.0000 0.9440
WV*CVPT 0.0000 0.0000 0.0000 0.6190
WV*Jobs 0.0000 0.0000 0.0000 0.0000
WV*Machines 0.0000 0.0010 0.0060 0.0010
PDST*PDPT 0.5290 0.0470 0.4400 0.8040
PDST*SizeSDST 0.0000 0.0000 0.0000 0.9560
PDST*CVST 0.0310 0.0000 0.0010 0.3280
PDST*CVPT 0.1570 0.0000 0.0050 0.0070
PDST*Jobs 0.0000 0.0000 0.0000 0.6420
PDST*Machines 0.9610 0.0000 0.0600 0.3650
PDPT*SizeSDST 0.4970 0.0000 0.2970 0.9380
PDPT*CVST 0.0100 0.3370 0.0000 0.0000
PDPT*CVPT 0.0070 0.0000 0.0150 0.3610
PDPT*Jobs 0.0000 0.0000 0.0390 0.2530
PDPT*Machines 0.1500 0.0000 0.5470 0.0000
SizeSDST*CVST 0.0000 0.0000 0.0000 0.0110
SizeSDST*CVPT 0.0000 0.0000 0.0010 0.0000
SizeSDST*Jobs 0.0000 0.0000 0.0000 0.0000
SizeSDST*Machines 0.0000 0.0090 0.0000 0.0000
CVST*CVPT 0.0340 0.0000 0.0470 0.0000
CVST*Jobs 0.0000 0.0000 0.0040 0.0000
CVST*Machines 0.0000 0.1730 0.2650 0.7880
CVPT*Jobs 0.0000 0.0000 0.0000 0.0780
CVPT*Machines 0.0000 0.2110 0.0000 0.0230
Ri i 99.82% 77.30% 89.76% 92.01%
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Figure 3. Main effects plots for E[E/T].
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Figure 4. Main effects plots for S(E/T).

Figures 5 and 6 present the interaction plots between factors CVST and CVPT for
the E[CI] and E[PI] objectives, respectively. The axes of the plots are the levels of the
coefficients of variation. These plots confirm that for both qualitative objectives, there
exists an interaction effect between the coefficients of variation of the processing times
(CVPT) and the coefficients of variation of the setup times (CVST), which means that the
best solution selected with the AHP method, in terms of the qualitative criteria, varies
depending on the variability of the processing and setup times. This leads again to the
relevance of including uncertainties in the optimization process and the execution of an
accurate distribution fitting.
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Figure 5. Interaction plots of the CVST-CVPT for E[E/T].

Figure 6. Interaction plots of the CVST-CVPT for S(E/T).
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To conduct the experimental design and validate the validity and objectivity, the
assumptions of homoscedasticity, normality, and independence were tested. Because the
homoscedasticity and normality tests were not fulfilled, we performed a Friedman test
to corroborate the ANOVA results. Tables 9 and 10 present the detailed Friedman tests
for E[E/T] and SD[E/T] in terms of the factors PDPT, CVPT, PDST, and CVST. To the best
of our knowledge, this is the only work that has studied these four objective functions
in an SPFSP. We present three indicators for the multi-objective problems proposed by
Ebrahimi et al. [80] and Karimi et al. [81], which can be used for future comparisons.
For this work, these indicators were adjusted for the four objective functions analyzed:

Number of Pareto solutions (NPS), which means the number of nondominated points

for each instance;

Mean ideal distance (MID), which is a measure of the closeness between Pareto
solutions and an ideal point (0,0,0,0). The quality of a Pareto frontier is higher as the

value of MID decreases. Equation (1) shows the function for this indicator;

Spread of the nondominance solution (SNS), which is an indicator of the diversity
of Pareto points. The Pareto frontier presents more diversity as the value of SNS
increases. Equation (3) shows the function of this indicator.
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NES
MID = ==L ¢ 1
NPS M)
where:
¢; = \/E[E/T]2 + SD[E/T]? + E[CI + E[PI)? @)
SNS = | Tt (MID — )’ 3)
NPS
Table 9. Friedman test for E[E/T] versus the factors PDPT, CVPT, PDST, and CVST.
Levels of Expected Overall
Factor Factor N Median Sum of Ranks Median DF p-Value
PDPT Lgn 25,920 132,275 39,378 132,234 1 0
Unf 25,920 132,194 38,382
CVPT 0.3 17,280 129,225 27,574 131,165 2 0
0.4 17,280 130,886 33,622
0.5 17,280 133,385 42,484
PDST Lgn 25,920 132,331 39,465 132,301 1 0
Unf 25,920 132,271 38,295
CVST 0.3 17,280 130,486 29,026 131,757 2 0
0.4 17,280 131,744 34,544
0.5 17,280 133,040 40,110
Table 10. Friedman test for SD(E/T) versus the factors PDPT, PDST, CVPT, and CVST.
Levels of Expected Overall
Factor Factor N Median Sum of Ranks Median DF p-Value
PDPT Lgn 25,920 5243.6 44,156 5090.4 1 0
Unf 25,920 4937.2 33,604
CVPT 0.3 17,280 4450.2 22,359 5093 2 0
0.4 17,280 5059.4 34,166
0.5 17,280 5769.4 47,155
PDST Lgn 25,920 5247 43,715 2112.9 1 0
Unf 25,920 4978.8 34,045
CVST 0.3 17,280 4954.2 25,591 5296.1 2 0
0.4 17,280 5265.5 34,108
0.5 17,280 5668.6 43,981

Tables 11-13 show the averages of the NPS, MID, and SNS for each instance size,
each combination of the PDPT with CVPT, and each combination of the PDST with CVST,
respectively. In Table 11, it can be seen that the MID and SNS increase as the number of jobs
or machines increases, and due to the increment of the jobs or machines, the expected and
standard deviation of tardiness present a crescent behavior. Moreover, the NPS also tends
to augment, giving more possible solutions to chose in scenarios with higher variability.
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Table 11. Performance results of the proposed approach.
Number of Jobs Machines NPS MID SNS
20 5 182.59 18,412.20 915.68
10 169.80 19,660.78 1386.57
20 183.03 23,370.81 2142.31
Total 20 178.47 20,481.26 1481.52
50 5 262.71 123,904.5 2784.69
10 254.54 138,695.12 2920.58
20 247.28 153,472.48 3480.98
Total 50 254.84 138,690.7 3062.08
100 5 210.46 500,238.28 7475.30
10 227.30 550,636.3 7165.95
20 250.03 601,917.09 7166.19
Total 100 229.26 550,930.55 7269.15

Table 12 shows the minimum difference in the MID and SNS between the lognormal
and uniform distributions for the processing times, under the same coefficient of variation.
Nevertheless, as the coefficient of variation of the processing times increases, independently
of the probability distribution, the MID and SNS augment. That means that the quality of
the Pareto frontier is worse as the coefficient of variation of the processing times increases.
This suggests that production managers should encourage a continuous improvement of
the production processes to reduce the variability of the process insofar as that is possible.
Moreover, it is interesting to see that the NPS decreases as the coefficient of variation of the
processing times increments, showing that high variability scenarios present fewer possible
solutions to choose for the decision-maker.

Table 12. Performance multi-objective metrics for the PDPT and CVPT.

PDPT CVPT NPS MID SNS
lgn 0.3 273.64 232,650.34 3884.93
0.4 194.92 236,692.91 3928.33
0.5 144.34 241,086.47 4045.65
Total 1gn 204.3 236,809.91 3952.97
unf 0.3 297.71 232,730.09 3925.04
04 225.32 236,299.54 3862.35
0.5 189.23 240,745.7 3979.21
Total unf 237.42 236,591.77 3922.20

The measures presented in Table 13 show a large difference in the SNS between the
lognormal and uniform distributions of the sequence-dependent setup times, under the
same coefficient of variation of the setup times, which is a different behavior than that
presented for the coefficient of variation of the processing times. Moreover, the NPS also
presents high differences between the uniform and lognormal distributions of the setup
times, whereas for the coefficient of variation of the processing times, the NPS values were
very close. This allowed us to conclude that each input parameter can cause different
performances of the solutions, and thus, the AHP selects the corresponding solution of the
Pareto frontier to fulfill the decision-maker’s expectations.
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Table 13. Performance multi-objective metrics for the PDST and CVST.
PDST CVST NPS MID SNS
lgn 0.3 115.69 233,355.91 4183.21
0.4 81.23 236,692.94 4223.27
0.5 66.40 240,032.78 4283.50
Total 1gn 87.78 236,693.88 4229.99
unf 0.3 413.55 233,671.64 3625.21
0.4 357.49 236,430.32 3607.72
0.5 290.78 240,021.45 3702.59
Total unf 353.94 236,707.8 3645.18

5. Conclusions and Recommendations

This paper presented a multicriteria simheuristic that hybridizes a GRASP, a PAES
algorithm, and a Monte Carlo simulation (MC-SIM-GRASP) to solve a multi-objective
stochastic permutation flow shop scheduling problem (SPFSP). The approach obtains a set
of nondominated solutions for four objectives: for expected earliness/tardiness, standard
deviation of earliness/tardiness, expected customer importance, and expected product
importance in an SPFSP. It was used an analytical hierarchical process (AHP) to select
the desired solution for the decision-maker from the set of solutions from the Pareto
frontier. The purpose of this method was to ease the selection of a solution and include
a qualitative criterion for the objective of the decision-making. This paper analyzed the
effect of eight factors in the behavior of the four objective functions selected. To this
end, four ANOVAs were carried out with seven factors: type of probability distribution
(PD) of stochastic processing times, coefficient of variation (CV) of stochastic processing
times, PD of sequence-dependent setup times, CV of sequence-dependent setup times,
the vector weights of criteria in the AHP methodology, the number of jobs, and the number
of machines. The outcomes showed that all factors had significant effects on the four
objective functions. The results obtained in this paper support the importance of including
uncertainty, modeled with adequate PDs, to obtain robust solutions. Additionally, a set of
multi-objective metrics (number of Pareto solutions, means’ ideal distance, and spread of
the nondominance solution) was calculated for future comparisons, as this problem has
not been solved in the literature before. Future work may analyze other PDs and CVs.
It would be useful to analyze a case in which the processing time PD of each job has a
different CV, which is generally true in real cases. Finally, other qualitative criteria should
be incorporated in the analysis.
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