
algorithms

Article

qRobot: A Quantum Computing Approach in Mobile Robot
Order Picking and Batching Problem Solver Optimization

Parfait Atchade-Adelomou 1,2,* , Guillermo Alonso-Linaje 3,*, Jordi Albo-Canals 2,* and Daniel Casado-Fauli 1,*

����������
�������

Citation: Atchade-Adelomou, P.;

Alonso-Linaje, G.; Albo-Canals, J.;

Casado-Fauli, D. qRobot: A Quantum

Computing Approach in Mobile

Robot Order Picking and Batching

Problem Solver Optimization.

Algorithms 2021, 14, 194. https://

doi.org/10.3390/a14070194

Academic Editor: Frank Werner

Received: 21 May 2021

Accepted: 23 June 2021

Published: 26 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Group on Data Science for the Digital Society, La Salle, Universitat Ramon Llull, Carrer de Sant Joan
de La Salle, 42, 08022 Barcelona, Spain

2 Lighthouse Disruptive Innovation Group, LLC., 7 Broadway Terrace, Apt. 1, Cambridge, MA 02139, USA
3 Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, C/Plaza de Santa Cruz, 8,

47002 Valladolid, Spain
* Correspondence: parfait.atchade@salle.url.edu or parfait.atchade@lighthouse-dig.com (P.A.-A.);

guillermo.alonso.alonso-linaje@alumnos.uva.es (G.A.-L.); jordi.albo@lighthouse-dig.com (J.A.-C.);
daniel.casado@salle.url.edu (D.C.-F.)

Abstract: This article aims to bring quantum computing to robotics. A quantum algorithm is
developed to minimize the distance traveled in warehouses and distribution centers where order
picking is applied. For this, a proof of concept is proposed through a Raspberry Pi 4, generating a
quantum combinatorial optimization algorithm that saves the distance travelled and the batch of
orders to be made. In case of computational need, the robot will be able to parallelize part of the
operations in hybrid computing (quantum + classical), accessing CPUs and QPUs distributed in a
public or private cloud. We developed a stable environment (ARM64) inside the robot (Raspberry)
to run gradient operations and other quantum algorithms on IBMQ, Amazon Braket (D-Wave),
and Pennylane locally or remotely. The proof of concept, when run in the above stated quantum
environments, showed the execution time of our algorithm with different public access simulators on
the market, computational results of our picking and batching algorithm, and analyze the quantum
real-time execution. Our findings are that the behavior of the Amazon Braket D-Wave is better than
Gate-based Quantum Computing over 20 qubits, and that AWS-Braket has better time performance
than Qiskit or Pennylane.

Keywords: quantum computing; machine learning; picking problem; batching problem; quantum
robotics; Raspberry PI4; docplex

1. Introduction

From DHL, Gartner, and others [1–3], we know that the first wave of automation
using smart robotics has reached the logistics industry. Driven by rapid technological
advancements and increased affordability, robotic solutions (software and hardware) are
forcibly entering labor logistics, supporting flawless processes and boosting productivity.
Robots, especially mobile, will adopt more roles in the supply chain, helping workers with
storage, transportation and little by little, they will expand their service. In fact, in some
countries, there are already robotic delivery services [4].

We are already living an exponential increment of mail-order shopping, online shop-
ping and supply chain systems, requiring large-scale logistic centers. Almost everyone
can order products remotely, and the logistic center increases its functionalities, including
keeping and shipping products. While there was a tendency to increase the adoption of
automated systems based on robots powered by AI to increase efficiency [5–7], COVID-19
introduced the concept of touch-less online shopping that reduces the risk of infections.
Smart Warehouses are the epicenter of the cost-efficiency of any e-commerce company [8].

The emerging field of hybrid (quantum-classical) algorithms joins CPU, and QPU [9]
to speed up specific calculations within a classical algorithm. This allows for shorter

Algorithms 2021, 14, 194. https://doi.org/10.3390/a14070194 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2725-277X
https://doi.org/10.3390/a14070194
https://doi.org/10.3390/a14070194
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14070194
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14070194?type=check_update&version=2

Algorithms 2021, 14, 194 2 of 27

quantum runs that are less susceptible to the cumulative effects of noise and work well in
current devices.

Recently, the scientific community has begun researching the real implementation of
quantum computing algorithms in mobile platforms because implementations are not here
yet [10].

In this article, we demonstrate that we can implement this system in a well-known,
widely used in robotics fields, computer system, like raspberry-pi, exploring the per-
formance of a quantum picking and batching model. A hybrid system is proposed to
effectively replace the current ones and open the doors to quantum computing in robotics.
In addition, we are analyzing the results obtained with different public access simulators
on the market: IBMQ, Amazon Braket (D-Wave), and Pennylane. As far as the authors
know, this is the first time this type of implementation has been done.

After Section 1, the document is organized as follows; Section 2 shows previous
work on both assembly techniques and approaches to picking and batch management
systems; then, Section 3 presents the quantum fundamentals needed from this era to solve
this problem; next, the implementation of the proposed strategy and the creation of the
qRobot performed in Section 4 are explained; to continue, Section 5, which shows the
results of our experimental analysis, and Section 6, in which some open problems are
summarized, compared, and presented; and, finally, Section 7 concludes the previous
results and describes the future work.

2. Work Context

According to Reference [11–13], supply chains, warehouses, and distribution centers
occupy a very important position when storing and serving customer demand. Today, in
order to be competitive within this sector, Logistics 4.0 has been created, which is known
as the set of artificial intelligence technologies and techniques that seek the efficiency of the
movements of materials and products in a factory or warehouse. Better time management
helps logistics companies find and locate a material, reduce fatigue and possible workplace
accidents, and spend less time documenting items.

Many works of literature highlight these factors as the main ones where the loss of
time and resources in a process require an urgent solution, and, precisely, it is technologies,
such as Artificial Intelligence and the Internet of Things (IoT), which today allow us to
optimize them [14–16].

Only in the last decade, researchers have focused on addressing the multiple order
picking planning problems. The study of the efficiency of a Warehouse can be addressed
based on multiple parameters. According to Reference [17], there are three key consid-
erations: (1) Performance Measure (time, cost, productivity, and service), (2) How we
model the warehouse (Analytical model, Mathematical Model, or Simulation), and (3) the
combination of factors (storage location assignment, routing, order batching, or other order
picking planning problems).

Based on data from Reference [17], we can see the percentage of relevance of the
considered order picking planning problems based on the percentage of papers that are
related to such challenges.

As we can see in Figure 1, Picking and Batching are the top priorities based on the
research contributions.

Order preparation (picking) is one of the most frequent and costly operations in
labor [11,12] since it is responsible for recovering the items required by the orders of
customer orders (could also be supplied, but, in this article, we focus exclusively on
sales orders), and to create the batches, grouping several orders of orders in a picking
list to collect all the batch demands in a single warehouse tour. In this last part of order
preparation, our quantum algorithm comes into action to optimize the routes traveled to
achieve efficient picking.

Algorithms 2021, 14, 194 3 of 27

Figure 1. Distribution of considered order picking problems based on percentage of publications.

There are many techniques and strategies for solving the picking problem. The most
striking are “The selected techniques for evaluation include A *” [18], “Potential Fields
(PF)”, “Rapidly-Exploring Random Trees * (RRT *)” [19–21], and “Variations of the Fast-
Marching Method (FMM)” [22]. Other strategies have explored using the TSP and the
VRP as algorithms to solve the picking problem. In this case, if the number of order
orders per lot is greater than two [23], picking becomes an NP-Hard problem in which the
number of possible lots and binary variables increase exponentially with the number of
purchase orders [23]. From there, several heuristic techniques, methods and algorithms
(for example, genetic) were created to relax these difficulties [11,13,16,24–26]. However,
and as mentioned above, depending on the volume of data, the computational cost of the
algorithm becomes intractable for classical computing.

The latter leads us to explore new approaches to the large-scale picking problem,
and one of the approaches to take into account to solve this task is quantum comput-
ing [6]. Quantum computing could help us change the degree of complexity of the problem,
enhanced by its high computing power. Among the great fields where quantum com-
puting is called to stand out is constraint satisfaction problems (CSP) [27]. One of the
useful algorithms in this field is Quadratic Unconstrained Binary Optimization (QUBO)
problems [28].

From Alan Turing [29] to Richard Feyman’s idea of considering the simulation of
systems in quantum mechanics by other quantum systems [30], interest in creating new
ways of solving them has grown dramatically. This, together with the consequences of the
well-known Moore’s Law, gave way to the idea of building quantum computers. Over the
past decades, before demonstrating the superiority of quantum computing, David Deutsch
published his work [31] in which he proposed how a universal quantum computer could be.
Years later, the worth of these new computers has been demonstrated to solve some specific
problems, such as factoring prime numbers using Shor’s [32] algorithm or searching in
disordered sets with Grover’s [33] algorithm, although all this limited to the number of
qubits available. We are currently in the NISQ era [34], in which we have computers
between 50 and 100 qubits (Gate-Based Quantum Computer), opening the way to the
emerging field of hybrid quantum-classical computing. Within this, different algorithms
have been developed, such as “VQE” [35], “QAOA” [36], or “Quantum Machine Learning
(QML)” [37–42], which we will focus on with this article.

There are two dominant techniques for quantum computing: Continuous-Time Quan-
tum Computing [43] used by D-Wave, in which the problem to solve is mapped in quantum
hamiltonians and the natural dynamics of physical systems; and the Gate-based Quan-
tum Computing [44,45] led by IBM, in which the computation is made through a series

Algorithms 2021, 14, 194 4 of 27

of discrete gate operations. Reference [43] argues how Quantum Walk (QW), Quantum
Annealing (QA), and Adiabatic Quantum Computing (AQC) are related. QW and AQC
are pure quantum evolutions (unitary), while QA involves external cooling.

Adiabatic Quantum Computing, proposed by Farhi [46,47], is based on the adiabatic
theorem [44] and was the first quantum computing technique.

Quantum Annealing, based on the adiabatic quantum computing paradigm, was
initially introduced by Kadowaki and Nishimori [48]. Since its proposal, the QA technique
was essential for solving combinatorial optimization problems. This technique tries to solve
problems similar to how optimization problems are solved using the classical simulated
annealing [44]. It is known that from a multivariate function formed from an energy
landscape, the ground state corresponds to the optimal solution of the problem. Therefore,
the quality assurance process should be repeated until the optimal solution to the problem
is found. The most significant advantage of quantum annealing is its high degree of
parallelism over classical code execution. Because it analyzes all possible inputs in parallel
to find the optimal solution, this is very useful when we want to reduce the complexity of
the NP-complete problems.

QA has confirmed its ability to solve a broad range of combinatorial optimization
problems, and also in other fields, such as quantum chemistry [44], bioinformatics [44],
and routing [49], to cite a few.

We can categorize combinatorial optimization problems into several groups, where
there is a need for adequate techniques for solving such problems. One of the standardized
optimization problems is the aforementioned QUBO [44,48,50].

QUBO, as NP-hard, refers to a pattern matching technique that, among other applica-
tions, can be used in machine learning and optimization and which involves minimizing
a quadratic polynomial on binary variables [44]. QUBO has demonstrated its potential
in solving some standard combinatorial optimization problems, such as the coloring of
graphics, workshop planning, vehicle routing and programming, neural networks, the
partition problem, 3-SAT, and machine learning, where the parameters of the problem can
be expressed as Boolean variables [44,48,50], only to remember that Adiabatic quantum
annealing techniques are also used to solve multi-objective optimization problems [51].
The QUBO formulation is suitable for running a D-Wave architecture; nevertheless, QUBO
can be mapped on the Ising model [44].

Advances in quantum computing offer a way forward for efficient solutions to many
cases of substantial eigenvalue problems unsolvable in a traditional way [52]. Quantum
approaches to finding eigenvalues previously relied on the Quantum Phase Estimation
(QPE) algorithm. The QPE is one of the essential subroutines in quantum computation. It
serves as a central building block for many quantum algorithms and offers exponential
acceleration compared to classical methods, and it requires several quantum operations
O
(

1
p

)
to obtain an estimate with precision p [52,53].

Variational Quantum Eigensolver (VQE), proposed by Peruzzo [52], based on the
variational principle and form, estimates the ground state energy of the Hamiltonian of
the problem [54]. The VQE is a hybrid quantum/classical algorithm originally proposed
to approximate the ground state of a quantum system (the state attaining the minimum
energy). Quantum Approximate optimization Algorithms (QAOA), based on the principles
of adiabatic quantum computation [44,53], is used to solve QUBO problems. Farhi and Har-
row showed the advantages of QAOA compared to classical approaches [46,47]. While [55]
debated the problems of constrained polynomial optimization using adiabatic quantum
computation methods, other scientists, such as Vyskocil and Djidjev [56], worked on how
to apply restrictions in QUBO systems to avoid the use of large numbers of the coefficients.
This resulted in more qubits from the use of quadratic penalties, they proposed a new
combinatorial design which involved solving problems of linear programming of mixed
integers to adapt applications restitution. Anuradha Mahasinghe, Richard Hua, Michael
J. Dinneen, and Rajni Goyal [57] investigated and solved the Hamiltonian cycle problem
in computational frameworks, such as quantum circuits, quantum walks, and adiabatic

Algorithms 2021, 14, 194 5 of 27

quantum computing. All of these advances in quantum computing have been applied to
routing and scheduling techniques. Reference [58] contributed an expansive vision and
discussions on Ising formulations for various NP-complete and NP-hard optimization
problems, emphasizing using as the fewest possible as possible qubits. In the same way,
there have been many works of literature on the VRP [59] and its variants.

Amazon Braket [60] is a cloud-based (Figures 2 and 3), fully managed quantum
computing service that helps researchers and developers get started into quantum world
technology to accelerate research and discovery. Amazon Braket provides a develop-
ment environment to explore, create, test, and run quantum algorithms, quantum circuit
simulators, and different quantum hardware technologies.

We will take advantage of all these related works to define an appropriate strategy for
our proposal in this NISQ era.

Figure 2. Technical specifications of the Quantum Hardware Technologies (Gate-based supercon-
ducting qubits, Gate-based ion traps, and Quantum annealing) available in Amazon Braket.

Figure 3. Technical Specifications of Quantum Simulators systems where we can see the state vector
simulator (34 qubits) and tensor network simulator (50 qubits).

Studying and comparing different optimization methods of warehouse’s challenge,
like picking and batching, ref. [17] proposes three options: analytical models, simulation
experiments, and mathematical programming. In our approach, we consider the latter.
We use a set of mathematical expressions that describe the problem, represented by an
objective mathematical function and constraints within the classical context and translate it
to the quantum domain.

While reviewing state of the art research, Reference [61] was found. The integrated
order routing and the batch problem is modeled in such systems as an extended multi-
tank vehicle routing problem with network flow formulations of three indices and two
commodities. Such a variable neighborhood search algorithm provides close to optimal
solutions within a computational time acceptable for classical but not quantum computing.

Algorithms 2021, 14, 194 6 of 27

This article intends to bring quantum computing to robotics by proposing an ap-
proach that combines the experience of classical robotics computing with the computation
of complex and high-cost processes by quantum computing. We suggest preparing an
environment to execute the quantum algorithms in the mobile and autonomous robot
remotely and locally and design a quantum algorithm that helps the efficiency of the
warehouse management.

3. Quantum Circuits in the NISQ Era

Quantum circuits are defined mathematically as actions in an initial quantum state.
Quantum computing largely uses quantum states constructed from qubits, namely binary
states represented by |ψ〉 = α|0〉 + β|1〉. Its number of qubits n commonly defines the
states of a quantum circuit, and, normally, the initial state of the circuit |ψ〉0 is the zero
state |0〉. Mostly, a quantum circuit implements an internal unit operation U in the initial
state |ψ〉0 to transform it into the final output state |ψ〉 f . This U gate is normally fixed
and is known for algorithms or problems. In contrast, other methods define its internal
operation through a fixed structure, called Ansatz [62], and adjustable parameters θ [63].
Parameterized circuits are beneficial and have interesting properties in this quantum era,
as they broadly define the definition of ML and offer the flexibility and viability of unit
operations with arbitrary accuracy [37–39,64].

Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) [35] is a classical hybrid quantum algo-
rithm that combines aspects of quantum mechanics with the classical algorithm (Figure 4).
Its great contribution is to find approximate solutions to combinatorial problems. Its
operation is based on mapping the combinatorial problems in a physics problem, i.e.,
about a problem that can be formulated in terms of a Hamiltonian Ising model. Therefore,
identifying the solution to the combinatorial problem is linked to finding the ground state
of this physics problem. Thus, the goal is to find the ground state of this Hamiltonian.
The unknown eigenvectors are prepared by varying the experimental parameters and
calculating the Rayleigh-Ritz ratio [65] in a classical minimization (Figure 5). At the end of
the algorithm, the reconstruction of the eigenvector stored in the final set of experimental
parameters that define the state will be done.

Figure 4. The Variational Quantum Eigensolver diagram.

Algorithms 2021, 14, 194 7 of 27

Figure 5. VQE working principle based on the quantum variational circuit.

From the variational principle, the following equation 〈H〉
ψ
(−→

θ
) ≥ λi can be reached

out, with λi as eigenvector, and 〈H〉
ψ
(−→

θ
) as the expected value. In this way, the VQE finds

(1) such an optimal choice of parameters
−→
θ , that the expected value is minimized and that

a lower eigenvalue is located.

〈H〉 = 〈ψ(θ)|H|ψ(θ)〉. (1)

We will use the VQE (Figure 5) to find the minima of our objective function translated
to the Ising model.

4. Implementation

To carry out the implementation of our proof of concept (Figures 6 and A1), we must
first prepare the programming environment. Considering that the core of our robot will be
the Raspberry Pi 4 [66], the first thing to do is prepare it so that it can execute quantum
algorithms with the guarantees required for the proposed application and especially for
future operations on gradients. It is necessary to install an ARM64 operating system [67,68]
with all the needed packages to run all the required environments to carry out this project.
We took advantage of the work for Raspberry Pi Os Desktop (32-bit) on which the author
describes how to install and run Qiskit—IBM’s open-source quantum computing software
framework [69]—on a Raspberry Pi to turn it into a quantum computing simulator and
use it to access real IBM quantum computers. In our case, we do need ARM64 because we
need to execute at least the TensorFlow’s version 3.2.1. The tasks to convert the Raspberry
Pi 4 in our “quantum computer” are in the Appendix A.

After setting up the environment, we will focus on designing and experimenting with
the announced proof of concept.

Algorithms 2021, 14, 194 8 of 27

Figure 6. We propose a robot that prepares batches and increases the efficiency of picking in a
warehouse, taking advantage of the classic Machine Learning experience and leveraging hybrid
computing (classical + quantum) in the cloud and distributed. This robot uses the Optimal routing
strategy to calculate the shortest route, regardless of the layout or location of the items.

4.1. The Problem’s Formulation

In this formulation, we will seek to optimize the collection of the products and, later,
we will make the batches.

To carry it out, we will consider the following assumptions:

1. The strategy we will follow is the picking routing problem to retrieve each lot which
the total distance traveled to retrieve all the items in a lot will be calculated.

2. The warehouse configuration is given in Figures 7–9 .
3. For the orders of the storage positions, more than one picking robot can be used.
4. Movements in height are not considered.
5. Each product is stored in a single storage position, and only one product is stored in

each storage position.
6. Each picking route begins and ends at the Depot.
7. The load capacity for each order will not exceed the load capacity of the picking robot.
8. At the moment, the division of order orders is not contemplated. That is, only the

batches of closed orders can be prepared.
9. The concept testing will be done on all AWS-Braket, Pennylane, D-Wave, and Qiskit

environments. And we will stick with the scenario that best benefits our proof of
concept.

10. We will use the docplex [70] to model our formulation.

Algorithms 2021, 14, 194 9 of 27

Figure 7. Structure of our warehouse with pick locations. The warehouse has a rectangular layout
with no unused space. We use all the parallel corridors. This proof of concept contemplates a single
warehouse used to take the order and deliver it, and it is also divided into blocks, which contain slots
for storing products, and transverse aisles separate them. The cross aisles do not have any products
but allow the collector to navigate in the warehouse. We base our picking strategy on minimizing the
route and optimizing batch preparation. We do not contemplate shelving of different levels.

Figure 8. Scenario 1, Independent lots. The robot receives the orders and calculates which order is
the most optimal according to the coordinates in which each product is found. In this example, lot 4
is the most optimal.

Algorithms 2021, 14, 194 10 of 27

Figure 9. Scenario 2, Collecting products in the same route from different batches. The robot will
calculate a path that includes all the products to optimize their collection in a single journey. For
example, if the product from Lot 2 is next to one from Lot 1, the robot will pick it up and store it in
the basket from Lot 2.

4.2. Picking and Batching Formulation

The formulation is represented as follows. In this scenario, the travel load is repre-
sented according to the number of robots we have. Let us imagine that we have several
robots and that each of them makes a single trip. It would be the same as saying that we
have a single robot that makes n trips.

Let N0 be the origin node, let N1 . . . Nn be the nodes of the products, let W1 . . . Wn be
the weights in kg associated with for each product, let di,j be the distance from node i to
j, let M be the maximum load of the qRobots, let K be the number of qRobots available,
let t be the instant, i the node (product), p the robot, and let xt,i,p be our binary variable
(for example, for x2,3,2 = 1. It means that, at time 2, the qRobot 2 is at node 3). In our
formulation, time really tells us the order, i.e., t = 0 will be the origin and t = 1 the moment
in which it goes for the first batch. At t = 2 will be the moment of the second, and so on.

min
x

K

∑
p=1

n+1

∑
t=1

n

∑
i=0

n

∑
j=0

xtt−1,i,pxt,j,pdi,j, (2)

s.t.
K

∑
p=1

x0,0,p = K
, (3)

K

∑
p=1

xn+1,0,p = K, (4)

n+1

∑
t=1

n

∑
i=1

xt,i,pWi ≤ M ∀p ∈ {1, ..., K}, (5)

Algorithms 2021, 14, 194 11 of 27

n

∑
i=1

xt,i,p = 1 ∀t ∈ {1, . . . , n + 1}

∀p ∈ {1, ..., K}
, (6)

n+1

∑
t=1

K

∑
p=1

xt,i,p = 1 ∀i ∈ {1, . . . , n + 1}, (7)

xt,i,p ∈ {0, 1} ∀t ∈ {0, . . . , n + 1}

∀i ∈ {0, ..., n}

∀p ∈ {1, ..., K}

. (8)

Equation (2) is our new objective function. Here, we minimize the total distance. We
add the distance of all the robots traveling all the time, and we will check the distances of
the nodes. Restriction (3) establishes that all the qRobots start from Depot. Restriction (4)
establishes that all the qRobots end at Depot. Constraint (5) establishes any robot p can
carry more load than allowed. Constraint (6) declares that each robot can only be one node
at any time. (7) establishes that throughout the entire route, the robots together pass each
node only once, and Restriction (8) describes that xt,i,p are binary variables.

The number of the qubits to perform this algorithm is equal to K(n + 1)(n + 2) +
Kdlog2Me. At this point, we can only map our objective function in quantum and then
solve it with a VQE.

4.3. Mapping the Classical to Quantum Optimization

A common method for mapping classic optimization problems to quantum hardware
is by coding it into the Hamiltonian [71] of an Ising model [58].

HIsing = ∑
i<j

Ji,jσiσj + ∑
i

hiσi, (9)

where σi is the product of n identity matrices I except a gate Z in the i-th position and σiσj
product of identities minus gates Z in positions i and j.

As we already can build our objective function as a QUBO in the form 〈xT |Q|x〉, now
we can map our QUBO to Ising Hamiltonian formulation leads to calculating the values of
Jij and hi.

The transformation between QUBO and Ising Hamiltonian and is zi = 2xi − 1, where
zi is a new variable that can take the values −1 or 1. This means that by writing an
algorithm for QUBO with this single variable change, we will have the algorithm in Ising
form. That is very useful to have the algorithm for various platforms that are based on
quantum gates (IBM Q and Pennylane) or quantum annealing (meanly D-Wave) in case of
going from the Hamiltonian form. We can now solve our Picking and Batching Problem
with VQE 〈ψ(θ)|H|ψ(θ)〉.

5. Results

Before analyzing in detail all the results of our proof of concept, it is of the utmost
importance that we validate its operation globally and affirm that qRobot meets our
expectations and works as we expected. Let us split the results of this proof of concept
in two: 1, the configuration and conversion results of the Raspberry Pi 4 in a quantum
computing environment (Figures 10–13); and 2, the picking and batching algorithm results
represented by Tables 1–3 on one side and Figures 14 and 15 on the other.

The block diagram (Figure 16) summarizes the result of the implementation of the
qRobot. The first thing we did is determine the mathematical model of our problem. We

Algorithms 2021, 14, 194 12 of 27

then used the Docplex to model our objective function, along with its constraints. For our
proof of concept, we used the Docplex library packages to move from Docplex to Qubo.
From this point on, we had two possible operations according to our objectives. First, we
modeled the problem for computers based on quantum gate technology, like IBMQ, and,
second, for annealing computers, like D-Wave. Our experiments used both the Exact solver
and VQE for tests on the Qiskit framework as samples based on quantum gates. But, before
using the VQE, we needed to map the Qubo model to the Ising model. When we used the
D-Wave computer, we only needed to reform the Qubo output list from Docplex to the
Qubo format of the D-Wave computer.

Figure 10. This figure shows that we judge important environments to carry out quantum computing
to robotics and beyond. We can see the correct installation of TensorFlow 3.2.1 as required for
all gradient operations; see the installation of Pennylane version 14.1, the installation of the latest
version of Amazon Braket, and all the packages of the newest version of qiskit 0.25 minus the
qiskit-machine-learning package.

Figure 11. In this figure, we can see the correct installation of the Jupyter package and the Jupyter
notebook that has been our environment of proof of concept. With this, everything is ready to import
or write code in the different frameworks mentioned above (IMBQ, AWS-Braket, Pennylane, and
D-Wave).

Algorithms 2021, 14, 194 13 of 27

Figure 12. This figure shows the files window through the CyberDuck client SSH [72] viewer with the
directory and file structure. On the left, you can see the terminal that gives access to the qRobot. To
access the qRobot by SSH, the username and password are required. Everything is configurable [73].

Figure 13. In these figures, we see several notebook tests in operation. Works with the Qiskit, Pennylane [74], and AWS-
Braket frameworks’ [75]. It was also tested with quantum computers, Rigetti [76], qiskit [69,77], and D-Wave [78]. In the
figure of the terminal, you can observe the executions in progress. We can see from qiskit the docplex [70] in execution.
From AWS and Pennylane [79,80], we can see how to call the quantum device from the Raspberry.

Algorithms 2021, 14, 194 14 of 27

Figure 14. In these graphs, we can observe the results of the algorithm in different scenarios. A different color represents
each qRobots; qRobot number 1 is red, the next is blue, the third is yellow, and so on, while the depot is the 0 node
in yellow color, and the rest of the nodes are represented in blue. The weights of each item (not normalized) in kg are
w0 = 0, w1 = 8, w2 = 8, w3 = 3, and w4 = 3. The maximum capacity of each qRobots is 45. In this case, we have 4 items and
the possibility of using up to 3 qRobots. Reading the images from left to right, we see that the nodes and their respective
distances are shown in the first image. The second image shows the result of the algorithm having a qRobot. In the third
and fourth images, we can see two different cases solved by two qRobots. And, finally, in the fifth and sixth images, we
can see two other issues solved by three qRobots. It is important to highlight that our algorithm in this proof of concept
minimizes the distance traveled and optimizes the number of qRobots necessary to solve the cases presented. If it judges
that the task can be performed with a single qRobot, it will not send 2 qRobots.

Algorithms 2021, 14, 194 15 of 27

Figure 15. In these graphs, we can observe the results of the algorithm in different scenarios. A different color represents
each qRobots; qRobot number 1 is red, the next is blue, the third is yellow, and so on, while the depot is the 0 node
in yellow color, and the rest of the nodes are represented in blue. The weights of each item (not normalized) in kg are
w0 = 0, w1 = 8, w2 = 8, w3 = 3, w4 = 3, w5 = 1, w6 = 2, and w7 = 4. The maximum capacity of each qRobots is 45. In
this case, we have 7 items and the possibility of using up to 4 qRobots. Reading the images from left to right, we see that
the nodes and their respective distances are shown in the first image. The second image shows the result of the algorithm
having a qRobot. In the third and fourth images, we can see two different cases solved by two qRobots. And, finally, in the
fifth and sixth images, we can see two other issues solved by three qRobots. It is important to highlight that our algorithm
in this proof of concept minimizes the distance traveled and optimizes the number of qRobots necessary to solve the cases
presented. If it judges that the task can be performed with a single qRobot, it will not send 2 qRobots.

Algorithms 2021, 14, 194 16 of 27

Figure 16. qRobot operation diagram. This diagram shows all the necessary blocks and processes
that allow modeling the picking-batching problem and its proper functioning on the Raspberry Pi 4.

The steps to convert the Raspberry Pi 4 into a “quantum computer” are in the
Appendix A.

Table 1 shows the experimentation results by setting the number of qRobots as their
capacities (maximum load) at 1 and 45, respectively. We compared the execution time of
our algorithm with different public access simulators on the market during this experimen-
tation, solving the problem of picking and batching. We observed that, for issues of this
nature, and especially due to the number of qubits required in each scenario, the behavior
of the D-Wave is the desired one at the temporal level, comparing it with Gate-based
Quantum Computing. However, it should be taken into account that, for experiments
with numbers of qubits less than 20, the behavior of these simulators is equated with the
D-Wave. This experimentation helps to have a clear vision about the feasibility of this proof
of concept.

Continuing with the analysis of the results, Table 2 shows us the computational results
of our picking and batching algorithm considering 1 qRobot through AWS-Braket and on
the real quantum computer D-Wave Advantage_system1 [81]. The time value is an average
and not counting latency time, job creation, and job return time.

We also analyze the latency time when running the algorithm from the qRobot to
the quantum computer. The quantum computer was in Oregon (U.S.) and our qRobot in
Barcelona (Spain) and Segovia (Spain) in the tests we had done. Out of all the tests we
have run, we had an average latency time of around 2 s plus all job management processes
rising to roughly 8 s. For the number of qubits greater than 30, it is very convenient to
use AWS-Braket (Advantage_system1.1) instead of Qiskit or Pennylane for the number
of qubits and the execution time; it is differentially better. This scenario makes the use
of quantum in robots very viable. For tests with a value of M less than those in the
table, the number of qubits is relaxed, and the execution time is improved. This leads us
to normalize the weights of the batches since the number of qubits follows the formula
K(n + 1)(n + 2) + Kdlog2Me, where the Kdlog2Me qubits are needed as ancillaries qubits.

We also analyze the quantum real-time execution deeply through Table 3. We have
measured the execution time without counting the latency time, creating jobs, and returning
the work.

Figure 14 offers us the algorithm results in different scenarios where we analyze some
important cases, which helped us determine viable strategies within our proof of concept.
It is important to note that our algorithm minimizes the distance traveled and optimizes

Algorithms 2021, 14, 194 17 of 27

the number of qRobots. Figure 15 repeats almost the same scenario but now considering
7 items with the same number of qRobots.

Table 1. In this experimentation, both the number of qRobots and their capacities (maximum load) are fixed and are worth
1 and 45, respectively. We compare the execution time of our algorithm in the different public access simulators in the
market, solving the picking and batching problem. We see that, for issues of this nature, and especially for the number of
qubits required in each scenario, the behavior of the D-Wave is the desired one at the temporal level, comparing it with
technologies based on quantum gates. However, it should be noted that, for the experiments on numbers of qubits less than
20, the behavior of these simulators is equated with the D-Wave. This experimentation helps to have a clear vision about the
feasibility of this proof of concept.

The Benchmark of the qRobot’s Algorithm in Different Quantum Simulators.

of Items # Qubits DWave—Time (s) Ibmq_qasm_simulator—Time (s) Pennylane—Time (s)

2 18 1.92 1.89 1.94
3 26 3.2 737.46 656.93
4 36 4.88 - -
5 48 7.60 - -
6 62 11.16 - -
7 78 15.89 - -
8 96 21.72 - -
9 116 30.18 - -

10 138 43.29 - -
11 162 53.28 - -
12 188 63.45 - -

Table 2. The computational results of our picking and batching algorithm on only 1 qRobot. The value of time is an
average and includes the waiting time, queue, execution, and return of the solution. In the case of K is equal to 2 for 9
items with the qRobot capacity equal to 15, the number of qubits is 188. The execution time is on AWS Braket and on the
D-Wave Advantage_system1 quantum computer. We can realize that there is a latency time in executing the algorithm
from the qRobot to the real quantum computer. In the tests we have done, the quantum computer is in the U.S. West
(Oregon). Of all the tests that we have done, we have had an average latency time of about 2 plus all the work management
processes that rises more or less to about 8 s. For the number of qubits exceeding 30, it is very convenient to use AWS-Braket
(Advantage_system1.1) [81] instead of Qiskit or Pennylane. By the number of qubits and the execution time, that is
differentially better. This scenario makes the use of quantum in robotics very viable. For the tests with a value of M lower
than those in the table, the number of qubits is relaxed, and the execution time is improved. This leads us to normalize the
weights of the batches since the number of qubits follows the formula K(n + 1)(n + 2) + Kdlog2 Me.

AWS-Braket [75] ibmq_qasm_simulator [69] Pennylane [74]
of Items qRobot’s Capacity # Qubits Average Time (s) Average Time (s) Average Time (s)

2 15 10 11.23 0.053 0.041
3 15 16 22.96 0.40 0.27
4 15 24 33.07 537.46 480
5 15 34 57.93 − −
6 15 46 118.41 − −
7 15 60 145.83 − −
8 15 76 296.81 − −
9 15 94 335.64 − −
10 25 115 427.36 − −
11 25 137 650.25 − −
12 25 161 908.71 − −

Algorithms 2021, 14, 194 18 of 27

Table 3. In this table, we only consider the running time of the quantum algorithm on the real quantum computer from the
qRobot (Advantage_system1.1 [81]), not counting latency time, job creation, and job return time.

AWS-Braket [75] ibmq_qasm_simulator [69] Pennylane [74]
of Items qRobot’s Capacity # Qubits Average Time (s) Average Time (s) Average Time (s)

2 15 10 0.13 0.053 0.041
3 15 16 0.31 0.40 0.27
4 15 24 1.69 537.46 480
5 15 34 7.93 − −
6 15 46 11.31 − −
7 15 60 22.30 − −
8 15 76 36.11 − −
9 15 94 54.01 − −
10 25 115 80.40 − −
11 25 137 139.67 − −
12 25 161 195.60 − −

6. Discussion

We have achieved that, given a warehouse with a single robot, a list of several products
with their respective loads and a list of batches, our system minimizes the distance to collect
all the products and prepare the batches. This formulation solves the order in which the
robot could manage all the products and make the batches passing through the depot.
Another important achievement that this approach offers is that each robot makes a single
trip. However, it is possible to band the code so that, if we find ourselves in a situation
where there are many batches to create and only a few robots to do the picking, these robots
can be made to make the necessary trips if we have k qRobots that make, at most, one trip
(we will never need more with n batches). In this way, we will obtain all the packages for
trips that we are interested in doing. A more understandable way of explaining it would
be that when the first qRobot has finished its journey, it should only be ordered to do the
one that would have made the qRobot k + 1, which does not exist and so on with all the
qRobots k + 2, k + 3, k + 4 ... until all scheduled batches are finished.

Right now, in addition to the processor, quantum computing simulation is closely
related to memory. What takes up memory is to simulate a quantum computer, but the
quantum computer does not need that memory, so it is assumed that it will end up being
better. In this proof of concept, using 8 GB of RAM on the Raspberry Pi 4, we got the
following results. The algorithm of collection and generation of packages take between
2 and 450 s to generate the batches and picking. If you want the qRobot to do all these
tasks, we need to calculate the path before forming the packs. That said, we must bear in
mind that, if what we want is to recalculate new routes when the robot has already left, we
must take into account a lower latency time but close to said interval. A possible solution
would be to choose a Raspberry with more RAM capacity. For example, if we had a 64 GB
Raspberry Pi, this time would be cut to 2/8, and it would take approximately 56.25 s (less
than a minute) to create the batches. However, in this era of quantum computing, it is not
representative to compare times since the computational differences will be noticed when
the problems begin to grow, not on the small scales that we are currently dealing with.

Effective viability for today’s warehouses would consist of splitting the tasks of the
robots and having a qRobot that centralizes all the requests and passes them to the fleet of
n qRobots so that they collect the products belonging to each batch.

We also performed tests and developed a system that allows us to model the problem
and run it on a D-Wave. Despite the optimization of the algorithm, the number of necessary
qubits (K(n + 1)(n + 2) + Kdlog2Me) and the need for low latency make this code adapted
to the Annealing model. For this reason, we have prepared the Raspberry PI so that it can
run D-Wave directly and under Amazon-braket-ocean-plugin. For more information, see

Algorithms 2021, 14, 194 19 of 27

the steps in Appendix A. With this scenario, one could have a “reasonable” latency for low
data volume, things that, today, computers based on quantum gates cannot offer.

7. Conclusions and Further Work

As we have seen, the problem raised throughout this work offers us an efficient way
of managing a series of K qRobots to collect a set of orders, optimizing the number of
robots used. The provided approach applies to a “central computer” capable of carrying
out all the calculations and then giving each of the robots’ orders. However, when we
begin to deal with very large problems both in the number of products and in the number
of robots, the number of qubits required will tend to grow too large. A possible solution is
to distribute the calculation of a central computer to each of the robots in such a way that
each one has to calculate its route given a list of products to be collected. In this case, the
equations of the problem would not change; just take K = 1 for each qRobot and apply the
technique mentioned at the beginning of the discussion. Although it may not be possible
to reach the best solutions, this process of distribution of the calculation would suppose a
significant computational cost reduction despite the need to create the batches beforehand.
This search for batch creation will be studied in future projects. On the other hand, it is
important to note that the problem dealt with has a QUBO-type formulation, which allows
it to be executed in annealing-type quantum computers. This makes a big difference in
today’s era (NISQ) as we have managed to work with 200 qubits versus the 30 qubits
that we would have with a gate-based quantum computer. Finally, note that the defined
problem seeks to minimize the total distance traveled by the robots, making it worthwhile
for not all the robots to come out. For future lines, we will address the same problem. Still,
We will continue to try to reduce the total times instead of the distance traveled (as done in
this previous work [82]) since this situation is also very important in warehouse logistics.

Author Contributions: Conceptualization, P.A.-A.; Methodology, P.A.-A. and G.A.-L. and J.A.-
C.; Software, P.A.-A. and G.A.-L.; Validation, P.A.-A., G.A.-L., J.A.-C. and D.C.-F.; Formal Analy-
sis, P.A.-A., G.A.-L. and J.A.-C.; Investigation, P.A.-A.; Resources, P.A.-A.; Data Curation, P.A.-A.;
Writing–Original Draft Preparation, P.A.-A.; Writing–Review and Editing, P.A.-A., J.A.-C. and G.A.-
L.; Visualization, P.A.-A., G.A.-L., J.A.-C. and D.C.-F.; Supervision, P.A.-A.; Project Administration,
J.A.-C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This article does not contain any studies with human or
animal subjects.

Informed Consent Statement: Informed consent was obtained from all individual participants
included in the study.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article

Acknowledgments: The authors greatly thank the AWS-Braket and IBM team, mainly Simone
Severini and Steve Wood, respectively. P.A. thanks Jennifer Ramírez Molino for her support and
comments on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Installation of ARM64 on Raspberry Pi 4

This section will describe step by step and delve into how installing and running
Pennylane, AWS-Braket, D-Wave-Ocean, Qiskit, on a Raspberry Pi 4 under the ARM64 [68]
operating system torn it into a quantum computing simulator and use it to access real
quantum computers from IBMQ [69,77], AWS-Braket [75], D-Wave [78], and Regetti [76].
These frameworks and packages are required for the proof of concept that we propose.

Algorithms 2021, 14, 194 20 of 27

Figure A1. We have installed the following frameworks successfully (Qiskit, Pennylane, AWS-Braket)
on our Raspberry Pi 4 under the ARM64 operating system. More information about the qRobot
platform can be found at Ref. [83].

Listing A1: Installation Raspberry Pi 4 ARM64
1 Steps
2 1. Download the latest image of Raspberry Pi ARM64
3 2. Initial setup of a headless Raspberry Pi
4 3. Setup of the Python environment and TensorFlow 2.3.1
5 4. Manual installation of some dependencies
6 5. Installation of the Qiskit elements
7 6. Installation of the Pennylane elements
8 7. Installation of the Amazon elements
9 8. Setup of Jupyter Notebooks

10 9. Enable remote desktop access using VNC
11 10. Test Jupyter notebook codes
12 11. Install DWave framework and Amazon -braket -ocean -plugin
13

14 Note: The actual version of the ARM64 for Raspberry Pi 4 is
not stable. https ://www.raspberrypi.org/forums/viewtopic.php?t=275370

15

16 1. Download the latest image of Raspberry Pi ARM64
17 Download the image from: https :// downloads.raspberrypi.org/raspios_arm64/

images/raspios_arm64 -2021 -04 -09/
18

19 2. Initial Setup of a headless Raspberry Pi
20 We want to setup a headless Raspberry Pi (i.e. without display , keyboard ,

mouse), and also
not use display/keyboard/mouse during the setup procedure.

21 Creating an SD card with the initial OS is described at https ://www.
raspberrypi.org/documentation/installation/sdxc_formatting.md

22 We will use the Raspberry Pi Imager and choose %Raspberry Pi OS Desktop (64-
bit)% to write the image to the SD card. It
is recommended to use the Desktop image vs. the other alternatives.

23

24 Prepare for wireless boot
25 According to https ://www.raspberrypi.org/documentation/configuration/wireless

/headless.md, we create a file wpa_supplicant.conf

Algorithms 2021, 14, 194 21 of 27

in the root directory of the SD card with the following content (replace
(DE) with the appropriate country code , and (SSID)
and (WLAN PASSWORD) with the SSID and password for our WLAN
access point):

26 country=DE
27 ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
28 update_config =1
29 network ={
30 ssid="SSID"
31 psk="WLAN PASSWORD"
32 }
33 Now , we boot the Raspberry Pi, i.e., insert the SD card into the Raspberry Pi

and connect it to a power supply.
34

35 3. Set up the Python environment
36 Do not use conda/anaconda/berryconda as recommended on other hardware

platforms
for Qiskit you can use the new virtual environment as you judge it
suitable.

37

38 TensorFlow 2.3.1 for Python 3.
39 The whole shortcut procedure is found below. The wheel was too large to store

at GitHub , so Google drive
is used. Please make sure you have the latest pip3
and python3 version installed; otherwise , pip may come with the message "
.whl is not a supported wheel on this platform".

40

41 Check your Python3 version. Each version needs a unique wheel. Currently , the
Raspberry Pi 64-bit operating system uses Python 3.7.3. So , you need to

download Tensorflow -2.3.1 -cp37 -cp37m -linux_aarch64.whl. Undoubtedly , the
Python version will upgrade over time
and you will need a different wheel. See out GitHub page for
all the wheels.

42 # get a fresh start (remember , the 64-bit OS is still under development)
43 $ sudo apt -get update
44 $ sudo apt -get upgrade
45 # install pip and pip3
46 $ sudo apt -get install python -pip python3 -pip
47 # remove old versions , if not placed in a virtual environment (let pip search

for them)
48 $ sudo pip uninstall tensorflow
49 $ sudo pip3 uninstall tensorflow
50 # install the dependencies (if not already onboard)
51 $ sudo apt -get install gfortran
52 $ sudo apt -get install libhdf5 -dev libc -ares -dev libeigen3 -dev
53 $ sudo apt -get install libatlas -base -dev libopenblas -dev libblas -dev
54 $ sudo apt -get install liblapack -dev
55 # upgrade setuptools 47.1.1 -> 50.3.0
56 $ sudo -H pip3 install --upgrade setuptools
57 $ sudo -H pip3 install pybind11
58 $ sudo -H pip3 install Cython ==0.29.21
59 # install h5py with Cython version 0.29.21 (6 min @1950 MHz)
60 $ sudo -H pip3 install h5py ==2.10.0
61 # install gdown to download from Google drive
62 $ pip3 install gdown
63 # copy binairy
64 $ sudo cp ~/. local/bin/gdown/usr/local/bin/gdown
65 # download the wheel
66 $ gdown https :// drive.google.com/uc?id=1 jbkp2rSZZ3YY -AM1vuHyB9hI05zrZGHg
67 # install TensorFlow (63 min @1950 MHz)
68 $ sudo -H pip3 install tensorflow -2.3.1 -cp37 -cp37m -linux_aarch64.whl
69

70 When the installation
is successful , you should get the following screendump by executing:

71 $ python3
72 >>> import tensorflow as tf
73 >>> tf.__version__
74 you may have 2.3.1

Algorithms 2021, 14, 194 22 of 27

75

76 Now you may install the pyscf
for more information: http :// pyscf.org/pyscf/install.html#compiling -from -
source -code

77

78 Prerequisites for manual install are
79 * CMake >= 3.10
80 * Python >= 3.6
81 * Numpy >= 1.13
82 * Scipy >= 0.19
83 * h5py >= 2.7
84 You can download the latest version of PySCF (or the development branch)

from GitHub:
85 $ git clone https :// github.com/pyscf/pyscf.git
86 $ cd pyscf
87 $ git checkout dev # optional if you would like to try out the development

branch
88 Next , you need to build the C extensions in pyscf/lib:
89 $ cd pyscf/lib
90 $ mkdir build
91 $ cd build
92 $ cmake ..
93 $ make #(30 min)
94

95 export PYTHONPATH =/opt/pyscf:$PYTHONPATH
96

97 please check if the package hs been installed successfully
98 >>> import pyscf
99

100 Execute this:
101 cd pyscf/lib
102 sh _runme_to_fix_dylib_osx10 .11.sh
103

104

105 4. Manual installation of some dependencies
106 Based on and taking advantage of @Jan Lahmann , we need to install

and configure some prerequisites first manually.
107 retworkx
108 We will install retworkx according to the instructions

in https :// retworkx.readthedocs.io/en/stable/README.html#installing -
retworkx. First , install the rust language environment.

109 pi$ cd ~/ qrobot
110 pip install setuptools -rust
111 curl -o get_rustup.sh -s https ://sh.rustup.rs
112 sh ./ get_rustup.sh -y
113 Now activate rust and install retworkx:
114 pi$ source ~/. cargo/env
115 pip3 install retworkx
116

117

118 5. Installation of the Qiskit elements
119 After the pre -work we just completed , installing Qiskit should now be as

simple as
120

121 pip3 install --force -reinstall pip
122 #pip3 install vaex
123 sudo apt install llvm -7-dev
124

125 #I recommend to install separely each paquet from qiskit. The version of the
installed qiskit is 0.25.1

126 #In this version , you will not be able to install qiskit -machine -learning
127 pip3 install qiskit -aqua
128 pip3 install qiskit -aer
129 pip3 install ’qiskit[visualization]’
130

131 #Now , let us see what versions of Qiskit were installed:
132 pip3 list | grep qiskit
133 qiskit 0.25.1
134 qiskit -aer 0.8.1

Algorithms 2021, 14, 194 23 of 27

135 qiskit -aqua 0.9.1
136 qiskit -finance 0.1.0
137 qiskit -ibmq -provider 0.12.2
138 qiskit -ignis 0.6.0
139 qiskit -nature 0.1.1
140 qiskit -optimization 0.1.0
141 qiskit -terra 0.17.1
142

143 python --version
144 >>>Python 3.7.3
145

146 Command "python setup.py egg_info" failed with error code 1
in /tmp/pip -install -eur2lck3/qiskit -aer/

147

148 6. Installation of the Pennylane elements
149 pip install pennylane --upgrade
150 pip install autograd
151

152 7. Installation of the Amazon elements
153 pip install amazon -braket -sdk
154 pip install amazon -braket -pennylane -plugin
155

156 Needing to set if you specify directly with boto3 , it would be like this , but
you are using PennyLane

157 https :// boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.
html

158 https :// boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.
html#using -a-configuration -
file

159 aws_access_key_id and aws_secret_access_key will also be required , which are
associated with AWS IAM User.

160

161 For that , you must need any ~/.aws/config file
162 Edit with:
163 cat ~/. aws/config
164

165 mkdir ~/. aws
166 touch ~/. aws/config
167 echo "[default]" >> ~/. aws/config
168 echo "region = us -east -1" >> ~/.aws/config
169 echo "aws_access_key_id = AKIAIOSFODNN7EXAMPLE" >> ~/. aws/config
170 echo "aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

" >> ~/. aws/config
171

172 I use by default us-east -1, but the user can use the region he has.
173

174 the output format is like this example:
175 [default]
176 region = us-east -1
177 aws_access_key_id = AKIAIOSFODNN7EXAMPLE
178 aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
179

180 From here , you can be able to execute any code in Pennylane or AWS -Braket.
For another platform , like D-Wave , you may need to install:

181 pip3 install amazon -braket -ocean -plugin
182 pip3 install dwave_networkx
183 pip3 install minorminer
184 pip3 install dwave -ocean -sdk
185

186 8. Setup of Jupyter Notebooks
187 pip3 install jupyter
188

189 Start Jupyter without a local browser and listen on port 8888
for a remote connect:

190 jupyter notebook --no -browser --ip=* --port 8888
191

192 Please follow the message from your prompt. It might be necessary to replace
the hostname (raspberrypi) with the correct hostname
in our local network or the IP address of the raspberry.

Algorithms 2021, 14, 194 24 of 27

193

194 You can configure to access as local and access the Jupyter notebook
interface using the URL http :// raspberrypi :8888/
from a browser on our laptop. You will need to replace (raspberry) with
the correct hostname
or IP of the Raspberry Pi. For that , you need to execute the
next command:

195

196 mkdir -p ~/ qRobot/temp; cd ~/ qRobot/temp;
197 jupyter notebook --no -browser
198

199 9. Enable remote desktop access using VNC
200 In addition to connecting to the Raspberry Pi via ssh , it might be useful to

enable access with VNC to connect to a graphical desktop that
is running locally on the Raspberry Pi. This is described at https ://
desertbot.io/blog/headless -raspberry -pi -4-remote -desktop -vnc -setup.

201 First , we enable VNC and change the screen resolution:
202 sudo raspi -config
203 Select Interfacing Options
204 Select VNC
205 For the prompt to enable VNC , select Yes (Y)
206 For the confirmation , select Ok
207 Select Advanced Options
208 Select Resolution
209 Select anything but the default (example: 1280 x720)
210 Select Ok
211 Select Finish , Yes to reboot
212

213 For my local ssh viewer , I used Cyberduck https :// cyberduck.io/, but you can
also use https ://www.realvnc.com/en/connect/download/viewer/
and connect to the Raspberry Pi (enter the IP address
in VNC viewer; enter login information). After the first connect , we will
be asked to adjust some configurations (location settings , display

settings , system update , etc.).
214

215 10. Test Jupyter notebook codes ,
216

217 11. Install DWave framework and Amazon -braket -ocean -plugin
218 As DWave , unfortunately , does

not provide ARM wheels yet. That means that you need to build
from the source distributions. Simultaneously , dimod requires boost (
https :// github.com/dwavesystems/dimod#installation), though they are
planning to remove that dependency soon (https :// github.com/dwavesystems/
dimod/issues /618, https :// github.com/dwavesystems/dimod/pull /748).

219 You can try installing boost (https ://www.boost.org/)
and then trying to install dimod again.

220 The simple way
is by installing as apt -get install libboost -dev. So, follow the
next steps below. During these steps , you may need to upgrade your pip
or NumPy.

221 apt -get install libboost -dev
222 pip3 install amazon -braket -ocean -plugin
223

224 After these steps , you must need to install the package from D-Wave.
225

226 By installing dwave -tabu from source on master (we switched
from swig to cython , but haven ’t released 0.4 yet):

227 pip install -U pip setuptools
228 USE_CYTHON =1 pip install -e git+https :// github.com/dwavesystems/dwave -tabu.

git#egg=dwave -tabu
229

230 after this , install pip3 install dwave -system
231 Then , you already have your system ready to use DWave from your Raspberry PI

4.

Algorithms 2021, 14, 194 25 of 27

References
1. Angeleanu, A. New technology trends and their transformative impact on logistics and supply chain processes. Int. J. Econ.

Pract. Theor. 2015, 5, 413–419.
2. Kuźmicz, K.A. Benchmarking in omni-channel logistics. Res. Logist. Prod. 2015, 5, 491–501.
3. Savelsbergh, M.; Van Woensel, T. 50th anniversary invited article—City logistics: Challenges and opportunities. Transp. Sci. 2016,

50, 579–590. [CrossRef]
4. While, A.H.; Marvin, S.; Kovacic, M. Urban robotic experimentation: San Francisco, Tokyo and Dubai. Urban Stud. 2021,

58, 769–786. [CrossRef]
5. Van der Aalst, W.M.; Bichler, M.; Heinzl, A. Robotic Process Automation; Springer: Cham, Switzerland, 2018.
6. Siderska, J. Robotic Process Automation—A driver of digital transformation? Eng. Manag. Prod. Serv. 2020, 12, 21–31. [CrossRef]
7. Agostinelli, S.; Marrella, A.; Mecella, M. Towards intelligent robotic process automation for BPMers. arXiv 2020, arXiv:2001.00804.
8. Tompkins, J.A.; White, J.A.; Bozer, Y.A.; Tanchoco, J.M.A. Facilities Planning; John Wiley and Sons: Hoboken, NJ, USA, 2010.
9. Karalekas, P.J.; Tezak, N.A.; Peterson, E.C.; Ryan, C.A.; da Silva, M.P.; Smith, R.S. A quantum-classical cloud platform optimized

for variational hybrid algorithms. Quantum Sci. Technol. 2020, 5, 024003. [CrossRef]
10. Cornet, B.; Fang, H.; Wang, H. Overview of Quantum Technologies, Standards, and their Applications in Mobile Devices.

GetMobile Mob. Comput. Commun. 2021, 24, 5–9. [CrossRef]
11. Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA

Cancer J. Clin. 2016, 66, 115–132. [CrossRef]
12. Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse wastewater characteristics, treatment, and management in the meat

processing industry: A review on trends and advances. J. Environ. Manag. 2015, 161, 287–302. [CrossRef]
13. Koch, S.; Wäscher, G. A grouping genetic algorithm for the order batching problem in distribution warehouses. J. Bus. Econ.

2016, 86, 131–153. [CrossRef]
14. Albareda-Sambola, M.; Fernández, E.; Hinojosa, Y.; Puerto, J. The multi-period incremental service facility location problem.

Comput. Oper. Res. 2009, 36, 1356–1375. [CrossRef]
15. Cergibozan, Ç.; Tasan, A.S. Order batching operations: An overview of classification, solution techniques, and future research. J.

Intell. Manuf. 2019, 30, 335–349. [CrossRef]
16. Azadnia, A.H.; Taheri, S.; Ghadimi, P.; Mat Saman, M.Z.; Wong, K.Y. Order batching in warehouses by minimizing total tardiness:

A hybrid approach of weighted association rule mining and genetic algorithms. Sci. World J. 2013, 2013, 246578. [CrossRef]
17. van Gils, T.; Katrien Ramaekers, A.C.; de Koster, R.B. Designing efficient order picking systems by combining planning problems:

State-of-the-art classification and review. Eur. J. Oper. Res. 2018, 267, 1–15. [CrossRef]
18. Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path planning with modified a star algorithm for a

mobile robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]
19. LaValle, S.M.; Kuffner, J.J.; Donald, B. Rapidly-exploring random trees: Progress and prospects. Algorithmic Comput. Robot. New

Dir. 2001, 5, 293–308.
20. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. 1998. Available online: https://www.cs.csustan.

edu/~xliang/Courses/CS4710-21S/Papers/06%20RRT.pdf (accessed on 10 May 2021).
21. Cheng, P.; LaValle, S.M. Resolution complete rapidly-exploring random trees. In Proceedings of the 2002 IEEE International

Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002; Volume 1, pp. 267–272.
22. Rawlinson, N.; Sambridge, M. The fast marching method: An effective tool for tomographic imaging and tracking multiple

phases in complex layered media. Explor. Geophys. 2005, 36, 341–350. [CrossRef]
23. Gademann, N.; Van de velde, S. Order Batching to Minimize Total Travel Time in a parallel-aisle warehouse. IIE Trans. 2005, 37,

63–75. [CrossRef]
24. Cortina, L.M.; Magley, V.J.; Williams, J.H.; Langhout, R.D. Incivility in the workplace: Incidence and impact. J. Occup. Health

Psychol. 2001, 6, 64–80. [CrossRef]
25. Hsu, C.M.; Chen, K.Y.; Chen, M.C. Batching orders in warehouses by minimizing travel distance with genetic algorithms. Comput.

Ind. 2005, 56, 169–178. [CrossRef]
26. Tsai, C.Y.; Liou, J.J.; Huang, T.M. Using a multiple-GA method to solve the batch picking problem: Considering travel distance

and order due time. Int. J. Prod. Res. 2008, 46, 6533–6555. [CrossRef]
27. Tsang, E. Foundations of Constraint Satisfaction: The Classic Text; BoD–Books on Demand: Norderstedt, Germany, 2014.
28. Kochenberger, G.; Hao, J.K.; Glover, F.; Lewis, M.; Lü, Z.; Wang, H.; Wang, Y. The unconstrained binary quadratic programming

problem: A survey. J. Comb. Optim. 2014, 28, 58–81. [CrossRef]
29. Turing, A.M. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 1937, 2, 230–265.

[CrossRef]
30. Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys 1982, 21, 467–488. [CrossRef]
31. Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Math. Phys.

Sci. 1985, 400, 97–117.
32. Shor, P. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium

on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994. [CrossRef]

http://doi.org/10.1287/trsc.2016.0675
http://dx.doi.org/10.1177/0042098020917790
http://dx.doi.org/10.2478/emj-2020-0009
http://dx.doi.org/10.1088/2058-9565/ab7559
http://dx.doi.org/10.1145/3457356.3457358
http://dx.doi.org/10.3322/caac.21338
http://dx.doi.org/10.1016/j.jenvman.2015.07.008
http://dx.doi.org/10.1007/s11573-015-0789-x
http://dx.doi.org/10.1016/j.cor.2008.02.010
http://dx.doi.org/10.1007/s10845-016-1248-4
http://dx.doi.org/10.1155/2013/246578
http://dx.doi.org/10.1016/j.ejor.2017.09.002
http://dx.doi.org/10.1016/j.proeng.2014.12.098
https://www.cs.csustan.edu/~xliang/Courses/CS4710-21S/Papers/06%20RRT.pdf
https://www.cs.csustan.edu/~xliang/Courses/CS4710-21S/Papers/06%20RRT.pdf
http://dx.doi.org/10.1071/EG05341
http://dx.doi.org/10.1080/07408170590516917
http://dx.doi.org/10.1037/1076-8998.6.1.64
http://dx.doi.org/10.1016/j.compind.2004.06.001
http://dx.doi.org/10.1080/00207540701441947
http://dx.doi.org/10.1007/s10878-014-9734-0
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1109/sfcs.1994.365700

Algorithms 2021, 14, 194 26 of 27

33. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing—STOC ’96, New York, NY, USA, 22–24 May 1996. [CrossRef]

34. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [CrossRef]
35. Wang, D.; Higgott, O.; Brierley, S. Accelerated Variational Quantum Eigensolver. Phys. Rev. Lett. 2019, 122. [CrossRef]
36. Farhi, E.; Goldstone, J.; Gutmann, S. A Quantum Approximate Optimization Algorithm. arXiv 2014, arXiv:1411.4028.
37. Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2014, 56, 172–185.

[CrossRef]
38. Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202.

[CrossRef]
39. Pérez-Salinas, A.; Cervera-Lierta, A.; Gil-Fuster, E.; Latorre, J.I. Data re-uploading for a universal quantum classifier. Quantum

2020, 4, 226. [CrossRef]
40. Atchade-Adelomou, P.; Golobardes-Ribe, E.; Vilasis-Cardona, X. Using the Parameterized Quantum Circuit combined

with Variational-Quantum-Eigensolver (VQE) to create an Intelligent social workers’ schedule problem solver. arXiv 2020,
arXiv:2010.05863.

41. Atchade-Adelomou, P.; Casado-Fauli, D.; Golobardes-Ribe, E.; Vilasis-Cardona, X. quantum Case-Based Reasoning (qCBR). arXiv
2021, arXiv:cs.AI/2104.00409.

42. Atchade-Adelomou, P.; Alonso-Linaje, G. Quantum Enhanced Filter: QFilter. arXiv 2021, arXiv:2104.03418.
43. Kendon, V. Quantum computing using continuous-time evolution. Interface Focus 2020, 10, 20190143. [CrossRef]
44. McGeoch, C.C. Adiabatic Quantum Computation and Quantum Annealing Theory and Practice. Synth. Lect. Quantum Comput.

2014, 5, 1–93. [CrossRef]
45. McDonald, K.T. Ph410 Physics of Quantum Computation1. 2017. Available online: https://www.physics.princeton.edu/

~mcdonald/examples/ph410problems.pdf (accessed on 10 May 2021).
46. Landauer, E.O.W.R. Fundamental concepts of Hamiltonian Pauli Terms Quantum Computation. Available online: https:

//core.ac.uk/download/pdf/25212354.pdf (accessed on 10 May 2021).
47. Harrow, A.W.; Farhi, E. Quantum Supremacy through the Quantum Approximate Optimization Algorithm. 2019. Available

online: https://arxiv.org/pdf/1602.07674.pdf (accessed on 10 May 2021).
48. Kadowaki, T.; Nishimori, H. Quantum Annealing in the Transverse Ising Model. Phys. Rev. E 1998, 58, 5355. [CrossRef]
49. Laporte, G. The Vehicle Routing Problem: An Overview of Exact and Approximate Algorithm. Eur. J. Oper. Res. 1992, 59, 345–358.

[CrossRef]
50. Sarkar, K.B.A.; Mouedenne, A.; Hubregtsen, A.Y.T.; Krol, I.A.A. Quantum Computer Architecture: Towards Full-Stack Quantum

Accelerators. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France,
9–13 March 2020.

51. Ross, B.O.B.J.; Hanshar, F. Multi-objective Genetic Algorithms for Vehicle Routing Problem with Time Windows. Appl. Intell.
2004, 24, 17–30.

52. Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.H.; Zhou, X.Q.; Love, P.J.; Aspuru-Guzik, A.; O’Brien, J.L. A variational eigenvalue
solver on a photonic quantum processor. Nat. Commun. 2014, 5. [CrossRef]

53. Matsuura, G.G.G.A.Y. QAOA for Max-Cut Requires Hundreds of Qubits for Quantum Speed-up. Sci. Rep. 2019, 9, 1–7.
54. Moor, J.D.B.D. The Clifford Group, Stabilizer States, and Linear and Quadratic Operations over GF(2). Phys. Rev. A 2003, 68,

042318.
55. Rebentrost, P.; Schuld, M.; Wossnig, L.; Petruccione, F.; Lloyd, S. Quantum gradient descent and Newton’s method for constrained

polynomial optimization. arXiv 2018, arXiv:quant-ph/1612.01789.
56. Vyskocil, T.; Djidjev, H. Embedding Equality Constraints of Optimization Problems into a Quantum Annealer. Algorithms 2019,

12, 77. [CrossRef]
57. Anuradha Mahasinghe Michael, J.; Dinneen, R.H. Solving the Hamiltonian Cycle Problem using a Quantum Computer. In

Proceedings of the Australasian Computer Science Week Multiconference, Sydney, NSW, Australia, 29–31 January 2019.
58. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 5. [CrossRef]
59. Roch, S.F.C.; Gabor, T.; Seidel, C.; Neukart, F.; Galter, I.; Mauerer, W.; Linhoff-Popien, C. A Hybrid Solution Method for the

Capacitated Vehicle Routing Problem Using a Quantum Annealer. Front. ICT 2019, 6, 13.
60. Braket, A. Amazon Braket Services. 2021. Available online: https://aws.amazon.com/braket/?nc1=h_ls (accessed on 5

May 2021).
61. Xie, L.; Li, H.; Luttmann, L. Formulating and solving integrated order batching and routing in multi-depot AGV-assisted

mixed-shelves warehouses. arXiv 2021, arXiv:math.OC/2101.11473.
62. Arutyunov, G.; Frolov, S.; Staudacher, M. Bethe Ansatz for Quantum Strings. J. High Energy Phys. 2004, 2004, 16. [CrossRef]
63. Sim, S.; Johnson, P.D.; Aspuru-Guzik, A. Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid

Quantum-Classical Algorithms. Adv. Quantum Technol. 2019, 2, 1900070. [CrossRef]
64. Atchade-Adelomou, P.; Golobardes-Ribé, E.; Vilasís-cardona, X. Using the Variational-Quantum-Eigensolver (VQE) to Create

an Intelligent Social Workers Schedule Problem Solver. In Proceedings of the International Conference on Hybrid Artificial
Intelligence Systems, Gijón, Spain, 11–13 November 2020; pp. 245–260.

http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1103/PhysRevLett.122.140504
http://dx.doi.org/10.1080/00107514.2014.964942
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.22331/q-2020-02-06-226
http://dx.doi.org/10.1098/rsfs.2019.0143
http://dx.doi.org/10.2200/S00585ED1V01Y201407QMC008
https://www.physics.princeton.edu/~mcdonald/examples/ph410problems.pdf
https://www.physics.princeton.edu/~mcdonald/examples/ph410problems.pdf
https://core.ac.uk/download/pdf/25212354.pdf
https://core.ac.uk/download/pdf/25212354.pdf
https://arxiv.org/pdf/1602.07674.pdf
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1016/0377-2217(92)90192-C
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.3390/a12040077
http://dx.doi.org/10.3389/fphy.2014.00005
https://aws.amazon.com/braket/?nc1=h_ls
http://dx.doi.org/10.1088/1126-6708/2004/10/016
http://dx.doi.org/10.1002/qute.201900070

Algorithms 2021, 14, 194 27 of 27

65. Wu, C.W. On Rayleigh–Ritz ratios of a generalized Laplacian matrix of directed graphs. Linear Algebra Its Appl. 2005, 402, 207–227.
[CrossRef]

66. Foundation, R.P. Raspberry Pi 4. 2021. Available online: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
(accessed on 10 May 2021).

67. Jaggar, D. ARM architecture and systems. IEEE Ann. Hist. Comput. 1997, 17, 9–11. [CrossRef]
68. Jiang, Q.; Lee, Y.C.; Zomaya, A.Y. The Power of ARM64 in Public Clouds. In Proceedings of the 2020 20th IEEE/ACM

International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia, 11–14 May 2020; pp.
459–468.

69. Wille, R.; Van Meter, R.; Naveh, Y. IBM’s Qiskit Tool Chain: Working with and Developing for Real Quantum Computers. In
Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 25–29 March 2019;
pp. 1234–1240.

70. IBM. DOcplex Python Modeling API. 2021. Available online: https://www.ibm.com/docs/en/icos/12.9.0?topic=docplex-
python-modeling-api (accessed on 10 May 2021).

71. Eisberg, R.; Resnick, R. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles. 1985. Available online: https:
//ui.adsabs.harvard.edu/abs/1985qpam.book.....E/abstract (accessed on 10 May 2021).

72. Iterate. Cyberduck—SSH. 2021. Available online: https://cyberduck.io/sftp/ (accessed on 10 May 2021).
73. The Raspberry Pi Foundation. Configuration of the Raspberry Pi. 2021. Available online: https://www.raspberrypi.org/

documentation/configuration/ (accessed on 10 May 2021).
74. Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Alam, M.S.; Ahmed, S.; Arrazola, J.M.; Blank, C.; Delgado, A.; Jahangiri, S.; et al.

PennyLane: Automatic Differentiation of Hybrid Quantum-Classical Computations. arXiv 2020, arXiv:quant-ph/1811.04968.
75. Braket, A. Github Amazon Braket. 2021. Available online: https://github.com/aws/amazon-braket-sdk-python (accessed on 26

February 2021).
76. Sete, E.A.; Zeng, W.J.; Rigetti, C.T. A functional architecture for scalable quantum computing. In Proceedings of the 2016 IEEE

International Conference on Rebooting Computing (ICRC), San Diego, CA, USA, 17–19 October 2016; pp. 1–6.
77. McKay, D.C.; Alexander, T.; Bello, L.; Biercuk, M.J.; Bishop, L.; Chen, J.; Chow, J.M.; Córcoles, A.D.; Egger, D.; Filipp, S.; et al.

Qiskit backend specifications for openqasm and openpulse experiments. arXiv 2018, arXiv:1809.03452.
78. D-Wave. D-Wave Computer. 2021. Available online: https://www.dwavesys.com/quantum-computing (accessed on 10

May 2021).
79. PennyLane, A.B. PennyLane-Braket Plugin. 2021. Available online: https://amazon-braket-pennylane-plugin-python.

readthedocs.io/en/latest/ (accessed on 26 February 2021).
80. PennyLane, A.B. PennyLane-Braket Plugin. 2021. Available online: https://docs.aws.amazon.com/braket/latest/

developerguide/braket-devices.html (accessed on 26 March 2021).
81. Zaborniak, T.; de Sousa, R. Benchmarking Hamiltonian Noise in the D-Wave Quantum Annealer. IEEE Trans. Quantum Eng. 2021,

2, 1–6. [CrossRef]
82. Atchade-Adelomou, P.; Golobardes-Ribé, E.; Vilasis-Cardona, X. Formulation of the Social Workers’ Problem in Quadratic

Unconstrained Binary Optimization Form and Solve It on a Quantum Computer. J. Comput. Commun. 2020, 8, 44–68. [CrossRef]
83. Braket, A. qRobot Platform. 2021. Available online: https://github.com/pifparfait/qRobot_Platform/blob/main/RaspberryPi_

ARM64_for_QML.ipynb (accessed on 26 June 2021).

http://dx.doi.org/10.1016/j.laa.2004.12.014
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
http://dx.doi.org/10.1109/MM.1997.612174
https://www.ibm.com/docs/en/icos/12.9.0?topic=docplex-python-modeling-api
https://www.ibm.com/docs/en/icos/12.9.0?topic=docplex-python-modeling-api
https://ui.adsabs.harvard.edu/abs/1985qpam.book.....E/abstract
https://ui.adsabs.harvard.edu/abs/1985qpam.book.....E/abstract
https://cyberduck.io/sftp/
https://www.raspberrypi.org/documentation/configuration/
https://www.raspberrypi.org/documentation/configuration/
https://github.com/aws/amazon-braket-sdk-python
https://www.dwavesys.com/quantum-computing
https://amazon-braket-pennylane-plugin-python.readthedocs.io/en/latest/
https://amazon-braket-pennylane-plugin-python.readthedocs.io/en/latest/
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html
http://dx.doi.org/10.1109/TQE.2021.3050449
http://dx.doi.org/10.4236/jcc.2020.811004
https://github.com/pifparfait/qRobot_Platform/blob/main/RaspberryPi_ARM64_for_QML.ipynb
https://github.com/pifparfait/qRobot_Platform/blob/main/RaspberryPi_ARM64_for_QML.ipynb

	Introduction
	Work Context
	Quantum Circuits in the NISQ Era
	Implementation
	The Problem's Formulation
	Picking and Batching Formulation
	Mapping the Classical to Quantum Optimization

	Results
	Discussion
	Conclusions and Further Work
	Installation of ARM64 on Raspberry Pi 4
	References

