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Abstract: Recently, some researchers adopted the convolutional neural network (CNN) for time
series classification (TSC) and have achieved better performance than most hand-crafted methods
in the University of California, Riverside (UCR) archive. The secret to the success of the CNN
is weight sharing, which is robust to the global translation of the time series. However, global
translation invariance is not the only case considered for TSC. Temporal distortion is another common
phenomenon besides global translation in time series. The scale and phase changes due to temporal
distortion bring significant challenges to TSC, which is out of the scope of conventional CNNs. In this
paper, a CNN architecture with an elastic matching mechanism, which is named Elastic Matching
CNN (short for EM-CNN), is proposed to address this challenge. Compared with the conventional
CNN, EM-CNN allows local time shifting between the time series and convolutional kernels, and a
matching matrix is exploited to learn the nonlinear alignment between time series and convolutional
kernels of the CNN. Several EM-CNN models are proposed in this paper based on diverse CNN
models. The results for 85 UCR datasets demonstrate that the elastic matching mechanism effectively
improves CNN performance.

Keywords: time series classification; convolutional neural network; temporal distortion; elastic matching

1. Introduction

Time series classification (TSC) is an important research topic in data mining com-
munities [1]. It has a wide range of applications in human activity recognition [2], speech
analysis [3], electrocardiogram (ECG) monitoring [4], and biological research [5].

Deep learning is a subfield of machine learning concerned with deep structures with
adjustable parameters. Many deep learning architectures exist for TSC. Compared with
other classical architectures such as the multilayer perceptron and recurrent neural network
(RNN), the convolutional neural network (CNN) has become one of the most prevalent
architectures for TSC in recent years [6]. However, the CNN architecture is sensitive to
temporal distortion [7], such as differences in rates and local translation within a pattern [8].

Many studies have been conducted on temporal distortion for TSC. One of the most
representative studies is on dynamic time warping (DTW). In conjunction with a one-
nearest-neighbor (1NN) classifier, DTW achieves great success in TSC. Compared with the
lock-step matching in Euclidean distance (ED) [9], elastic matching is exploited in DTW to
achieve invariance in temporal distortion. However, DTW is a global distance measure
that discards the matching information [8]. In addition, DTW could match two series that
have dissimilar local structures [10].

Inspired by the elastic matching in DTW, an elastic matching mechanism combined
with CNN called Elastic Matching CNN (EM-CNN) is proposed in this paper. Instead of
lock-step alignments between the time series and convolutional kernels as CNN, a matching
matrix is used to adaptively learn the alignments between these in the EM-CNN. The EM-
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CNN is an architecture that learns the matching relationship and convolutional kernel
simultaneously. The primary contributions of this paper are concluded as follows:

• An elastic matching mechanism is proposed to measure the similarity between the
time series and convolutional kernels. This mechanism can be extended to different
architectures based on the CNN.

• The experiments performed on 85 University of California, Riverside (UCR) time series
datasets [11] demonstrate that the proposed mechanism improves the performance of
CNN on classification tasks.

The remainder of this paper is organized as follows. This paper briefly reviews
the related work in Section 2. In Section 3, an elastic matching mechanism is proposed
to learn the matching relationship between the time series and convolutional kernels.
Next, the experiments are performed on 85 UCR datasets, and the results are analyzed in
Section 4. Additional discussion is presented in Section 5. Finally, a conclusion is provided
in Section 6.

2. Related Work
2.1. Dynamic Time Warping

Dynamic time warping is a point-to-point matching method to measure the similarity
between two different time series. In general, DTW allows a time series to be “stretched”
or “compressed” to provide a better match with another time series [12]. Finding a better
match in DTW is equivalent to finding an optimal path in the warping matrix with certain
restrictions and rules. A dynamic programming algorithm is used to obtain the cumulative
distance of the optimal path. A smaller cumulative distance results in a higher similarity
between two time series.

The point-to-point matching in DTW is dependent on the value differences between
two points. A point of a series could map a further point or multiple points of other
series, leading to misclassification, especially in such applications as image retrieval [13].
Constraint techniques, such as Sakoe–Chuba [14] Band and Itakura Parallelogram [15]
are introduced to DTW to reduce the matching space. Weighted DTW [12] considers
the phase differences besides value differences to penalize the further points which are
probably outliers. Derivative DTW [16] and shapeDTW [10] encode the local neighborhood
information rather than the values at a point to measure the similarity between two points.

2.2. Dynamic Time Warping with the Convolutional Neural Network

The artificial neural network (ANN) is famous for its powerful feature extraction ca-
pability in the last decades. Recently, ANNs such as the RNN and CNN, have been used to
learn supervised [17] or unsupervised representation [18] for time series analysis. The RNN
is well-known for time series forecasting [17] with the advantage of sequential learning.
Some improvements are proposed to reduce inference time [19] and predict sudden time-
series changes [20]. Although, the RNN is also exploited in the TSC, the CNN achieves
better performance in supervised learning on the UCR archive [21]. The CNN, such as
the fully convolutional network (FCN) and residual network (ResNet) [22], have achieved
strong baselines for TSC. Some attempts have been made to combine DTW and CNN to
overcome the brittleness to temporal distortions in the conventional CNN. These attempts
are roughly categorized into two categories. The first category, DTW, is a preprocessing
method to transform the raw time series. Then, the transformed series are used as inputs to
the CNN. In [8], a multimodal fusion CNN (MMF-CNN) is employed to predict a label for
the multidimensional time series. The multidimensional time series are composed of the
coordinate features and local distance features which are extracted by measuring the DTW
similarity between the original time series and prototypes. The second category directly
incorporates the DTW into the CNN and training an end-to-end classification framework.
In [23], DTW is used to determine a more optimal alignment between convolutional kernels
and time series. The DTWNet [7] replaces the inner product kernel with the DTW kernel
against the Doppler effect and improves the capability to do feature extraction.
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3. Proposed Method
3.1. Elastic Matching in Dynamic Time Warping

Elastic matching in DTW is first reviewed to better demonstrate the proposed mechanism.
Considering two different time series X = (x1, x2, ...xi..., xn)T and W = (w1, w2, ...wj..., wm)T,
a dynamic programming algorithm composed of Equations (1) and (2) is used to decide
which points should be matched. The second point in X could match the third and fourth
points in W (red rhombuses in Figure 1) using DTW. Compared with lock-step matching
(blue circles in Figure 1), used in ED, the matching relationship in DTW is data-dependent
and elastic:

DTW(X, W) =
√

c(i, j), (1)

where c(i, j) is the cumulative distance:

c(i, j) = |xi − wj|2 + min{c(i− 1, j− 1), c(i− 1, j), c(i, j− 1)}. (2)
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Figure 1. Example of elastic matching in dynamic time warping (DTW); the yellow rectangles are the
beginning and end of the two paths; blue circles and red rhombuses represent the optimal paths in
Euclidean distance and DTW, respectively.

3.2. Elastic Matching in the Convolutional Neural Network

The CNN extracts features from the time series by measuring the local similarity between
the time series X = (x1, x2, ...xi..., xn)T and convolutional kernel W = (w1, w2, ...wj..., wm)T.
In general, the similarity measure adopted in the CNN is the inner product. Considering
the definition of the inner product, the matching mechanism of the inner product is similar
to the ED. A point of one series only matches the point of another series in the same
position. Hence, the inner product is inappropriate to measure similarity for temporal
distortion. An elastic matching mechanism is incorporated into the inner product to bet-
ter model the matching relationship between the time series and convolutional kernels.
The elastic matching mechanism allows the kernel points to construct relationships with
points in different positions of the time series. The similarity of the ith location is defined
by Equation (3). The convolutional layer combined with the elastic matching mechanism
is called the matching convolutional (MConv) layer. The structure of the MConv layer is
presented in Figure 2. A fully-connected (FC) layer is used to learn the matching relation-
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ship between the series and kernels. The weights of the FC layer in Figure 2 correspond to
the matching matrix M in Equation (3).

Similarityi = WTMXi:i+m, (3)

where m is the length of a convolutional kernel, and M is an m×m matching matrix.

x3

x2

x1

w3

w2

w1h1

h2

h3

MConv layer

input hidden unit kernel

M11

M33

Figure 2. Structure of the matching convolutional (MConv) layer.

When M is an identity matrix, Equation (3) degenerates to the inner product,
and Equation (3) can be considered an extension of DTW. The proof is as follows.

Without loss of generality, this proof is based on the example in Figure 1. The time
series and convolutional kernel have the same length in a sliding window for the CNN.
Red rhombuses represent the optimal path in Figure 1. Hence, series X = (x1, x2, ...xi..., x7)

T

and kernel W = (w1, w2, ...wj..., w7)
T are transformed to X′ and W ′ as shown in Equation (4),

respectively:

X′ = (x1, x1, x2, x2, x3, x4, x4, x5, x5, x6, x7)
T

W ′ = (w1, w2, w3, w4, w4, w5, w6, w6, w7, w7, w7)
T.

(4)

If a dot product is used to measure the similarity between two points, the DTW
similarity between X and W is equivalent to the inner product between X′ and W ′ as
presented in Equation (5):

SimilarityDTW(X, W) = X′ ·W ′. (5)

Equation (5) can be further expressed as a matrix multiplication as indicated in
Equation (6):

SimilarityDTW(X, W) = WTM′X, (6)

where M′ is a binary matrix and satisfies the conditions as shown in Equation (7):

M′i,j =

{
1, xi,j ∈ X′ and wi,j ∈W ′

0, otherwise
. (7)

Comparing Equations (3) and (7), DTW is a special case of the proposed
matching mechanism.

3.3. EM-CNN

In this section, three EM-CNN architectures including elastic matching FCN (EM-
FCN), elastic matching ResNet (EM-ResNet) and elastic matching Inception (EM-Inception)
are proposed. The architectures in Figures 3 and 4 are EM-FCN and EM-ResNet. The backbone
of the EM-FCN and EM-ResNet are FCN and ResNet which are strong baselines for
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TSC [22]. The EM-FCN is similar to FCN; the difference between FCN and EM-FCN is the
convolutional layers in FCN are replaced by the MConv layers in EM-FCN. The EM-FCN
comprises three basic modules, one global average pooling (GAP) layer, and one FC layer.
Each basic module contains one MConv layer, one batch normalization (BN) layer, and one
Rectified Linear Unit (ReLU) layer. The kernel sizes and numbers of kernels corresponding
to the three MConv layers are 8, 5, and 3 and 128, 256, and 128, respectively.
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Figure 3. Architecture of EM-FCN, MConv1D denotes the one-dimensional MConv layer.

Compared with the EM-FCN, the EM-ResNet is deeper. It has three bottlenecks, which
consist of three basic modules like EM-FCN. The number of kernels corresponding to three
bottlenecks is 64, 128, and 128, respectively. Convolutional layers are only replaced by
MConv layers in the residual branches for stable training.
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Figure 4. Architecture of EM-ResNet, MConv1D denotes the one-dimensional MConv layer.

Compared with the EM-FCN and EM-ResNet, EM-Inception (Figure 5) is based on
Inception [24] which extracts features in a multiscale manner. Inception is composed of
two bottlenecks, one GAP layer, and one FC layer.
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Figure 5. Architecture of EM-Inception.

Each bottleneck has three basic Inception modules. Multiple paralleled convolutional
operators of different kernel sizes in conjunction with a max-pooling operator are per-
formed in each module in Figure 6. Like EM-ResNet, a shortcut connection is used between
the consecutive bottlenecks, and the MConv layers only take the place of the convolutional
layers in the residual branches.
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Figure 6. Architecture of the EM-Inception module, MConv1D denotes the one-dimensional MConv
layer. The input of the EM-Inception module is filtered by three Mconv1D with 32 kernels which
sizes are 10, 20, and 40, respectively, and one max-pooling layer (stride = 3) followed by a 1× 1
convolutional layer. The output of the EM-Inception module is a feature map with 128 channels.

The MConv layer is the core of the EM-CNN. The matching matrix M in the MConv
layer is learned by backpropagation. Similar to the derivation in [25,26], the details for
calculating the gradients needed for the backpropagation algorithm are as follows. Figure 2
illustrates that, assuming the response in each location for the MConv layer is y, and the
optimized objective function J(W, M) is as follows:

J(W, M) = min
W,M
{1

2
‖y−WTMX‖2}. (8)

Equation (8) becomes the objective function of CNN if M is an identity matrix.
The gradient descent for the CNN is easy to calculate:

dWt

dt
= X(y−WT

t X)TWt. (9)

Similar to the derivation of Equation (9), we let Ŵ = WTM using the chain rule,
and the gradient descent for the EM-CNN can be calculated as shown in Equation (10):

dŴt

dt
= MT

t MtXT(y−WT
t X) + XT(y−WT

t X)WT
t Wt, (10)

where W0 is initialized using the Xavier method, and M0 is initialized with an identity matrix.

4. Experiments

In this section, experiments are performed on the UCR archive to validate the effec-
tiveness of the elastic matching mechanism.

4.1. Hyperparameter Settings

The EM-FCN, EM-ResNet, and EM-Inception were tested on 85 ‘bake-off’ datasets
on the UCR archive. Default train/test split was used as [22,24] to train the model and
evaluate the performance. The matching matrix M was changed per layer and initialized
using an identity matrix. The Adam optimizer was used to train the EM-FCN (2000 epochs),
EM-ResNet (1500 epochs) and EM-Inception (1500 epochs) with the initial learning rate
of 0.001, β1 = 0.9, β2 = 0.999 and ε =1 × 10−8. The best model corresponding to the
minimum training loss as [21] is used to evaluate the architecture generalization over the
testing sets.

4.2. Metrics

The evaluation metrics to compare the performance of different methods are the
accuracy ratios on each dataset, number of Win, average arithmetic ranking (AVG-AR),
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average geometric ranking (AVG-GR), and mean per-class error (MPCE). The definition of
the MPCE is presented in Equation (11):

PCEk =
ek
ck

MPCEi =
1
K ∑ PCEk,

(11)

where k refers to each dataset and i represents each method, K is the number of datasets,
ck and ek are the number of categories and error rates for the k-th dataset, respectively.

The critical difference defined by Equation (12) is also tested to compare different
methods statistically over multiple datasets [27]. A critical difference diagram was pro-
posed to visualize this comparison where a cluster of methods (a clique) connected by a
thick horizontal line are not-significantly different in terms of accuracy [24].

CriticalDi f f erence = qα

√
Nc(Nc + 1)

6K
, (12)

where the critical value qα is the Studentized range statistic divided by
√

2, Nc is the number
of methods. The value of α is set to 0.05 in the experiments.

4.3. Evaluation on the UCR Archive

The first experiment compares the EM-FCN, EM-ResNet, and EM-Inception with FCN,
ResNet, and Inception to demonstrate the effectiveness of the elastic matching mechanism
for the CNN. Table 1 and Figure 7 indicate that CNN architectures with the elastic matching
mechanism exhibit better performance than lock-step matching. Compared with other
methods, EM-Inception obtains the best rank in all the metrics.

 !"#$%

&'(

)*+&'(

,-.(-/ )*+,-.(-/

012-3/451

)*+012-3/451

Figure 7. Critical difference diagram of a pairwise statistical difference comparison of FCN, ResNet,
Inception, EM-FCN, EM-ResNet and EM-Inception on the UCR archive.

The second experiment is to validate that the elastic matching mechanism is suitable
to address the temporal distortion. The compared methods surveyed in this experiment
consist of the following: DTW [28], shapeDTW [10] and DTW feature (DTW-F) [29], Edit dis-
tance (Subsequence (LCSS) distance [30], Edit Distance with Real Penalty (ERP) [31], Time
warp edit (TWE) distance [32] and Move–Split–Merge (MSM) [33]), Ensembles of elastic dis-
tance measures (EE) [34], Hierarchical Vote Collective of Transformation-based Ensembles
(HIVE-COTE) [35], Time warping invariant Echo State Networks (TWIESN) [36], MMF-
CNN [8] and EM-Inception. The results in Table 2 and Figure 8 indicate that EM-Inception
achieves a comparable performance with HIVE-COTE (the state-of-the-art method on
the UCR archive). Moreover, HIVE-COTE is an ensemble method based on 35 different
classifiers, including DTW-1NN, MSM-1NN, and others. It has a robust ability to address
temporal distortion. Hence, the experimental results also reflect the effectiveness of the
proposed mechanism. Compared with other methods, such as MMF-CNN and shapeDTW,
the superiority of EM-Inception demonstrates that an end-to-end learning architecture
with an elastic matching mechanism is preferred.
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Table 1. Evaluation metrics involving 85 time series datasets on the UCR archive .The values before the last four rows
represent the accuracy ratios comparison on each dataset and the last four rows represent the Number of Win, AVG-AR,
AVG-GR and MPCE comparison between different methods.

Dataset FCN EM-FCN ResNet EM-ResNet Inception EM-Inception

Adiac 0.8414 0.8517 0.8332 0.8159 0.8312 0.8261
ArrowHead 0.8434 0.8743 0.8377 0.8160 0.8229 0.8457

Beef 0.6800 0.8667 0.7533 0.8533 0.6667 0.8667
BeetleFly 0.9100 0.8500 0.8500 0.8700 0.7500 0.8500

BirdChicken 0.9400 1.0000 0.8800 0.9000 0.9500 0.9500
Car 0.9133 0.9333 0.9167 0.9266 0.8667 0.9333
CBF 0.9938 0.9911 0.9958 0.9989 0.9944 1.0000

ChlorineConcentration 0.8165 0.8237 0.8528 0.8411 0.8596 0.8898
CinCECGTorso 0.8288 0.9087 0.8378 0.8043 0.8645 0.8159

Coffee 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Computers 0.8192 0.8000 0.8056 0.8080 0.7800 0.7560

CricketX 0.7944 0.7641 0.7990 0.7974 0.8282 0.8436
CricketY 0.7928 0.7667 0.8103 0.8359 0.8410 0.8513
CricketZ 0.8097 0.7538 0.8087 0.8205 0.8333 0.8692

DiatomSizeReduction 0.3464 0.5098 0.9510 0.9641 0.9314 0.9575
DistalPhalanxOutlineAgeGroup 0.7180 0.7122 0.7180 0.7410 0.7482 0.7410

DistalPhalanxOutlineCorrect 0.7601 0.7464 0.7703 0.7391 0.7790 0.7645
DistalPhalanxTW 0.6950 0.6691 0.6633 0.6403 0.6691 0.6403

Earthquakes 0.7252 0.7410 0.7122 0.7194 0.7266 0.6906
ECG200 0.8880 0.8800 0.8740 0.8400 0.9200 0.9100

ECG5000 0.9400 0.9387 0.9351 0.9418 0.9369 0.9438
ECGFiveDays 0.9854 0.9779 0.9663 0.9733 1.0000 1.0000

ElectricDevices 0.7065 0.7231 0.7279 0.7283 0.7021 0.7081
FaceAll 0.9375 0.9331 0.8667 0.9497 0.7964 0.8231

FaceFour 0.9295 0.8636 0.9545 0.9318 0.9545 0.9659
FacesUCR 0.9434 0.9390 0.9542 0.9478 0.9634 0.9654
FiftyWords 0.6457 0.6813 0.7402 0.7495 0.8044 0.8462

Fish 0.9611 0.9771 0.9806 0.9943 0.9829 0.9714
FordA 0.9141 0.9705 0.9370 0.9356 0.9553 0.9545
FordB 0.7723 0.7914 0.8131 0.8074 0.8679 0.8630

GunPoint 1.0000 1.0000 0.9907 1.0000 1.0000 1.0000
Ham 0.7067 0.7238 0.7581 0.7500 0.7238 0.7810

HandOutlines 0.7989 0.6486 0.9135 0.9297 0.9459 0.9351
Haptics 0.4896 0.5325 0.5097 0.5584 0.5649 0.5325
Herring 0.6438 0.5938 0.6000 0.6250 0.6719 0.5781

InlineSkate 0.3316 0.5055 0.3771 0.3982 0.4655 0.4855
InsectWingbeatSound 0.3919 0.3859 0.4993 0.5455 0.6328 0.6409
ItalyPowerDemand 0.9629 0.9602 0.9615 0.9602 0.9553 0.9689

LargeKitchenAppliance 0.9029 0.8987 0.9013 0.9013 0.9040 0.9067
Lightning2 0.7344 0.7213 0.7803 0.7377 0.8033 0.8689
Lightning7 0.8247 0.6986 0.8274 0.8356 0.8082 0.8082

Mallat 0.9671 0.9574 0.9736 0.9753 0.9429 0.9710
Meat 0.8033 0.9333 0.9900 0.9833 0.9167 0.9667

MedicalImages 0.7784 0.7724 0.7697 0.7724 0.7908 0.8000
MiddlePhalanxOutlineAgeGroup 0.5351 0.4870 0.5455 0.5325 0.5455 0.5260

MiddlePhalanxOutlineCorrect 0.7945 0.7904 0.8261 0.8076 0.8144 0.7938
MiddlePhalanxTW 0.5013 0.4870 0.4948 0.5455 0.5260 0.4740

MoteStrain 0.9358 0.9449 0.9240 0.9313 0.8826 0.8962
NonInvasiveFetalECGThorax1 0.9583 0.9578 0.9414 0.9481 0.9618 0.9496
NonInvasiveFetalECGThorax2 0.9531 0.9573 0.9436 0.9435 0.9588 0.9542

OliveOil 0.7200 0.8667 0.8467 0.8800 0.8333 0.9000
OSULeaf 0.9785 0.9421 0.9802 0.9917 0.9256 0.9463

PhalangesOutlinesCorrect 0.8177 0.8030 0.8452 0.8193 0.8380 0.8310
Phoneme 0.3280 0.3360 0.3334 0.3623 0.3249 0.3191

Plane 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ProximalPhalanxOutlineAgeGroup 0.8254 0.8585 0.8468 0.8732 0.8537 0.8390
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Table 1. Cont.

Dataset FCN EM-FCN ResNet EM-ResNet Inception EM-Inception

ProximalPhalanxOutlineCorrect 0.9065 0.9107 0.9196 0.9141 0.9347 0.9244
ProximalPhalanxTW 0.7610 0.7659 0.7727 0.7902 0.7854 0.7854
RefrigerationDevices 0.4965 0.5147 0.5301 0.5360 0.5413 0.5440

ScreenType 0.6219 0.6027 0.6155 0.5680 0.5707 0.5680
ShapeletSim 0.7056 0.8667 0.7822 0.9144 0.9833 0.8833

ShapesAll 0.8940 0.8950 0.9263 0.9183 0.9150 0.9367
SmallKitchenAppliances 0.7771 0.7787 0.7813 0.7920 0.7680 0.7653
SonyAIBORobotSurface1 0.9584 0.9584 0.9607 0.9271 0.8502 0.9534
SonyAIBORobotSurface2 0.9803 0.9643 0.9754 0.9664 0.9454 0.9423

StarLightCurves 0.9650 0.9745 0.9723 0.9745 0.9789 0.9492
Strawberry 0.9751 0.9757 0.9800 0.9703 0.9811 0.9568

SwedishLeaf 0.9674 0.9776 0.9626 0.9648 0.9472 0.9760
Symbols 0.9554 0.9548 0.8931 0.9759 0.9829 0.9769

SyntheticControl 0.9887 0.9933 0.9967 1.0000 0.9933 1.0000
ToeSegmentation1 0.9614 0.9561 0.9570 0.9649 0.9561 0.9737
ToeSegmentation2 0.8892 0.8846 0.8938 0.8923 0.9462 0.9462

Trace 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
TwoLeadECG 0.9995 1.0000 1.0000 1.0000 0.9956 0.9991
TwoPatterns 0.8705 0.8758 1.0000 1.0000 1.0000 1.0000

UWaveGestureLibraryX 0.7538 0.7831 0.7812 0.7929 0.8130 0.8275
UWaveGestureLibraryY 0.6425 0.6801 0.6658 0.6778 0.7501 0.7493
UWaveGestureLibraryZ 0.7267 0.7515 0.7486 0.7607 0.7482 0.7510

UWaveGestureLibraryAll 0.8179 0.8210 0.8608 0.8783 0.9422 0.9764
Wafer 0.9972 0.9982 0.9981 0.9989 0.9982 0.9977
Wine 0.6111 0.7963 0.7222 0.7370 0.7593 0.7963

WordSynonyms 0.5611 0.5690 0.6166 0.6395 0.7320 0.7508
Worms 0.7818 0.8052 0.7610 0.7273 0.7532 0.8182

WormsTwoClass 0.7429 0.7532 0.7481 0.7143 0.7922 0.6883
Yoga 0.8372 0.8760 0.8667 0.8720 0.9053 0.9237

Number of Win 9 17 10 21 24 35
AVG-AR 4.1529 3.6235 3.4588 3.0588 2.8941 2.7177
AVG-GR 3.6715 3.0460 3.0936 2.5862 2.3412 2.1272

MPCE 0.0515 0.0480 0.0453 0.0443 0.0428 0.0417

Table 2. Performance of 12 different methods on the UCR archive.

DTW-1NN ERP-1NN LCSS-1NN MSM-1NN TWE-1NN DTW-F

Number of Win 2 3 2 2 2 4
AVG-AR 7.9412 7.9412 7.5529 7.0353 7.7529 6.0706
AVG-GR 7.3666 7.2010 6.8627 6.3174 7.1856 5.2437

MPCE 0.0692 0.0672 0.0695 0.0660 0.0686 0.0592

EE HIVE-COTE TWIESN MMF-CNN shapeDTW EM-Inception

Number of Win 6 30 1 26 5 33
AVG-AR 5.1294 2.5647 9.8471 4.0706 6.8118 2.5647
AVG-GR 4.5357 2.0672 9.1362 2.7990 5.5298 1.9884

MPCE 0.0598 0.0411 0.0821 0.0426 0.0596 0.0417
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Figure 8. Critical difference diagram of a pairwise statistical difference comparison of 12 methods on
the UCR archive.
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4.4. Effects of the Different Numbers of Layers

The models EM-FCN(2) and EM-FCN(1) are generated by EM-FCN to analyze the
effects of the number of layers. In addition, EM-FCN(2) removes the third basic module of
EM-FCN, and EM-FCN(1) removes the second and third modules of EM-FCN, simultane-
ously. The same technique is used to generate FCN(2) and FCN(1) from FCN. As illustrated
in Figure 9, regardless of the number of layers, architectures based on EM-FCN are superior
to the corresponding architectures based on the FCN. The performance difference between
the EM-FCN(2) and FCN is small. It indicates that a deep CNN architecture could be
replaced by a shallow CNN architecture based on the elastic matching mechanism to
mitigate overfitting to small datasets.

 !"#$%

&'() *

+,-&'() *

&'()!* +,-&'()!*

&'(

+,-&'(

Figure 9. Critical difference diagram of a pairwise statistical difference comparison of EM-FCN and
FCN with different numbers of layers.

4.5. Effects of the Different Kernel Sizes

The kernel size of EM-FCN(1) is 8, which is relatively small for large-scale patterns. In
this experiment, the kernels are enlarged from 8 to 20 and 40 to generate EM-FCN(1,20)
and EM-FCN(1,40), respectively, which have large receptive fields. Moreover, FCN(1,20)
and FCN(1,40) are generated from FCN(1) in the same way. As depicted in Figure 10, even
when the kernel size is 40, EM-FCN(1,40) still improves the performance of FCN(1,40).
The results demonstrate that the elastic matching mechanism strengthens the feature ex-
traction capability of CNN architectures for multiple scales.

 !"#$%

&'() *

+,-&'() *

&'() .!/* &'() .#/*

+,-&'() .!/*

+,-&'() .#/*

Figure 10. The critical difference diagram of a pairwise statistical difference comparison of EM-FCN
and FCN with different kernel sizes.

4.6. Effects of the Different Kernel Initialization

In this section, an experiment is performed to compare the EM-CNN and kernel-
varying EM-CNN (KEM-CNN). In the KEM-CNN, the matching matrix M is the inde-
pendent initialization for each kernel. In addition, KEM-FCN, KEM-ResNet, and KEM-
Inception are the EM-FCN, EM-ResNet, and EM-Inception models with varying matching
matrices M for each kernel, respectively. The comparison between the EM-CNN and
KEM-CNN on 85 UCR datasets is as follows.

Intuitively, KEM-CNN should be better than EM-CNN due to the larger modeling
capacity. However, Figure 11a–c indicates that no matter what backbone is used, the EM-
CNN wins on more datasets than KEM-CNN on the UCR archive. Furthermore, another
comparison based on the MPCE (a lower value indicates better performance) is made,
and the same result is observed in Figure 11d. These results prove that KEM-CNN is more
prone to overfitting on the UCR archive.
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(c) EM-Inception vs KEM-Inception
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Figure 11. Comparison between the EM-CNN and KEM-CNN. (a) shows the comparison between
EM-FCN and KEM-FCN, (b) shows the comparison between the EM-ResNet and KEM-ResNet,
(c) shows the comparison between the EM-Inception and KEM-Inception, (d) shows the MPCE based
on different backbone.

4.7. Computational Complexity

Compared to the conventional CNN, the extra parameters added in the EM-CNN
come from the matching matrix M. The parameters learned in matrix M are proportional
to the corresponding kernel size Sl . Moreover, the number of matrices M is proportional
to the number of kernels Nl used in each layer and in layers L in the network. Hence,
the overall parameter Np added in EM-CNN is as presented in Equation (13):

Np =
L

∑
l=1

S2
l × Nl . (13)

Compared to the parameter learned in the convolutional layers, as in Equation (14),
the parameter added by the matching matrix M is at least min

l
{Sl} times Nconv. Thus,

the EM-CNN can overfit on the UCR archive. Therefore, the matching matrix M of the
EM-CNN is fixed on each layer in the experiment. An experimental comparison between
the EM-CNN and KEM-CNN is conducted in the next section to confirm the necessity
of this:

Nconv =
L

∑
l=1

Sl × Nl . (14)

5. Discussion

From the results shown in Table 2 and Figure 7, the performance of the EM-FCN,
EM-ResNet, and EM-Inception are better than the FCN, ResNet, and Inception, respectively.
Nevertheless, it should be noted that the EM-CNN is not better than the corresponding
CNN in all the datasets and the base architecture is important to the performance. It is more
helpful to combine the elastic matching mechanism with the CNN in the “motion” datasets
such as “InlineSkate”, “UwaveGestureLibraryAll” because it is common for different
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people to perform the same movement for different durations. Moreover, as shown in
Figure 9, the improvement from the elastic matching mechanism decreases as the number
of layers increases. The reason is that temporal distortion is adjusted layer by layer. In the
limiting case, if the temporal distortion disappears at some layer, it is expected that the
EM-CNN degenerates to the CNN, and performance improvement also disappears.

Besides, EM-CNN is a static model because the matching matrix is fixed after the
training is completed. Hence, it is not an optimal solution in theory. The probable solution
is to train another auxiliary network to adjust the matching matrix according to the different
inputs. Furthermore, despite the results shown in Figure 11, KEM-CNN still has a larger
capacity to model the nonlinear relationship between the time series and convolutional
kernels, in theory, it is meaningful to apply the KEM-CNN to the large-scale datasets.

6. Conclusions

In this paper, an elastic matching mechanism was proposed to learn the matching rela-
tionship between the time series and convolutional kernels. Experiments on the EM-FCN,
EM-ResNet and EM-Inception show that this elastic matching mechanism is appropriate to
assist CNN to model the nonliear alignment between the time series and convolutional
kernels. As presented in the discussion, this elastic matching mechanism is also beneficial
to CNN with a different number of layers and convolutional kernel sizes. Compared with
the conventional CNN, the extra computational complexity from this elastic matching
mechanism is small which ensures this elastic matching mechanism is flexible. In future
work, we will consider combining the dynamic filter with the elastic matching mechanism
to more complex applications such as multivariable time series classification and clustering.
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