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Petr Němec 1,*, Petr Stodola 2 , Miroslav Pecina 1, Jiří Neubauer 3 and Martin Blaha 4
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Abstract: This article presents the possibilities in solving the Weighted Multi-Facility Location
Problem and its related optimization tasks using a widely available office software—MS Excel with
the Solver add-in. To verify the proposed technique, a set of benchmark instances with various
point topologies (regular, combination of regular and random, and random) was designed. The
optimization results are compared with results achieved by a metaheuristic algorithm based on
simulated annealing principles. The influence of the hardware configuration on the performance
achieved by MS Excel Solver is also examined and discussed from both the execution time and
accuracy perspectives. The experiments showed that this widely available office software is practical
for solving even relatively complex optimization tasks (Weighted Multi-Facility Location Problem
with 100 points and 20 centers, which consists of 40 continuous optimization variables in two-
dimensional space) with sufficient quality for many real-world applications. The method used is
described in detail and step-by-step using an example.

Keywords: Multi-Facility Location Problem (MFLP); Weighted Multi-Facility Location Problem
(MFLP-W); excel; solver; evolutionary algorithm; simulated annealing; logistics; benchmark instances;
method description

1. Introduction

“Computers have the potential to turn the biggest math-phobe into a math user, if not a lover”
wrote Andrew Vázsonyi in his book Which Door has the Cadillac Adventures of a Real-Life
Mathematician [1].

The aim of this work is to find a way to solve the Multi-Facility Location Problem
(MFLP) with available hardware and software and to design a simple and understandable
method that’s usable in practice. We do not focus on the fastest solutions to very complex
problems; we verify the proposed method (in the supplementary file) on data files corre-
sponding to the real needs of experts in the field of logistics and perform calculations on
personal computers. The first experiments to solve the MFLP problems in this way were
investigated in [2] and it was proven that the results obtained on the applied benchmarks
were sufficiently accurate for practical use.

We believe that the availability and ease of use of our method will support many of
those who are interested in solving these types of tasks. To enable the improvement and
optimization of our method, in addition to its description, we also designed test tasks
suitable for their own experiments. The attached file also provides an example of how to
use this method (available for download at suplementary).
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To approach the practice, in this work we examine the possibility of solving Weighted
MFLP problems, where the criterion of distance optimization is corrected by weights,
which corresponds to, for example, the amount of material, the frequency of dispensing
and more. In this work we refer to it as MFLP-W.

The article is organized as follows. The rest of this section reviews the literature
concerning this topic and presents the aim of this work in detail along with the MFLP-
W problem formulation. Section 2 describes the methods used. In Section 3, the three
types of benchmark tasks (one is designed for the possibility of calculating the optimal
value, the other is partially created by generating random values, the third is generated
completely randomly) are presented, together with the optimization results obtained using
the evolutionary method of the MS Excel Solver and with their comparison with the
results of a metaheuristic method—simulated annealing. Each task is solved on three
different hardware (HW) configurations by repeating the calculations a hundred times.
The obtained results are statistically evaluated and graphically presented mainly in the
form of histograms. Section 4 provides the discussion and concludes this article.

1.1. Literature Review

There are a number of sources in the literature dealing with various types of tasks
related to logistics and the use of heuristics algorithms in their solution. Resources focused
on the multi-facility and single-facility location problem are important for our work.

In [3] is presented a simple and effective Genetic Algorithm for the two-stage capaci-
tated facility location problem (TSCFLP). The TSCFLP is a typical location problem that
arises in freight transportation. In this problem, a single product must be transported
from a set of plants to meet customers’ demands, passing out by intermediate depots. The
objective is to minimize the operation costs of the underlying two-stage transportation
system thereby satisfying the demand and capacity constraints of its agents. For this
purpose, a genetic algorithm is proposed.

In paper [4] a new hybrid optimization method called the Hybrid Evolutionary Firefly-
Genetic Algorithm is proposed, which is inspired by the social behavior of fireflies and the
phenomenon of bioluminescent communication. The method combines the discrete Firefly
Algorithm with the standard Genetic Algorithm.

In [5] is described a Multiple Ant Colony System to solve the Single Source Capacitated
Facility Location Problem (SSCFLP). Lagrangian heuristics have been shown to produce
good solutions for the Single Source Capacitated Facility Location Problem. A hybrid
algorithm, which combines Lagrangian heuristics and the Ant Colony System, is developed
for the SSCFLP.

In [6] a discrete version of particle swarm optimization (DPSO) is employed to solve
an uncapacitated facility location problem that is one of the most widely studied in com-
binatorial optimization. In addition, a hybrid version with a local search is defined to
get more efficient results. The results are compared with a continuous particle swarm
optimization (CPSO) algorithm and two other metaheuristics studies, namely, genetic
algorithm and evolutionary simulated annealing.

In [7] is proposed a novel model for the reliable facility location problem. Instead of
assuming the allocation of a fixed number of facilities to each customer as in the existing
works, there is set the number of allocated facilities as an independent variable in the
proposed model, which makes the model closer to real-life scenarios but more difficult
to be solved by traditional methods. To handle it, EAMLS is proposed. This is a hybrid
evolutionary algorithm, which combines a memorable local search (MLS) method and an
evolutionary algorithm (EA).

Article [8] is focused on the capacitated Multi-Facility Weber problem with rectilinear,
Euclidean, squared Euclidean and lp distances. This problem deals with locating m
capacitated facilities in the Euclidean plane so as to satisfy the demand of n customers at
the minimum total transportation cost. The location and the demand of each customer
is known and the transportation cost is proportional to the distance and the amount of
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flow between customers and facilities. Three new heuristic methods are presented, each
of which is based on one of the three well-known metaheuristic approaches: simulated
annealing, threshold accepting, and genetic algorithms.

Paper [9] is focused on a new variant of the problem known as Single-Source Capaci-
tated Multi-Facility Weber Problem, also known as continuous location–allocation problem,
entails determining the locations of a predefined number of facilities in a planar space
and their related customer allocations. To tackle the problem efficiently and effectively, an
iterative two-phase heuristic algorithm is put forward. This algorithm produces superior
results when assessed against the proposed simulated annealing algorithm.

In article [10] an extension of the multi-Weber facility location problem is proposed
with a rectilinear-distance in the presence of passages over a non-horizontal line barrier.
For testing purposes, a benchmark is used based on the transformation of the main problem
into an equivalent p-median problem. Experimental results evidence the efficiency and
validity of the proposed heuristics, which are capable of obtaining high-quality solutions
within acceptable computation times.

Based on the Plant Growth Simulation Algorithm (PGSA), study [11] proposed an
intelligence optimization algorithm for solving facility location problems. This compared
the calculating results of PGSA with the Genetic Algorithm (GA) for a distribution center
location problem, and from the result, it was observed that PGSA is better than GA
on accuracy.

Study [12] investigates the capacitated planar multi-facility location-allocation prob-
lem by considering various capacity constraints. The performance of the proposed greedy
randomized adaptive search procedure is tested using benchmark data sets from literature.
The computational experiments show that the proposed methods provide encouraging so-
lutions.

The MFLP-W and related problems can be applicable in areas such as logistics, engi-
neering, transportation, planning and scheduling, computer science, supply chains and
many others. Foltin et al. [13] shows future logistics applications in the military; they dis-
cuss the planning process and its subsequent implementation to ensure logistical support
to deployed units and propose discrete event simulation for professional training.

Another example where the MFLP is used is the Tactical Decision Support System
(TDSS). This system was developed to support commanders in their decision-making
processes [14]. This system is composed of a number of models of military tactics for
optimization of the operational task at hand, see, for example, [15–20].

MFLP problem solving described in the literature uses proprietary software or special-
ized platforms. There is no use of ordinary office software.

1.2. Main Aim of This Work

The article discusses the use of commercial Excel software (SW) to solve the MFLP
problem with weights of existing facilities (MFLP-W). It explains the method used and the
benchmarks on which it is verified. Plane coordinates and the calculation of distances in
a Euclidean space are used in the calculations. The calculated data should therefore be
considered approximate and serve mainly as a basis for further decisions. Optimization
calculations in MS Excel are compared with the results obtained using the simulated
annealing method.

In this research we use three benchmarks with the same difficulty (100 points and
20 centers), but different topology. The first benchmark is designed for the possibility of
calculating the optimal solution, the others are created using a random number generator.
The results obtained by the calculations in the Excel environment are compared with the
results obtained by the calculations using the metaheuristic method (simulated annealing).
The tasks are solved on three HW configurations, to verify the influence of the hardware
configuration on the accuracy of the calculations.
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Excel software and its Solver add-in are commercial products. This work does not
examine the algorithm used by the Solver add-in. From the point of view of this research, it
is a “black box” for which the inputs, settings of basic parameters and outputs are known.

Our method uses office software (Excel with Solver add-in) for solving a Multi-Facility
Location Problem with weighted existing facilities, as it is formulated in Section 1.3. The
use of the proposed procedure will allow the required calculations to be performed on a
personal computer with commonly available office software. No special competencies are
required; user-level knowledge is sufficient. Because we hope that the availability of our
solution will inspire users to improve the method, in addition to its description, we offer
the benchmarks for possible experiments.

1.3. Problem Formulation

There are p points where the coordinates of their positions are known, every point
has a weight. The objective is to find the positions of the c centers so that the sum of
the distances multiplied by weights (weighted distance) between all the centers and their
assigned points will be minimal. Each point will be assigned to exactly one center which is
closest to it. Variable c is an integer greater than or equal to 1 and p is an integer greater
than or equal to c.

A practical example is a company with a number of existing branches which needs
to set up a number of centers that will provide services to these branches. Branches have
different supply requirements. The locations of the branches are known; the centers will be
built as new. The location of these centers and the branches they will serve are not specified.

The mathematical formulation of this problem is as follows. Let P =
{

P1, P2, . . . , Pp
}

be a set of points (p ≥ 1); the coordinates of these points are known. Let C = {C1, C2, . . . , Cc}
be a set of centers (p ≥ c); the coordinates of these points are not known as they are the
subject of the optimization. Let every P have a weight Wp.

The Euclidean distance between a center and any point in a two-dimensional space
is calculated according to Equation (1). In general, any space, number of dimensions and
distance function can be used.

d
(
Ci, Pj

)
=

√(
Pxj − Cxi

)2
+
(

Pyj − Cyi

)2
for i = 1, . . . , c and j = 1, .., p (1)

where d
(
Ci, Pj

)
is the distance between center Ci and point Pj, Cxi , Cyi are coordinates of

the center Ci, and Pxj , Pyj are coordinates of point Pj.
The objective function of the MFLP-W problem is shown in Equation (2). It corre-

sponds to the sum of weighted distances between all points and their assigned centers
which are closest to them.

D =
c

∑
i=1

min
(
d(Ci, P1)·W1, d(Ci, P2)·W2, . . . , d

(
Ci, Pp

)
·Wp

)
(2)

The optimization goal is in Equation (3); the aim is to find the locations of c centers so
that the objective function D is minimal. In the case of two-dimensional space, there are 2c
continuous optimization variables.

Minimize(D)
subject to min

j
Pxj ≤ Cxi ≤ max

j
Pxj , i = 1, . . . , c

min
j

Pyj ≤ Cyi ≤ max
j

Pyj , i = 1, . . . , c
(3)

2. Materials and Methods

For calculations, both a common office notebook designed for administrative work
and powerful personal computers used for more demanding calculations and simulations
were used. All computers have the Windows 10 operating system and the Office suite
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installed. These are easily accessible devices that do not require any special knowledge
or equipment.

2.1. Evolutionary Method Excel-Solver

The evolutionary algorithms (EAs) are subset of Evolutionary Computations and
belongs to a set of modern heuristics-based search methods. Due to the flexible nature
and robust behavior inherited from Evolutionary Computation, it is an efficient means of
problem-solving for widely used global optimization problems. It can be used successfully
in many applications of high complexity [21].

In this work, the results were obtained using an evolutionary method. This method
is available in the Solver add-on and is intended for solving a non-continuous problem.
It uses genetic algorithms to find “good” solutions to continuous optimization problems.
It relies in part on random sampling. It is a nondeterministic method that can provide
different solutions in different runs.

According to [22], evolutionary algorithms can be described by means of the following
main features.

In the first step, a random selection of samples is performed. The evolutionary
algorithm maintains a population of candidate solutions. Only one (or several, with the
same goals) of them is the “best”, but other members of the population are “role models” in
other areas of the search space where a better solution can be found later. The evolutionary
algorithm regularly makes random changes or mutations in one or more members of the
current population, resulting in a new candidate solution (which may be better or worse
than existing members of the population). The evolutionary algorithm attempts to combine
elements of existing solutions in order to create a new solution with some features of each
“parent”. Elements of existing solutions are combined in a crossover operation. In the
end, the evolutionary algorithm performs a selection process in which the “most suitable”
members of the population survive and the “least suitable” ones are excluded. In a limited
optimization problem, the term “fitness” depends partly on whether the solution is feasible
(i.e., whether it meets all the constraints) and partly on the value of its objective function.
The selection process is a step that leads the evolutionary algorithm to ever better solutions.

The algorithm can be presented in this pseudocode notation.
START
Generate the initial population
Compute fitness
REPEAT

Population
Mutation
Crossover
Selection
Compute fitness

UNTIL population has converged
STOP
Convergence values, mutation frequency, base file size, random number, and max-

imum time without enhancement can also be set for this method. What the effect is of
changes in these parameters on the calculation is not stated; therefore, default values were
left for all calculations. The default values of parameters are listed in Table 1.

In the attached file (the link for download is in Section 1), the method is described in
detail on the example of an MFLP-W task with 25 points and 5 centers.
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Table 1. Parameters used for optimization in the Excel-Solver.

Parameter Value

Max time Unlimited
Iterations Unlimited

Constraint precisions 0.000001
Convergence 0.0001

Population size 100
Random seed 0
Mutation rate 0.075

Maximum time without improvement 30 s
Max subproblems Unlimited

Maximum feasible solutions Unlimited
Integer optimality 1%

2.2. Metaheuristic Algorithm

The metaheuristic method is used in order to compare the performance of MS Excel
when solving the continuous multi-variable optimization problem. As this metaheuristic
method, the simulated annealing-based algorithm is adapted for the MFLP-W problem.
This choice was based on our previous experiences in using this method for position opti-
mization problems. The algorithm was implemented by the authors in C++ programming
language under the Visual Studio IDE. The concept of this method is inspired by annealing
in metallurgy. See [2] for more information.

The basic steps of this method in pseudocode are as follows:

1. Generate random solution.
2. Set temperature to its maximum limit.
3. Repeat points 4 to 6 for a predefined number of times.
4. Transform current solution.
5. Replace the current solution by the transformed solution with the probability given

by the Metropolis criterion.
6. Save the best solution if found.
7. Cool the temperature.
8. When the temperature is not below its lower limit, repeat the whole process in point 3.
9. Terminate the algorithm and return the best solution found.

The transformation of the current solution in point 4 is based on changing one ran-
domly selected variable using a random number generator with normal distribution. The
size of the change depends on the current value of temperature. The higher the temperature,
the bigger the change; this principle allows for the extensive search in the state space at the
beginning of the optimization and small tuning near its end. This transformed solution
replaces the original with the probability given by the Metropolis criterion in Equation (4).
If the transformed solution is better than the original, it is always replaced; otherwise, it
depends on the temperature and the difference in solution qualities.

p
(

D → D′
)
=

{
1

e−
D′−D

T

for D′ ≤ D
otherwise

(4)

where p(D → D′) is the probability that the current solution is replaced by the transformed
solution, D is the objective function of the current (original) solution, D′ is the objective
function of the transformed solution, T is the current value of temperature.

The cooling schedule in point 7 is performed according to Equation (5), where α is the
cooling coefficient (0 < α < 1).

T = T·α (5)
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3. Performance Evaluation

In this section, results obtained by the benchmark calculations are analyzed. For a
better understanding, the terms and abbreviations used are explained in Tables 2 and 3.

Table 2. Definitions of terms used.

Name of Term Explanation

Reference Optimal or reference solution for an instance.
Minimal Minimal value from set of 100 results
Average Average value from set of 100 results

Dif. ref-min Difference between reference and minimal value (%)
Dif. ref-avg Difference between reference and average value (%)

Standard dev. Standard deviation for set of 100 results
Coefficient of variation Relative standard deviation for set of 100 results

Avg. time Average time of computing one result in set of 100 results

Table 3. Definitions of abbreviations used.

Name of Acronym Explanation

EHW1 Results of operations with evolutionary method on HW1
EHW2 Results of operations with evolutionary method on HW2
EHW3 Results of operations with evolutionary method on HW3
MHW1 Results of operations with metaheuristic algorithm on HW1
MHW2 Results of operations with metaheuristic algorithm on HW2
MHW3 Results of operations with metaheuristic algorithm on HW3

3.1. Hardware and Software Configuration

Hardware configurations. Calculations were performed on three computers with
different hardware configurations:

• HW 1-CPU: AMD A10-9620P RADEON R5 2.50 GHz; memory 8.00 GB RAM.
• HW 2-CPU: INTEL CORE i7-7700 3.60 GHz; memory 32.00 GB RAM.
• HW 3-CPU: INTEL CORE i9-9900K 3.60 GHz; memory 32.00 GB RAM.

Software configuration. A 64-bit operating system, Windows 10 Enterprise LSTC,
MS Excel 2016, 64 bit, part of the Microsoft Office Suite, with the Solver add-in installed,
which performs calculations. In the basic version it allows only one method of calculation
using evolutionary algorithms. The Excel environment is used to enter data, calculate
intermediate results, and display the result of the entire process.

3.2. Benchmark Instances

The MFLP-W task calculations will be performed on three benchmarks. The topology
of points for the artificial benchmark A (Figure 1) are designed and weighted in a special
way, so that it is possible to calculate the optimal solution as the reference value.

Benchmark B is a combination of twenty randomly generated groups of five points,
their position in the area is designed so that there is no mutual influence (Figure 2). The
optimal center positions cannot be directly calculated. For benchmark B, the reference
value was obtained in three ways:

• Each group is solved separately by an evolutionary method in Excel as a Single Facility
Location Problem (SFLP) task. The sum of the resulting values is then the solution of
the MFLP problem with this topology (best result 360,186.787);

• Computed in MATLAB—the function fmincon from the “optimization toolbox” is
used to find a minimum of nonlinear multivariable functions, for more details see
example [23] or [24] (best result 360,186.79);

• The lowest value of 300 calculations by the metaheuristic method on three hard-
ware configurations (the best result 360,186.7863)—as this method provided the best
solution, it serves as a reference value.
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For benchmark C, values of positions of points are generated by the Excel RANDBE-
TWEEN function in the range 0 to 45,000 for x coordinate, range 0 to 60,000 for y coordinate,
for weight in range 1 to 25 (Figure 3). For benchmark C, the reference solution is calcu-
lated using the metaheuristic method: the lowest value of 300 calculations on three HW
configurations is used. Table 4 shows the reference values for the benchmark instances.
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Table 4. Benchmark instances—final values.

Benchmark Instance Number of Points Number of Centers Reference

A 100 20 310,048.77 *
B 100 20 360,186.79
C 100 20 3,399,273.00

* Confirmed optimum.

For each benchmark task, 100 optimizations were performed both in the Excel-Solver
software (see Section 2.1 for details) as well as using the metaheuristic algorithm (see
Section 2.2 for details).

Each task is solved in six ways (thus, in total, 1800 optimizations trials are performed):

• by Excel-Solver evolutionary method on HW1;
• by Excel-Solver evolutionary method on HW2;
• by Excel-Solver evolutionary method on HW3;
• by metaheuristic algorithm on HW1;
• by metaheuristic algorithm on HW2;
• by metaheuristic algorithm on HW3.

For each task, method and hardware configuration, the following parameters and
outputs calculated from all individual solutions are recorded:

• minimal solution;
• average solution;
• standard deviation;
• coefficient of variation;
• difference between the reference and the minimal solutions in percent;
• difference between the reference and the average solutions in percent;
• histogram, classes are from 1 percent to 10 percent deviation from reference;
• graph with coordinates for result for the reference and the minimal solution.
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3.3. Results

Tables 5–10 record the results of the calculations of benchmark instances A, B, C
obtained by evolutionary and metaheuristic methods on HW1, HW2 and HW3. The results
are also presented in the form of histograms and graphs in Section 3.3.1, Section 3.3.2,
Section 3.3.3.

Table 5. Calculations EHW1.

Benchmark Instance A B C

Reference value 310,048.77 360,186.77 3,399,273.00
Minimal 319,256.49 364,155.78 3,496,336.34
Average 369,489.23 422,268.28 3,666,323.69

Dif. ref-min (%) 2.97 1.10 2.86
Dif. ref-avg (%) 19.17 17.24 7.86
Standard dev. 24,062.23 42,651.21 91,422.78

Coefficient of variation 0.0651 0.1010 0.0249

Table 6. Calculations EHW2.

Benchmark Instance A B C

Reference value 310,048.77 360,186.77 3,399,273.00
Minimal 314,559.20 360,530.87 3,407,806.82
Average 343,051.52 397,906.86 3,513,082.48

Dif. ref-min (%) 1.45 0.10 0.25
Dif. ref-avg (%) 10.64 10.47 3.35
Standard dev. 14,906.14 37,515.08 56,379.08

Coefficient of variation 0.0435 0.0943 0.0160

Table 7. Calculations EHW3.

Benchmark Instance A B C

Reference value 310,048.77 360,186.79 3,399,273.00
Minimal 314,772.06 360,344.72 3,417,691.86
Average 341,912.54 388,651.12 3,524,354.39

Dif. ref-min (%) 1.52 0.04 0.54
Dif. ref-avg (%) 10.28 7.90 3.68
Standard dev. 12,411.75 37,700.39 59,072.10

Coefficient of variation 0.0363 0.0970 0.0168

Table 8. Calculations MHW1.

Benchmark Instance A B C

Reference value 310,048.77 360,186.79 3,399,273.00
Minimal 310,048.77 360,186.79 3,399,273.00
Average 312,878.10 360,214.37 3,420,905.56

Dif. ref-min (%) 2× 10−7 2× 10−7 0
Dif. ref-avg (%) 0.91 0.01 0.64
Standard dev. 5747.78 58.32 17,009.00

Coefficient of variation 0.0184 0.0002 0.0050
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Table 9. Calculations MHW2.

Benchmark Instance A B C

Reference value 310,048.77 360,186.79 3,399,273.00
Minimal 310,048.77 360,186.79 3,399,823.32
Average 312,993.06 360,484.42 3,419,586.89

Dif. ref-min (%) 2× 10−7 0 0.02
Dif. ref-avg (%) 0.95 0.08 0.60
Standard dev. 5639.52 2671.73 13,667.40

Coefficient of variation 0.0180 0.0074 0.0040

Table 10. Calculations MHW3.

Benchmark Instance A B C

Reference value 310,048.77 360,186.79 3,399,273.00
Minimal 310,048.77 360,186.79 3,400,034.97
Average 313,718.26 360,207.91 3,422,185.23

Dif. ref-min (%) 2× 10−7 2× 10−7 6.22× 10−3

Dif. ref-avg (%) 1.18 5.87·10−3 0.66
Standard dev. 6288.90 41.25 15,981.47

Coefficient of variation 0.0200 0.0001 0.0047

In each method, 100 different results were obtained for benchmarks A, B, and C; the
difference between the minimal and the reference values are statistically evaluated using
histograms. The intervals are designed in the range of 1–10% of the reference value. The
histogram shows the frequency of occurrence of the obtained values in each interval. From
the graphs it is possible to assess how accurate the method and influence of the hardware
is, see Figures 4–6.

3.3.1. Histograms and Solutions for Benchmark A

From the data given in Tables 5–10 and on the histograms for benchmark A (see
Figure 4), the influence of the used method and hardware configuration can be deduced.
Unlike the metaheuristic method, the results of the evolutionary method depend on
the performance of the hardware. The metaheuristic algorithm is often very close to
the optimum value; however, in a minority number of cases it remained stuck in some
local optima.

3.3.2. Histograms and Solutions for Benchmark B

The results of the comparison of the used methods, similarly to benchmark A, show
that the accuracy of the metaheuristic method is better in comparison with the evolutionary
method, where again the influence of the hardware used for the calculations is significant.
In this case (benchmark B), the evolutionary algorithm often finds a solution at the local
minimum. The histograms in Figure 5 also show the effects of topology on the results in
comparison with benchmark A.

3.3.3. Histograms and Solutions for Benchmark C

The results for benchmark C show that, for randomly distributed points in the plane,
the results of the evolutionary algorithm are better than benchmark A. In this case, it can
be again stated the positive effect of powerful hardware, on which the optimizations were
calculated with the evolutionary algorithm. The hardware configuration has no effect
on the performance of the metaheuristic algorithm, only on the optimization time, see
Table 11.
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Table 11. Comparation of selected values—evolutionary and metaheuristic method for benchmark C.

Benchmark Instance EHW1 MHW1

Dif. ref-min (%) 2.86 0
Dif. ref-avg (%) 7.86 0.64

Coefficient of variation 0.0249 0.0050

3.3.4. Other statistical values for the Evolutionary and Metaheuristic method

The influence of benchmark topologies and hardware (only for evolutionary algorithm)
on selected parameters (Dif. ref-min (%), Dif. ref-avg (%) and coefficient of variation) can
be seen in Tables 12–14, and in the graph in Figure 7. The last monitored parameter is the
average optimization time in Table 15 and Figure 8.

Table 12. Dif. ref-min (%).

Benchmark Instance A B C

EHW1 2.97 1.10 2.86
EHW2 1.45 0.10 0.25
EHW3 1.52 0.04 0.54

Table 13. Dif. ref-avg (%).

Benchmark Instance A B C

EHW1 19.17 17.24 7.86
EHW2 10.64 10.47 3.35
EHW3 10.28 7.90 3.68

Table 14. Coefficient of variation.

Benchmark Instance A B C

EHW1 0.0651 0.1010 0.0249
EHW2 0.0435 0.0944 0.0160
EHW3 0.0363 0.0970 0.0168
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Table 15. Average optimization time (in seconds).

Benchmark Instance A B C

EHW1 125 108 79
EHW2 55 54 50
EHW3 51 47 44
MHW1 22 25 27
MHW2 8 8 8
MHW3 6 7 7

Algorithms 2021, 14, x FOR PEER REVIEW 16 of 18 
 

 
Figure 8. Average optimization time. 

Based on the results of 100 repetitions of calculations on three benchmarks, it can be 
stated that the evolutionary method depends on the hardware on which the optimizations 
are performed. The difference between average values and the reference values ranges 
from 3.7% to 19.2%. The smallest values are for benchmark C. The coefficient of variation 
describing the variability of the results ranged from 0.016 to 0.101. The smallest values 
were again reached for benchmark C. 

The difference of the minimal values and reference values is more important for prac-
tical use. For the evolutionary method it ranges from 0.04% to 2.97%, depending on the 
hardware and the topology of benchmarks. 

4. Discussion and Conclusions 
In this work, we extended our research [2] into the possibility of solving MFLP using 

the available procedures and resources. We focused on extending the MFLP task by 
weight and examined the effect of the benchmark topology and hardware used for the 
calculations. All benchmarks have the same complexity in terms of the number of points 
and centers. 

Benchmark A was used in the first phase to verify the accuracy of the method used. 
It is specially designed to contain several types of groups of points of different sizes, and 
it is possible to calculate the optimal value for it. The obtained results met expectations. 

Benchmark B was designed as a semi-artificial one, consisting of 20 groups of five 
randomly generated points with weights. The groups are artificially arranged so that there 
can be no interaction at the values of the weights used. Such a topology corresponds to a 
situation in practice where there are several corporate branches in large cities. The cor-
rectness of the method used was confirmed again. 

Benchmark C was created completely using a random number generator. Both posi-
tions and point weights are generated. Additionally, in this case, the results were in line 
with expectations. 

Histograms are chosen as a suitable way to evaluate the obtained data. In addition to 
the already known fact that the results obtained by the metaheuristic algorithm are orders 
of magnitude better, it is possible to observe the influence of topology. Thus, the assump-
tion that the topology does not significantly affect the result was not confirmed. 

The histograms also show the effect of the HW configuration on the overall perfor-
mance of MS Excel Solver. On HW1, the results are visibly worse than on HW2 and HW3. 
Results on HW2 and HW3 are comparable as these configurations are similar; they differ 
in the CPU type only, not in CPU frequency or installed memory. 

The tables and graphs in Part 3.6 show the importance of repeating calculations using 
the evolutionary method. While the difference between the average and reference value 
is around 10% for high-performance hardware, the difference between the minimum and 
reference value is less than 1%. 

0
20
40
60
80

100
120
140

EHW1 EHW2 EHW3 MHW1 MHW2 MHW3

Op
tim

iza
tio

n 
tim

e 
(s

)

A B C

Figure 8. Average optimization time.

Based on the results of 100 repetitions of calculations on three benchmarks, it can be
stated that the evolutionary method depends on the hardware on which the optimizations
are performed. The difference between average values and the reference values ranges
from 3.7% to 19.2%. The smallest values are for benchmark C. The coefficient of variation
describing the variability of the results ranged from 0.016 to 0.101. The smallest values
were again reached for benchmark C.

The difference of the minimal values and reference values is more important for
practical use. For the evolutionary method it ranges from 0.04% to 2.97%, depending on
the hardware and the topology of benchmarks.

4. Discussion and Conclusions

In this work, we extended our research [2] into the possibility of solving MFLP using
the available procedures and resources. We focused on extending the MFLP task by weight
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and examined the effect of the benchmark topology and hardware used for the calculations.
All benchmarks have the same complexity in terms of the number of points and centers.

Benchmark A was used in the first phase to verify the accuracy of the method used. It
is specially designed to contain several types of groups of points of different sizes, and it is
possible to calculate the optimal value for it. The obtained results met expectations.

Benchmark B was designed as a semi-artificial one, consisting of 20 groups of five
randomly generated points with weights. The groups are artificially arranged so that there
can be no interaction at the values of the weights used. Such a topology corresponds
to a situation in practice where there are several corporate branches in large cities. The
correctness of the method used was confirmed again.

Benchmark C was created completely using a random number generator. Both posi-
tions and point weights are generated. Additionally, in this case, the results were in line
with expectations.

Histograms are chosen as a suitable way to evaluate the obtained data. In addition
to the already known fact that the results obtained by the metaheuristic algorithm are
orders of magnitude better, it is possible to observe the influence of topology. Thus, the
assumption that the topology does not significantly affect the result was not confirmed.

The histograms also show the effect of the HW configuration on the overall perfor-
mance of MS Excel Solver. On HW1, the results are visibly worse than on HW2 and HW3.
Results on HW2 and HW3 are comparable as these configurations are similar; they differ
in the CPU type only, not in CPU frequency or installed memory.

The tables and graphs in Part 3.6 show the importance of repeating calculations using
the evolutionary method. While the difference between the average and reference value
is around 10% for high-performance hardware, the difference between the minimum and
reference value is less than 1%.
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17. Hošková-Mayerová, Š.; Talhofer, V.; Otřísal, P.; Rybanský, M. Influence of Weights of Geographical Factors on the Results of
Multicriteria Analysis in Solving Spatial Analyses. ISPRS Int. J. Geo-Inf. 2020, 9, 489. [CrossRef]
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