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Abstract: Optimization methods are of great importance for the efficient training of neural networks.
There are many articles in the literature that propose particular variants of existing optimizers. In
our article, we propose the use of the combination of two very different optimizers that, when used
simultaneously, can exceed the performance of the single optimizers in very different problems. We
propose a new optimizer called ATMO (AdapTive Meta Optimizers), which integrates two different
optimizers simultaneously weighing the contributions of both. Rather than trying to improve each
single one, we leverage both at the same time, as a meta-optimizer, by taking the best of both. We
have conducted several experiments on the classification of images and text documents, using various
types of deep neural models, and we have demonstrated through experiments that the proposed
ATMO produces better performance than the single optimizers.

Keywords: deep learning; optimization algorithm; optimizers; text classification; image classification

1. Introduction

Stochastic Gradient Descent [1] (SGD) is the dominant method for solving optimization
problems. SGD iteratively updates the model parameters by moving them in the direction
of the negative gradient calculated on a mini-batch scaled by the step length, typically
referred to as the learning rate. It is necessary to decay this learning rate as the algorithm
proceeds to ensure convergence. Manually adjusting the learning rate decay in SGD is not
easy. To address this problem, several methods have been proposed that automatically
reduce the learning rate. The basic intuition behind these approaches is to adaptively
tune the learning rate based on only recent gradients, therefore limiting the reliance on
the update to only a few past gradients. ADAptive Moment estimation [2] (ADAM) is
one of several methods based on this update mechanism [3]. On the other hand, adaptive
optimization methods such as ADAM, even though they have been proposed to achieve a
rapid training process, are observed to generalize poorly with respect to SGD or even fail to
converge due to unstable and extreme learning rates [4]. To try to overcome the problems
of both of these types of optimizers and at the same time try to exploit their advantages,
we propose an optimizer that combines them in a new meta-optimizer.

As depicted in Figure 1, the basic idea of the ATMO optimizer proposed here is
to combine two different known optimizers and automatically go quickly towards the
direction of both on the surface of the loss function when the two optimizers agree (see
geometric example in Figure 2a). When the two optimizers used in the combination do not
agree, our solution always goes towards the predominant direction between the two but
slowing down the speed (see example of Figure 2b).
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Figure 1. Intuitive representation of the idea behind the proposed ATMO that Mix ADAM and SGD
optimizers: the weights are modified simultaneously by both the optimizers.

Figure 2. Graphical representation of the basic idea for the proposed ATMO optimizer. In (a), if the
two translations ~w1 and ~w2 obtained from two different optimizers are similar, then the resulting
translation ~w1 + ~w2 is boosted. In (b), if the translations ~w1 and ~w2 go in two different directions,
then the resulting translation is smaller. We also use two hyper-parameters λ1 and λ2 to weigh the
contribution of the two optimizers.

In the literature, there are many papers that compare neural models trained with
the use of different optimizers [5–8] or that propose modifications for existing optimiz-
ers [4,9,10], always aimed at improving the results on a subset of problems. Each paper
demonstrates that an optimizer is better than the others, but as the problem changes, this
type of result is no longer valid and we have to start from scratch. Our method can be
combined with other methods like Genetically Trained DNN [11], which combines learning
using gradient descent with genetic algorithms. The genetic part, after a selected number
of epochs, selects a new population through three states called selection, crossover, and
manipulation. In general, a Genetically Trained DNN is very different from our proposal,
which combines two gradient descent methods together. However, the genetic method can
also be used with ATMO.

In our paper, we propose combining two different optimizers like SGD and ADAM to
overcome the performances of the single optimizers in very different problems.
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Below are the main contributions of this paper:

• We show experimentally that the combination of two different optimizers in a new
meta-optimizer leads to a better generalization capacity in different contexts.

• We describe ATMO using Adam and SGD but show experimentally that other types
of optimizers can be profitably combined.

• We release the source code and setups of the experiments [12].

2. Related Work

In the literature, there are not many papers that try to combine different optimizers
together. In this section, we report some of the more recent papers that in some ways use
different optimizers in the same learning process.

In [13], the authors investigate a hybrid strategy, called SWATS (SWitching from
Adam To Sgd), which starts training with an adaptive optimization method and switches to
SGD when appropriate. This idea starts from the observation that despite superior training
results, adaptive optimization methods such as ADAM generalize poorly compared to SGD
because they tend to work well in the early part of the training but are overtaken by SGD
in the later stages of training. In concrete terms, SWATS is a simple strategy that goes from
Adam to SGD when an activation condition is met. The experimental results obtained in
this paper are not so different from ADAM or SGD when used individually, so the authors
concluded that using SGD with perfect parameters is the best idea. In our proposal, we
want to combine two well-known optimizers to create a new one that simultaneously uses
two different optimizers from the beginning to the end of the training process.

ESGD is a population-based Evolutionary Stochastic Gradient Descent framework for
optimizing deep neural networks [14]. In this approach, individuals in the population opti-
mized with various SGD-based optimizers using distinct hyper-parameters are considered
competing species in the context of coevolution. The authors experimented with optimizer
pools consisting of SGD and ADAM variants, where it is often observed that ADAM tends
to be aggressive early on but stabilizes quickly, while SGD starts slowly but can reach a
better local minimum. ESGD can automatically choose the appropriate optimizers and
their hyper-parameters based on the fitness value during the evolution process so that the
merits of SGD and ADAM can be combined to seek a better local optimal solution to the
problem of interest. In the method we propose, we do not need another approach, such as
the evolutionary one, to decide which optimizer to use and with which hyper-parameters,
but it is the same approach that decides the contribution of SGD and that of ADAM at
each step.

In this paper, we also compare our ATMO optimizer with ADAMW [15,16] (ADAM
with decoupled Weight decay regularization), which is a version of ADAM in which weight
decay is decoupled from L2 regularization. This optimizer offers good generalization
performance, especially for text analysis, and since we also perform some experimental
tests on text classification, then we also compare our optimizer with ADAMW. In fact,
ADAMW is often used with BERT [17] applied to well-known datasets for text classification.

Padam [18] (Partially ADAM) is one of the recent Adam derivates that achieves
very interesing results. It bridges the generalization gap for adaptive gradient methods
by introduceing a partial adaptive parameter to control the level of adaptiveness of the
optimization procedure. We principally use ATMO with a combination of ADAM and
SGD, but we test the generalization of this method also by combining Padam and SGD [12]
to compare with many other optimizers (Table 1).

3. Preliminaries

Training neural networks is equivalent to solving the following optimization problem:

min
w∈Rn

L(w) (1)

where L is a loss function and w are the weights.
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The iterations of an SGD [1] optimizer can be described as:

wk+1 = wk − η · ∇L(w) (2)

where wk denotes the weights w at the k-th iteration, η denotes the learning rate, and
∇L(w) denotes the stochastic gradient calculated at wk. To propose a stochastic gradient
that is calculated as generically as possible, we introduce the weight decay [19] strategy,
often used in many SGD implementations. The weight decay can be seen as a modification
of the ∇L(w) gradient, and in particular, we describe it as follows:

∇̂L(wk) = ∇L(wk) + wk · γ (3)

where γ is a small scalar called weight decay. We can observe that if the weight decay γ is
equal to zero; then ∇̂L(w) = ∇L(w). Based on the above, we can generalize Equation (2)
to the following one that includes weight decay:

wk+1 = wk − η · ∇̂L(w) (4)

The SGD algorithm described up to here is usually used in combination with mo-
mentum, and in this case, we refer to it as SGD(M) [20] (Stochastic Gradient Descend
with Momentum). SGD(M) almost always works better and faster than SGD because the
momentum helps accelerate the gradient vectors in the right direction, thus leading to
faster convergence. The iterations of SGD(M) can be described as follows:

vk = µ · vk−1 + ∇̂L(w) (5)

wk+1 = wk − η · vk (6)

where µ ∈ [0, 1) is the momentum parameter and for k = 0, v0 is initialized to 0. The
simpler methods of momentum have an associated damping coefficient [21], which controls
the rate at which the momentum vector decays. The dampening coefficient changes the
momentum as follows:

vdk
= µ · vk−1 + ∇̂L(w) · (1− d) (7)

where 0 ≤ d < 1 is the dampening value, so the final SGD with momentum and dampening
coefficients can be seen as follows:

wk+1 = wk − η · vdk
(8)

Nesterov momentum [22] is an extension of the moment method that approximates
the future position of the parameters that takes into account the movement. The SGD with
nesterov transforms again the vk of Equation (5); more precisely:

vnk = ∇̂L(w) + vdk
·m (9)

wk+1 = wk − η · vnk (10)

The complete SGD algorithm, used in this paper, is shown in Algorithm 1.
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Algorithm 1 Stochastic Gradient Descent (SGD).
Input: the weights wk, learing rate η, weight decay γ, momentum µ, dampening d, boolean
nesterov

v0 = 0
function ∆SGD(wk , ∇, γ, µ, d, nesterov)
∇̂ = ∇+ wk · γ
if m 6= 0 then

if k = 0 then
vk = ∇̂

else
vk = vk−1 · µ + ∇̂ · (1− d)

end if
if nesterov = True then

vk = ∇̂+ vk · µ
end if

end if
return vk
end function
for batches do

wk+1 = wk − ηs · ∆SGD(wk,∇, γ, µ, d, nesterov)
end for

ADAM [2] (ADAptive Moment estimation) optimization algorithm is an extension to
SGD that has recently seen broader adoption for deep learning applications in computer
vision and natural language processing. ADAM’s equation for updating the weights of a
neural network by iterating over the training data can be represented as follows:

mk = β1 ·mk−1 + (1− β1) · ∇̂L(wk) (11)

va
k = β2 · vk−1 + (1− β2) · ∇̂L(wk)

2 (12)

wk+1 = wk − η ·
√

1− β2

1− β1
· mk√

va
k + ε

(13)

where mk and va
k are estimates of the first moment (the mean) and the second moment (the

non-centered variance) of the gradients respectively; hence the name of the method. β1,
β2 and ε are three new introduced hyper-parameters of the algorithm. AMSGrad [23] is
a stochastic optimization method that seeks to fix a convergence issue with Adam based
optimizers. AMSGrad uses the maximum of past squared gradients vk−1 rather than the
exponential average to update the parameters:

v̂k = max(v̂k−1, va
k) (14)

wk+1 = wk − η ·
√

1− β2

1− β1
· mk√

v̂k + ε
(15)

The complete ADAM algorithm used in this paper is shown in Algorithm 2.
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Algorithm 2 ADAptive Moment estimation (ADAM).
Input: the weights wk, learing rate η, weight decay γ, β1, β2, ε, boolean amsgrad

m0 = 0
va

0 = 0
v̂0 = 0
function ∆ADAM(wk , ∇, η, γ, β1, β2, ε, amsgrad)
∇̂ = ∇+ wk · γ
mk = mk−1 · β1 + ∇̂ · (1− β1)

va
k = va

k−1 · β2 + ∇̂ · ∇̂ · (1− β2)
if amsgrad = True then

v̂k = max(v̂k−1, va
k)

denom =

√
v̂k√

1−β2+ε

else
denom =

√
va

k√
1−β2+ε

end if
ηa =

η
1−β1

dk =
mk

denom
return dk, ηa

end function
for batches do

dk, ηa = ∆ADAM(wk,∇, η, γ, β1, β2, ε, amsgrad)
wk+1 = wk − ηa · dk

end for

4. Proposed Approach

In this section, we develop the proposed new optimization method called ATMO. Our
goal is to propose a strategy that automatically combines the advantages of an adaptive
method like ADAM with the advantages of SGD throughout the entire learning process.
This strategy can by applied to every combination of optimizer, but we focused on ADAM
and SGD combination. This combination of optimizers is summed, as shown in Figure 2,
where w1 and w2 represent the displacements on the ADAM and SGD on the surface of the
loss function, while w1 + w2 represents the displacement obtained thanks to our optimizer.
Below, we explain each line of the ATMO algorithm represented in Algorithm 3.

The ATMO optimizer has only two hyper-parameters which are λa and λs, used
to balance the contribution of ADAM and SGD, respectively. It also uses all the hyper-
parameters inherited from SGD and ADAM. In this paper, we assume the use of the most
common implementation of gradient descent used in the field of deep learning, namely
mini-batch gradient descent, which divides the training dataset into small batches that are
used to calculate the model error and update the model coefficients wk. For each mini-batch,
we calculate the contribution derived from the two components ADAM and SGD and then
update all the coefficients as described in the three following subsections.

4.1. ADAM Component

The complete ADAM algorithm is defined in Algorithm 2. In order to use ADAM in
our optimizer, we have extracted the ∆ADAM function, which calculates and returns the
increments dk for the coefficients wk, as defined in Equation (16).

dk =

√
1− β2 ·mk√

v̂k + ε
(16)

Note that if the components of the two vectors v̂k and mk are not all equal, then the
direction has changed with respect to the natural gradient.
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The same ∆ADAM function also returns the new learning rate ηa defined in Equation (17),
useful when a variable learning rate is used. In this last case, ATMO uses ηa to calculate a
new learning rate at each step.

ηa =
η

1− β1
(17)

Now, having ηa and dk, we can directly modify the weights wk exactly as done in the
ADAM optimizer and described in Equation (18).

4.2. SGD Component

As for the ADAM component, the SGD component, defined in Algorithm 1, has also
been divided into two parts: the ∆SGD function, which returns the increment to be given to
the weight wk, and the formula to update the weights as defined in Equation (10). The vnk

value returned by the ∆SGD function is exactly the value defined in Equation (9), which we
use directly for our ATMO optimizer.

4.3. The ATMO Optimizer

The proposed approach can be summarized as follows:

wk+1 = wk − (λs · η + λa · ηa) · (λs · vnk + λa · dk) (18)

where λs is a scalar for the SGD component and λa is another scalar for the ADAM
component used for balancing the two contributions of the two optimizers. η is the
learning rate of the proposed ATMO optimizer, while ηa is the learning rate of ADAM
defined in Equation (17). dk and vnk are the two increments define in Equations (16) and (9),
respectively.

Equation (18) can be expanded in the following Equation (19) to make explicit what
elements are involved in the weights update step used by our ATMO optimizer.

wk+1 = wk − (λs · η + λa ·
η

1− β1
)·

·(λs · vnk + λa ·
√

1− β2 ·mk√
v̂k + ε

)
(19)

where β1 and β2 are two parameters of the ADAM optimizer, va
k is defined in Equation (12),

and mk is defined in Equation (11).
The ATMO algorithm can be easily implemented by the following pseudo code defined

in Algorithm 3 and by calling the two functions ∆ADAM defined in Algorithm 2 and ∆SGD
defined in Algorithm 1. We can also show that convergence is guaranteed for the ATMO
optimizer if we assume that convergence has been guaranteed for the two optimizers SGD
and ADAM.

Algorithm 3 ATMO on mixing ADAM and SGD.
Input: the weights wk, λa, λs, learing rate η, weight decay γ, other SGD and ADAM
parameters . . .

for batches do
dk, ηa = ∆ADAM(wk,∇, η, γ, . . . )
vnk = ∆SGD(wk,∇, γ, . . . )
merged = λs · vnk + λa · dk
ηm = λs · η + λa · ηa
wk+1 = wk − ηm ·merged

end for
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Theorem 1 (ATMO Cauchy necessary convergence condition). If ADAM and SGD are two
optimizers whose convergence is guaranteed, then the Cauchy necessary convergence condition is
also true for ATMO.

Proof. Under the conditions in which the convergence of ADAM and SGD is guaran-
teed [23,24], we can say that ∑

p
k=0 η · vnk and ∑

p
k=0 ηa · dk converge at ∞ . That implies the

following:
lim
p→∞

η · vnp = lim
p→∞

ηa · dp = 0 (20)

We can observe that lim
p→∞

∑
p
k=0 η = lim

p→∞
∑

p
k=0 ηa = ∞, so we can obtain the following:

lim
p→∞

vnp = lim
p→∞

dp = 0 (21)

The thesis is that ∑
p
k=0(λs · η + λa · ηa) · (λs · vnk + λa · dk) respects the Cauchy nec-

essary convergence condition, so: lim
p→∞

(λs · η + λa · ηa) · (λs · vnp + λa · dp) = 0 and for

Equation (21), this last equality is trivially true:

lim
p→∞

(λs · η + λa · ηa) · (λs · vnp + λa · dp) =

(λs · η + λa · ηa) · lim
p→∞

(λs · 0 + λa · 0) = 0 (22)

Theorem 2. (ATMO convergence) If for p → ∞ it is valid that ∑
p
k=0 η · vnk = η · m1 and

∑
p
k=0 ηa · dk = ηa · m2 where m1 ∈ R and m2 ∈ R are two finite real values, then ATMO =

∑
p
k=0(λs · η + λa · ηa) · (λs · vnk + λa · dk) = λ2

s · η ·m1 + λ2
a · ηa ·m2 + λs · λa · ηa ·m1 + λs ·

λa · η ·m2.

Proof. We can write ATMO series as:

ATMO = λ2
s · η ·

p

∑
k=0

vnk + λ2
a · ηa ·

p

∑
k=0

dk+

+λs · λa · ηa ·
p

∑
k=0

vnk + λs · λa · η ·
p

∑
k=0

dk

(23)

This can be rewritten for p→ ∞ as:

ATMO = λ2
s · η ·m1 + λ2

a · ηa ·m2+

+λs · λa · ηa ·m1 + λs · λa · η ·m2
(24)

This last theorem does not exclude the possibility that ATMO converges even if ADAM
or SGD or both do not converge, for example, due to some unsuitable parameters. In this
paper, this aspect is not proven.

4.4. Geometric Explanation

We can see optimizers as two explorers w1 and w2 who want to explore an environment
(the surface of a loss function). If the two explorers agree to go in a similar direction, then
they quickly go in that direction (w1 + w2). Otherwise, if they disagree and each prefers a
different direction than the other, then they proceed more cautiously and slower (w1 + w2).
As we can see in Figure 2a, if the directions of the displacement of w1 and w2 are similar
then the amplitude of the resulting new displacement w1 + w2 is increased, however, as
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shown in Figure 2b, if the directions of the two displacements w1 and w2 are not similar,
then the amplitude of the new displacement w1 + w2 us decreased.

In our approach, the sum w1 + w2 is weighted (see red vectors in Figure 2a), so one of
the two optimizers SGD or ADAM can become more relevant than the other in the choice
of direction for ATMO; hence, the direction resultant may tend towards one of the two. In
ATMO, we set the weight of the two contributions so as to have a sum λ1 + λ2 = 1 in order
to maintain a learning rate of the same order of magnitude.

Another important component that greatly affects the ATMO shift module at each
training step is its learning rate, defined in Equation (18), which combines η and ηa. The
shifts are scaled using the learning rate, so there is a situation where ATMO gets more
thrust than the ADAM and SGD starting shifts. In particular, we can imagine that the
displacement vector of ADAM has a greater magnitude than SGD and the learning rate
of SGD is greater than that of ADAM. In this case, the ATMO shift has a greater vector
magnitude than SGD and a higher ADAM learning rate, which can cause a large increase
in the ATMO shift towards the search of a minimum.

4.5. Toy Examples

To better understand our proposal, we built a toy example where we highlight the
main behaviour of ATMO. The toy examples, even if they are not a true example of a deep
learning model, can be easily visualized because the exploration surface can be plotted in
three dimensions.

More precisely, we consider the following example:

x = [1, 2], y = [2, 4] (25)

pi = w1 · (w2 · xi) (26)

L(w1, w2) =
1

∑
i=0

(pi − y2
i ) (27)

We set β1 = 0.9, β2 = 0.999, ε = 10−8, amsgrad = False, dampening d = 0, nesterov =
False and µ = 0. As we can see in Figure 3a, our ATMO optimizer goes faster towards
the minimum value after only two epochs, and SGD is fast at the first epoch; however,
it decreases its speed soon after and comes close to the minimum after 100 epochs, and
ADAM instead reaches its minimum after 25 epochs. Our approach can be fast when it
gets a large vk from SGD and a large ηa from ADAM.

X
Y

Z

SGD
ADAM
ATMO

(a)

X

Y

Z

(b)

X
Y

Z

(c)
Figure 3. The figures show the behavior of the three optimizers ATMO, ADAM and SGD on different
surfaces. The subfigure (a) describes the surface defined in Equation (27). For better visualization in
this figure the SGD was shifted on X axis of 0.1. The subfigure (b) describes the Rosenbrook’s surface
with a = 1 and b = 100. The subfigure (c) describes the surface z = |x|

10 + |y|.

Another toy example can be done with the benchmark Rosenbrook [25] function:

z = (a− y)2 + b · (y− x2)2 (28)
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We set a = 1 and b = 100, weight x = 3 and weight y = 1, lr = 0.0001, epochs = 1000,
and default parameter for ADAM and SGD. The ATMO optimizer sets λs = λa = 0.5. The
comparative result for the minimization of this function is shown in Figure 3b. In this
experiment, we can see how, by combining the two optimizers ADAM and SGD, we can
obtain a better result than the single optimizers. For this function, going from the starting
point towards the direction of the maximum slope means moving away from the minimum,
and therefore it takes many training epochs to approach the minimum.

Let us use a final toy example to highlight the behavior of the ATMO optimizer. In
this case we look for the minimum of the function z = |x|

10 + |y|. We set the weights x = 3
and y = 2, lr = 0.01, epochs = 400 and use all the default parameters for ADAM and SGD.
ATMO assigns the same value 0.5 for the two lambdas hyper-parameters. In Figure 3b, we
can see how not all the paths between the paths of ADAM and SGD are the best choice.
Since ATMO, as shown in Figure 2, goes towards an average direction with respect to that
of ADAM and SGD, then in this case ADAM arrives first at the minimum point.

4.6. Dynamic λ

To avoid selecting the best two lambdas of Equation (18) for each experiment, we
introduce an approach that automatically changes the two lambdas during training. Mo-
tivated by experiments showing how selecting the correct lambdas can greatly affect the
results, we studied a solution to avoid having to find the best two hyper-parameters for
each experiment. In fact, experiments show that ADAM is usually better than SGD at
the beginning of training while SGD performs better in the final phase [14] (see also the
example in Figure 4). Following the idea of SWAT [13] to hard-switch from an optimizer
to another, we introduce an approach that linearly changes the two lambdas from λa = 1,
λs = 0 to λa = 0, λs = 1, in order to exploit the peculiarities of ADAM and SGD. This
approach changes the two hyper-parameters at each epoch, and in particular we have
λa = 1− λs with λs(ep) = ep/P, where P is the maximum number of epochs and ep is the
current epoch.

0 50 100 150 200 250 300 350
Epoch

0.25

0.50

0.75

1.00

T
e
st

 L
o
ss

ADAM

SGD

ATMO

Figure 4. Resnet18 test accuracies with the best parameters of the best results obtained on Cifar10.

5. Datasets

In this section, we briefly describe the datasets used in the experimental phase.
The Cifar10 [26] dataset consists of 60,000 images divided into 10 classes (6000 per

class) with a training set size and test set size of 50,000 and 10,000, respectively. Each input
sample is a low-resolution color image of size 32× 32. The 10 classes are airplanes, cars,
birds, cats, deer, dogs, frogs, horses, ships, and trucks.

The Cifar100 [26] dataset consist of 60,000 images divided into 100 classes (600 per
classes) with a training set size and test set size of 50,000 and 10,000, respectively. Each
input sample is a 32× 32 colour image with a low resolution.
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The Corpus of Linguistic Acceptability (CoLA) [27] is another dataset that contains
9594 sentences belonging to training and validation sets and excludes 1063 sentences
belonging to a set of tests kept out. In our experiment, we only used the training and
test sets.

The AG’s news corpus [28,29] is the last dataset used in our experiments. It is a
dataset that contains news articles from the web subdivided into four classes. It has 30,000
training samples and 1900 test samples.

6. Experiments

The optimizer ATMO proposed is a generic solution not oriented exclusively to image
analysis, so we conducted experiments on both image classification and text document
classification. By doing so, we are able to give a clear indication of the behavior of the
proposed optimizer in different contexts, also bearing in mind that many problems, such
as audio recognition, can be traced back to image analysis. In all the experiments, unless
differently specified, β1 = 0.9, β2 = 0.999, ε = 10−8, amsgrad = False, dampening d = 0,
nesterov = False and a batch size near to the maximum our hardware can support. The
hyper-parameters are set to obtain good results without trying to maximize accurac; this is
because if the loss function is the same, all well-set optimizers find the same minimum in
the long run.

In Table 1, we apply Dynamic ATMO method by combining Padam [18] with SGD to
compare it with other recently proposed solutions, and it shows that many other optimizers
can be combined with our proposed method. In this experiment, λa for Padam changes
from 1 to 0 in the first 100 epochs. We trained ATMO for 200 epochs in total with η = 0.1,
which is multiplied by 0.1 at epoch 100 and 150 and µ = 0.9, γ = 5 · 10−4. The partial
adaptive parameter for Padam was set to 1

8 .

Table 1. Best accuracies in percentage to compare ATMO (that combines Padam and SGD) and the results published in [18]
using a Resnet18 on the Cifar10 dataset.

SGD-Momentum ADAM Amsgrad AdamW Yogi AdaBound Padam Dynamic ATMO

95.00 92.89 93.53 94.56 93.92 94.16 94.94 95.27

6.1. Experiments with Images

In this first group of experiments, we used two well-known image datasets for: (1)
conducting an analysis of the two main parameters of ATMO, λa and λs; (2) comparing
the performance of ATMO with respect to the two starting optimizers SGD and ADAM;
(3) analyzing the behavior of ATMO with different neural models. The datasets used in this
first group of experiments are Cifar10 and Cifar100, and and the results are summarized in
Tables 2 and 3. The neural models we compared are Resnet18 and Resnet34 [30,31]. For
each model, we used, respectively, 1024 and 512 as batch size. We analyzed different values
of λa and λs and also Dynamic ATMO.

For both Cifar10 and Cifar100 experiments, we used the following parameters: 350 epoch,
Momentum 0.95, weight decay 0.0005 and learning rate 0.001, with Cosine Annealing for
learning rate reduction. We performed simple data augmentation with random horizontal
flip and random crops. Dynamic ATMO linearly changes the optimizer lambda from
λa = 1, λs = 0 and λa = 0, λs = 1.

To better understand what happens during the training phase, in Figure 4, we rep-
resent the accuracy of the test and the corresponding loss values of the experiments that
produced the best results with Resnet18 on Cifar10. We can see also the effectivenes of
Dynamic ATMO without epoch noise in Figure 5. As we can see in the first part of training,
ADAM has a good growth, so Dynamic ATMO inherits this trend. As we can see, Dynamic
ATMO overcomse others optimizers because it has the convergence speed of ADAM in
the early stages of the learning process, while in the late stage, it benefits more and more
from SGD. Therefore, in general, we can say that the ATMO optimizer leads to better
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generalization than the other optimizers used. In addition, looking at the results obtained
with the Resnet34, we can say that all configuration of ATMO exceeds the average and the
maximum accuracies of SGD and ADAM.

Table 2. Mean accuracies (avg. acc) and maximum accuracies (acc max) in percentage on Cifar10,
after 7 runs and 350 epochs for each run. Dyn. ATMO shows the accuracies obtained with the use of
dynamic lambdas.

Name λa λs avg acc. acc max

Resnet18

Adam 1 0 91.42 91.55
SGD 0 1 89.12 89.52
ATMO 0.5 0.5 92.07 92.40
ATMO 0.4 0.6 92.12 92.35
ATMO 0.6 0.4 91.84 91.99
ATMO 0.7 0.3 91.87 92.14
ATMO 0.3 0.7 91.99 92.17
Dyn. ATMO [1, 0] 1− λa 94.02 94.22

Resnet34

Adam 1 0 91.39 91.68
SGD 0 1 90.94 91.43
ATMO 0.5 0.5 92.30 92.46
ATMO 0.4 0.6 92.24 92.63
ATMO 0.6 0.4 92.21 92.34
ATMO 0.7 0.3 92.01 92.18
ATMO 0.3 0.7 92.26 92.84
Dyn. ATMO [1, 0] 1− λa 93.88 94.11

Table 3. Accuracy results on Cifar100, after 3 runs of 350 epochs.

Name avg acc. acc max

Resnet18

Adam 67.52 68.11
SGD 63.26 63.74
Dynamic ATMO 74.27 74.48

Resnet34

Adam 68.26 68.64
SGD 66.38 67.26
Dynamic ATMO 73.85 73.89

In conclusion, as we have seen from the results shown in Tables 2 and 3, the proposed
method leads to a better generalization than the other optimizers used in each experiment.
We get better results both by setting λa and λs well, and also even when we do not use the
best set of parameters.
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Figure 5. Resnet18 test accuracies min, max, and avg computed every 35 epochs using all experiments.

6.2. Experiments with Text Documents

In this last group of experiments, we used the two datasets of text documents: CoLA
and AG’s News. As a neural model, we used a model based on BERT [17], which is one
of the best techniques for working with text documents. To run fewer epochs, we used a
pre-trained version [32] of BERT. In these experiments, we also introduced the comparison
with the AdamW optimizer, which is usually the optimizer used in BERT-based models.

For the CoLA dataset, we set η = 0.0002, momentum µ = 0.95, and batch size equal to
100. We ran the experiments five times for 50 epochs. For the AG’s News dataset, we set the
same parameters used for CoLA, but we only ran it for 10 epochs because it achieved good
results in the firsts epochs and also because the dataset was very large and therefore took
more time. In these experiments with text analysis, we did not use the Dynamic ATMO
approach because we used a very small number of epochs. We can see all the results in
Table 4. Even for text analysis problems, we can confirm the results of the experiments done
on images: although AdamW sometimes has better performances than ADAM, ATMO
performs better.

Table 4. Accuracy results of BERT pre-trained on CoLA (50 epochs) and AG’s news (10 epochs) after
5 runs.

Name λa λs avg acc. acc max

CoLA

AdamW - - 78.59 85.96
Adam 1 0 79.85 83.30
SGD 0 1 81.48 81.78
ATMO 0.5 0.5 85.92 86.72
ATMO 0.4 0.6 86.18 87.66
ATMO 0.6 0.4 85.45 86.34
ATMO 0.7 0.3 84.66 85.78
ATMO 0.3 0.7 86.34 86.91

AG’s News

AdamW - - 92.62 92.93
Adam 1 0 92.55 92.67
SGD 0 1 91.28 91.39
ATMO 0.5 0.5 93.72 93.80
ATMO 0.4 0.6 93.82 93.98
ATMO 0.6 0.4 93.55 93.67
ATMO 0.7 0.3 93.19 93.32
ATMO 0.3 0.7 93.86 93.99
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6.3. Time Analysis

We also provide a study about the average computational time of ATMO compared
with other optimizers. We computed the mean computational time for one epoch in
seconds. The experiments were conducted on different datasets as well as different neural
models. We conducted all the experiments on a Nvidia 1080 with 8 GB of RAM.

We report the results in Table 5. Considering each row of the table, we can conclude
that the computation time is almost the same for all optimizers, and the differences depend
on the operating system overhead. We can therefore conclude that our approach does not
add computation time overhead.

Table 5. Mean computational time for one epoch in seconds (s) for each experiment. We computed
the train and test time together.

Dataset Model SGD ADAM ADAMW ATMO

Cifar 10

Resnet18 32.85 s 33.05 s - 32.34 s

Resnet34 52.54 s 52.47 s - 52.07 s

Cifar 100
Resnet18 33.83 s 34.42 s - 33.56 s
Resnet34 52.72 s 53.17 s - 52.17 s

CoLA
BERT 64.05 s 63.67 s 60.34 s 62.6 s

AG’s News
BERT 916.54 s 898.89 s 867.98 s 901.19 s

7. Conclusions

In this paper, we introduced ATMO (AdapTive Meta Optimizer), which is a new
combined optimization method that combines the capability of two different optimizers
into one. We demonstrated through experiments that our ATMO meta-optimizer can
outperform the performance of individual optimizers introducing a negligible time com-
plexity. To balance the contribution of the optimizers used within ATMO, we introduced
two new hyperparameters λa, λs and showed experimentally that, using ADAM and
SGD, the combination of these two hyperparameters can be set automatically without
having to manually configure them. In the present work, we also tried to combine different
optimizers such as Padam and SGD, obtaining also in this case the best accuracy compared
to the accuracies present in the literature.
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