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Abstract: This paper provides supplementary material for the study discussed in the paper “Twenty-
four-hour ahead probabilistic global horizontal irradiance forecasting using Gaussian process regres-
sion" which includes a detailed analysis of the benchmark models used in the study. The data used
in the study is also included as supplemenray material.

1. Benchmark Models and Evaluation of Prediction Techniques

Two benchmark models, gradient boosting method (GBM) and support vector regres-
sion (SVR) were used as a basis of comparison to the Gaussian process regression (GPR)
model.

Stochastic Gradient Boosting Model

We start with an analysis of the stochastic GBM which was done in two parts, one
without interactions and the other with interactions. Since we are going to do a real-time
analysis of our forecasts for the next 10 hours will make use of 150 observations because
we found our period to be equal to 15 from the periodogram.

1.1. VEN Data with No Interactions

Forecasts vs Actual values : Gradient boosting model
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Figure 1. GBM Left panel: Relative influence of different variables. Right panel: GHI superimposed
with predictions.
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In Figure 1, the left panel shows the relative influence of different variables, while the
right panel shows results of GHI superimposed with predictions from the GBM.

1.2. SUN Data

Forecasts vs Actual values : Gradient boosting model
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Figure 2. GBM Actual vs prediction plot.

GBM forecasting was also done SUN data without interactions. The forecasted solar
power, GHI for the SUN data is shown in Figure 2 (to the right), the red plot shows
the actual data, and the forecasted data is in black for the period 2019 to 2020 and we
observe that the Gradient Boosting forecaster follow the actual demand close enough.
We implemented the gradient boosting regression and checked the relative influence of
different variables, the results are shown in Figure 2 (left panel).

1.3. SUN Data with Interactions

SUN data with interactions were analysed using GBM, Figure 3 shows the results of
SUN data using the GBM with interactions.

Forecasts vs Actual values : Gradient boosting model
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Figure 3. GBM with interactions-SUN.

1.4. Support Vector Regression

The analysis that follows is based on the Support vector regression, which was also
done in 2 parts that is one with interactions included and the other without.
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Figure 4. Residuals plots of different kernels for the UNV data.

1.5. VEN Data

Figure 4 shows residuals plots of different kernels for the VEN data, the residuals are
reasonably well spread above and below with slightly less variance there and some points
clustering about the point 0. In these plots, each point shows the prediction made by the
model on the y-axis, and the accuracy of the prediction is shown on the x-axis. They appear
symmetrically distributed and we cannot identify any clear patterns, hence the models are
good, we just have to select the best one. The best model is the one with a radial kernel,
selection was based on RMSE.

Forecasts vs Actual values : Support vector regression model Performance of ‘svm’
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Figure 5. Plot of observations vs forecasts for UNV data using SVM.

The plot on the left panel in Figure 5 shows observations against the predicted UNV
data using SVM. The black line represents the actual observations whereas the red line
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predicted values. It appears SVM fits well the data since the values are closer to the actual.
On the right panel the plot shows the cost function for the UNV data which measures the
performance of a machine learning model, in this case, we applied SVM. The goal of the
function is to come up with values of the model parameters that give smaller values of a
cost function that is minimizing errors. The graph shows that the error is varying with
the index of complexity when the error is high, complexity is high and when it’s low the
complexity reaches the minimum, the cost is the value of complexity.

1.6. UNV Data Analysis with Interactions

SVM analysis was done on UNV data with interaction and the results are shown on
Figure 6.

Forecasts vs Actual values : Gradient boosting model
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Figure 6. UNV Actual vs prediction plot.
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1.7. SUN data
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Figure 7. Residuals Plot for the SVM for SUN data.

Figure 7 shows residuals plots of different kernels for the SUN data, the residuals
are reasonably well spread above and below with slightly less variance there. They are
pretty symmetrically distributed and we cannot identify any clear patterns, hence we
can conclude that the 4 models are clearly good, we just have to select the best one. The
best-selected model is the one with a radial kernel, selection was based on RMSE.

Forecasts vs Actual values : Support vector regression model Performance of ‘svm’
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Figure 8. GBM Actual vs prediction plot.

The results of the predicted values of SUN data against actual are shown in the plot
in Figure 8 (left panel), the forecasts were done using SVM. The black line represents the
actual observations whereas the red line the predicted values. SVM appears to fit well the
data.
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On the right, Figure 8 shows a plot reflecting cost function which measures machine
learning model performance for the SUN dataset. The goal of the function is to come
up with values of the model parameters that give smaller values of a cost function that
minimises errors. As we can see from the graph, the error is varying with the index
of complexity, when the error is high, complexity is also high, and when it’s low the
complexity reaches the minimum.

1.8. SUN Data with Interactions

The results in Figure 9 show the SVM analysis of SUN data taking into consideration
interactions.

Forecasts vs Actual values : Support vector regression model Performance of ‘svm*
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Figure 9. Performance of SVM.
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