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Abstract: Zero-suppressed Binary Decision Diagrams (ZDDs) are data structures for representing
set families in a compressed form. With ZDDs, many valuable operations on set families can be done
in time polynomial in ZDD size. In some cases, however, the size of ZDDs for representing large set
families becomes too huge to store them in the main memory. This paper proposes top ZDD, a novel
representation of ZDDs which uses less space than existing ones. The top ZDD is an extension of the
top tree, which compresses trees, to compress directed acyclic graphs by sharing identical subgraphs.
We prove that navigational operations on ZDDs can be done in time poly-logarithmic in ZDD size,
and show that there exist set families for which the size of the top ZDD is exponentially smaller than
that of the ZDD. We also show experimentally that our top ZDDs have smaller sizes than ZDDs for
real data.

Keywords: top tree; Zero-suppressed Decision Diagram; space-efficient data structure

1. Introduction

Zero-suppressed Binary Decision Diagrams (ZDDs) [1] are data structures which are
derived from Binary Decision Diagrams (BDDs) [2] and represent a family of sets (combi-
natorial sets) in a compressed form using Directed Acyclic Graphs (DAGs). ZDDs are data
structures specialized for processing set families and it is known that sparse set families
can be compressed well. ZDDs support binary operations between two families of sets in
time polynomial in the size of the ZDDs. Because of these advantages, ZDDs are used for
combinatorial optimization problems and enumeration problems. Although ZDDs were
originally developed for VLSI logic design, it has been shown that they can also be used
effectively for graph problems and combinatorial problems because set families are a fun-
damental concept that appears in various fields [3,4]. Various other application researches
related to intelligent information processing have been published, for example, in the fields
of data mining [5–7], probabilistic graphical models such as Bayesian network [8,9], and
game theory [10].

Though ZDDs can store set families compactly, their size may grow for some set
families, and we need further compression. DenseZDDs [11] are data structures for storing
ZDDs in a compressed form and supporting operations on the compressed representation.
DenseZDDs represent a ZDD by a spanning tree of the DAG representing it, and an array
of pointers between nodes on the spanning tree. Therefore its size is always linear to the
original size, and to compress more, we need another representation.

Our basic idea for compression is as follows. In a ZDD, the identical sub-structures
are shared and replaced by pointers. However identical sub-structures cannot be shared if
they appear at different heights in ZDD. As a result, even if the DAG of a ZDD contains
repetitive structures in the height direction, they cannot be shared.

For not DAGs but trees, there exists a data structure called top DAG compression [12],
which can capture repetitive structures in the height direction. We extend it for DAGs and
apply it to compress ZDDs which support the operations on compressed ZDDs.
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This paper is an extended version of a conference paper published in SEA 2020 [13].
We rewrote the previous work so that readers not familiar with compression methods and
operations on compressed data structure can understand our results easily. We added
explanations of the DAG compression and how our algorithms work on compressed data
with pseudo-codes. We also complement proof of space complexity.

The organization of the paper is as follows. In Section 2, we introduce our notation
and data structures used throughout this paper. In Section 3, we introduce top trees and
top DAGs. We show how to construct them and what operations they can perform. In
Section 4, we propose our data structure, Top ZDD, and present the detailed components
of Top ZDD, the theoretical analysis of the size, and the implementation method of the
operations. In Section 5, we show the results of experiments for real and artificial data to
evaluate construction time, search time and compactness of DenseZDDs. In Section 5, we
show the experimental results on real and artificial data and compare Top ZDD, DenseZDD
and standard ZDD to confirm the performance of the proposed method. In Section 6, we
summarize the overall contents of this paper and discuss future work.

Our Contribution

We propose top ZDDs, which partition the edges of a ZDD into a spanning tree and
other edges called complement edges, and store each of them in a compressed form. For
the spanning tree, we use the top DAG compression, which represents a tree by a DAG
with fewer nodes. For the complement edges, we store them in some nodes of the top DAG
by sharing identical edges. We show that basic operations on ZDDs can be supported in
O(log2 n) time where n is the number of nodes of the ZDD. For further compression, we
use succinct data structures for trees [14] and for bit vectors [15,16].

We show experimental results on the size of our top ZDDs and existing data structures,
and query time on them. The results show that the top ZDDs use less space for most of the
input data.

2. Preliminaries

Here we explain notations and basic data structures.
Let C = {1, . . . , c} be the universal set. Any set in this paper is a subset of C. The

empty set is denoted by ∅. For a set S = {a1, . . . , as} ⊆ C (s ≥ 1), its size is denoted by
|S| = s. The size of the empty set is |∅| = 0. A subset of the power set of C is called a set
family. A set family is also called a family of sets, a set of sets, or a combinatorial set. If a
set family F satisfies either S ∈ F ⇒ ∀k ∈ S, S\{k} ∈ F or S ∈ F ⇒ ∀k ∈ C, S ∪ {k} ∈ F ,
F is said to be monotone. If the former is satisfied, F is monotone decreasing and the latter
monotone increasing.

2.1. Zero-Suppressed Binary Decision Diagrams

Zero-suppressed Binary Decision Diagrams (ZDDs) [1] are data structures for manip-
ulating finite set families. A ZDD is a directed acyclic graph (DAG) G = (V, E) with a root
node satisfying the following properties. A ZDD has two types of nodes; branching nodes
and terminal nodes. There are exactly two terminal nodes; ⊥ and >. These terminal nodes
have no outgoing edges. Each branching node v has an integer label `(v) ∈ {1, . . . , c},
and also has two outgoing edges 0-edge and 1-edge. The node pointed to by the 0-edge
(1-edge) of v is denoted by v0 = zero(v) (v1 = one(v)). If for any branching node v it holds
`(v) < `(v0) and `(v) < `(v1), then the ZDD is said to be ordered. In this paper, we
consider only ordered ZDDs. For convenience, we assume `(v) = c + 1 for terminal nodes
v. We divide the nodes of the ZDD into layers L1, . . . , Lc+1 Note that if i ≥ j there are no
edges from layer Li to layer Lj. The number of nodes in ZDD G is denoted by |G| and
called the size of the ZDD. On the other hand, the data size of a ZDD stands for the number
of bits used in the data structure representing the ZDD.
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In a ZDD, each node represents a set family. When a ZDD is single-rooted, the set
family represented by the root is called the set family represented by the ZDD. The set
family represented by a ZDD is defined as follows.

Definition 1 (The set family represented by a ZDD). Let v be a node of a ZDD and v0 = zero(v),
v1 = one(v). Then the set family Fv represented by v is defined as follows. ZDD G = (V, E),
rooted at node v ∈ V, represents a finite family of sets Fv on C defined recursively as follows:

1. If v is a terminal node: if v = >, Fv = {∅}, if v = ⊥, Fv = ∅.
2. If v is a branching node: Fv = {S ∪ {`(v)} | S ∈ Fv1} ∪ Fv0 .

For the root node r of ZDD G, Fr corresponds to the set family represented by the
ZDD G. This set family is also denoted by FG.

A family of sets can be represented by a binary tree as shown in Figure 1. Let F be a
family of sets. For a set S, we traverse the 1-edge at the nodes whose labels are elements
in S, and the 0-edge otherwise. Then we reach the > if S ∈ F , and the ⊥ otherwise. Any
family of sets can be represented by a binary tree of height c. This is almost equivalent to
the bitstring representation of length 2n. This tree structure can be used for compression,
however. A ZDD can be constructed by deleting redundant nodes from the binary tree and
merging equivalent nodes. Every path from the root to the terminal > on ZDD G have a
one-to-one correspondence to a set S = {a1, . . . , a|S|} in the set family represented by G.
Consider a traversal of nodes from the root towards terminals so that for each branching
node v on the path, if `(v) 6∈ S we go to v0 = zero(v) from v, and if `(v) ∈ S we go to
v1 = one(v) from v. By repeating this process, if S ∈ FG we arrive at >, and if S 6∈ FG we
arrive at ⊥ or find no branching node corresponding to some ai ∈ S during the process.
An example is shown in Figure 2. ZDDs also support various set operations, which can be
used to obtain new ZDDs from multiple ZDDs, as shown in Figure 3.

2.2. Succinct Data Structures

Succinct data structures are data structures whose size match the information-theoretic
lower bound. Formally, a data structure is succinct if any element of a finite set U with
cardinality L is encoded in log2(L) + o(log2(L)) bits. In this paper, we use succinct data
structures for bit-vectors and trees.

⊥ ⊥ ⊥ ⊤ ⊥ ⊤ ⊤ ⊥

2 2

3 3 3 3

1

F = {{1, 2}, {1, 3}, {2, 3}}

0 1

0 1 0 1

0      1 0      10      1 0      1

Figure 1. The binary tree that represents a family of sets F = {{1, 2}, {1, 3}, {2, 3}}.
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⊥ ⊤

2 2

3

1

F

0 1

0    1

1 0

0 1

∅ {∅}

{{2, 3}}                         {{2}, {3}}

{3}

{{1, 2}, {1, 3}, 

{2, 3}}

Figure 2. The ZDD obtained from the binary tree in Figure 1 by merging equivalent nodes and
deleting redundant nodes. Terminal nodes and branching nodes are depicted by squares and circles,
respectively, and 0-edges and 1-edges are depicted by dashed and solid lines, respectively. The family
of sets represented by each node is indicated beside it.

⊥

1
0     1

⊤

2
0   1

{{1, 2}}

∪

⊥

1
0      1

⊤

3
0  1

{{1, 3}}

∪ =

⊥

3
0      1

⊤

{{3}}

⊥ ⊤

1 1 1

0   

0 2
1

1 3 1

0    

{{1, 2}, {1, 3}, 

{3}}              

Figure 3. Example of how ZDDs are utilized to obtain a new ZDD from given ZDDs via a set operation.

2.2.1. Bit Vectors

Bit vectors are the most basic succinct data structures. A length-n sequence B ∈ {0, 1}n

of 0’s and 1’s is called a bit vector. On this bit vector we consider the following operations:

• access(B, i) (1 ≤ i ≤ n): returns B[i] ∈ {0, 1}, the i-th entry of B.
• rankc(B, i) (1 ≤ i ≤ n, c = 0, 1): returns the number of c in the first i bits of B.
• selectc(B, j) (1 ≤ j ≤ n, c = 0, 1): returns the position of the j-th occurrence of c in B.

The following result is known.

Theorem 1. ([15]) For a bit vector of length n, using a n + O(n log log n/ log n)-bit data struc-
ture constructed in O(n) time, access(B, i), rankc(B, i), selectc(B, j) are computed in constant
time on the word-RAM with word length Ω(log n).

Consider a bit vector of length n with m 1’s. For sparse bit vectors, namely, that
consisting of a binary sequence with only m = o(n/ log n) 1’s, we can obtain a more
space-efficient data structure.

Theorem 2. ([16]) For a bit vector B of length n = 2w with m ones, select1(B, i) is computed in
constant time using a 2m + O(m log log m/ log m)-bit data structure.

Note that on this data structure, rank0, rank1, select0 takes O(log m) time.

2.2.2. Trees

Consider a rooted ordered tree with n nodes. The information-theoretic lower bound
on the size of such trees is 2n−Θ(log n) bits. When we traverse a tree by depth-first search
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and number each node in the order of the first visit, the number is called the preorder id of
the node. When nodes are given ids, we may refer to each node as its number. We want to
support the following operations:

• parent(x): returns the parent of node x.
• f irstchild(x), lastchild(x): returns the first/last child of node x.
• nextsibling(x), prevsibling(x): returns the next/previous sibling of node x.
• islea f (x): returns if node x is a leaf or not.
• preorder_rank(x): returns the preorder id of node x.
• preorder_select(i): returns the node with preorder id i.
• lea f _rank(x): returns the number of leaves whose preorder ids are smaller than that

of node x.
• lea f _select(i): returns the i-th leaf in preorder.
• depth(x): returns the depth of node x, that is, the distance from the root to x.
• subtreesize(x): returns the number of nodes in the subtree rooted at node x.
• lca(x, y): returns the lowest common ancestor (LCA) between nodes x and y.

Theorem 3. ([14]) On the word-RAM with word length Ω(log n), the above operations are done
in constant time using a 2n + o(n)-bits data structure.

We call this the balanced parenthesis (BP) representation in this paper.

2.3. DenseZDD

A DenseZDD [11] is a static representation of a ZDD with attributed edges [17] by
using some succinct data structures. In comparison to the standard ZDD, a DenseZDD
provides a much faster membership operation and less memory usage for most cases.
When we construct a DenseZDD from a given ZDD, dummy nodes are inserted so that
`(v0) = `(v) + 1 holds for each branching node v for fast traversal. A Spanning Tree
consisting of all inverted 0-edges is represented by a simple BP. Notice that, each node
always has one 0-edge, and ZDDs have no cycles and the terminal node is only ⊥ if we
employ the attributed edge technique. Therefore, if you traverse only the 0-edges from
any branching node, you will always end up at the ⊥. The inverted 0-edges thus form
a spanning tree rooted at the ⊥. The DenseZDD is a combination of this BP and other
succinct data structures that represent the remaining information of the given ZDD. Its size
is much smaller than the standard ZDD size and it can execute fast membership operations.
A DenseZDD represents 0-edges and 1-edges respectively in a different way. For 0-edges,
the spanning tree of a ZDD formed by the 0-edges is stored. We give preorder id for each
node by a depth-first traversal of the spanning tree. Some dummy nodes are added such
that `(v0) = `(v) + 1 holds for each node v. Spanning tree and dummy node information
are represented by BP and Fully Indexable Dictionary (FID), respectively. For 1-edges, an
array stores all the preorder ids of 1-children together.

3. Top Tree and Top DAG

We explain DAG compression [18–20] and top DAG compression [12] to compress
labeled rooted trees.

3.1. DAG Compression

DAG compression is a scheme to represent a labelled rooted tree by a smaller DAG by
sharing identical subtrees appearing repeatedly. See Figure 4 for an example.
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DAG compression

Figure 4. An example of DAG compression. Dashed lines are 0-edges, and solid lines are 1-edges.
Leaves of the same colour represent the identical subtrees.

When we repeat sharing common sub-structures until the sub-structure rooted at each
node u becomes unique, the resulting structure is called the minimal DAG. The minimal
DAG is unique and it can be obtained in O(n) time for a tree with n nodes [19]. We call
representing a tree by the minimal DAG as DAG compression. After DAG compression,
the number of nodes may be exponentially smaller than the original tree. On the other
hand, in the worst case, the number of nodes never decreases. This is because DAG
compression can share only identical subtrees. Here a subtree means the tree consisting of
all the descendants of a node. For example, a path in which all nodes have the same label
can be represented by just storing the length of the path and the label, DAG compression
cannot capture this repeated structure and cannot compress the path.

3.2. Top DAG Compression

Top DAG compression is a compression scheme for labelled rooted trees by converting
the input tree into top tree [21] and then compress it by DAG compression [18–20]. Top DAG
compression can compress repeated sub-structures (not only subtrees). DAG compression
can share identical subtrees, but it cannot share similar structures at different heights. This
is made possible by top DAG compression. For example, a path of length n with identical
labels cannot be compressed at all by DAG compression but can be represented by a top
DAG with O(log n) nodes. Also, for a tree with n nodes, top DAG supports the following
operations in O(log n) time: accessing a node label, computing the subtree size, and tree
navigational operations such as first child and parent. Here we explain the top tree and its
greedy construction algorithm. We also explain operations on top DAGs.

3.2.1. Top Tree

The top tree [21] for a labelled rooted tree T is a binary tree T representing the merging
process of clusters of T defined as follows. A top tree is a meta-binary tree for managing
tree structure, and its purpose is to transform a given tree into a somewhat balanced binary
tree. We assume that all edges in the tree are directed from the root towards leaves, and
an edge (u, v) denotes the edge from node u to node v. Clusters are subsets of T with the
following properties.

• A cluster is a subset F of the nodes of the original tree T such that nodes in F are
connected in T.

• F forms a tree and we regard the node in F closest to the root of T as the root of the
tree. We call the root of F as the top boundary node.

• F contains at most one node having directed edges to outside of F. If there is such a
node, it is called the bottom boundary node.

A boundary node is either a top boundary node or a bottom boundary node.
By merging two adjacent clusters, we obtain a new cluster, where merge means to take

the union of node sets of two clusters and make it the node-set of the new cluster. There are
five types of merges, as shown in Figure 5. In the figure, ellipses are clusters before merge,
black circles are boundary nodes of new clusters, and white circles are not boundary nodes
in new clusters.
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(a) (b) (c) (d) (e)

Figure 5. Merging clusters. These five merges are divided into two. (a,b) Vertical merge: two
clusters can be merged vertically if the top boundary node of one cluster coincides with the bottom
boundary node of the other cluster, and there are no edges from the common boundary node to
nodes outside the two clusters. (c–e) Horizontal merge: two clusters can be merged horizontally if
the top boundary nodes of the two clusters are the same and at least one cluster does not have the
bottom boundary node.

Examples of merge are shown in Figures 6 and 7.

A

B

C

A B

v

left    right

C

Figure 6. An example of vertical merge of type (a). The left side is the clusters in the given tree and
the right side is the corresponding top tree. A black node above is a boundary node of the clusters
A and C. A black node below is a boundary node of the clusters B and C. A light gray node is a
boundary node of the clusters A and B, but not of C.

A B

h

left    right

C

A B

C

Figure 7. An example of horizontal merge of type (d). The left side is the clusters in the given tree
and the right side is the corresponding top tree. A black node is a boundary node of the clusters B
and C. A dark gray node is a boundary node of clusters A, B and C.

The top tree of the tree T is a binary tree T satisfying the following conditions. Note
that we use terms nodes and edges for the original tree T, and vertices and arcs for the top
tree T .
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• Each leaf of the top tree corresponds to a cluster with the endpoints of an edge of T.
• Each internal vertex of the top tree corresponds to the cluster made by merging the

clusters of its two children. This merge is one of the five types in Figure 5.
• The cluster of the root of the top tree is T itself.

Figure 8 is an example of the top tree T for an unlabeled tree T.
V and H in vertices of the top tree represent vertical and horizontal merges, respec-

tively. Letters on the right of vertices show the type of merges in Figure 5. Clusters
corresponding to vertices of the top tree are also shown. Red nodes show boundary nodes
of clusters.

1

2

3

4 5

7

6

Original tree 𝑇

H H H

V

V

top tree  𝒯

(c) (c) (e)

(b)

(b)

Figure 8. An example of top tree. Alongside each vertex of the top tree, the corresponding cluster is
drawn. Red nodes show boundary nodes.

We call the DAG obtained by DAG compression of the top tree T as top DAG T D, and
the operation to compute the top DAG T D from tree T is called top DAG compression [12].

We define labels of vertices in the top tree to apply DAG compression as follows.
For a leaf of the top tree, we define its label as the pair of labels of two endpoints of
the corresponding edge in T. For an internal vertex of the top tree, its label must have
information about cluster merge. It is enough to consider three types of merges, not five as
in Figure 5. For vertical merges, it is not necessary to store the information that the merged
cluster has a bottom boundary node or not. For horizontal merges, it is enough to store if
the left cluster has a bottom boundary node or not. From this observation, we define labels
of internal vertices as follows.

• For vertices corresponding to vertical merge: we set their labels as V.
• For vertices corresponding to horizontal merge: we set their labels as HL if the left

child cluster has the bottom boundary node, or HR if the right child cluster has the
bottom boundary node. If both children do not have bottom boundary nodes, the
label can be arbitrary.

Top trees created by a greedy algorithm satisfy the following.

Theorem 4. ([12]) Let n be the number of nodes of a tree T. Then the height of top tree T created
by a greedy algorithm is O(log n).

3.2.2. Operations on Top DAGs

Consider to support operations on a tree T which is represented by top DAG T D.
From now on, a node x in T stands for the node with preorder id x in T. By storing
additional information to each vertex of the top DAG, the following tree operations can be
supported [12].

• Access(x): returns the label of x.
• Decompress(x): returns the subtree T(x) of T rooted at x.
• Parent(x): returns the preorder id of the parent of x.
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• Depth(x): returns the depth, i.e., the distance to the root, of x.
• Height(x): returns the height, i.e., the distance to the farthest leaf, of x.
• Size(x): returns the subtree size rooted at x.
• Firstchild(x): returns the preorder id of the first child of x, or reports x is a leaf.
• NextSibling(x): returns the preorder id of the next sibling of x, or reports it does

not exist.
• LevelAncestor(x, i): returns the preorder id of the ancestor of x with distance i from x.
• LCA(x, y): returns the preorder id of the lowest common ancestor between x and y.

For a tree with n nodes, all operations except Decompress(·) are done in O(log n) time,
and Decompress(·) is done in O(log n + |T(x)|) time.

We explain the algorithm for Access(x) based on a recursive function sub(u, k) for a
vertex u of the top DAG and an integer k. The function sub(u, k) returns the label of the
node with local preorder id k inside the cluster corresponding to vertex u of the top DAG.
Note that Access(x) can be achieved by doing sub(r, x) because the cluster corresponding
to r is the whole tree. The function sub(u, k) is computed recursively as follows. If u has
no outgoing edges, u is a leaf of the top DAG. Thus, u corresponds to a cluster consisting
of a single edge. In this case k is either 0 or 1. For such a cluster, only the label of the two
endpoints of the edge is stored. Let s and t be the label of the starting point and ending
point, respectively. If k = 0, it returns sub(u, k) = s; if k = 1, it returns sub(u, k) = t.

If u is a vertex corresponding to horizontal merge, let v and w be the left and the
right child of u, respectively, let cl(u), cl(v), cl(w) be the corresponding cluster of u, v, w,
respectively, and let C(u), C(v), C(w) be their sizes. If we traverse nodes of cl(u) in preorder,
the first one is the node shared by cl(v) and cl(w), then all the nodes of cl(v) appear and
finally nodes of cl(w) are traversed. Therefore sub(u, k) is computed as follows.

• If k = 1: the corresponding node for sub(u, k) is contained in both cl(v) and cl(w),
and it holds sub(u, k) = sub(v, 1) = sub(w, 1).

• If 2 ≤ k ≤ C(v): the corresponding node for sub(u, k) is in cl(v), and it holds
sub(u, k) = sub(v, k).

• If C(v) + 1 ≤ k ≤ C(v) + C(w)− 1: the corresponding node for sub(u, k) is in cl(w),
and it holds sub(u, k) = sub(w, k− C(v) + 1).

This function can be computed if the cluster size C(·) is known for each vertex of the
top DAG.

Finally, if u is a vertex corresponding to vertical merge, define v, w, cl(u), cl(v), cl(w),
C(u), C(v), C(w) similarly to the horizontal merge case. We need another value D(v),
which is the preorder id of the bottom boundary of cl(v). If we traverse nodes of cl(u) in
preorder, we first visit nodes of cl(v) with local preorder id up to D(v), then visit all nodes
of cl(w), then finally visit nodes of cl(v) with local preorder id from D(v) + 1. Therefore
sub(u, k) is computed as follows.

• If 1 ≤ k ≤ D(v)− 1: the corresponding node for sub(u, k) is in cl(v), and it holds
sub(u, k) = sub(v, k).

• If k = D(v): the corresponding node for sub(u, k) is the bottom boundary node of cl(v),
which is also the top boundary node of cl(w), and it holds sub(u, k) = sub(v, k) = sub(w, 1).

• If D(v) + 1 ≤ k ≤ D(v) + C(w): the corresponding node for sub(u, k) is in cl(w), and
it holds sub(u, k) = sub(w, k− D(v)− 1).

• If D(v) + C(w) + 1 ≤ k ≤ C(v) + C(w)− 1: the corresponding node for sub(u, k) is
in cl(v), and it holds sub(u, k) = sub(v, k− C(w)− 1).

This function can be computed recursively if C(·) and D(·) are known. Algorithm 1
shows a pseudo code.
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Algorithm 1 Access(x): computes the label of a node whose preorder id in the tree repre-
senting the top DAG is x.

Input: Preorder x
Output: The label of node x

1: r ← the root of top DAG
2: return SUB(r, x)
3: procedure SUB(u, k)
4: if vertex u corresponds to a cluster with a single edge e then
5: if k = 1 then
6: return (the label s of the starting point of e)
7: else
8: return (the label s of the ending point of e)
9: else

10: v← (the left child of u)
11: w← (the right child of u)
12: C(v)← (the size of the cluster of v)
13: C(w)← (the size of the cluster of w)
14: if vertex u is horizontal merge then
15: if 1 ≤ k ≤ C(v) then
16: return SUB(v, k)
17: else
18: return SUB(w, k− C(v)− 1)
19: else
20: D(v)← (the preorder id of the bottom boundary node of the cluster of v)
21: if 1 ≤ k ≤ D(v) then
22: return SUB(v, k)
23: else if D(v) + 1 ≤ k ≤ D(v) + C(w) then
24: return SUB(w, k− D(v)− 1)
25: else
26: return SUB(v, k− C(w)− 1)

4. Top ZDD

We explain our top ZDD, which is a representation of ZDD by top DAG compression.
Though it is easy to apply our compression scheme for general rooted DAGs, we consider
the only compression of ZDDs.

A ZDD G = (V, E) is a directed acyclic graph in which branching nodes have labels
`(·) and edges have labels 0 or 1. We can regard it as a graph with only edges being labelled.
For each edge (u, v) of ZDD G, we define its label as a pair (edge label 0/1, `(v)− `(u)) if
v is a branching node, or a pair (edge label 0/1, ⊥/>) if v is a terminal node. Note that
in the second case, we are not taking the difference of labels. We only care whether the
terminal is > or ⊥. In practice, we can use c + 1 instead of ⊥, and c + 2 instead of > for the
second element of the second case. It is enough to distinguish the above two cases because
`(v)− `(u) is always less than c for any u, v. Below we assume ZDDs have labels for only
edges, and 0-edge comes before 1-edge for each node.

Next, we consider top trees for edge-labelled trees. The difference from node-labelled
trees is only how to store the information for single edge clusters. In Section 3.2.1, we
stored labels for both endpoints of edges. We change this for storing only edge labels.

The top ZDD is constructed from a ZDD G = (V, E) as follows.

1. We perform a depth-first traversal from the root of G and obtain a spanning tree T of
all branching nodes. During the process, we do not distinguish 0-edges and 1-edges,
and terminal nodes are not included in the tree. Nodes of the tree are identified with
their preorder ids in T. If we say node u, it means the node in T with preorder id u.
We call edges of G not included in T as complement edges.

2. We convert the spanning tree T to a top tree T by the greedy algorithm.
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3. For each complement edge (u, v), we store its information in a node of T as follows.
If v is a terminal, let a be the vertex of the top tree corresponding to the cluster of
a single edge between u and its parent in T. Note that a is uniquely determined.
Then we store a triple ((u, v), edge label 0/1, ⊥/>) in a. If v is a branching node,
we store the information of the complement edge to a vertex of T corresponding to
a cluster containing both u and v. The information to store is a triple ((u, v), edge
label 0/1, `(u)− `(v)). Each vertex stores such information as follows. Let a, b be
the vertices of the top tree corresponding to the clusters of single edges towards
u, v in T, respectively. Then we store the triple in the lowest common ancestor
lca(a, b) in T. Here the information (u, v) represents local preorder ids inside the
cluster corresponding to lca(a, b). Note that lca(a, b) may not be the minimal cluster
including both u and v.

4. We create a top DAG T D by DAG compression by sharing identical clusters. To
determine the identity of two clusters, we compare them together with the information
of complement edges in the clusters stored in step 3. Complement edges that do not
appear in multiple clusters are moved to the root of T.

Figure 9 shows an example of how our algorithm works. In this figure, we show the
clusters corresponding to each node. But, they are not stored explicitly.
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Figure 9. Running example of the Top ZDD construction algorithm. In each branching node of the
original ZDD, its preorder id is denoted instead of its label. Red edges are spanning tree edges and
green edges are complement edges. For each vertex of the top tree, the corresponding cluster and the
complement edges stored are shown. Boundary nodes of each cluster are denoted as black nodes.
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It is crucial to choose an appropriate data structure to store each information to achieve
smaller space consumption. For example, in Section 3.2.2, we explained that each vertex of
the top DAG stores the cluster size etc., this is redundant and space can be reduced. Next,
we explain our space-efficient data structure which is enough to support efficient queries
in detail.

4.1. Details of the Data Structure

We need the following information to recover the original ZDD from a top ZDD.

• Information about the structure of top DAG T D.
• Information about each vertex of T D. There are three types of vertices: vertices

corresponding to a leaf of the top tree, vertices representing vertical merge, and
vertices representing horizontal merge. For each type, we store different information.

• Information about complement edges.

We show space-efficient data structures for storing this information. The data structure
to be used is chosen depending on the ratio of 1’s. If the ratio of 1’s is less than 1

4 , then we
use the SparseArray [22] to compress a bit vector. Or if the ratio of 1’s is between 1

4 and 3
4 ,

then we use the succinct bit vector with constant time rank/select support [15].
And, we use the SparseArray for the bit vector whose 0/1 are flipped if the ratio of

0’s is less than 1
4 . To store an array of non-negative integers, we use blog2 mc bits for each

entry where m is the maximum value in the array. Let n denote the number of branching
nodes of a ZDD. We use n + 1, n + 2 to represent terminals ⊥,>, respectively.

4.1.1. The Data Structure for the Structure of Top DAG T D

We store top DAG T D after converting it to a tree. We make tree T′ by adding
dummy vertices to T D. For each vertex x of T D whose in-degree is two or more, we do
the following.

1. Let a1, · · · , at be the vertices of T D from which there are edges towards x. Note that
there may exist identical vertices among them corresponding to different edges. We
create t− 1 dummy vertices d1, · · · , dt−1.

2. For each 1 ≤ i ≤ t− 1, remove edge (ai, x) and add edge (ai, di).
3. For each dummy vertex di, we store information about a pointer to x. In our im-

plementation, we store the preorder id of x in T′ from which the dummy vertices
are removed.

Then we can represent the structure of the top DAG by the tree T′ and the pointers
from the dummy vertices.

Next, we explain how to store T′ and the information about the dummy vertices.
The structure of T′ is represented by the BP sequence [14]. There are two types of leaves
in T′: those which exist in the original top DAG, and those for the dummy vertices. To
distinguish them, we use a bit vector. Let m be the number of leaves in T′. We create a bit
vector Bdummy of length m whose i-th bit corresponds to the i-th leaf of T′ in preorder. We
set Bdummy[i] = 1 if the i-th leaf is a dummy vertex, and we set Bdummy[i] = 0 otherwise.

We add additional information to dummy vertices to support efficient queries. We
define an array clsize of length D where D is the number of dummy vertices. For the i-th
dummy vertex in preorder, let si be the vertex pointed to by the dummy vertex. We define
clsize[k] = ∑k

i=1(the number of vertices in the cluster represented by si). That is, clsize[k]
stores the cumulative sum of cluster sizes up to k. This array is used to compute the cluster
size for each vertex efficiently.

4.1.2. Information on Vertices

We explain how to store information on vertices of T′ except for dummy vertices.
Each vertex corresponding to a leaf in the original top tree is a cluster for a single edge in
the spanning tree, and it is a non-dummy leaf in T′. We sort these vertices in preorder in
T′ and store information on edges towards them in the following two arrays. One is an
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array label_span to store differences of levels between endpoints of edges. Let u and v be
the starting and the ending points of the single edge of the cluster corresponding to the i-th
leaf, respectively. Then we set label_span[i] = `(v)− `(u). The other is an array type_span
to store if an edge is 0-edge or 1-edge. We set type_span[i] = 0 if the edge corresponding to
the i-th vertex is a 0-edge, and type_span[i] = 1 otherwise.

Each vertex of T′ corresponding to vertical merge or horizontal merge is an internal
vertex. We sort internal vertices of T′ in their preorder. Then we make a bit vector BH so
that BH[i] = 0 if the i-th vertex stands for vertical merge, and BH[i] = 1 if it stands for
horizontal merge. For vertices corresponding to horizontal merge, we do not store addi-
tional information. For vertices corresponding to vertical merge, we use arrays preorder_diff
and label_diff to store the differences of preorder ids and levels between the top and the
bottom boundary nodes of the merged cluster. Let xi be the i-th vertex in preorder corre-
sponding to vertical merge, cli be the cluster corresponding to xi, ti be the top boundary
node of cli, and bi be the bottom boundary node of cli. Note that ti and bi are nodes of
the ZDD. Then we set preorder_diff [i] = (the local preorder id of bi inside cluster cli) and
label_diff [i] = `(bi)− `(ti).

4.1.3. Information on Complement Edges

Complement edges are divided into two groups: those stored in the root of the top
DAG and those stored in other vertices. We represent them differently.

First, we explain the data structure for storing complement edges in the root of the
top DAG. Let Eroot be the set of all complement edges stored in the root. We sort edges of
Eroot in the preorder of their starting point. Orders between edges with the same starting
point are arbitrary.

For complement edges stored in the root, we store the preorder ids of their starting
point using a bit vector Bsrc_root, the preorder ids of their ending point using an array
dst_root, and edge labels 0/1 using an array type_root. The cluster corresponding to the
root of the top DAG is the spanning tree of the ZDD. For each node v of the spanning tree,
we represent the number of complement edges in Eroot whose starting point is v, using
a unary code. Unary code is a method of representing a natural number by the length
of continuous 1’s. We concatenate and store them in preorder in the bit vector Bsrc_root.
For edges in Eroot sorted in preorder of the starting points, we store the preorder id of
the ending point of the i-th edge in dst_root[i], and set type_root[i] = 0 if the i-th edge is a
0-edge, and set type_root[i] = 1 otherwise.

Next, we explain the data structure for storing complement edges in vertices other
than the root. Let Ein be the set of those edges. We sort the edges as follows.

1. We assign each edge of Ein to a cluster such that it contains both its starting and
ending points. Then, we divide Ein into several groups, each corresponding to
a certain cluster. We sort these groups by the preorder id of the top tree vertex
corresponding to the cluster.

2. Inside each cluster cl(x), we sort the edges of Ein in preorder of starting points of the
edges. For edges with the same starting point, their order is arbitrary.

We store the sorted edges of Ein using a bit vector Bedge and three arrays src_in, dst_in,
and type_in. The bit vector Bedge stores the numbers of complement edges in vertices of T′

by unary codes. The arrays src_in, dst_in, and type_in are defined as: src_in[i] = (the local
preorder id of the starting point of the i-th edge inside the cluster), dst_in[i] = (the local
preorder id of the ending point of the i-th edge inside the cluster), type_in[i] = 0 if the i-th
edge is a 0-edge, and type_in[i] = 1 otherwise.

Table 1 summarizes the components of the top ZDD.
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Table 1. Components of the top ZDD.

bp BP sequence representing the structure of T′

Bdummy bit vector showing i-th leaf is a dummy vertex or not

clsize array storing cumulative sum of cluster sizes of the first to the i-th
dummy leaves

label_span array storing differences of labels of ending points of i-th
non-dummy leaf

type_span array showing the edge corresponding to the i-th non-dummy leaf
is 0-edge or not

BH bit vector showing i-th internal vertex is a vertical merge or not

preorder_diff
array storing differences of preorder ids between the top and the
bottom boundary nodes of the vertex corresponding to i-th
vertical merge

label_diff array storing differences of labels between the top and the bottom
boundary nodes of the vertex corresponding to i-th vertical merge

Bsrc_root
bit vector storing in unary codes the number of complement edges
from each vertex

dst_root array storing preorder ids of ending points of the i-th complement
edge stored in root

type_root array showing the i-th complement edge stored in the root is a
0-edge or not

Bedge
bit vector storing in unary codes the number of complement edges
from each vertex stored in the root

src_in array storing local preorder ids of starting points of i-th
complement edge stored in non-root

dst_in array storing local preorder ids of ending points of i-th complement
edge stored in non-root

type_in array showing the i-th complement edge stored in non-root is
0-edge or not

4.2. Size of Top ZDDs

The size of top ZDDs heavily depends on not only the number of vertices in the
spanning tree after top DAG compression but also the number of complement edges for
which we store some information. As a result, the size of top ZDDs becomes small if the
number of nodes is reduced by top DAG compression and many common complement
edges are shared.

In the best case, top ZDDs are exponentially smaller than ZDDs.

Theorem 5. There exists a ZDD with n nodes to which the corresponding top ZDD has O(log n) vertices.

Proof. A ZDD storing a power set with n = 2m elements satisfies the claim. Figure 10
shows this ZDD and top ZDD. A ZDD representing a power set have a linear chain-like
shape because no matter how we traverse 0-edges or 1-edges, we will always end up at the
> terminal. The spanning tree of the ZDD is a path consisting of 2m many 0-edges. Its top
tree has a leaf corresponding to a 0-edge of length 1, and internal vertices form a complete
binary tree with height m. If we apply DAG compression to this top tree, we obtain the
DAG of length m as shown in Figure 10. Sharing complement edges also works very well.
The k-th vertex below representing vertical merge stores a 1-edge connecting a node with
local preorder id 2k−1 + 1 inside a cluster and a node with local preorder id 2k−1 + 2. The
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root of the top DAG stores 0-edge and 1-edge to the terminal >. Because the height of the
top DAG is O(log n), the claim holds.

1

2

2m

⊥

…

ZDD Top ZDD

1

2

2m

⊥

…

v

v

v
… Height

m

Figure 10. A top ZDD with O(log n) vertices, where n = 2m. We omitted the middle of the graph by
dots, but the height differs exponentially. In this ZDD, the spanning tree is a path consisting only
of 0-edges, represented in red. The complement edges are indicated in green. In the top ZDD, the
cluster corresponding to each node is shown in a smaller size next to it.

4.3. Operations on Top ZDDs

We give algorithms for supporting operations on the original ZDD using the top ZDD.
We consider the following three basic operations. We identify each node x of the ZDD by
its preorder id in the spanning tree T used to construct the top ZDD. An example of ZDD
nodal numbering based on this rule is shown in the upper left corner of Figure 9.

• `(x): returns the label of a branching node x.
• zero(x): returns the preorder id of the node pointed to by the 0-edge of x or

returns ⊥ or > if the node is a terminal.
• one(x): returns the preorder id of the node pointed to by the 1-edge of x or

returns ⊥ or > if the node is a terminal.

We show `(x) is done in O(log n) time and other operations are done in O(log2 n)
time where n is the number of nodes of the ZDD. Below we denote the vertex of T′ stored
in the top ZDD with preorder id x by “vertex x of T′”.

First we explain how to compute `(x) in O(log n) time. We can compute `(x) re-
cursively using an algorithm similar to those on the top DAG. A difference is that in
Section 3.2.2 we assumed that each vertex of the top DAG stores the cluster size, while
in the top ZDD it is not stored to reduce the space requirement. Therefore we have to
compute it using the information in Table 1.

To work the recursive computation, we need to compute the cluster size size(x′)
represented by vertex x′ of T′ efficiently. We can compute size(x′) by the number of non-
dummy leaves in the subtree of T′ rooted at x′, and the sizes of the clusters corresponding
to dummy leaves in the subtree rooted at x′. If we merge two clusters of size a and b, the
resulting cluster has size a + b− 1. Therefore if we merge k clusters whose total size is S,
the resulting cluster after k− 1 merges has size S− k + 1. These values can be computed
from the BP sequence bp of T′, the array clsize, and the bit vector Bdummy. By using bp, we
can compute the interval [l, r] of leaf ranks in the subtree rooted at x′. Then, using Bdummy,
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we can find the number c of non-dummy leaves and the interval [l′, r′] of non-dummy leaf
ranks, in the subtree of x′. Because clsize is the array for storing cumulative sums of cluster
sizes for dummy leaves, the summation of sizes of clusters corresponding to l′-th to r′-th
dummy leaves is obtained from clsize[r′]− clsize[l′ − 1]. Since the size of a cluster for a
non-dummy leaf is always 2, the summation of cluster sizes for non-dummy leaves is also
obtained. Algorithm 2 gives a pseudo-code for computing size(x′). This can be done in
constant time.

Algorithm 2 size(x′): the size of the cluster corresponding to vertex x′ of T′.

Input: Preorder x′

Output: The size of the cluster for x′

1: l ← lea f _rank(le f tmost_lea f (x))
2: r ← lea f _rank(rightmost_lea f (x))
3: l′ ← rank1(Bdummy, l − 1) + 1
4: r′ ← rank1(Bdummy, r)
5: k← r− l + 1
6: c← (r− l + 1)− (r′ − l′)
7: if l′ = 0 then
8: return clsize[r′] + 2c− k
9: else

10: return clsize[r′]− clsize[l′ − 1] + 2c− k

Using the function size(x′), we can compute a recursive function similar to Algorithm 1.
Instead of D(·) in Algorithm 1, we use preorder_diff . When we arrive at a dummy leaf, we
use a value in dst_dummy to move to the corresponding internal vertex of T′ and restart
the recursive computation. Then for the vertex of the original ZDD whose preorder id in T
is x, we can obtain the leaf of T′ corresponding to the cluster of a single edge containing x.

To compute `(x), we traverse the path from the root of T′ to the leaf corresponding to
the cluster containing x. First we set s = 1. During the traversal, if the current vertex is for
vertical merge and the next vertex is its right child, that is, the next cluster is in the bottom,
we add the label_diff value of the top cluster to s. The index of label_diff is computed from
BH and bp. When we reach the leaf p′ of T′, if x is its top boundary node, it holds `(x) = s,
otherwise, let k = lea f _rank(p′), then we obtain `(x) = s+ label_span[k− rank1(Bdummy, k)].
Because each operation is done in constant time and the height of the top DAG is O(log n),
`(x) is computed in O(log n) time.

Next, we show how to compute y = zero(x). We can compute one(x) in a similar way.
We do a recursive computation as operations on top DAG, a difference is how to process
complement edges. There are two cases: if the 0-edge from x is in the spanning tree or not.
If the 0-edge from x is in the spanning tree, the edge is stored in a cluster with a single edge
(x, y). The top boundary node of such a cluster is x. Therefore we search clusters whose
top boundary node is x. If the 0-edge from x is not in the spanning tree, it is a complement
edge and it is stored in some vertex on the path from a cluster C with a single edge whose
bottom boundary node is x to the root. Therefore we search for C.

First, we recursively find a non-dummy leaf of T′ whose top boundary node is x.
During this process, if there is a vertex whose top boundary is x and its cluster contains
more than one edge and corresponds to horizontal merge, we move to the left child, because
the 0-edge from x must exist in the left cluster. If we find a non-dummy leaf of T′ which
corresponds to a cluster with a single edge and its top boundary node is x, its bottom
boundary node is y = zero(x). We climb up the tree until the root to compute the global
preorder id of y. If there does not exist such a leaf, the 0-edge from x is not in the spanning
tree. We find a cluster with a single edge whose bottom boundary node is x. From the
definition of the top ZDD, the 0-edge from x is stored in some vertices visited during the
traversal. Because complement edges stored in a cluster are sorted in local preorder ids
inside the cluster of starting points, we can check if there exists a 0-edge whose starting
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point is x in O(log n) time. If it exists, we obtain the local preorder id of y inside the cluster.
By going back to the root, we obtain the global preorder id of y. Note that complement
edges for all clusters are stored in one array, and therefore we need to obtain the interval of
indices of the array corresponding to a cluster. This can be done using Bedge. In the worst
case, we perform a binary search in each cluster on the search path. Therefore the time
complexity of zero(x) is O(log2 n).

5. Experimental Comparison

We compare our top ZDD with existing data structures. We implemented top ZDD
with C++ and measured the required space for storing the data structure. For comparison,
we used the following three data structures.

• top ZDD (proposed): we measured the space for storing the data structures in Table 1.
• DenseZDD [11]: data structures for representing ZDDs using succinct data structures.

Two data structures are proposed; one support constant time queries and the other
has O(log n) time complexity. We used the latter that uses less space.

• a standard ZDD: a data structure which naively represents ZDDs. We store for each
node its label and two pointers corresponding to a 0-edge and a 1-edge. Space is
2nblog nc+ nblog cc bits where n is the number of nodes of a ZDD and c is the size of
the universe of a set family.

We constructed ZDDs of the following set families.

• The power set of a set {1, . . . , A} with A elements.
• For the set {1, . . . , A} with A elements, the family of all the set S satisfying

(The maximum value of S)− (The minimum value of S) ≤ B.
• For the set {1, . . . , A} with A elements, the family of all the sets with cardinality at

most B.
• Knapsack set families with random weights. That is, for i-th element in a set

(1 ≤ i ≤ A), we define its weight wi as a uniformly random integer in [1, W], then sort
the elements in decreasing order of weights, and construct a set family consisting of
all sets with weight at most C. Because of the randomness of the input, we ran the
experiment 1024 times for each setting and calculate the t-value and p-value between
top ZDD and DenseZDD.

• The family of edge sets which are a matching of a given graph. As for graphs,
we used the 8× 8 grid graph, the complete graph with 12 vertices K12, and a real
communication network “Interoute”.

• Set families of frequent itemsets.
• Families of edge sets which are paths from the bottom left vertex to the top-right

vertex in n× n grid graph, for n = 6, 7, 8, 9.
• Families of solutions of the n-queen problem (The n-queen problem is to find an

arrangement of n queens on the n× n chessboard such that no two queens threaten
each other. Here, all possible arrangements are stored in a ZDD), for n = 11, 12, 13.

We used several values for the parameters A, B, C, W. The results are shown in
Tables 2–9. The unit of size is a byte.

Table 2. The power set of {1, . . . , A}.

Top ZDD DenseZDD Theoretical Size of ZDD
(2nblog nc+ nblog cc)/8

A = 1000 2297 4185 3750

A = 50,000 2507 178,764 300,000
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Table 3. For the set {1, . . . , A} with A elements, the family of all the set S satisfying
(The maximum value of S)− (The minimum value of S) ≤ B.

Top ZDD DenseZDD Theoretical Size of ZDD
(2nblog nc+ nblog cc)/8

A = 500, B = 250 2471 227,798 321,594

A = 1000, B = 500 2551 321,594 1,440,375

Table 4. For the set {1, . . . , A} with A elements, the family of all the sets with cardinality at most B.

Top ZDD DenseZDD Theoretical Size of ZDD
(2nblog nc+ nblog cc)/8

A = 100, B = 50 3863 9544 9882

A = 400, B = 200 13,654 146,550 206,025

A = 1000, B = 500 43,191 966,519 1,440,375

Table 5. Knapsack set families with random weights. A is the number of elements, W is the maximum
weight of an element, C is the capacity of the knapsack.

Top ZDD DenseZDD Theoretical
Size of ZDD t p

A = 100, W = 1000,
C = 10, 000 1,630,136 1,736,228 2,453,695 49 0

A = 200, W = 100,
C = 5000 976,577 1,409,626 2,026,484 175 0

A = 1000, W = 100,
C = 1000 2,078,731 2,919,211 4,475,977 1124 0

A = 5000, W = 100,
C = 200 1,138,778 1,731,654 2,869,185 1024 0

A = 1000, W = 10,
C = 1000 1,404,838 2,627,430 4,003,302 951 0

Table 6. The family of edge sets which are matching of a given graph.

Top ZDD DenseZDD Theoretical Size of ZDD
(2nblog nc+ nblog cc)/8

8× 8 grid 12,246 16,150 18,014

complete graph K12 23,078 16,304 25,340

“Interoute” 30,844 39,831 50,144

Table 7. Set families of frequent item sets.

Top ZDD DenseZDD Theoretical Size of ZDD
(2nblog nc+ nblog cc)/8

“mushroom”
(p = 0.001) 104,774 91,757 123,576

“retail”
(p = 0.00025) 59,894 65,219 62,766

“T40I10D100K”
(p = 0.005) 177,517 188,400 248,656
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Table 8. Families of paths in n× n grid graph.

Top ZDD DenseZDD Theoretical Size of ZDD
(2nblog nc+ nblog cc)/8

n = 6 17,194 28,593 37,441

n = 7 49,770 107,529 143,037

n = 8 157,103 401,251 569,908

n = 9 503,265 1,465,984 2,141,955

Table 9. Families of solutions of the n-queen problem.

Top ZDD DenseZDD Theoretical Size of ZDD
(2nblog nc+ nblog cc)/8

n = 11 40,792 35,101 45,950

n = 12 183,443 167,259 229,165

n = 13 866,749 799,524 1,126,295

We found that for all data sets, the top ZDD uses less space than the theoretical size of
the standard ZDD. We also confirmed that the data sets in Tables 2–4 can be compressed
very well by top ZDDs. Table 5 shows the results on the sets of solutions of knapsack
problems. Top ZDD uses less space than DenseZDD in all cases, and in some cases, the
memory usage of top ZDD is almost half that of DenseZDD. Tables 6 and 7 show the results
for families of matching in a graph and frequent itemsets, respectively. There are a few
cases where the DenseZDD uses less space than the top ZDD.

The results above are for monotone set families, that is, any subset of the set of the
family also exists in the family. Tables 8 and 9 show results on non-monotone set families.
For the set of edges on the path from the bottom left corner to the top right corner of an
n× n grid graph, the top ZDD uses less space than the DenseZDD, and for n = 9, the
top ZDD uses about 1/3 the memory of DenseZDD. On the other hand, for the sets of
all the solutions of the n-queen problem, the top ZDD uses about 10% more space than
the DenseZDD. From these experiments, we confirmed that top ZDD uses less space than
DenseZDD for many set families.

Next, we show the construction time and edge traversal time of the top ZDD and the
DenseZDD in Tables 10–17. For edge traversal time, we traversed from the root of a ZDD
towards terminals by randomly choosing 0- or 1-edge 65,536 times, and took the average.
When we arrived at a terminal, we restarted from the root.

Table 10. The power set of {1, . . . , A}.

Construction Time (s) Traversal Time (µs)

Top ZDD DenseZDD Top ZDD DenseZDD

A = 1000 0.006 0.004 13.546 0.458

A = 50,000 0.217 0.116 11.768 0.198

Table 11. For the set {1, . . . , A} with A elements, the family of all the set S satisfying
(The maximum value of S)− (The minimum value of S) ≤ B.

Construction Time (s) Traversal Time (µs)

Top ZDD DenseZDD Top ZDD DenseZDD

A = 500, B = 250 0.264 0.078 9.082 0.244

A = 1000, B = 500 0.776 0.412 10.419 0.229
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Table 12. For the set {1, . . . , A} with A elements, the family of all the sets with cardinality at most B.

Construction Time (s) Traversal Time (µs)

Top ZDD DenseZDD Top ZDD DenseZDD

A = 100, B = 50 0.011 0.006 10.892 0.320

A = 400, B = 200 0.269 0.123 16.019 0.534

A = 1000, B = 500 2.013 0.878 20.101 0.412

Table 13. Knapsack set families with random weights. A is the number of elements, W is the
maximum weight of an element, C is the capacity of the knapsack. In this experiment, the t-values
ranged from 630 to 915 for all settings, and the p-values were 0.

Construction Time (s) Traversal Time (µs)

Top ZDD DenseZDD Top ZDD DenseZDD

A = 100, W = 1000, C = 10,000 2.974 1.210 16.716 0.259

A = 200, W = 100, C = 5000 2.033 1.019 23.215 0.290

A = 1000, W = 100, C = 1000 7.010 1.481 21.698 0.534

A = 5000, W = 100, C = 200 2.084 0.954 7.365 0.519

A = 1000, W = 10, C = 1000 2.597 1.712 14.127 0.244

Table 14. The family of edge sets which are matching of a given graph.

Construction Time (s) Traversal Time (µs)

Top ZDD DenseZDD Top ZDD DenseZDD

8× 8 grid 0.030 0.020 11.678 1.053

complete
graph K12

0.019 0.009 14.864 0.290

“Interoute” 0.028 0.016 15.588 0.397

Table 15. Set families of frequent item sets.

Construction Time (s) Traversal Time (µs)

Top ZDD DenseZDD Top ZDD DenseZDD

“mushroom”
(p = 0.001) 0.093 0.037 14.100 0.198

“retail”
(p = 0.00025) 0.099 0.134 12.857 0.702

“T40I10D100K”
(p = 0.005) 0.198 0.117 13.788 0.183

Table 16. Families of paths in n× n grid graph.

Construction Time (s) Traversal Time (µs)

Top ZDD DenseZDD Top ZDD DenseZDD

n = 6 0.022 0.011 15.491 0.793

n = 7 0.082 0.036 12.039 1.022

n = 8 0.536 0.153 12.229 1.144

n = 9 1.821 0.944 14.233 1.404
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Table 17. Families of solutions of the n-queen problem.

Construction Time (s) Traversal Time (µs)

Top ZDD DenseZDD Top ZDD DenseZDD

n = 11 0.038 0.015 17.184 0.778

n = 12 0.335 0.065 21.581 0.900

n = 13 1.722 0.419 20.173 1.099

In almost all cases, the Top ZDD construction took 1.5 to 2.5 times longer than the
DenseZDD construction. The first data in Table 11 and the third data in Table 13 took
particularly a long time, suggesting that DenseZDD is faster for families of sets where the
size of the included sets is small compared to the total number of variables. The same
reason is expected for the overall slowness of Top ZDD for n-queen problems. The second
data of Table 15 is the only case that Top ZDD is constructed faster than DenseZDD. This
is probably because this data is hardly compressed and DenseZDD is worse than the
theoretical size of ordinary ZDD. In terms of traversal time, Top ZDD is 10 to 80 times
slower than DenseZDD, which is a natural result since traversal time in DenseZDD is
O(log n) time, while in Top ZDD it is O(log2 n) time. In addition, Top ZDD uses more
succinct data structures for computation than DenseZDD, so it takes a larger constant
coefficient. Basically, in DenseZDD, the traversal time increases with the number of nodes
in the input ZDD, but this is not the case in Top ZDD. For example, there is a large variation
in the ratio of the traversal speed of Top ZDD to that of DenseZDD in Tables 13–15. The
reason for this is that when we execute traverse, Top ZDD performs recursive operations
with a maximum O(log n) depth O(log n) times, but the actual number of times it is called
depends on each entity.

6. Concluding Remarks

We have proposed top ZDD to compress a ZDD by regarding it as a DAG. We compress
a spanning tree of a ZDD by the top DAG compression and compress other edges by sharing
them as much as possible. We showed that the size of a top ZDD can be logarithmic of
that of the standard ZDD. We also showed that navigational operations on a top ZDD are
done in time polylogarithmic to the size of the original ZDD. Experimental results show
that the top ZDD always uses less space than the standard ZDD, and uses less space than
the DenseZDD for most of the data. In previous work on decision diagrams, it was not
possible to share and compress substructures of different heights even if they were similar.
In addition, the existing methods for top trees could not handle DAGs. In trees, it is easy to
number nodes linearly and to divide the whole tree, but this is not the case in DAGs. These
are the main reasons for the novelty of this research.

Future work will be as follows. First, in the current construction algorithm, we create
a spanning tree of ZDD by a depth-first search, but this may not produce the smallest top
ZDD. For example, if we choose all 0-edges, we obtain a spanning tree whose root is the
terminal >, and this might be better. Second, in this paper, we considered only traversal
operations and did not give advanced operations such as choosing the best solution among
all feasible solutions based on an objective function. Third, we will apply our method
to other methods that use ZDDs. It would be useful to compare the performance of Top
ZDD and DenseZDD in a real case study to deepen our knowledge. For example, we can
make the ZDDs smaller that represents Fault Trees for reliability assessment of systems [23].
Lastly, we considered only compressing ZDDs, but our compression algorithm can be used
for compressing any DAG. We will find applications of our compression scheme.
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