
algorithms

Article

Efficient and Scalable Initialization of Partitioned Coupled
Simulations with preCICE

Amin Totounferoush 1,*, Frédéric Simonis 2, Benjamin Uekermann 1 and Miriam Schulte 1

����������
�������

Citation: Totounferoush, A.; Simonis,

F.; Uekermann, B.; Schulte, M.

Efficient and Scalable Initialization of

Partitioned Coupled Simulations with

preCICE. Algorithms 2021, 14, 166.

https://doi.org/10.3390/a14060166

Academic Editor: Julian Kunkel

Received: 30 April 2021

Accepted: 25 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute for Parallel and Distributed Systems (IPVS), University of Stuttgart, 70569 Stuttgart, Germany;
benjamin.uekermann@ipvs.uni-stuttgart.de (B.U.); miriam.schulte@ipvs.uni-stuttgart.de (M.S.)

2 Scientific Computing in Computer Science, Technical University of Munich (TUM), 85748 Garching, Germany;
simonis@in.tum.de

* Correspondence: amin.totounferoush@ipvs.uni-stuttgart.de

Abstract: preCICE is an open-source library, that provides comprehensive functionality to couple
independent parallelized solver codes to establish a partitioned multi-physics multi-code simulation
environment. For data communication between the respective executables at runtime, it implements
a peer-to-peer concept, which renders the computational cost of the coupling per time step negligible
compared to the typical run time of the coupled codes. To initialize the peer-to-peer coupling,
the mesh partitions of the respective solvers need to be compared to determine the point-to-point
communication channels between the processes of both codes. This initialization effort can become a
limiting factor, if we either reach memory limits or if we have to re-initialize communication relations
in every time step. In this contribution, we remove two remaining bottlenecks: (i) We base the
neighborhood search between mesh entities of two solvers on a tree data structure to avoid quadratic
complexity, and (ii) we replace the sequential gather-scatter comparison of both mesh partitions by
a two-level approach that first compares bounding boxes around mesh partitions in a sequential
manner, subsequently establishes pairwise communication between processes of the two solvers,
and finally compares mesh partitions between connected processes in parallel. We show, that the
two-level initialization method is fives times faster than the old one-level scheme on 24,567 CPU-cores
using a mesh with 628,898 vertices. In addition, the two-level scheme is able to handle much larger
computational meshes, since the central mesh communication of the one-level scheme is replaced
with a fully point-to-point mesh communication scheme.

Keywords: parallel programming; high performance computing; multi-physics simulation

1. Introduction

Numerical methods to solve multi-physics problems can be generally categorized
into two groups, monolithic and partitioned. In a monolithic approach, all governing
equations from different domains are discretized and solved as a single large system. On the
other hand, in a partitioned approach, the problem is divided into different sub-domains
according to the occurring physics. As a result, this method employs separate solvers for
various sub-problems and adopts a coupling technique to account for the interaction of the
domains. Partitioned approaches provide the opportunity to use the most adapted and
well-validated numerical methods and software for each sub-problem, which reduces the
software development effort. However, this approach requires the coupling between the
separate solvers. preCICE is a library designed for black-box coupling of several simulation
codes. It allows to establish multi-physics multi-code simulation environments. Typical use
cases of preCICE encompass fluid-structure interaction in aerodynamics [1] or blood flow
simulations [2,3], interactions between free flow and flow in porous media in geoscience
and environmental engineering [4], or hybrid turbulence models [5]. To realize the coupling,
preCICE offers all necessary ingredients, in particular communication between parallel
simulation codes [6], data mapping between non-matching discretizations [7], and iterative

Algorithms 2021, 14, 166. https://doi.org/10.3390/a14060166 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1314-9969
https://www.mdpi.com/article/10.3390/a14060166?type=check_update&version=1
https://doi.org/10.3390/a14060166
https://doi.org/10.3390/a14060166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14060166
https://www.mdpi.com/journal/algorithms

Algorithms 2021, 14, 166 2 of 17

implicit coupling along with convergence acceleration techniques such as under-relaxation
and advance quasi-Newton methods (e.g., [8–10]). preCICE particularly targets multi-
physics simulations on high performance computers. Such parallel simulations allow for
mirroring the model accuracy of sophisticated multi-physics models in corresponding
high resolution of the numerical schemes. To be able to exploit large high performance
computing systems, these simulations are usually parallelized for distributed memory
systems by use of MPI (Message Passing Interface (https://www.mpi-forum.org/)) and
partitioning of the whole simulation domain into sub-domains (partitions). In this paper, we
present latest performance and scalability improvements of the coupling library preCICE.

To couple MPI-parallel codes, preCICE uses a pure peer-to-peer concept avoiding any
server-like central entity. Coupling numerics (such as radial-basis function interpolation or
quasi-Newton acceleration) are computed directly within the library on the processes of
the coupled codes [6]. Coupling data are exchanged in a point-to-point manner between
coupled codes. This makes the computational cost of the actual coupling per time step
negligible compared to the typical run time of the coupled codes themselves, even for very
large cases on ten thousands of processes [11]. So far, the performance of the initialization
of the coupling was considered non-critical. The implementation used by Uekermann [11]
still had multiple potential bottlenecks including sequential gather-scatter algorithms.
For many coupled simulations, this is justifiable, since a very high number of time steps
is required after a single initialization. However, the initialization can become a limiting
factor, if we either reach memory limits in gather-scatter algorithms, or if we have to
re-initialize communication relations due to dynamic changes in mutual data dependencies
between coupled codes.

Lindner [12,13] already removed several initialization bottlenecks concerning the
creation of communication channels, on the one hand, and neighborhood search between
mesh partitions of two solvers, on the other hand. We briefly summarize both efforts in
this and the following paragraph. preCICE offers two communication backends to realize
communication between two codes: MPI and Transmission Control Protocol (TCP)/IP. In
general, the coupled parallel use MPI for their internal communication. If MPI is chosen
as communication backend, we create inter-communicators through MPI ports to connect
the coupled codes. Previously, we had used one communicator for each interacting pair
of processes. Lindner replaced this concept by only using a single communicator per
coupling. This drastically reduced the cost for creation of communication channels and
also improved efficiency of the actual data communication on some high-performance
computing architectures. To establish TCP/IP-based connections, each pair of connected
processes needs to exchange a connection token via the file system. Storing all tokens in a
single directory can exert a heavy load on the file system. To reduce the load on the file
system, Lindner introduced a hash-based scheme, which distributes the connection files
among different directories in an optimal way reducing the file system load significantly.

Besides for establishing communication channels between processes of separate par-
allel solvers, mesh partitions of the two solvers have to be compared to determine exact
data dependencies between mesh entities for data mapping between the two non-matching
meshes. For data mapping, preCICE offers three methods: nearest-neighbor mapping,
nearest-projection mapping, and radial basis function (RBF) interpolation. For all three
methods, a neighborhood search of mesh vertices is required during initialization. Using a
tree-based approach, Lindner reduced this cost in case of the nearest-neighbor mapping
from O(n2) to O(n log(n)), assuming the coupling meshes of two coupled codes both have
n vertices. Similarly, he was able to speed-up the initialization of the RBF interpolation
system matrix.

In this contribution, we tackle two remaining initialization bottlenecks, which still
hinder very large coupled simulations. Firstly (Section 3), we extend the tree-based ap-
proach neighbor search between mesh partitions to the more complex nearest-projection
data mapping, where not only data points, but also edges and triangles interact. Secondly
(Section 2), we remove gather-scatter components of the initialization. To briefly introduce

https://www.mpi-forum.org/

Algorithms 2021, 14, 166 3 of 17

the latter, let us consider the coupling of two codes A and B. To determine, which processes
of A need communication channels to which processes of B, the partitions of the coupling
meshes of both codes need to be compared during initialization. To this end, preCICE
previously first gathered the whole coupling mesh of B at a single master process of B.
Then, the mesh was sent from the master process of B to the master process of A and was
broadcast afterwards to all processes of A. As a last step, each process of A reduced the
received mesh of B to its required partition. For this last step, the partitioning of mesh
A as well as the defined data mapping between A and B was used. We now replace this
one-level gather-scatter approach by a two-level scheme. On the first level, we only use
bounding boxes around mesh partitions in a gather-scatter manner to determine prelim-
inary communication channels. On the second level, we then communicate full mesh
data point-to-point and reduce the communication channels to their final set. We then can
combine all ingredients, the improvements of Lindner and the contributions of this work,
to a very efficient and scalable initialization (Section 4).

Similar coupling software as preCICE exist with different strategies to initialize commu-
nication and data mapping. We briefly compare these strategies to ours. The commercial tool
MpCCI [14] initializes the coupling on a centralized coupling server [15], which degrades
the scalability of the initialization [11]. DTK [16] creates a third rendezvous decomposition
on additional coupling processors to correlate two independently decomposed meshes.
To this end, a recursive coordinate bi-sectioning algorithm is used, which can completely
operate on distributed mesh structures [17]. OpenPALM [18] follows a similar bounding-
box approach for comparing mesh partitions as the one we propose in this contribution.
Afterwards, octree-based data structures are used to accelerate the search process within
each mesh partition. MUI [19] does not create mesh structures at initialization, but computes
on-the-fly data mapping in every coupling step. This allows for the coupling of dynamically
changing meshes and particle codes. To avoid all-to-all communication, each process can
optionally define additional regions of interest, which are compared during initialization
similar to our bounding-box comparison. Finally, CUPyDO [20] follows a similar approach
as preCICE previously used [11]: mesh partitions are gathered and scattered by a single
process during initialization.

2. Two-Level Initialization

In order to effectively address the scalability and memory issues of communication ini-
tialization in preCICE, explained in Section 1, we introduce a two-level approach. The new
scheme is implemented in the preCICE library and is available starting from preCICE
v2.0. The goal of the initialization phase is to identify required communication channels
together with the respective data to be sent and received between the parallel processes of
coupled solvers. The new scheme breaks down this process into two levels. The first level
identifies and establishes potentially required communication channels, while the second
level specifies the actual list of data to be exchanged.

In the first level, each process located at the common interface computes a bounding
box around its coupling mesh partition, see Figure 1. The bounding box is defined by the
range of x-, y-, and z-coordinates of the respective mesh partition. The master process of one
solver (Solver B in the example in Figure 1) gathers the bounding boxes of all processes with
a non-empty coupling region (coupling processes). This corresponds to step I in Figure 1.
The set of bounding boxes is communicated to the other solver via master-to-master
communication and then broadcast to all coupling processes of the receiving solver (step II
and III in Figure 1). Each process of the receiving solver (Solver A) compares its bounding
box to the received set of boxes to identify relevant partner processes with mesh partitions
that potentially interact with the own coupling mesh partition in the given data mapping
(step IV). This step provides the required information regarding the list of connected
processes to establish communication channels. Note, that not all pairs of processes on this
list actually exchange data, but the list is already much shorter than the total number of
possible pairs. preCICE uses this information to establish the communication channels.

Algorithms 2021, 14, 166 4 of 17

preCICE offers two options for communication channels: (i) based on MPI via MPI ports or
(ii) using lower level TCP/IP sockets. For MPI-based communication, preCICE generates a
single extra MPI communicator including all coupling processes of both solvers. For the
TCP/IP-based communication, preCICE employs a hash-based directory and file naming
scheme to store the connection tokens in an optimal distributed way. This approach reduces
the load on the file system substantially. More details on creating communication channels
in preCICE can be found in [12].

The presented approach eliminates the gathering of the complete coupling mesh data
at the master process and the subsequent scattering at the partner solver. Thus, we remove
the memory issue of our previous approach (see Section 1) and can run highly parallel
high resolution simulations even if the whole coupling mesh does not fit into the memory
assigned to a single process. For storing and communicating bounding boxes, preCICE
uses a C++ std::map data structure, which maps the process id to its bounding box. This
facilitates the bounding box set communication and filtering in the receiving partition.

Received
Bounding Box Set

Filtered Bounding
Box Set

A B

I

II

IIIV

I- Gather Bounding Box (BB)
II- Communicate BB set via masters
III- Broadcast BB set
IV- Filter BB set
V- feedback

IV

Figure 1. Two-level initialization scheme: the first level exchanges bounding boxes and establishes
the communication channels between partner processes. The master processes of B gathers the
bounding boxes from other processes (I) and sends them to the master process of solver A (II).
The master process of solver A broadcasts the received bounding boxes to all other processes of solver
A (III). Each process of A compares the received set of bounding boxes to its own bounding box to
find the partner processes in solver B (IV). The complete set of sent bounding boxes is drawn in black,
while the green boxes represent the subset relevant for the respective process of solver A. The filtered
set of bounding boxes is communicated to the processes of solver B via master communication,
such that not only the processes of solver A, but also the processes of solver B know their potential
communication partners (V).

In the second level, using the point-to-point communication channels established
in the first level, partner processes exchange their mesh partitions (step I in Figure 2).
The processes of the receiving solver A compare their mesh partition to the received
partitions to filter and identify the list of data that must be communicated during run
time (step II in Figure 2). The mesh filter has to be done considering the configured data
mapping scheme. The filtering process is explained in detail in Section 3. The direct mesh

Algorithms 2021, 14, 166 5 of 17

communication between partner processes improves the scalability of the initialization
scheme since both the exchange and the filtering are executed in parallel.

Figure 2. Two-level initialization scheme: the second level exchanges mesh partitions between partner
processes to identify the exact list of data that have to be communicated during the simulation. Each
process of solver B directly communicates its mesh partition to the relevant partner processes of
solver A (I), that have been identified in level one. Each process of solver A compares its own mesh
partition to the received mesh partitions and identifies, which data must be communicated during
run time (II). The complete received mesh partitions are drawn in black while, the parts that actually
have to be communicated in green.

3. R-Tree-Based Mesh Filtering

For the mesh filtering step (step II in Figure 2), we need to determine, which parts
of the received mesh partitions are required to carry out the data mapping between both
meshes, the own mesh of the receiving solver and the received mesh. preCICE supports
three data mapping methods: nearest-neighbour mapping, nearest-projection mapping,
and radial-basis-function interpolation. Moreover, all data mapping methods come in
two flavors: consistent and conservative [21]. The required flavor depends on the type of
data: Normalized quantities such as temperatures, displacements, velocities, or stresses
require a consistent data mapping, while cumulative quantities such as mass or forces
require a conservative data mapping. preCICE only supports consistent data mapping
from the received mesh to the own mesh and conservative data mapping from the own
mesh to the received mesh. If consistent (or conservative) data mapping is required in both
directions, both meshes need to be communicated and repartitioned during initialization.
To prepare the data mapping, we need to ’filter’ the received mesh partitions, i.e., we need
to carry out a neighbor search from all data points of the own mesh partition (mesh A in
Figure 2), called origin mesh in the filtering process, and data points of the received mesh
partition (mesh B in Figure 2, called search mesh in the filtering process). If we assume
that both mesh partitions have n data points, a naive implementation of this neighbor
search requires O(n2) comparisons. Each of these comparisons can involve computing
a simple Euclidean distance between vertices (for nearest-neighbor mapping), but also a

Algorithms 2021, 14, 166 6 of 17

more complex vertex-triangle projection followed by a barycentric interpolation within the
triangle (for nearest-projection mapping). Figure 3 shows 2D examples for both mappings.

MS vS
1 vS

2 vS
3

MO vO
1 vO

2 vO
3 vO

4

MS vS
1 vS

2 vS
3

MO vO
1 vO

2 vO
3 vO

4

Figure 3. Comparison of the nearest-neighbour mapping (top) and the nearest-projection mapping
(bottom). Both mappings are consistent and map from the search mesh MS to the origin mesh MO.
The nearest-projection mapping prevents extrapolation by mapping to the closest vertex for vO

1 and vO
4 .

The vertices vO
2 and vO

3 are projected onto the edges (vS
1 , vS

2) and (vS
2 , vS

3), resulting in interpolation.

In the following, we present recent improvements of spatial lookups, i.e., the identifi-
cation of relevant neighbors for a single data point of the origin mesh in the search mesh
for the projection-based mappings (nearest neighbor and nearest projection), which is an
extension of the work presented in [12]. After introducing the used data-structure and
necessary nomenclature, we briefly explain the nearest-neighbor mapping followed by the
fundamentals and implementation of the nearest-projection mapping.

To accelerate spatial lookups, we use the rtree data-structure from Boost.geometry [22]
with the R*-tree insertion strategy, which stores spatial data in a hierarchical data-structure.
The approach for inserting data points into the tree according to the R*-tree insertion
strategy aims at minimizing the area, margin, and overlap of tree nodes which leads to a
good average query performance (compared to linear and quadratic R-trees) at a higher
construction cost [23]. The insertion strategy can be parameterized with the maximum
and minimum amount of elements per tree node, where we use the default values of
Boost.geometry (16 and 0.31̇6) similarly to [12]. The R*-tree and the R-tree have the same
complexities: an insertion complexity of O(log n) and a query complexity of O(log n) for n
spatially distributed data points [24]. As, in general, meshes are immutable in preCICE, we
choose the R*-tree as the higher construction cost pays off in terms of improved lookup per-
formance. The Boost.geometry data structure provides k-nearest-neighbor queries, which
the nearest-neighbor mapping and the nearest-projection mapping require, in O(k log(n)).
The data structure also allows for bounding box queries, which the radial-basis-function
mapping requires, in O(log(n)).

Let the dimension d be 2 or 3. The search mesh has a vertex set VS = {vS
i ∈ Rd;

i = 1, 2, . . . , nS
v} and a mesh connectivity information given by an edge set ES with

size nS
e = |ES| and a triangle set TS with size nS

t = |TS| for d = 3. We further use
nS := nS

v + nS
e + nS

t . The origin mesh has a vertex set VO = {vO
i ∈ Rd; i = 1, 2, . . . , nO

v }.
Nearest-neighbor mapping and radial-basis-function mapping operate on vertices only.
Thus, it is beneficial to store each set of primitives of the search mesh (VS, ES, TS) in a
separate index tree to avoid overhead.

A nearest-neighbor data mapping searches for the nearest vertex in VS for each vertex
of VO. This requires to insert all vertices of VS into the R-tree resulting in a complexity of
O(nS

v log(nS
v)). Afterwards, we query for the nearest-neighbor of each vertex of VO at a

total cost of O(nO
v log(nS

v)).
A nearest-projection data mapping searches for the nearest primitive (vertex, edge,

or triangle) of VS for each vertex of VO. We use a cascading scheme: For d = 3 (see
Figure 4), the mapping attempts to first find an orthogonal projection onto a triangle, if this

Algorithms 2021, 14, 166 7 of 17

fails, it tries to compute an orthogonal projection onto an edge, and finally, if this also fails,
selects the closest vertex. For d = 2, the above method starts at projecting onto an edge.

For a more precise description, let us categorize primitives by their degree: 1, 2, 3 for
vertices, edges, and triangles, respectively. Then, a nearest projection of degree 1 of a vertex
vS is simply a nearest-neighbor search. More interestingly, to find the nearest projection of
degree m = 2 or m = 3 of vS,

1. we fetch the k nearest primitives of degree m of vertex vS,
2. we sort them by ascending distance to vS,
3. we process the list of primitives and calculate interpolation weights w1, . . . , wm for

data interpolation from the primitive’s vertices to the projection point on the respec-
tive plain or line,
we terminate and return the current primitive, if all weights are positive
wi ≥ 0 ∀i = 1, . . . , m,

4. we return the nearest projection of degree m− 1 of vertex u if no valid projection of
degree m could be found.

AB

BCAC

A B

C

ABC

2

22

3 3

3

1

Figure 4. Spatial lookup for nearest-projection mapping: The selection zones of the cascading algorithm
used by the nearest-projection onto a single triangle ABC. If the location of the orthogonal projection
of the original data point is outside of ABC, the projection onto edges are considered before finally
projecting onto vertices. The image on the right describes the order in which the zones are considered.

This cascading scheme requires to probe all primitives and, thus, to index the complete
search mesh in an R-tree. This is of total complexity

O(nS
v log nS

v + nS
e log nS

e + nS
t log nS

t) . (1)

In the best case, the cascading algorithm will only probe primitives with the highest
dimension. Therefore, only the R-tree index for said primitives is required for the mapping.
As we only generate the R-tree structure for lower dimensional primitives if required,
the best case total cost is

O(n log n︸ ︷︷ ︸
insertion

+ nO
v · k log n︸ ︷︷ ︸

query

), n =

{
nS

e , d = 2
nS

t , d = 3
. (2)

4. Performance Results

We present a test case, where we can evaluate the two new features in preCICE—
the two-level initialization and the improved nearest-projection mapping—in an isolated
setting, where we use realistic coupling meshes, but two dummy solvers.

4.1. Test Case Description

We perform two comparisons: Firstly, we compare the old one-level with the new
two-level initialization schemes of preCICE described in Section 2. Secondly, we compare
the naive version of the nearest-projection mapping with the improved version described in
Section 3. To achieve this, we use the outdated version 1.5.2 of preCICE with the current
version 2.2.0. Both were extended with additional time measuring commands and are
available on the public preCICE git repository (https://github.com/precice/precice/tree/
performance-paper).

https://github.com/precice/precice/tree/performance-paper
https://github.com/precice/precice/tree/performance-paper

Algorithms 2021, 14, 166 8 of 17

The used coupling meshes are surface meshes of a turbine blade geometry (Wind
Turbine Blade created by Ivan Zerpa, 7 February 2012, https://grabcad.com/library/wind-
turbine-blade--4) shown in Figure 5. The geometry was triangularized using GMSH [25]
fixing the edge-length to achieve an almost uniform element size and shape.

Figure 5. Different perspectives on the turbine-blade test geometry.

As dummy solvers, we use the Abstract Solver Testing Environment (ASTE) (https:
//github.com/precice/aste/tree/mapping-tests), a framework, which allows to imitate
a parallel solver coupled via preCICE. Each rank reads mesh data from given files and
hands it over to preCICE by calling the preCICE Application Programming Interface (API).
This allows to inspect various performance characteristics of preCICE without the cost of
using a real solver. For data mapping in preCICE, we use the nearest-projection method as
introduced in Section 3.

The test case setup involves two ASTE participants B and A. Participant B reads its
mesh and provides both the mesh structure and physical data to preCICE. Participant A
reads its mesh and provides the mesh structure to preCICE. A then receives both mesh and
data from participant B, uses the configured consistent mapping to map the received data
to the local mesh and finally writes the resulting vertex data to a file. See Figure 6 for an
overview of this process.

B i
n

A
ST

E

B MB M′B

MA A

A
ST

E

A
in

A
ou

t

w
ri

te

mapping

re
ad

/w
ri

te

preCICE preCICE

Figure 6. Test configuration using ASTE. Participant B on the left reads the mesh structure and
physical data from a file Bin. Participant A on the right reads the mesh structure from the file Ain. B
and A initialize communication, then data are transferred from MB to M′B, mapped to MA using a
nearest-projection mapping and finally written to a file Aout.

4.2. Hardware Description

All measurements are carried out on the SuperMUC-NG supercomputer at the Leibniz
Supercomputing Centre of the Bavarian Academy of Science and Humanities (LRZ). This
machine consists of 3.1 GHz Intel Xeon Platinum 8174 (SkyLake) processors. Each node
contains two processors with 24 cores per processor (48 cores per node) and 96 GB of RAM.
The nodes are connected via Intel Omni-Path interconnect.

4.3. Performance Analysis

To show the complexity and scalability improvements in the new preCICE version,
we conduct a numerical strong and weak scaling study. For inter-code data exchange, we
use TCP/IP sockets communication. In addition, both the overall initialization times and
breakdown values are reported in per core average. For all experiments, we avoided syn-

https://grabcad.com/library/wind-turbine-blade--4
https://grabcad.com/library/wind-turbine-blade--4
https://github.com/precice/aste/tree/mapping-tests
https://github.com/precice/aste/tree/mapping-tests

Algorithms 2021, 14, 166 9 of 17

chronization to minimize the cores waiting time and thus the initialization time. This, even
though, optimizes the overall initialization time, may slightly reduce the communication-
related events breakdown accuracy due to events’ time overlaying.

4.3.1. Strong Scaling

The strong scalability of the developed initialization scheme is evaluated using various
computational meshes, which are given in Table 1. To compare the overall performance
of the newly developed two-level initialization and the old one-level scheme, we present
scalability measurements using mesh M4 (with mesh width 0.005 and 628,898 vertices) as
this is the largest mesh that can be handled by both the old and the new version of preCICE.
The new two-level initialization scheme would be applicable for much larger meshes as the
memory bottleneck induced by sending the complete coupling meshes from A to be via
master communication has been eliminated. Accordingly, we also present strong scalability
measurements with finer meshes only for the two-level scheme later in this section.

Figure 7 compares the initialization times of both versions using mesh M4. The number
of CPU cores indicates the total number of processes, i.e., MPI ranks for both domains
together. The available cores are divided between the domains with a ratio 1:3, which
ensures, that we do not get matching partitions between both solvers.

Table 1. Strong scalability measurements: Meshes for the wind turbine blade at varying mesh resolutions
(mesh width). The mesh width indicates the average edge length used to construct the surface mesh.

Mesh ID Mesh Width Number of Vertices Number of Triangles

M4 0.0005 628,898 1,257,391
M5 0.0004 1,660,616 3,321,140
M6 0.0003 2,962,176 5,924,260

768 1536 3072 6144 12,288 24,576
Total number of CPU-cores

0

200

400

600

800

1000

1200

1400

1600

In
iti

al
iza

tio
n

tim
e

[s
]

Two-level (new) scheme
One-level (old) scheme

Figure 7. Strong scalability measurements: Total initialization time comparison between the two-
level approach and the previously used one-level scheme. A mesh with mesh width 0.005 and
628,898 vertices (Table 1, M4) is used for conducting the analysis.

The comparison shows, that the new scheme can significantly reduce the initialization
time. The improvements are particularly large for large numbers of CPU-cores. The initial-
ization time for 24,576 CPU-cores is less than 6 min for the two-level scheme, while the old
scheme requires approximately 5 times more time. All CPU-cores exploited for this experiment

Algorithms 2021, 14, 166 10 of 17

are located at the common interface. In a real surface-coupled simulation, the interface ranks
are only a small fraction of the total ranks. Therefore, the introduced scheme is expected to be
very efficient even when a simulation exploits the whole machine capacity (several hundred
thousands of CPU-cores).

To further analyze the improvement of the preCICE initialization by introducing the
new schemes and to explain the runtime evolution for an increasing number of cores, we
compare two of the main sub-components of the initialization: Figure 8 compares the
mapping computation time (left) and the boundary mesh communication time (right).
In the mesh communication phase, coupling solvers exchange their interface mesh par-
titions (Figure 2, level I). The received mesh partition is filtered and the interpolation is
computed in the mapping computation as explained in Section 3 and depicted in Figure 2,
level II. Note, that the initialization includes other sub-components, that are not compared,
since they are either not executed in both schemes or their contribution is not significant.
For instance, the hash-based directory and file naming scheme, explained in Section 2, has
significantly reduced the time to establish the communication channels between partner
ranks, such that this part of the runtime is now small and not further considered here.

768 1536 3072 6144 12,288 24,576
Total number of CPU-cores

0

100

200

300

Co
m

pu
te

 ti
m

e
[s

]

Two-level (new) scheme
One-level (old) scheme

768 1536 3072 6144 12,288 24,576
Total number of CPU-cores

0

100

200

300

400

500

Co
m

m
un

ica
tio

n
tim

e
[s

] Two-level (new) scheme
One-level (old) scheme

Figure 8. Strong scalability measurements: Comparison of run times for mapping computation (left)
and mesh communication (right) between between the two-level and the one-level scheme. The mesh
M4 is used for conducting the analysis.

The comparison indicates, that the new scheme has significantly reduced the required
time for both. For the mesh communication time, we observe the expected effect of using
point-to-point communication in the new scheme instead of master communication in the
old scheme: the runtime changes from strongly increasing to almost constant. Figure 8
(left) also clearly showcases the expected strong reduction of runtime in the mapping
computation due to the decreasing size of the own mesh partition that each process
compares to the partner solver mesh. Figure 8 (right) shows a strong increase of the runtime
with increasing number of cores in the one-level scheme for the mesh communication. This
can be attributed to partly sequential (in a loop over all processes) feedback collection in
the master rank after mesh comparison in all processes and global calculations of vertex
interactions between all involved processes in the master process.

In the following, we now focus on further analyzing the runtime and scalability of
the new two-level approach in a further breakdown study for both mapping computation
(breakdown in Figure 9) and bounding box and mesh communication.

The breakdown of the complete initialization time is given in Figure 10.
The figure shows, that the bounding box comparison and feedback (Figure 1, level II

and III) constitute the majority of the runtime for the new two-level initialization, in particu-
lar for core counts larger than 1536. The time spent for bounding box comparison increases
with the number of processes, which is obvious, as, for a higher number of processes in
the partner solver, each process needs to compare its bounding box with more partner
processes. Currently, this operation is O(p2) in the number p of processes in total and O(p)
per process. In addition, the time spent for feedback, which consists of gathering feedback

Algorithms 2021, 14, 166 11 of 17

from processes in the master rank and communicating this to the other solver also increases
with the number of processes. This is expected, as the higher number of processes implies
an increase in the number of communications in the gather operation.

768 1536 3072 6144 12,288 24,576
Total number of CPU-cores

10 1

100

101

102

Co
m

pu
te

 m
ap

pi
ng

 ti
m

e
br

ea
kd

ow
n

[m
s]

Timing resolution
Total compute mapping time
Triangles indexing time
Edges indexing time
Query time

Figure 9. Strong scalability measurements: Breakdown of the mapping computation time of the
two-level approach. The mesh M4 is used for conducting the analysis.

768 1536 3072 6144 12,288 24,576
Total number of CPU-cores

100

101

102

103

104

105

106

107

In
iti

al
iza

tio
n

tim
e

br
ea

kd
ow

n
[m

s]

Total initialization time
Bounding box comparison and feedback
Mesh communication
Bounding box communication
Compute nearest projection mapping

Figure 10. Strong scalability measurements: Initialization time breakdown for the two-level initial-
ization approach using mesh M4. Only parts significantly contributing to the runtime are depicted:
1—Bounding box comparison and feedback (Figure 1 levels IV and V). 2—Mesh communication
(Figure 2 levels II). 3—Bounding box communication (Figure 1 levels II and III). 4—Compute nearest
projection mapping (Figure 2 level II).

Figure 10 also shows, that the time required for mesh exchange decreases with increas-
ing number of cores at the beginning and increases for more than 1536 cores. The decrease
can be due to the smaller mesh partitions, that are communicated, while the later increase

Algorithms 2021, 14, 166 12 of 17

might be because of the higher communication overhead due to an unfavorable distribution
of the communication partners on the machine. However, this communication takes only
about 1 s and its contribution to the total initialization time is very small.

The time to exchange bounding boxes also increases with increasing number of cores.
This is expected, since, for higher core counts, more bounding boxes are gathered in the
master rank, communicated via the master ranks and broadcast to the slave ranks of the
other solver (Figure 1, levels I to III). This operation is inevitable in the current approach.
However, its contribution is very small. Finally, the runtime for the mapping computa-
tion decreases with increasing number of cores. This corresponds to our expectations,
since a higher number of cores results in smaller mesh partitions, which makes the mesh
comparison per pair of mesh partitions cheaper.

A further breakdown of the mapping computation time for nearest projection is shown
in Figure 9. Note, that the timings for 12,288 and 24,576 cores are close to the timing resolution
and hence difficult to interpret; they were included for completeness. We observe that the
indexing, i.e., the neighbor search for triangles as required in the nearest projection mapping,
is more expensive than the indexing of edges. This is due to the fact that triangles are
more expensive to efficiently index. Furthermore, the lazy indexing strategy prevented the
unnecessary indexing of the vertices.

Note, that the current test setup performs a vertex-based partitioning of input meshes,
which discards edges and triangles connecting partitions. The amount of triangles and
edges discarded grows proportionally to the number of partitions. See Table 2 for a detailed
presentation of this effect.

Table 2. Number of triangles of mesh 4 and mesh M6 that are discarded due to the vertex-based
partitioning (in absolute and relative values). The original mesh M4 contains 1,257,391 triangles and
the original M6 mesh contains 5,924,260 triangles.

Cores M4 M6

Total B A Lost Triangles Rel [%] Lost Triangles Rel [%]

768 192 576 44,244 3.52 90,195 1.52
1536 384 1152 62,003 4.93 154,358 2.61
3072 768 2304 86,085 6.85 246,937 4.17
6144 1536 4608 118,313 9.41 376,108 6.35

12,288 3072 9216 165,085 13.13 552,797 9.33
24,576 6144 18,432 230,556 18.34 797,042 13.45

For the further analysis of the performance of the two-level scheme, we present the
initialization time breakdown in Figure 11 for the case that coupling solvers use non-
matching meshes. For this experiment, we use mesh M5 for solver A and M6 for solver B.

Figure 11 shows, that, even for a finer mesh, the bounding box comparison and feedback
are still the most expensive components. The time spent for bounding box communication
also increases with increasing number of cores. The cost for these two components is similar
to the case with mesh M4 (Figure 10), since the bounding box related cost depends solely
on the number of bounding boxes. In addition, we observe a gradual increase in the mesh
communication time, which is probably due to a larger communication overhead for the cases
with higher core number and, thus, an increasing overall number of messages. The mesh
communication time is higher than for the case with mesh M4, which is due to the larger
mesh. The most interesting component in this figure is the mapping computation. Even
though we use a much finer mesh in this experiment than in Figure 10), the computation
time is significantly smaller.

For a detailed analysis of the mapping computation time, we present the breakdown
for this case as well in Figure 12. The figure shows the expected scaling for the overall
compute time as well as the individual indexing as all parts are of complexity O(n log(n))
if n is the respective number of mesh entities in each mesh partition. The lazy evaluation is
beneficial for the smallest number of cores and, thus, the largest partitions, as it prevents

Algorithms 2021, 14, 166 13 of 17

the generation of the vertex index. Higher numbers of cores, in particular 6144 and 12,288,
result in partitions, which are small enough for the indexing time to reach the measurement
resolution of 1 ms. However, the decreasing query time still indicates the expected behavior
due to smaller partitions. Larger meshes and a potentially smaller measurement resolution
are required for a conclusive analysis of the upper extreme of the scale.

768 1536 3072 6144 12,288
Total number of CPU-cores

10 1

100

101

102

103

104

105

106

107

In
iti

al
iza

tio
n

tim
e

br
ea

kd
ow

n
[m

s]
Total initialization time
Bounding box comparison and feedback
Mesh communication
Bounding box communication
Compute nearest projection mapping

Figure 11. Strong scalability measurements: Initialization time breakdown for the two-level initializa-
tion approach using mesh M5 for solver A and mesh M6 for B. Only parts significantly contributing
to the runtime are depicted: 1—Bounding box comparison and feedback (Figure 1 levels IV and V).
2—Mesh communication (Figure 2 levels II). 3—Bounding box communication (Figure 1 levels II and
III). 4—Compute nearest projection mapping (Figure 2 level II).

768 1536 3072 6144 12,288
Total number of CPU-cores

100

101

102

103

Co
m

pu
te

 m
ap

pi
ng

 ti
m

e
br

ea
kd

ow
n

[m
s]

Total compute mapping time
Triangles indexing time
Edges indexing time
Vertex indexing time
Query time

Figure 12. Strong scalability measurements: Breakdown of the mapping computation time of the two-level
approach. The mapping projects vertices from mesh M5 onto connectivity information of mesh M6.

Algorithms 2021, 14, 166 14 of 17

4.3.2. Weak Scaling

To further analyze the performance of the new initialization scheme, including mem-
ory efficiency, we present weak scalability measurements in this section. Table 3 specifies
the distribution of compute cores among the solvers A and B for all used meshes. We
restrict the measurements for the old initialization scheme to meshes M1–M4, since we
run out of memory for larger cases as explained in the last section. Figure 13 compares the
initialization time of the new two-level approach and the old scheme for increasing mesh
sizes and increasing total number of cores.

Table 3. Weak scalability measurements: Meshes for the wind turbine blade at varying mesh
resolution (mesh width). The mesh width indicates the average edge length used to construct the
surface mesh. The total number of cores is approximately proportional to the number of mesh
vertices. The available CPU cores are distributed with a 1:3 ratio between the solvers.

Mesh Mesh #Vertices Cores #Vertices per Core

ID Width Total Total B A B A

M1 0.0025 25,722 104 26 78 989 330
M2 0.0010 165,009 720 192 528 859 312
M3 0.00075 330,139 1344 336 1008 982 328
M4 0.0005 628,898 2496 624 1872 1007 336
M5 0.0004 1,660,616 6144 1536 4608 1081 361
M6 0.0003 2,962,176 12,288 3072 9216 964 321

104 720 1344 2496 6144 12,288
Total number of CPU-cores

0

100

200

300

400

In
iti

al
iza

tio
n

tim
e

[s
]

Two-level (new) scheme
One-level (old) scheme

Figure 13. Weak scalability measurements: Total initialization time comparison between the two-level
and the one-level schemes. The core distribution and the mesh information are given in Table 3.

A good reduction in initialization time is observed when replacing the old method
with the new two-level scheme. Figure 13 shows, that the new scheme significantly reduces
the time for the two main components of the initialization stage: the computation of the
data mapping and the communication of the interface mesh. In addition, the new scheme
is capable of handling very large interface meshes, since it does not use any central mesh
communication instance. Even though the initialization time for the finest mesh M6 and
12,288 CPU cores is still in the range of a few minutes, we observe a steep increase for larger
meshes, which is due to the increase in mesh communication time as seen in Figure 14 (right).

Algorithms 2021, 14, 166 15 of 17

104 720
1344

2496
6144

12,288

Total number of CPU-cores

0

5

10

15

20

25

30

Co
m

pu
te

 ti
m

e
[s

]

Two-level (new) scheme
One-level (old) scheme

104 720
1344

2496
6144

12,288

Total number of CPU-cores

0

20

40

60

80

100

120

Co
m

m
un

ica
tio

n
tim

e
[s

] Two-level (new) scheme
One-level (old) scheme

Figure 14. Weak scalability measurements: Comparison of mapping computation (left) and mesh
communication (right) time between the two-level and the one-level scheme. The core distribution
and the mesh information are given in Table 3.

To analyze the reason of the mentioned performance drop, we present the initialization
breakdown for various mesh sizes and CPU cores in Figure 15. We observe, that the mesh
communication time increases considerably for meshes M5 and M6. The bounding box com-
munication and comparison cost only depends on the total number of cores, not on the mesh
resolution as can be seen in a comparison of Figures 10 and 15. For the mapping computation,
we observe an almost constant runtime, which is expected as a result of the constant mesh par-
tition size per core. The improvement of the two most costly parts—bounding box comparison
and mesh communication—is work in progress. For bounding box communication, this has
already been sketched in Section 4.3.1. For mesh communication, further analysis of potential
bottlenecks such as synchronization issues is required.

104 720 1344 2496 6144 12,288
Total number of CPU-cores

10 1

100

101

102

103

104

105

106

107

In
iti

al
iza

tio
n

tim
e

br
ea

kd
ow

n
[m

s]

Total initialization time
Bounding box comparison and feedback
Mesh communication
Bounding box communication
Compute nearest projection mapping

Figure 15. Weak scalability measurements: Initialization time breakdown for the two-level initializa-
tion scheme. Only algorithmic parts with significant contributions to the initialization runtime are
depicted: 1—Bounding box comparison and feedback (Figure 1 levels IV and V). 2—Mesh communi-
cation (Figure 2 levels II). 3—Bounding box communication (Figure 1 levels II and III). 4—Compute
nearest projection mapping (Figure 2 level II). The core distribution and the mesh information are
given in Table 3.

Algorithms 2021, 14, 166 16 of 17

5. Conclusions

We tackled two bottlenecks of the initialization of the coupling library preCICE. Firstly,
we replaced the previous gather-scatter mesh comparison by a parallel two-level scheme.
Secondly, we improved the mesh filtering of the nearest-projection data mapping from
previously O(n2) to now O(n log(n)).

To evaluate the proposed algorithms, we presented strong and weak scaling mea-
surements for an artificial turbine blade test case using various mesh resolutions. The per-
formance analysis showed, that we can achieve five times faster initialization with the
new implementations on 24,576 (interface) cores using a coupling interface mesh with
628,898 vertices. By avoiding the memory bottleneck of the old one-level (gather-scatter)
scheme, we were in addition able to handle much larger meshes. The largest surface
mesh we considered had nearly three million vertices, which, in a real simulation, could
correspond to a coupled setup running on a complete supercomputer (several hundred
thousands of cores). We were able to initialize this setup in less than six minutes.

Our analysis revealed, that the most expensive component of the new scheme is the
comparison of bounding boxes and the sending of connection feedback to the coupling
partner. Using more efficient data structures such as linked-cells to store the set of bounding
boxes could potentially further improve the initialization.

Author Contributions: Conceptualization, A.T., F.S., B.U. and M.S.; software, A.T., F.S. and B.U.;
validation, A.T. and F.S.; writing—original draft preparation, A.T., F.S. and B.U.; writing—review
and editing, B.U. and M.S.; visualization, A.T. and F.S.; supervision, B.U. and M.S.; project adminis-
tration, M.S.; funding acquisition, M.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy—EXC 2075—390740016, through the project pre-
DOM 391150578, International Graduate Research Group on “Soft Tissue Robotics” (GRK 2198/1) and
the Priority Program 1648—SPPEXA; the European Union’s Horizon 2020 research and innovation
program under the Marie Sklodowska-Curie grant agreement No. 754462; and the Competence
Network for Scientific High Performance Computing in Bavaria (KONWIHR).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available. Please refer to
the paper text for the resource repositories.

Acknowledgments: We acknowledge the support by the Stuttgart Center for Simulation Science
(SimTech). The performance measurements were carried out on SuperMUC-NG at Leibniz Rechen-
zentrum (LRZ).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cinquegrana, D.; Vitagliano, P.L. Validation of a new fluid—Structure interaction framework for non-linear instabilities of 3D

aerodynamic configurations. J. Fluids Struct. 2021, 103, 103264. [CrossRef]
2. Naseri, A.; Totounferoush, A.; González, I.; Mehl, M.; Pérez-Segarra, C.D. A scalable framework for the partitioned solution of

fluid–structure interaction problems. Comput. Mech. 2020, 66, 471–489. [CrossRef]
3. Totounferoush, A.; Naseri, A.; Chiva, J.; Oliva, A.; Mehl, M. A GPU Accelerated Framework for Partitioned Solution of Fluid-

Structure Interaction Problems. In Proceedings of the 14th WCCM-ECCOMAS Congress 2020, online, 11–15 January 2021;
Volume 700.

4. Jaust, A.; Weishaupt, K.; Mehl, M.; Flemisch, B. Partitioned coupling schemes for free-flow and porous-media applications with
sharp interfaces. In Finite Volumes for Complex Applications IX—Methods, Theoretical Aspects, Examples; Klöfkorn, R., Keilegavlen, E.,
Radu, F.A., Fuhrmann, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 605–613. [CrossRef]

5. Revell, A.; Afgan, I.; Ali, A.; Santasmasas, M.; Craft, T.; de Rosis, A.; Holgate, J.; Laurence, D.; Iyamabo, B.; Mole, A.; et al.
Coupled hybrid RANS-LES research at the university of manchester. ERCOFTAC Bull. 2020, 120, 67.

http://doi.org/10.1016/j.jfluidstructs.2021.103264
http://dx.doi.org/10.1007/s00466-020-01860-y
http://dx.doi.org/10.1007/978-3-030-43651-3_57

Algorithms 2021, 14, 166 17 of 17

6. Bungartz, H.J.; Lindner, F.; Mehl, M.; Scheufele, K.; Shukaev, A.; Uekermann, B. Partitioned fluid-structure-acoustics interaction
on distributed data—Coupling via preCICE. In Software for Exascale Computing—SPPEXA 2013–2015; Bungartz, H.J., Neumann, P.,
Nagel, E.W., Eds.; Springer: Cham, Switzerland, 2016. [CrossRef]

7. Lindner, F.; Mehl, M.; Uekermann, B. Radial basis function interpolation for black-box multi-physics simulations. In Proceed-
ings of the VII International Conference on Coupled Problems in Science and Engineering (CIMNE), Rhodes Island, Greece,
12–14 June 2017; pp. 50–61.

8. Mehl, M.; Uekermann, B.; Bijl, H.; Blom, D.; Gatzhammer, B.; Zuijlen, A. Parallel coupling numerics for partitioned fluid-structure
interaction simulations. Comput. Math. Appl. 2016, 71, 869–891. [CrossRef]

9. Scheufele, K.; Mehl, M. Robust multisecant Quasi-Newton variants for parallel Fluid-Structure simulations—And other multi-
physics applications. SIAM J. Sci. Comput. 2017, 39, S404–S433. [CrossRef]

10. Haelterman, R.; Bogaers, A.; Uekermann, B.; Scheufele, K.; Mehl, M. Improving the performance of the partitioned QN-ILS
procedure for fluid-structure interaction problems: Filtering. Comput. Struct. 2016, 171, 9–17. [CrossRef]

11. Uekermann, B. Partitioned Fluid-Structure Interaction on Massively Parallel Systems. Ph.D. Thesis, Department of Informatics,
Technical University of Munich, Munich, Germany, 2016. [CrossRef]

12. Lindner, F. Data Transfer in Partitioned Multi-Physics Simulations: Interpolation and Communication. Ph.D. Thesis, University
of Stuttgart, Stuttgart, Germany, 2019. [CrossRef]

13. Lindner, F.; Totounferoush, A.; Mehl, M.; Uekermann, B.; Pour, N.E.; Krupp, V.; Roller, S.; Reimann, T.; Sternel, D.C.;
Egawa, R.; et al. ExaFSA: Parallel Fluid-Structure-Acoustic Simulation. In Software for Exascale Computing—SPPEXA 2016–2019;
Springer: Cham, Switzerland, 2020; pp. 271–300. [CrossRef]

14. Wolf, K.; Bayrasy, P.; Brodbeck, C.; Kalmykov, I.; Oeckerath, A.; Wirth, N. MpCCI: Neutral interfaces for multiphysics simulations.
In Scientific Computing and Algorithms in Industrial Simulations; Springer: Cham, Switzerland, 2017; pp. 135–151. [CrossRef]

15. Joppich, W.; Kürschner, M. MpCCI—A tool for the simulation of coupled applications. Concurr. Comput. Pract. Exp. 2006,
18, 183–192. [CrossRef]

16. Slattery, S.; Wilson, P.; Pawlowski, R. The data transfer kit: A geometric rendezvous-based tool for multiphysics data transfer.
In Proceedings of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science &
Engineering (M&C 2013), Sun Valley, ID, USA, 5–9 May 2013; pp. 5–9.

17. Plimpton, S.J.; Hendrickson, B.; Stewart, J.R. A parallel rendezvous algorithm for interpolation between multiple grids. J. Parallel
Distrib. Comput. 2004, 64, 266–276. [CrossRef]

18. Duchaine, F.; Jauré, S.; Poitou, D.; Quémerais, E.; Staffelbach, G.; Morel, T.; Gicquel, L. Analysis of high performance conjugate
heat transfer with the openpalm coupler. Comput. Sci. Discov. 2015, 8, 015003. [CrossRef]

19. Tang, Y.H.; Kudo, S.; Bian, X.; Li, Z.; Karniadakis, G.E. Multiscale universal interface: A concurrent framework for coupling
heterogeneous solvers. J. Comput. Phys. 2015, 297, 13–31. [CrossRef]

20. Thomas, D.; Cerquaglia, M.L.; Boman, R.; Economon, T.D.; Alonso, J.J.; Dimitriadis, G.; Terrapon, V.E. CUPyDO-An integrated
Python environment for coupled fluid-structure simulations. Adv. Eng. Softw. 2019, 128, 69–85. [CrossRef]

21. de Boer, A.; van Zuijlen, A.; Bijl, H. Comparison of conservative and consistent approaches for the coupling of non-matching
meshes. Comput. Methods Appl. Mech. Eng. 2008, 197, 4284–4297. [CrossRef]

22. Boost. Boost Library. Available online: http://www.boost.org/ (accessed on 15 April 2021).
23. Beckmann, N.; Kriegel, H.P.; Schneider, R.; Seeger, B. The R*-tree: An efficient and robust access method for points and

rectangles. In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, USA,
23–25 May 1990; pp. 322–331. [CrossRef]

24. Guttman, A. R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, Boston, MA, USA, 18–21 June 1984; pp. 47–57. [CrossRef]

25. Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J.
Numer. Methods Eng. 2009, 79, 1309–1331. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-40528-5_11
http://dx.doi.org/10.1016/j.camwa.2015.12.025
http://dx.doi.org/10.1137/16M1082020
http://dx.doi.org/10.1016/j.compstruc.2016.04.001
http://dx.doi.org/10.14459/2016md1320661
http://dx.doi.org/10.18419/opus-10581
http://dx.doi.org/10.1007/978-3-030-47956-5_10
http://dx.doi.org/10.1007/978-3-319-62458-7_7
http://dx.doi.org/10.1002/cpe.913
http://dx.doi.org/10.1016/j.jpdc.2003.11.006
http://dx.doi.org/10.1088/1749-4699/8/1/015003
http://dx.doi.org/10.1016/j.jcp.2015.05.004
http://dx.doi.org/10.1016/j.advengsoft.2018.05.007
http://dx.doi.org/10.1016/j.cma.2008.05.001
http://www.boost.org/
http://dx.doi.org/10.1145/93597.98741
http://dx.doi.org/10.1145/602259.602266
http://dx.doi.org/10.1002/nme.2579

	Introduction
	Two-Level Initialization
	R-Tree-Based Mesh Filtering
	Performance Results
	Test Case Description
	Hardware Description
	Performance Analysis
	Strong Scaling
	Weak Scaling

	Conclusions
	References

