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Abstract: As the main method of information transmission, it is particularly important to ensure the
security of speech communication. Considering the more complex multipath channel transmission
situation in the wireless communication of speech signals and separating or extracting the source
signal from the convolutional signal are crucial steps in obtaining source information. In this paper,
chaotic masking technology is used to guarantee the transmission safety of speech signals, and a
fast fixed-point independent vector analysis algorithm is used to solve the problem of convolutional
blind source separation. First, the chaotic masking is performed before the speech signal is sent,
and the convolutional mixing process of multiple signals is simulated by impulse response filter.
Then, the observed signal is transformed to the frequency domain by short-time Fourier transform,
and instantaneous blind source separation is performed using a fast fixed-point independent vector
analysis algorithm. The algorithm can preserve the high-order statistical correlation between frequen-
cies to solve the permutation ambiguity problem in independent component analysis. Simulation
experiments show that this algorithm can efficiently complete the blind extraction of convolutional
signals, and the quality of recovered speech signals is better. It provides a solution for the secure
transmission and effective separation of speech signals in multipath transmission channels.

Keywords: independent vector analysis; convolutional blind source separation; multipath transmis-
sion; chaotic masking

1. Introduction

With the rapid development of information technology, speech transmission tech-
nology brings more and more convenience to people’s life. As the main form of human
communication, speech information is widely used for its real-time and easy identifi-
cation [1–3]. Whether it is indoor communication or outdoor transmission, the process
of sending and receiving speech information will inevitably be affected by the effect of
multipath transmission [4]. After the speech is sent out, it needs to reach the receiving
end through multiple transmission paths, and the length and attenuation of each path
are different, so the received signal presents the superposition of various speech signals
affected by phase, delay and multipath [5]. In addition, an increasing number of fields
and departments need safe and efficient speech transmission technology, and information
security [6] is facing unprecedented development opportunities. Therefore, in the multi-
path channel, studying the safe transmission and effective extraction of speech information
in indoor and outdoor environments is one of the scientific issues that many scholars are
interested in.

In recent years, the chaotic phenomena of nonlinear systems have been studied
more and more intensively [7–9]. Chaos is a nonperiodic bounded dynamic behavior
caused by a deterministic nonlinear dynamic system. It has initial sensitivity, internal
randomness and unpredictability [10], which make it play an important role in secure
communication. Considering the secure transmission of speech information in wireless
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transmission environment, the speech signal can be chaotic encrypted or masked at the
originating end. For indoor environments, a classic problem of speech communication is
the “cocktail party”. In a noisy indoor environment, the sound received by the information-
collecting microphone is diverse. The sound received includes the speech, music and other
sound sources of multiple people talking at the same time, and there is also the reflected
sound generated by the reflection of these sounds by the walls and indoor objects. In fact,
whether in indoor or outdoor environments, speech transmission under multipath channels
can be abstracted as a convolutional mixed model of signals. At the same time, there is
bound to be a lack of source information and channel information during the transmission
process. Therefore, separating the desired speech signal from the unknown information is
known as classic multichannel convolutional blind source separation (CBSS) [11–13].

There are two main types of methods to solve the CBSS problem in multipath channels:
time domain and frequency domain. The idea behind time-domain approach [14,15] is the
need to compute a separation filter in the time domain of equal or greater order than the im-
pulse response filter. The method is often computationally complex, making the complexity
of the algorithm high and convergence slow. The frequency-domain approach [16,17] is
to transform the observed signal into the frequency domain using the short-time Fourier
transform (STFT) [18]. The instantaneous BSS is performed separately for each frequency
point in the frequency domain using the standard independent component analysis (ICA)
method [19,20], which is the key to blind source separation in the frequency domain. Al-
though this method avoids tedious convolution operations and reduces computational
effort, the ICA algorithm causes amplitude and permutation ambiguity to be blurred at
each frequency point, which reduces the accuracy of the separated signals. The amplitude
ambiguity can be handled by normalizing the separation matrix, while the permutation
ambiguity is relatively difficult to solve. For this reason, numerous scholars have pro-
posed different methods to solve the permutation ambiguity problem in frequency-domain
convolutional blind source separation (FD-CBSS) [13,21–23].

The independent vector analysis (IVA) [24] algorithm has been proposed as an ex-
tension of the ICA algorithm, which is mainly used to solve the permutation ambiguity
problem in FD-CBSS. Considering the algorithm itself, the traditional independent uni-
variate source prior is replaced by the source prior knowledge of multivariate correlations,
using higher-order correlations across frequencies [25] to prioritize the associated multi-
variate super-Gaussian distribution over each vector source. This modeling imposes the
independence of sources between vectors while preserving the correlation of sources within
higher-order vectors, i.e., the structural correlation between the frequency components
of each source. The dependent multi-source prior preserves the dependence between
the different frequency units of each source and maximizes the independence between
the frequency units of the different sources [26]. Thus, the IVA algorithm alleviates the
permutation ambiguity problem in the learning process and does not require subsequent
permutation processing. To improve the separation performance and faster convergence of
this algorithm, the fast fixed-point IVA (Fast IVA) method [27] of the Newtonian learning
algorithm is applied to better solve the case of CBSS. This has been studied in more depth
by subsequent scholars. J. Hao proposed an online IVA algorithm for real-time audio sepa-
ration and developed a two-channel hardware demonstration system [28]. M. Anderson
applied the IVA model to solve the joint blind source separation problem for fMRI data
and in the process derived gradient and Newton-based update rules [29]. Y. Liang used
video information to provide an intelligent initialization for the optimization problem and
proposed a fast video-based fixed-point analysis method that still has good separation
performance in noisy environments [30].

To this end, this paper designed a speech information security transmission under
chaotic masking and a FD-CBSS algorithm based on Fast IVA. The scheme is designed
for the security of speech signals in wireless transmission environments. First, the speech
signals to be transmitted were processed by chaotic masking and then sent to the channel
for multipath transmission. Then, the encrypted convolutional speech signal in the time
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domain was transformed into the frequency domain using the short-time Fourier transform
(STFT), followed by blind signal extraction using the Fast IVA algorithm. The blind decon-
volution process of the signal was completed when the separation matrix converged or
when the number of iterations was reached. The algorithm is able to perform permutation
simultaneously during the iterative update of the separation matrix and converges quickly.

This paper is organized as follows: in the second part, Chen chaotic systems for
confidential transmission are firstly briefly introduced; and then the FD-CBSS under
multipath transmission model is highlighted. In the third part, the theoretical basis of
the Fast IVA algorithm is first introduced, and the specific implementation steps of the
algorithm are listed. Furthermore, a safe and fast overall process of blind deconvolution
based on Fast IVA algorithm is illustrated. Finally, the evaluation criteria used to judge
the separation performance of the algorithm are presented. The fourth part is to simulate
the algorithm experiment and analyze the algorithm performance. In the fifth part, the
conclusions and future research prospects are given based on the analysis results.

2. Mathematical Modeling and Theoretical Foundations

This part briefly introduces the Chen chaotic system used for chaotic masking of
speech signals in this paper and present the theoretical preparation for constructing secure
transmission of speech signals. In addition, the convolutional model for multipath trans-
mission of speech signals is constructed, and the BSS process under this model is illustrated
to make the theoretical basis for the independent vector analysis algorithm.

2.1. Chen Chaotic System

In the field of chaos research, the Chen system [31,32] is another type of classical
chaos among continuous chaotic systems, which provides a theoretical basis for many
researchers. Based on the the phase diagram of the system, it is similar to the Lorenz
system, but its topological structure is more complex and has more research significance.
The mathematical model of Chen’s attractor is

dαx1
dtα = a(y− x)

dαx2
dtα = (c− a)x− zx + cy

dαx3
dtα = xy− bz

, (1)

where X = (x, y, z)T ∈ R3 is the system state and a, b, c are the system variables and all are
greater than 0. The Chen system enters a chaotic state when the parameters take values
of a = 35, b = 3, c = 28 and the time interval is at t0 ∈ [0, 100]. Due to the initial value
sensitivity of the chaotic system, the initial value x0 = 1, y0 = 1, z0 = 1 is selected here in
order to observe the phase diagram and time sequence diagram of the Chen attractor at a
certain state, as shown in Figure 1.

Chen chaotic systems have inherently better key space and system complexity. Chaotic
masking refers to using the pseudo-randomness of chaotic tracks and broadband power
spectrum characteristics as a modulating signal. At the transmitter side, the speech signals
are hidden into the chaotic signal to form a seemingly noisy signals, and the useful infor-
mation is completely masked by the chaotic signal to achieve confidential communication.
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(a) (b)

(c) (d)

Figure 1. The three-dimensional phase diagram of Chen’s chaotic motion state. (a) The x–y plane
phase diagram; (b) The y–z plane phase diagram; (c) The x–z plane phase diagram; (d) The Spatial
phase diagram of Chen chaos.

2.2. Frequency Domain Convolutional Blind Source Separation

The actual communication environment is more complex, and the speech information
is reflected by obstacles to form multipath transmission, which propagate through multiple
paths to reach the receiving end, thus obtaining the unknown observed signals. It should
be noted that there are both direct and reflected waves such as obstacles in the observed
signals. Due to the different multipath lengths, the observed signals at the receiver are the
superposition of source signals affected by phase, time delay and multipath. Mathematical
modeling of the above multipath transmission environment is performed. In the case where
the source signal and channel are unknown, only a small amount of a priori knowledge
of the observed signals is used to achieve an estimate of the observation matrix or source
signals. Without considering the noise, the mathematical model is shown in Figure 2, and
this model is referred to as convolutional blind source separation [12].
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Figure 2. CBSS model for multiple source signals.

Suppose there are N source signals s(t) = [s1(t), s2(t), ..., sN(t)]
T and M observa-

tion signals x(t) = [x1(t), x2(t), ..., xM(t)]T (N > M) and all are discrete signals. The
mathematical model for convolutional mixing of multiple speech signals is:

Xi(t) =
M

∑
j=1

P−1

∑
p=0

hij(p) · Sj(t− p) = hij ∗ Sj(t) i = 1, 2, ..., M, (2)

where hij(p) denotes the impulse response of the jth source signal to the ith microphone;
Sj(t) denotes the jth source signal; Xi(t) denotes the ith observed signal; ∗ denotes the
convolution operation, and p denotes the order of the transfer function. That is, each
observed signal is a convolutional mixture of the individual source signals and the corre-
sponding impulse responses to them. The larger the filter order p, the more complex the
received observation signal. In particular, when p = 1, the model degenerates into a linear
instantaneous mixed model. To simplify, Equation (1) is expressed in vector form as:

X(t) =
P−1

∑
p=0

H(p)S(t− p). (3)

where H(p) is the vector representation of the transfer function. In practice, the transfer
function hij(p) can be approximated by a finite impulse response filter.

Transform the observed signals in the time domain to the time-frequency domain
through STFT:

X(k)[n] =
K−1

∑
k=0

X(nJ + t)win(t)e−jωkt k = 1, 2, ..., K, (4)

where ωk = 2π(k− 1)
/

K K is the number of frequency points and win(t) is the window
function—the Hamming window is usually selected because it has better low-pass char-
acteristics so that it can better approximate the short-term speech frequency spectrum.
Furthermore, x(k)i [n] denotes the sample of the nth random variable of x(k)i . It should be
noted that, unlike real-time t, n represents a random variable in the discrete time domain,
where each value of n corresponds to the STFT of each frame. For convenience, the time
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symbols t and n are mostly omitted. When the length of the window function win(t) is
much larger than the order p of the impulse response filter, the convolutional model can be
approximated as an instantaneous model for each frequency band [28,33]:

X(k) = H(k)S(k), (5)

where X(k) =
[

x1
(k), x2

(k), ..., xM
(k)
]T

and S(k) =
[
s1

(k), s2
(k), ..., sN

(k)
]T

are the observation
matrix and the source signal matrix in the frequency domain, respectively. Furthermore, xi

represents the ith observation vector composed of K frequency points
[

x(1)i , x(2)i , ..., x(K)i

]T
,

and x(k) denotes the observation vector composed of M observation signals at the kth

frequency point
[

x(K)1 , x(K)2 , ..., x(K)M

]T
. Furthermore, H(k) ≡

{
h(k)ij

}
, this implies that

h(k)ij =
[

h(1)ij , h(2)ij , ..., h(K)ij

]
is denoted as the element of the ith row and jth column of the

kth mixing matrix.
Note that we use lowercase bold letters for vector variables and uppercase letters

for matrix variables, and each value of the superscript k is a frequency point and K is the
number of frequency points.

If the separation filter matrix exists, i.e., the inverse or pseudo-inverse matrix of the
mixing matrix at each frequency point exists, the separated source signal is:

Y(k) = W(k)X(k), (6)

where W(k) is the separation matrix in the frequency domain. The purpose of BSS is to
find the corresponding separation matrix W(k) from the observed signal X(k) to achieve the
extraction of the source signal. The frequency-domain separated signal is transformed to
the time-domain by ISTFT, which is the estimation of the source signal.

3. An Efficient Speech CBSS Algorithm in Multipath Channels

In the traditional frequency-domain convolutional blind source separation (FD-CBSS)
algorithm, there will inevitably be problems of permutation ambiguity. There are usually
two methods to solve such problems: one is a geometric method based on the direction
of arrival (DOA) that has strict requirements on the spatial position of the sensor, and
another method is based on the correlation of adjacent frequency bands with mutual
parameters. These two methods have their own advantages and disadvantages in solving
the ambiguity problem of separating sub-signal permutation. However, both methods
require an additional permutation step after the CBSS algorithm, which inevitably increases
the time complexity and computational complexity of the FD-CBSS process.

For this reason, this paper considers the existing CBSS itself and proposes the Fast IVA
algorithm using Newtonian learning method to solve the multipath speech CBSS problem.
The algorithm is essentially an extension of the one-dimensional random variables in the
ICA algorithm to multi-dimensional random variables. It looks at the sampled data of
the same source signal at different frequency points as a vector and performs CBSS of the
signals in order, thus solving the permutation ambiguity case without designing additional
permutation algorithms. The innovation of this paper is that the optimization algorithm
process introduces Taylor series polynomials to quickly approximate the contrast function
of Fast IVA algorithm. This step efficiently accomplished the CBSS without the need to
design additional sequencing algorithms.

3.1. Fast IVA Algorithm

The Fast IVA algorithm uses the negative entropy criterion to measure the strength
of the non-Gaussian and minimizes the contrast function over each frequency band to
complete the estimation of the source signals. The advantage of this algorithm is that it
performs CBSS in order at the ordered frequency points, thus solving the permutation
ambiguity problem. On this basis, this paper uses Taylor series in the algorithm optimiza-
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tion process to approximate the contrast function of Fast IVA and then performs fast and
ordered CBSS of speech signals at each frequency point.

Here, the Kullback–Leibler divergence [34] between the two functions is defined as
a measure of high-order dependence, which is the cost function of multivariate random
variables. The relative entropy [24] is expressed as follows:

C = KL
(

p(s1, s2, ..., sN)
∥∥∥∏i q(si)

)
= const. + ∑

k
log
∣∣∣det(H(k))

∣∣∣−∑
i

Esi (log q(si))
, (7)

where p(s1, s2, ..., sN) represents the exact joint probability density function of a single source
vector; ∏i q(si) represents the product of approximate marginal probability distribution func-
tions; k is the number of frequency points; det(·) represents the matrix determinant operator;
E(·) denotes the expectation, and KL(·) denotes the Kullback–Leibler scatter calculation.

For simplicity, suppose that xi is zero-mean and the separated signal yi is pre-whitened
so that the rows of the mixing matrix H(k) or the separation matrix W(k) are orthogonal

in each dimension, i.e., A(k)
T

A(k) = I or W(k)W(k)T
= I. Therefore, Equation (7) can be

simplified as:

C = const. + ∑
i

Esi (log q(si)). (8)

In this paper, the fast fixed-points method is chosen to optimize the contrast function.
Compared with the natural gradient method, the Fast IVA algorithm avoids the selection
of learning rate and has the advantage of fast convergence. During the optimization of
the algorithm, we introduce a Taylor series approximation to the contrast function of
Lagrangian residue type in the notation of the complex variables in order to be able to
quickly obtain the optimal approximate solution. Therefore, the contrast function of the
Fast IVA algorithm with Lagrange multipliers β is obtained as follows:

C = −∑
i

Esi (log q(si))−∑
k

β
(

W(k)T
W(k) − I

)
. (9)

Since the Hessian matrix of the contrast function [35] is a diagonal matrix under
the whiteness constraint, the following simple learning rule can be obtained by applying
Newton’s method:

w(k)
i ← w(k)

i −
E
[

ϕ(k)
(

y(1)i , y(2)i , ..., y(K)i

)
x(k)

]
+ βw(k)

i

E
[

ϕ(k)′
(

y(1)i , y(2)i , ..., y(K)i

)]
+ β

. (10)

It can be known that the equilibrium point of Equation (10) above is the local minima
of the contrast function, since the demixing matrix is no longer updated. When the equation
holds, the equilibrium point is found. The Lagrange multiplier is eliminated to obtain the
following fixed point iteration algorithm:


w(k)

i ← E
[

ϕ(k)′
(

y(1)i , y(2)i , ..., y(K)i

)]
w(k)

i − E
[

ϕ(k)
(

y(1)i , y(2)i , ..., y(K)i

)
x(k)

]
ϕ(k)′

(
y(1)i , y(2)i , ..., y(K)i

)
= −

∂ϕ(k)
(

y(1)i , y(2)i ,..., y(K)i

)
∂y(k)i

. (11)

In addition to normalization, the rows of demixing matrix w(k)
i need to be decorrelated.

The symmetric decorrelation is calculated as:

w(k)
i ←

(
w(k)

i

(
w(k)

i

)H
)−1/2

w(k)
i . (12)
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In the algorithm, in order to avoid local optimal solutions, we use the unit matrix
as the initial demixing matrix in all frequency points. It can be seen from the derivation
process of the algorithm that demixing matrix has no orthogonality constraints and does
not produce separation error accumulation, which ingeniously solves the permutation
ambiguity in the frequency-domain algorithm. We introduce a Taylor series to optimize
the contrast function in the optimization algorithm, which makes it possible to obtain
the optimal solution quickly in the iterative update of the separation matrix, simplify
the iterative update process and reduce the computational complexity of the algorithm.
The specific implementation steps of the core algorithm in this paper are as follows in
Algorithm 1.

Algorithm 1: CBSS based on Fast IVA algorithm
Step 1: Transform the time-domain convolutional mixed signal by STFT into a
complex-valued signal at each frequency point in the complex frequency domain;
Step 2: Centralize and pre-process the mixed signal at each frequency point;
Step 3: Initialize the demixing matrix w(k)

0 for each frequency point;

Step 4: Estimate the separated signal y(k)i according to Equation (6);
Step 5: Calculate and optimize the contrast function and nonlinear function based
on the estimated source signal;
Step 6: Update the demixing matrix w(k)

i according to Equation (11);
Step 7: Decorrelation of the demixing matrix according to Equation (12);
Step 8: Normalize the separation matrix to resolve the amplitude uncertainty
of the separated sub-signals;
Step 9: Determine whether the separation matrix converges, and if it converges,
execute step 11;
Step 10: If the maximum number of iterations is reached, output the final
separated signal at each frequency point, otherwise return to step 4;
Step 11: Restore the separated signal of each frequency point into a time-
domain separated signal by ISTFT; that is, extract the source speech signal.

3.2. BSS of Speech Signals with Chaotic Masking in Multipath Channels Based on Fast
IVA Algorithm

Considering the information security transmission of speech signals under multipath
channels in the wireless transmission environment, this paper processes the confidentiality
of speech signal before sending. Due to the characteristics of initial sensitivity and internal
randomness of the chaotic system itself, the chaotic sequence of its output is unpredictable,
which provides a new design idea for secure communication. In this paper, the message
signal and the chaotic signal are superimposed on each other, and the useful signal is
covered by the pseudo-random and noise-like characteristics of the chaotic system to
realize the confidential transmission of the message signal. Since the speech signal is
a small signal, the magnitude of its energy and amplitude is far from that of a chaotic
signal. Even though they are both multi-frequency signals, the broadband power spectrum
characteristics of the chaotic signal still ensure a good masking effect on the speech signal.

In this paper, chaotic signals are introduced into the source signal for chaotic masking
to achieve the secure transmission of speech signals. In addition, this paper also proposes
using a Fast IVA algorithm to solve the CBSS in the case of multipath speech secure
transmission. Taking three signals (two speeches and one chaotic signal) as an example,
we simulate the multipath transmission situation of speech signals and the whole process
of blind observation signal separation to extract the source speech signal in the actual
environment, as shown in Figure 3.
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MIC 1

MIC 2

MIC 3

Obstacles

Encrypted Voice Received signals

Speech 1

Speech 2

Chaotic MaskIng

Chaotic

Multipath Transmission

Fast 

IVA

Separated signals

CBSS

Figure 3. CBSS model for secure transmission of multiple speech signals.

From the above model, it can be seen that this paper introduces chaotic masking
technology to hide the multiplexed speech signals into the random signals generated by the
Chen chaotic dynamical system to ensure the transmission security of speech information.
Secondly, the masked speech signals are transmitted via multipath channels to reach the
receiving end. The multipath effect made the observed signals inevitably affected by
phase and time delay and became a superposition of multiple source signals. The Fast
IVA algorithm is applied to solve the FD-CBSS of the unknown observed signals, which
efficiently achieved blind separation or extraction of speech signals without an additional
sorting process. This greatly reduced the computational complexity of the algorithm and
improved the efficiency of the FD-CBSS.

3.3. Evaluation Criteria

During the simulation experiment of CBSS, the signal estimation still differs somewhat
from the source signal even in the absence of noise. In this paper, evaluation criteria
such as signal distortion ratio (SDR) [36,37], signal interference ratio (SIR) [36,37] and
correlation coefficient [23] were used to quantitatively analyze the separation performance
of the algorithm.

3.3.1. SDR and SIR

The estimated signal can be represented by four parts, namely, the real source part
sture(t), the filtering distortion part e f ilt(t), the interference part of other sources einter f (t)
and the false value earti f (t), where starget(t) = sture(t) + e f ilt(t) indicates the part of esti-
mated signal that belongs to the source signal (indicating that the sensor acquires infor-
mation about the target source containing transmission effects); einter f (t) indicates that the
estimated signal does not satisfy the source signal and belongs to the mixed signal, which
is the residual after the separation of other sources; earti f (t) indicates the external noise
generated by the algorithm. The specific definition equations for SDR and SIR are

SDR = 10log10

∥∥starget(t)
∥∥2∥∥∥e f ilt(t) + einter f (t)+earti f (t)

∥∥∥2 , (13)

SIR = 10log10

∥∥starget(t)
∥∥2∥∥∥einter f (t)
∥∥∥2 . (14)

The SDR reveals the ratio of the true source to the other components. The larger the
indicator value, the less the separated signal is affected by distortion, interference and arti-
facts. Furthermore, the larger the SIR value, the less the components of the separated signal
are separated from other sources, and the better the performance of the separated signal.
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3.3.2. Correlation Coefficient

The correlation coefficient is usually the degree of similarity between the separated
signal and the source signal if s(t) and y(t) are used to represent the source signal and the
estimated signal, respectively. The mathematical expression is as follows:

ρ(yi, si) =

∣∣∣∣∑
t

yi(t)si(t)
∣∣∣∣√

∑
t

y2
i (t)∑

t
s2

i (t)
. (15)

The similarity coefficient between the source signal and the estimated signal is between
0 and 1. When two signals are perfectly correlated, the similarity between the source and
estimated signals is high. The closer the similarity coefficient is to 1, the better the separation
performance of the algorithm. Conversely, the smaller the similarity coefficient, the worse
the separation performance of the algorithm.

4. Simulation Experiment and Result Analysis

One male and one female speech signal from the TIMIT database randomly selected
as the speech message to be sent, and the signal length is 3 s. The x-component of Chen
chaotic system is chosen as the input chaotic signal, and the signal length of the intercepted
x-component is the same as the length of speech signals, and the sampling frequency is
fs = 16 KHz. First, the speech signals are hidden into the chaotic signal to ensure the
security of information transmission. Next, the impulse response filter is used to simulate
the multipath effect generated by the speech transmission.

It is important to note here that the filter length directly affects the degree of convolu-
tional mixing of the source signal. The longer the filter, the longer the process of mixing
response of the speech signal in the channel, and consequently the more complex the
received observation signal and the more difficult the separation or extraction of the source
speech signal. In order to simulate the actual transmission environment and for the signals
safety, the filter length should be increased. Furthermore, taking into account the difficulty
of the separation process, the filter length should be reduced to ensure that the Fast IVA
algorithm can obtain better separation results. Considering the above, the filter length set
in the experiment of this paper is p = 20.

Then, the Fast IVA algorithm is used to separate and extract the speech signals from
the observed signal, and the number of algorithm iterations is set to 1000 times. To ensure
that the signal has good spectral characteristics in the frequency domain, the Hamming
window function is chosen for the STFT transform, as in Section 2.2. Furthermore, the
appropriate number of frequency points is K = 512, and the data frame is H = 192.

Based on the above data and parameter selection, the simulation experiment is carried
out and the selection of frequency points is considered in the experiment. The following
is a quantitative analysis of the security of the speech signal, the separation results and
separation performance of the Fast IVA algorithm, the evaluation of the speech quality, and
the complexity of the algorithm from multiple perspectives.

4.1. Security Analysis

Chen chaotic system has good obfuscation and diffusion properties, and it is better able
to resist statistical attacks. Figure 4 shows the waveforms, spectrograms and histograms of
the source and observation signals obtained by simulation, and the security of transmission
system can be seen intuitively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. The graphical information of the source and observed signals. (a) Time-domain waveform
of the source signals; (b) Time-domain waveform of the observed signal. (c) Spectrogram of the source
signal; (d) Spectrogram of the observed signal; (e) Histogram of the source signal; (f) Histogram of
the observed signal.

The image information of the source signal and the observed signal after chaotic
masking is shown in Figure 4. The time-domain waveform, spectrograms and histogram
of the observed signal are given in Figure 4b–f, respectively, to compare the graphical
information of the observed signal with that of the source signal. It is obvious that the
source speech information is no longer found in the observed signal, which is enough to
show that the chaotic signal plays a good masking effect on the speech signal and achieves
the confidential transmission of speech information.
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4.2. Correlation Coefficient Analysis

The selection of the source signal, experimental conditions and parameter settings are
the same as described previously. Then, the blind observation signal after chaotic masking
are processed at the receiver to achieve the extraction of source signal. In this paper, the
Fast IVA algorithm is proposed to use it to perform FD-CBSS for the blind observation
signal, and the waveforms of the separation result are shown in Figure 5.

(a) (b)

Figure 5. The separated signal graphic information is obtained by using the Fast IVA algorithm. (a)
Time–domain waveform of separated signals; (b) Spectrogram of separated signals.

In Figure 5, it can be seen that the waveform shapes of the separated signals obtained
using the Fast IVA algorithm are almost identical when compared with the source signal
graphical information, both in time domain waveform and spectrogram. Therefore, from a
subjective point of view, it can be considered that the algorithm realizes the blind extraction
of the source speech signal. However, it is not enough to rely on visual judgment only.
Here we use the correlation coefficient as the objective evaluation criterion of the separated
signal, and the data in Table 1 are the average of 20 experiments.

Table 1. Correlation coefficient between each separated signal and the source signal.

Correlation Coefficient s1 s2 Chaotic Signal

y1 0.0018 0.0016 0.9971
y2 0.0027 0.9632 0.0120
y3 0.9278 0.0137 0.0163

In Table 1, s1 and s2 represent the source speech signals, while y1, y2 and y3 represent
the separated signals obtained by the Fast IVA algorithm. As you can see, the correlation
coefficient between the separated signal y1 and the chaotic signal is as high as 0.9991, which
is close to 1. In addition, the correlation coefficients between the separated signals y2 and y3
and the corresponding source speech signals s2 and s1 are 0.9932 and 0.9278, respectively,
which proves that the algorithm achieves the recovery of speech signals. The algorithm not
only achieved the estimation of source speech signal, but also enabled a better recovery
of the wide-spectrum chaotic signal. Thus, a high degree of reduction in the separated
signal is illustrated from an objective point of view, and the blind extraction effect of the
noise-like signal is guaranteed.

This paper proposes using the Fast IVA algorithm, which exploits both the statistical
independence between multi-source signals and the internal dependence of each signal.
The algorithm is not only fast and effective but also solves the permutation ambiguity
problem in the FD-CBSS process and eliminates the permutation design in the standard
ICA frequency-domain algorithm. To verify the superiority of this algorithm for convolu-
tional blind signal separation and extraction, it is compared with two algorithms from the
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literature [38,39]. To this end, we conducted a large number of repeated experiments to
reduce the randomness and improve the reliability of the results. To assess the stability
of these algorithms, this experiment controlled for the consistency of the input signals
and parameters, and 20 Monte Carlo experiments were conducted with each separation
algorithm as a single variable only. The three blind separation algorithms are compared in
terms of separation accuracy (average correlation coefficient). Table 2 shows the average
values of the above indicators obtained after 20 trials.

Table 2. Correlation coefficient of each separated signal with the source signal.

Algorithms EFICA [38] IF Algorithm [39] Fast IVA

Correlation Coefficient 0.9532 0.9541 0.9732

From the comparative analysis of the experimental results, it can be seen that the Fast
IVA algorithm has the highest correlation coefficient and has better separation accuracy.
By comparing with EFICA algorithm and IF algorithm, it is proved that the algorithm
has better convergence speed and separation performance. The Fast IVA algorithm used
in this paper not only eliminates the tedious permutation process among the separated
sub-signals and reduces the computational complexity of the algorithm but also has better
separation performance.

4.3. The Influence of Frequency Points in STFT

When setting the experimental parameters of the STFT, we mention one of the more
important parameters, namely the number of frequency points. This is also the number
of samples in the short-time window, and this parameter has an important impact on the
STFT. The number of frequency points is too small, making the process of STFT too tedious
and complicated, increasing the computational complexity of the algorithm. If the number
of frequency points is too large, many features of the speech signal will be lost, which will
affect the separation or extraction results of the blind extraction algorithm. Therefore, it
is especially important to choose a suitable number of frequency points. We will discuss
this parameter next, setting the number of frequency points to K = [256, 512, 1024, 2048].
The other experimental conditions are guaranteed to be constant, and the simulation
experiments were performed sequentially using the Fast IVA algorithm, with the correlation
coefficient as the evaluation criterion. The experimental results are the average data of
20 trials, as shown in Figure 6.

Figure 6. The relationship between frequency points and correlation coefficient.
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The effect of the parameter selection of frequency points on the separation result is
intuitively reflected in Figure 6. The larger the number of frequency points, the larger
the number of samples in the short time window. For a speech signal with a certain
length, the fewer frames are obtained by adding windows, which makes more speech
features lost and results in a poorer recovered speech signal. With a smaller the number
of frequency points, the opposite result is obtained. The experimental results in Figure 6
also confirm this relationship. When the number of frequency points K = 128, the average
correlation coefficients of the speech estimation signals extracted by this algorithm are all
above 0.96, and the separation effect is very good. When the number of frequency points
K = 512, the correlation coefficients of the estimated signals of speech s1 and s2 can reach
about 0.92 and 0.96, respectively. Although the correlation coefficients have decreased, the
separation results are still better. When the number of frequency points K = 1024 or even
larger, the correlation coefficient of the speech estimation signal decreases more obviously,
which makes the separation result worse. To ensure that the separation results obtained
by this algorithm are better and to avoid too much computation in the STFT process, we
compromise by choosing a frequency point K = 512. In addition, it can be seen from
Figure 6 that the change of frequency points has little effect on the separation results of
Chen’s chaotic signal. Therefore, the superiority of the algorithm used in this paper is
that it can guarantee the quality of the separated speech signal of good quality while still
extracting the chaotic signal of noise class well.

4.4. SDR/SIR Analysis

This section analyzes the degree of distortion and interference of the estimated speech
signal. Here, the quantitative evaluation is based on SDR and SIR, which verifies the
goodness of the separation results of the Fast IVA algorithm. The performance index is
shown in Figure 7, where the SDR and SIR data values are the average values obtained
from 10 tests.

(a) (b)

Figure 7. The evaluation of algorithm separation performance with different metrics. (a) SDR value;
(b) SIR value.

Figure 7 represents the performance evaluation of the separation results by different
metrics; that is, the SDR and SIR values between each separated signal and the source
signal, where s1 and s2 represent the two source speech signals and Chen is the chaotic
signal. As shown in Figure 7a, the dark blue bars indicate the SDR values obtained after
comparing the separated signal y1 with s1, s2 and s3. The SDR values with s1 and s2 are
negative, and the SDR value with Chen is 27.9537 dB, which determines that the separated
signal y1 is chaotic. Furthermore, the SDR values of the estimated signals of source speech
s1 and s2 are also both close to 20 dB, which shows that the separated signals are less
affected by distortion and interference. Similarly, in Figure 6b, the SIR values with s1 and
s2 are negative due to the higher energy and larger bandwidth of the chaotic signal, and
the SIR with s3 is calculated to be 3.6834 dB. The SIR values of both s1 and s2 estimated
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signals are calculated to be around 15 dB, while the SIR value of the chaotic signal is almost
0, indicating that the estimated signal has few components separated from other sources,
which in turn proves the superior performance of the separated signal.

4.5. Perceptual Evaluation of Speech Quality

Perceptual evaluation of speech quality (PESQ) [40] is an objective, full-reference
speech quality evaluation method with the International Telecommunication Union la-
beling code ITU-T P.863. PESQ was specially developed for simulating subjective tests
commonly used in telecommunications to evaluate human voice quality. Therefore, PESQ
uses real speech samples as test signals, based on comparative measurements between the
original reference signal and the extracted signal. PESQ was created to provide a subjective
Mean Opinion Score (MOS) [41] predictive value for objective speech quality evaluation,
and it can be mapped to a scaled range of MOS values. The PESQ score ranges from −0.5
to 4.5, with higher scores indicating better speech quality.

The experimental conditions are the same as described above, and here the quality
of separated speech is evaluated. The PESQ values of each estimated speech y1 and y2
compared with the original reference speech s1 and s2 are given in Table 3. Among them,
the PESQ value calculated between y1 and s2 is as high as 3.9232, while the PESQ value
between y2 and s1 is also 3.9754. By mapping the PESQ values to MOS, the quality of
separated speech can be called “good”. It is again verified that the Fast IVA algorithm has
good separation performance for blind deconvolution of chaos-obscured speech signals
and ensures the quality of separated speech signals.

Table 3. PESQ value between each separated speech and source speech signal.

PESQ s1 s2

y1 0.3681 3.9754
y2 3.9232 0.3563

To illustrate the high perceptual quality of the speech signal extracted by this algorithm,
the results are analyzed here in comparison with other algorithms. The same experimental
conditions as set as those in the literature [42], and 20 repeated experiments are performed
to reduce the randomness of the results and obtain more stable and accurate results. The
calculation result in Table 4 is the average value of PESQ obtained after 20 tests.

Table 4. PESQ averages with different algorithms.

Algorithms DTW [42] Fast IVA

PESQ 3.17 4.04

In Table 4, the PESQ value obtained by DTW algorithm is 3.17, and the PESQ value
obtained by Fast IVA algorithm in this paper is relatively high, which can reach 4.04.
Compared with the PESQ value obtained by DTW algorithm, it is 0.87 higher, which
is enough to show that the quality of the extracted speech signal is good. This shows
that the algorithm has better separation results than other traditional blind separation
algorithms. The reason is that the Fast IVA algorithm is a blind extraction process performed
sequentially on each vector frequency point without the need for a subsequent permutation
process, thus ensuring high-quality estimated speech.

4.6. Complexity Analysis

In this section, the computational complexity of the algorithm is analyzed and the time
complexity of the key operational steps is now calculated for the FD-CBSS algorithm based
on Fast IVA. Let the number of frequency points of STFT be K and the total number of
frames of data be B. Assume that the number of source signals N is the same as the number
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of observed signals M. For convenience, only multiplication operations are considered
when calculating the complexity, and the complex-valued multiplication is a four-fold
relation of the real-valued multiplication [43]. The real-valued multiplication operations
required for the main procedure are shown in Table 5, where Np represents the number of
iterations of the Fast IVA algorithm.

Table 5. Calculation of the time complexity required by the main program.

Step Time Complexity

STFT T1 = O(NBK)
Whitening Process T2 = O

(
Np NBK

)
Iterative Process T3 = O(NBK)

Normalization Process T4 = O(NBK)
ISTFT T5 = O(NBK)

Combining the above analysis, the time complexity of the main steps of the Fast
IVA algorithm is calculated. Therefore, the time complexity of the overall process of the
algorithm is the sum of above processes, which is

T = O
(

NpNBK
)
. (16)

In order to compare the computational complexity of various algorithms, the running
time of the frequency domain permutation algorithm in the literature [43] is given. Choose
the same equipment and operating operating environment, the number of speech signals is
N = 4, the length of the speech signal is 10 s and the sampling frequency is fs = 8000 Hz.
In Table 5, the running time required for the completion of each algorithm is compared to
illustrate the time complexity of the Fast IVA algorithm.

As shown in Table 6, the running times of the algorithm designed in [43] and in this
paper are 13.7 s and 7.9 s, respectively. The significantly smaller running times indicate
the low complexity of the algorithms. The biggest advantage of this algorithm is that the
signal permutation is done during the signal separation process, eliminating the need for
subsignal permutation algorithm design. Based on the computational complexity analysis
of the above algorithms and the comparative analysis of the experimental results, the CBSS
algorithm designed in this paper cannot only achieve high quality extraction of speech
signals, but it can also complete the separation of signals quickly with low time complexity.

Table 6. The running time required for the algorithm to complete.

Method Reference [43] Fast IVA

Running Time 13.7 s 7.9 s

5. Conclusions

This paper introduced chaotic masking technology to hide multiple speech signals
into random signals generated by the Chen chaotic dynamic system, which provided a
guarantee for the secure communication of speech signals in a wireless environment. In
the process of multipath channel transmission, the observation signals at the receiving end
are the convolutional mixed signals of the multipath source signals due to the influence of
the multipath effect. To extract the source speech signal efficiently, the CBSS algorithm was
explored in depth. The traditional FD-CBSS algorithm is accompanied by permutation and
amplitude ambiguity. For this reason, an additional permutation algorithm for separating
sub-signals is needed to improve the separation accuracy of the algorithm. This will un-
doubtedly increase the computational complexity of the algorithm. Therefore, this paper
proposed using an efficient Fast IVA algorithm to achieve the separation or extraction of
source speech signals. The algorithm relies on the order of correlation between the fre-
quency points and completes the signal separation according to the order of each frequency
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point, eliminating the need for additional sorting steps. The simulation results show that
the algorithm is not only effective and fast for blind separation of convolutional mixed
signals but also suitable for extraction of noise-like signals. In addition, the application of
this algorithm can reduce the overhead and eliminate the permutation operation in the
traditional frequency-domain algorithm and reduce the algorithm complexity. In the next
work, the algorithm applicability will be extended to investigate the underdetermined
model for solving the practical problem that the number of microphones is less than source
signals in the process of speech sending and receiving. Therefore, the length of the filter
directly affects the degree of convolutional mixing of the source signal.
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