
algorithms

Article

A New Hyper-Parameter Optimization Method for Power Load
Forecast Based on Recurrent Neural Networks

Yaru Li, Yulai Zhang * and Yongping Cai

����������
�������

Citation: Li, Y.; Zhang, Y.; Cai, Y. A

New Hyper-Parameter Optimization

Method for Power Load Forecast

Based on Recurrent Neural Networks.

Algorithms 2021, 14, 163.

https://doi.org/10.3390/a14060163

Academic Editors: Xiao-Zhi Gao and

Allouani Fouad

Received: 25 April 2021

Accepted: 22 May 2021

Published: 24 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Information and Electronic Engineering, Zhejiang University of Science and Technology,
Hangzhou 310023, China; 221909252062@zust.edu.cn (Y.L.); 221901852057@zust.edu.cn (Y.C.)
* Correspondence: zhangyulai@zust.edu.cn

Abstract: The selection of the hyper-parameters plays a critical role in the task of prediction based on
the recurrent neural networks (RNN). Traditionally, the hyper-parameters of the machine learning
models are selected by simulations as well as human experiences. In recent years, multiple algorithms
based on Bayesian optimization (BO) are developed to determine the optimal values of the hyper-
parameters. In most of these methods, gradients are required to be calculated. In this work, the
particle swarm optimization (PSO) is used under the BO framework to develop a new method for
hyper-parameter optimization. The proposed algorithm (BO-PSO) is free of gradient calculation
and the particles can be optimized in parallel naturally. So the computational complexity can be
effectively reduced which means better hyper-parameters can be obtained under the same amount
of calculation. Experiments are done on real world power load data, where the proposed method
outperforms the existing state-of-the-art algorithms, BO with limit-BFGS-bound (BO-L-BFGS-B) and
BO with truncated-newton (BO-TNC), in terms of the prediction accuracy. The errors of the prediction
result in different models show that BO-PSO is an effective hyper-parameter optimization method.

Keywords: BO; hyper-parameters; black box function; PSO; RNN; LSTM; power load

1. Introduction

The selection of hyper-parameters has always been a key problem in the practical
application of machine learning models. The generalization performance of the model
depends on the reasonable selection of hyper-parameters of the model. There are many
research works on hyper-parameter tuning of machine learning models, including convo-
lutional neural networks (CNN), etc. [1]. At present, neural network models have made
remarkable achievements in the fields of image recognition,fault detection and classification
(FDC) [2–4], natural language processing, and so on. In practice, the hyper-parameters of
models rely on experience and a large number of attempts is not only time-consuming and
computationally expensive for algorithm training but also does not always maximize the
performance of the model [5,6]. With the increasing complexity of the model, the number
of hyper-parameters is increasing, and the parameter space is very large. It is not feasible to
try all the hyper-parameter combinations in calculation, which is not only time-consuming,
but also causes knowledge and labor burden.

Therefore, as an alternative to the manual selection of hyper-parameters, many naive
optimization methods are used in the field of hyper-parameter automatic estimation in
engineering practice, such as the grid search method [7,8] and random search method [9].
Through the experiments on hypotheses of hyper-parameters, these methods finally select
the hyper-parameters with the best performance. In recent years, Bayesian optimization
(BO) algorithm [10,11] is very popular in the field of hyper-parameter estimation in machine
learning [12]. Different from grid search and random search, the framework of BO is
sequential, that is, the current optimal value search is based on the previous search results
and makes full use of the information of the existing data [13]. However, other methods
ignore these information. BO uses the limited sample to construct a posteriori probability

Algorithms 2021, 14, 163. https://doi.org/10.3390/a14060163 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/a14060163?type=check_update&version=1
https://doi.org/10.3390/a14060163
https://doi.org/10.3390/a14060163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14060163
https://www.mdpi.com/journal/algorithms


Algorithms 2021, 14, 163 2 of 13

distribution of the black box function to find the optimal value of the function. In BO,
hyper-parameters mapping to model generalization accuracy is implemented through a
surrogate model. The hyper-parameter tuning problem is then turned into a problem of
solving the maximum value of the acquisition function. The acquisition function describes
the likelihood of the maximum or minimum of the generalization accuracy of the model.
The mathematical function may be high-dimensional and may have many extreme points.

In the basic BO, many gradient-based methods are used to query the maximum value
of the acquisition function, such as limit-BFGS-bound (L-BFGS-B) [14] and truncated-
newton (TNC) [15]. However, these methods require that the gradient of variables can
be solved. In high-dimensional space, the calculation of the first or second derivative of
variables is complex, and the result can not be guaranteed to be globally optimal. PSO
method [16] has the characteristics of a simple concept, easy to implement and high com-
putational efficiency, and has been successfully applied in many fields [17–19]. However,
when the mapping of hyper-parameters to loss function or generalization accuracy of the
model is lack of clear mathematical formula, PSO and other optimization methods can not
be directly applied to the estimation of hyper-parameters [20,21]. In this paper, we use
the PSO method to query the maximum value of the acquisition function. PSO method
can well complete the task of querying the maximum value of the acquisition function
without calculating the gradient of variable. When PSO gets better results in querying the
maximum value of the acquisition function, the generalization accuracy of the machine
learning model can be improved in a high probability.

In this paper, aiming at the problem of high computational complexity when querying
the maximum value of the acquisition function, BO-PSO algorithm is proposed, which
combines the advantages of high sample efficiency of BO and simple of PSO. Additionally,
with the progress of science and technology and the rapid development of social economy,
the demand for power is increasing. Accurate power load forecasting is very important for
the stability of power system, the guarantee of power service and the rational utilization
of power. Scholars have put forward a variety of prediction methods, including time
series prediction methods, multiple linear regression prediction methods [22,23] and so
on. However, with the development of intelligence, the data of power load is becoming
more and more complex. Power load forecasting is a nonlinear time series problem, and
more accurate forecasting needs to rely on machine learning algorithms. In recent years,
the deep learning methods are playing a vital role in this field [24].

For these issues above, we have done the following study: based on recurrent neural
network (RNN) and Long-Short Term Memory (LSTM) models, the method we propose in
this paper is used instead of the manual method to determine the hyper-parameters, and
the power load forecasting is carried out on the real time series data set. The experimental
results show that the method is effective in the hyper-parameter tuning of machine learning
model and can be effectively applied to power load forecasting.

The remainder of this paper is organized as follows: BO, PSO, RNN and LSTM
are introduced in Section 2. The BO-PSO is introduced in Section 3. Furthermore, the
experimental results are demonstrated in Section 4. The paper is concluded in Section 5.

2. Preliminaries
2.1. Bayesian Optimization

Bayesian optimization (BO) was first proposed by Pelikan, et al. of the University of
Illinois Urbana-Champaign (UIUC) in 1998 [25]. It finds the optimal value of the function
by constructing a posteriori probability of the output of the black box function when the
limited sample points are known. Because the BO algorithm is very efficient, it is especially
useful when the evaluation cost of the objective function is high, the derivative of the
independent variable can not be obtained, or there are multiple peaks. BO method has two
core components, one is a probabilistic surrogate model composed of prior distributions,
and the other is the acquisition function. BO is a sequential model, and the posterior
probability is updated by the new sample points in each iteration. At the same time, in order
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to avoid falling into the local optimal value, BO algorithms usually add some randomness
to make a tradeoff between random exploration and a posteriori distribution. BO is one of
the few hyper-parameter estimation methods with good convergence theory [26].

Taking the optimization of hyper-parameters of models with BO as the research
direction, the problem of finding the global maximum or minimum value of black objective
function is defined as (this paper takes finding the maximum value of objective function as
an example):

x∗ = argmax f (x) (1)

where x ∈ X,X is hyper-parameters space. The purpose of this article is to find the
maximum value of the objective function. Suppose the existing data is D1:t = (xi, yi),
i = 1, 2, · · · , t, yi is the generalization accuracy of the model under the hyper-parameter xi.
In the following, D1:t = (xi, yi), i = 1, 2, · · · , t was simplified as D. We hope to estimate
the maximum value of the objective function in a limited number of iterations. If y is
regarded as a random observation of the generalization accuracy, y = f (x) + ε, where
the noise ε satisfies p(ε) = N(0, σ2

ε ), independent and identically distributed. The goal of
hyper-parameter estimation is to find x∗ in the d-dimensional hyper-parameters space.

One problem with this maximum expected accuracy framework is that the true se-
quential accuracy is typically computationally intractable. This has led to the introduction
of many myopic heuristics known as acquisition functions, which is maximized as:

xt+1 = argmax αt(x; D) (2)

There are three commonly acquisition functions: probability of improvement (PI), ex-
pected improvement (EI) and upper confidence bounds (UCB). These acquisition functions
trade off exploration against exploitation.

In recent years, BO has been widely used in machine learning model hyper-parameters
estimation and model automatic selection [27–31], which promotes the research of BO
method for hyper-parameters estimation in many aspects [32–35]. The flow of the BO
algorithm is shown in Figure 1.

Begin

Randomly generate 
initialization points

Output result:
(x*,y*)

Build a surrogate model:
Gaussian process regression

Whether to initialize the 
model

Y

N

N

Train

Y

Whether the conditions 
are met

Get the (x,y) when the 
value of the acquisition 
function is maximum

Figure 1. Flow chart of Bayesian optimization.
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2.2. Particle Swarm Optimization

Particle swarm optimization (PSO) [36,37] is a method based on swarm intelligence,
which was first proposed by Kenndy and Eberhart in 1995 [38]. Because of its simplicity in
implementation, PSO algorithm is successfully used in machine learning, signal processing,
adaptive control and so on. The PSO algorithm first initializes m particles randomly,
and each particle is a potential solution to the problem that needs to be solved in the
search space.

In each iteration, the velocities and positions of each particle are updated using
two values: one is the best value (pb) of particle, and the other is the best value (gb) of
population overall previous. Suppose there are m particles in the d-dimensional search
space, the velocity v and position x of the i-th particle at the time of t are expressed as:

vi(t) = [vi1(t), vi2(t), · · · , vid(t)]T (3)

xi(t) = [xi1(t), xi2(t), · · · , xid(t)]T (4)

The best value of particle and the overall previous best value of population at iteration
t are:

pbi(t) = [pi1(t), pi2(t), · · · , pid(t)]T (5)

gb(t) = [g1(t), g2(t), · · · , gd(t)]T (6)

At iteration t + 1, the position and velocity of the particle are updated as follows:

vi(t + 1) = ωvi(t) + c1r1(pbi(t)− xi(t)) + c2r2(gb(t)− xi(t)) (7)

xi(t + 1) = xi(t) + vi(t + 1) (8)

where ω is the inertia weight coefficient, which can trade off the global search ability
against local search ability; c1 and c2 are the learning factors of the algorithm. If c1 = 0, it
is easy to fall into and can not jump out local optimization; if c2 = 0, it will lead to slow
convergence speed of PSO; r1 and r2 are random variables uniformly distributed in [0, 1].

In each iteration of the PSO algorithm, only the optimal particle can transmit the
information to other particles. The algorithm generally has two termination conditions: a
maximum number of iterations or a sufficiently good fitness value.

2.3. Recurrent Neural Network

The recurrent neural network (RNN) does not rigidly memorize all fixed-length
sequences. On the input sequence xt, it determines the output sequence yt by storing the
hidden state ht of the time step information. The network structure is shown in Figure 2,
where the calculation of ht is determined by the input of the current time step and the
hidden variables of the previous time step:

ht = φ(xtωxh + ht−1ωhh + bh) (9)

where φ is the activation function, ωxh, ωhh are the weight, bh is the hidden layer deviation.
Long-Short term Memories (LSTM) is a kind of gated recurrent neural network, which

is carefully designed to avoid long-term dependence. It introduces three gates on the basis
of RNN, namely, input gate, forget gate and output gate, as well as memory cells with the
same shape as the hidden state, so as to record additional information. As shown in the
Figure 3, the input of the gate of LSTM is the current time step input, such as xt and the
previous time step hidden state ht−1, and the output is calculated by the full connection
layer. In this way, the values of the three gates are all in the range of [0, 1]. Suppose the
number of hidden units is l, the input xt of time step t and the hidden state ht−1 of the
previous time step, memory cell Ct, candidate memory cell C̃t, input gate It, forget gate Ft
and output gate Ot. The calculations are as follows:
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It = σ(xtωxi + ht−1ωhi + bi) (10)

Ft = σ(xtωx f + ht−1ωh f + b f ) (11)

Ot = σ(xtωxo + ht−1ωho + bo) (12)

C̃t = tanh(xtωxc + ht−1ωhc + bc) (13)

Ct = Ft � Ct−1 + It � C̃t (14)

where σ is the activation function, ωxi, ωhi, ωx f , ωh f , ωxo, ωho, ωxc, ωhc are the weight, bi,
b f , bo, bc are the hidden layer deviation. Once the memory cell is obtained, the flow of
information from the memory cell to the hidden state ht can be controlled by output gate:

ht = Ot � tanh(Ct) (15)

where the tanh function ensures that the hidden state element value is between −1 and 1.

Output 
layer

Hidden 
state

Input
tx 1tx1tx 

  
1th  th 1th 

1yt ty 1ty 

Figure 2. Structure of RNN.

Memory 
cell

Hidden 
state

Input tx

  
tF

th
Tanh

1th 

tI
~

tC

⊙

+

⊙

⊙
1tC 

tC

tanh

Figure 3. Structure of LSTM.

3. BO-PSO

BO algorithm based on particle swarm optimization (BO-PSO) is an iterative process.
PSO is used to solve the maximum value of the acquisition function to obtain the next
point xt+1 to be evaluated; Then, the value of the objective function is evaluated accord-
ing to yt+1 = f (xt+1) + ε; Finally, the existing data D is updated with the new sample
data {(xt+1, yt+1)}, and the posterior distribution of the probabilistic surrogate model is
updated to prepare for the next round of iteration.



Algorithms 2021, 14, 163 6 of 13

3.1. Algorithm Framework

The effectiveness of BO depends on the acquisition function to some extent. The
acquisition function generally has the characteristics of non-convex and multi-peak, which
needs to solve the non-convex optimization problem in the search space X. PSO has the
advantages of simplicity, few parameters need to be adjusted, fast convergence and so on.
It is not necessary to calculate the derivative of the objective function. Therefore, this paper
chooses PSO to optimize the acquisition function to obtain new sample points.

First, we need to select a surrogate model. The approximation characteristics of
potential functions and the ability to measure uncertainty of Gaussian process (GP) make
it a popular choice of surrogate model. Gaussian process is a nonparametric model
determined by mean function and covariance function (positive definite kernel function).
In general, every finite subset of the Gaussian process model follows the multi variable
normal distribution. Assuming that the output expectation of the model is 0, the joint
distribution of the existing data D and the new sample point (xt+1, yt+1) can be expressed
as follows:

[y1:t+1] ∼ N
(

0,
[

K + σ2
ε I k

kT k(xt+1, xt+1)

])
where k : x ∗ x → R is the covariance function, k = [k(x1, xt+1), · · · , k(xt, xt+1)]

T The
Gram matrix matrix is as follows:

K =

 k(x1, x1) · · · k(x1, xt)
...

. . .
...

k(xt, x1) · · · k(xt, xt)


the I is identity matrix and σ2

ε is the noise variance. The prediction can be made by consid-
ering the original observation data as well as the new x. Since the posterior distribution of
yt+1 is:

p(yt+1 | y1:t, x1:t+1) = N(µt(xt+1), σ2
t (xt+1)) (16)

The mathematical expectation and variance of yt+1 are as follows:

µt(xt+1) = kT(K + σ2
ε I)−1y1:t (17)

σt+1 = k(xt+1, xt+1)− kT(K + σ2
ε I)−1k (18)

The ability of GP to express the distribution of functions only depends on the covari-
ance function. Matern-52 covariance function is one of them and as follows:

KM52(x, x′) = θ0

(
1 +

√
5r2(x, x′) +

5
3

r2(x, x′)
)

exp{−
√

5r2(x, x′)} (19)

The second choice we need to make is acquisition function. Although our method is
applicable to most acquisition functions, we choose to use UCB which is more popular in
our experiment. GP-UCB proposed by Srinivas in 2009 [39]. The UCB strategy considers to
increase the value of the confidence boundary on the surrogate model as much as possible,
and its acquisition functions is as follows:

αUCB(x) = µ(x) + γσ(x) (20)

the γ is a parameter that controls the trade-off between exploration (visiting unexplored
areas in X) and exploitation (refining our belief by querying close to previous samples).
This parameter can be fixed to a constant value.
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3.2. Algorithm Framework

BO-PSO consists of the following steps: (i) assume a surrogate model for the black
box function f , (ii) define an acquisition function α based on the surrogate model of f ,
and maximize α by the PSO to decide the next evaluation point, (iii) observe the objective
function at the point specified by α maximization, and update the GP model using the
observed data. BO-PSO algorithm repeats (ii) and (iii) above until it meets the stopping
conditions. The Algorithm 1 framework is as follows:

Algorithm 1 BO-PSO.

Input: surrogate model for f , acquisition function α

Output: hyper-parameters vector optimal x∗

Step 1. Initialize hyper-parameters vector x0;

Step 2. For t = 1, 2, . . ., T do:

Step 3. Using algorithm 1 to maximize the acquisition function to get the next evaluation

point: xt+1 = argmaxx∈Xα(x|D);

Step 4. Evaluation objective function value yt+1 = f (xt+1) + εt+1;

Step 5. Update data: Dt+1 = D ∪ (xt+1, yt+1), and update the surrogate model;

Step 6. End for.

4. Results

To verify the effectiveness of BO-PSO, we select the power load data set of a given year
from the city of Nanchang, and determine the hyper-parameters of RNN and LSTM model
based on the optimization method proposed in this paper to realize power load forecasting.

4.1. Data Sets and Setups

In this study, the power load data set includes 35,043 data, in which a sampling
frequency is 15 min. The dataset was normalised to eliminate the magnitude differences.
And the dataset was divided into a training set and a test set, with a test set size of 3000.

In the process of hyper-parameter optimization of machine learning model, when there
are boundary restrictions of hyper-parameter in the BO, the methods to optimize the acqui-
sition function are L-BFGS-B, TNC, SLSQP, TC and so on. Among them, L-BFGS-B and TNC
are the most commonly used. We choose these two methods as the comparison methods,
and the corresponding BO framework are named BO-L-BFGS-B and BO-TNC respectively.

The PSO algorithm can guarantee the convergence of the algorithm when the param-
eter (ω, c1, c2) satisfies the condition −1 < ω < 1, 0 < c1 + c2 < 4(1 + ω) [40]. c1 and c2
affect the expected value and variance of the particle position. The smaller the variance is,
the more concentrated the optimization result is, and the better the stability of the optimiza-
tion system is. Other related research results show that the constant inertia ω = 0.7298 and
acceleration coefficient c1 = c2 = 1.49618 have good convergence characteristics [41], and
the PSO parameters in this experiment are set according to this.

To ensure the comparability of the experiment, all the train and test are run in the same
code package of Python; The surrogate model is a Gaussian process with mean function 0
and covariance function Matern-52, and the kernel function and hyper-parametric likeli-
hood are optimized by maximizing logarithmic likelihood; The acquisition function is UCB,
and optimization algorithm is randomly initialized with 5 observations in each experiment.

In this experiment, RNN and LSTM are selected as the basic model of power fore-
casting. The search space of hyper-parameters is shown in Table 1. The optimal hyper-
parameters are selected by BO-PSO, BO-L-BFGS and BO- TNC algorithms, and the corre-
sponding model are named RNN-BO-PSO, RNN-BO-L-BFGS-B, RNN-BO-TNC, LSTM-
BO-PSO, LSTM-BO-L-BFGS-B and LSTM-BO-TNC respectively, with 50 iterations. Repeat
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training 10 times for each model independently to ensure the objectivity of the results.
The training epochs for the RNN and LSTM models are 100. Based on the comprehensive
analysis of the results, the hyper-parameter values of RNN and LSTM models are finally
determined. The step flow of BO-PSO method to optimize hyper-parameters is shown in
Figure 4.

Random 
initialization

Original data

Normalization

Prediction model

GP

Forecasting

RNN/LSTM

Select hyper-parameter

UCB
(Get the next data point with PSO)

Whether the stop 
condition is met

Y

N

Figure 4. Flow chart of load forecasting.

Table 1. Type and range of hyper-parameters.

Hyper-Parameters Type Range

Feature length Integer (5, 50)
Number of network units Integer (5, 50)
Batch size of training data Integer (32, 4096)

4.2. Comparative Prediction Results

In order to compare the accuracy of several prediction models, the normalized mean
square error (NMSE), the median square error (NMDSE) and coefficient of determination
(R2) are selected as the evaluation of the performance of hyper-parameters, the calculation
formula is as follows:

NMSE = mean[(ŷt − yt)
2/yt

2] (21)

NMDSE = median[(ŷt − yt)
2/yt

2] (22)

R2 = 1−∑(ŷt − yt)2/∑(yt − ȳt)2 (23)

where yt is the actual power consumption at time t, ŷt is the predicted power consumption
at time t. Finally, the values of R2 in Table 2 of models are close to 1, which means that
all of these models achieve an excellent fitting effect. BO-PSO performs better than others
methods in the view of R2. A visual comparison of the values of NMSE is shown in
Figure 5.
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Table 2. The value of R2 for different models.

Model R2

RNN-BO-PSO 0.9909
RNN-BO-L-BFGS-B 0.9908

RNN-BO-TNC 0.9907
LSTM-BO-PSO 0.9951

LSTM-BO-L-BFGS-B 0.9945
LSTM-BO-TNC 0.9948

Figure 5. NMSE box line diagram for different models. (a) Value of NMSE of RNN models for each method. (b) Value of NMSE of
LSTM models for each method.

It can be seen that after optimizing the model, the NMSE value of the BO-PSO method,
whether the maximum value, the minimum value or the average value, is smaller than
that of the other two methods, which shows that the BO-PSO method is effective in this
experiment and is better than the other two methods. After comparing the NMSE and R2

values of the three methods, the final hyper-parameter (Feature length, Number of network
units, Batch size of training data) values are shown in Table 3.

Table 3. The hyper-parameters of each network.

Model Feature Length Number of Network Units Batch Size of Training Data

RNN-BO-L-BFGS-B 44 34 64
RNN-BO-TNC 49 34 64
RNN-BO-PSO 47 38 64

LSTM-BO-L-BFGS-B 23 33 64
LSTM-BO-TNC 23 32 64
LSTM-BO-PSO 45 38 32

To show the comparison of the effects of the three methods more intuitively, the hyper-
parameters in Table 3 are used to train the RNN and LSTM models. The top 300 predictions
for the test set using the proposed method and the comparison method as shown in
Figures 6 and 7, it can be seen that there is an obvious fluctuation law of power load and
the prediction results are closest to the true values. At the same time, the point-by-point
prediction error of each model is shown. It can be observed that the prediction curves fit
well for these six models. The error curves of RNN-BO-PSO and LSTM-BO-PSO fluctuate
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smoothly. The error of RNN-BO-PSO and LSTM-BO-PSO are obviously less than the other
models in Figures 6 and 7. After calculation, the NMSE value and NMDSE value of models
are obtained, as shown in Table 4. Figure 8 shows the comparison of the two indicators,
respectively. As can be seen from the chart, the two models optimized based on the BO-PSO
method have the smallest NMSE and NMDSE. Thus, it can be seen that the optimization
method in this paper can not only replace the manual selection of hyper-parameters, but
also improve the performance of the model. From the results of Figures 6–8 and Table 4,
we can see that BO-PSO is an effective hyper-parameter optimization method.

Table 4. Error of the prediction result in different models.

Model NMSE (%) NMDSE (%)

RNN-BO-L-BFGS-B 0.0361 0.0106
RNN-BO-TNC 0.0344 0.0102
RNN-BO-PSO 0.0324 0.0092

LSTM-BO-L-BFGS-B 0.0549 0.0172
LSTM-BO-TNC 0.0560 0.0177
LSTM-BO-PSO 0.0556 0.0164

Figure 6. Load prediction for RNN. (a,c,e) The load fitting curves for RNN. (b,d,f) The load prediction error curves for RNN, which
are obtained by subtracting the measured values from the predicted values. And the error curves correspond to the left fitting
curves respectively.
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Figure 7. Load prediction for LSTM. (a,c,e) The load fitting curves for LSTM. (b,d,f) The load prediction error curves for LSTM,
which are obtained by subtracting the measured values from the predicted values. And the error curves correspond to the left fitting
curves respectively.

Figure 8. Comparison of values of NMSE and NMDSE. (a) Values of NMSE and NMDSE of RNN models optimized with the BO-PSO,
BO-L-BFGS-B and BO-TNC (b) Values of NMSE and NMDSE of LSTM models optimized with the BO-PSO, BO-L-BFGS-B and BO-TNC.

5. Conclusions

Hyper-parameters have been a key problem in the practical application of machine
learning models. In this paper, the BO-PSO algorithm is proposed, which gives full play
to the simple calculation of PSO and high sample efficiency of BO for time series data
modeling. In this method, the PSO algorithm is used to solve the maximum value of the
acquisition function, to obtain new points to be evaluated, which solves the problem that
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the basic method needs to calculate the gradient and greatly reduces the computational
complexity. Finally, we use BO-PSO to confirm the hyper-parameters of RNN and LSTM
models, and compare the optimization results with BO-L-BFGS-B and BO-TNC methods.
The errors of the prediction result in different models show that BO-PSO is an effective
hyper-parameter optimization method, which can be applied to power load forecasting
based on neural network model.

However, the algorithm has not been run in the high-dimensional space. In the future
work, we plan to continue to improve the BO-PSO algorithm on this basis, so that it can
also run effectively in high-dimensional space.
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17. Regulski, P.; Vilchis-Rodriguez, D.S.; Djurović, S.; Terzija, V. Estimation of composite load model parameters using an improved

particle swarm optimization method. IEEE Trans. Power Deliv. 2014, 30, 553–560. [CrossRef]
18. Schwaab, M.; Biscaia, E.C., Jr.; Monteiro, J.L.; Pinto, J.C. Nonlinear parameter estimation through particle swarm optimization.

Chem. Eng. Sci. 2008, 63, 1542–1552. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2981141
http://dx.doi.org/10.1109/TASE.2020.2983061
http://dx.doi.org/10.1016/j.aei.2020.101166
http://dx.doi.org/10.3390/pr8091123
http://dx.doi.org/10.1007/s11554-017-0717-0
http://dx.doi.org/10.1109/97.789608
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1109/ACCESS.2020.2981072
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1016/S0377-0427(00)00426-X
http://dx.doi.org/10.5539/cis.v3n1p180
http://dx.doi.org/10.1109/TPWRD.2014.2301219
http://dx.doi.org/10.1016/j.ces.2007.11.024


Algorithms 2021, 14, 163 13 of 13

19. Wenjing, Z. Parameter identification of LuGre friction model in servo system based on improved particle swarm optimization
algorithm. In Proceedings of the Chinese Control Conference, Zhangjiajie, China, 26–31 July 2007.

20. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the Neural
Information Processing Systems Foundation, Granada, Spain, 20 November 2011.

21. Krajsek, K.; Mester, R. Marginalized Maximum a Posteriori Hyper-parameter Estimation for Global Optical Flow Techniques.
In Proceedings of the American Institute of Physics Conference, Paris, France, 8–13 July 2006.

22. Fumo, N.; Biswas, M.R. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 2015,
47, 332–343. [CrossRef]

23. Liao, Z.; Gai, N.; Stansby, P.; Li, G. Linear non-causal optimal control of an attenuator type wave energy converter m4. IEEE Trans.
Sustain. Energy 2019, 11, 1278–1286. [CrossRef]

24. Zhuang, S.J. Cross-scale recurrent neural network based on Zoneout and its application in short-term power load forecasting.
Comput. Sci. 2020, 47, 105–109.

25. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. arXiv 2012, arXiv:1206.2944.
26. Brochu, E.; Cora, V.M.; De Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active

user modeling and hierarchical reinforcement learning. arXiv 2010, arXiv:1012.2599.
27. Rasmussen, C.E. Gaussian processes in machine learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg,

Germany, February 2003.
28. Mahendran, N.; Wang, Z.; Hamze, F.; De Freitas, N. Adaptive MCMC with Bayesian optimization. In Proceedings of the Artificial

Intelligence and Statistics, La Palma, Canary Islands, Spain, 21–23 April 2012.
29. Hennig, P.; Schuler, C.J. Entropy Search for Information-Efficient Global Optimization. J. Mach. Learn. Res. 2012, 13, 1809–1837.
30. Toscano-Palmerin, S.; Frazier, P.I. Bayesian optimization with expensive integrands. arXiv 2018, arXiv:1803.08661.
31. Garrido-Merchán, E.C.; Hernández-Lobato, D. Dealing with categorical and integer-valued variables in bayesian optimization

with gaussian processes. Neurocomputing 2020, 380, 20–35. [CrossRef]
32. Oh, C.; Tomczak, J.M.; Gavves, E.M. Combinatorial bayesian optimization using the graph cartesian product. arXiv 2019,

arXiv:1902.00448.
33. Dai, Z.; Yu, H.; Low, B.K.H.; Jaillet, P. Bayesian optimization meets Bayesian optimal stopping. In Proceedings of the PMLR,

Long Beach, CA, USA, 9–15 June 2019.
34. Gong, C.; Peng, J.; Liu, Q. Quantile stein variational gradient descent for batch bayesian optimization. In Proceedings of the

PMLR, Long Beach, CA, USA, 9–15 June 2019.
35. Paria, B.; Kandasamy, K.; Póczos, B. A flexible framework for multi-objective Bayesian optimization using random scalarizations.

In Proceedings of the PMLR, Toronto, AB, Canada, 3–6 August 2020.
36. Fan, S.K.S.; Jen, C.H. An enhanced partial search to particle swarm optimization for unconstrained optimization. Mathematics

2019, 7, 357. [CrossRef]
37. Fan, S.K.S.; Zahara, E. A hybrid simplex search and particle swarm optimization for unconstrained optimization. Eur. J. Oper. Res.

2007, 181, 527–548. [CrossRef]
38. Hung, C.; Wan, L. Hybridization of particle swarm optimization with the k-means algorithm for image classification.

In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Image Processing, Nashville, TN, USA,
30 March–2 April 2009.

39. Srinivas, N.; Krause, A.; Kakade, S.M.; Seeger, M. Gaussian process optimization in the bandit setting: No regret and experimental
design. arXiv 2009, arXiv:0912.3995.

40. Jiang, M.; Luo, Y.P.; Yang, S.Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization
algorithm. Inf. Process. Lett. 2007, 102, 8–16. [CrossRef]

41. Zheng, Y.; Ma, L.; Zhang, L.; Qian, J. On the convergence analysis and parameter selection in particle swarm optimization.
In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), Xi’an, China,
5 November 2003.

http://dx.doi.org/10.1016/j.rser.2015.03.035
http://dx.doi.org/10.1109/TSTE.2019.2922782
http://dx.doi.org/10.1016/j.neucom.2019.11.004
http://dx.doi.org/10.3390/math7040357
http://dx.doi.org/10.1016/j.ejor.2006.06.034
http://dx.doi.org/10.1016/j.ipl.2006.10.005

	Introduction
	Preliminaries
	Bayesian Optimization
	Particle Swarm Optimization
	Recurrent Neural Network

	BO-PSO
	Algorithm Framework
	Algorithm Framework

	Results
	Data Sets and Setups
	Comparative Prediction Results

	Conclusions
	References

