fj algorithms

Article

Reversed Lempel-Ziv Factorization with Suffix Trees

Dominik Képpl

check for

updates
Citation: Koppl, D. Reversed
Lempel-Ziv Factorization with Suffix
Trees. Algorithms 2021, 14, 161.
https:/ /doi.org/10.3390/a14060161

Academic Editors: Costas Busch,

Shunsuke Inenaga

Received: 17 April 2021
Accepted: 20 May 2021
Published: 21 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

T

M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
koeppl.dsc@tmd.ac.jp; Tel.: +81-3-5280-8626
1 Parts of this work have been published as part of a Ph.D. Thesis.

Abstract: We present linear-time algorithms computing the reversed Lempel-Ziv factorization
[Kolpakov and Kucherov, TCS’09] within the space bounds of two different suffix tree representations.
We can adapt these algorithms to compute the longest previous non-overlapping reverse factor table
[Crochemore et al., JDA’12] within the same space but pay a multiplicative logarithmic time penalty.

Keywords: longest previous non-overlapping reverse factor table; application of suffix trees; reversed
Lempel-Ziv factorization; lossless compression

1. Introduction

The non-overlapping reversed Lempel-Ziv (LZ) factorization was introduced by Kol-
pakov and Kucherov [1] as a helpful tool for detecting gapped palindromes, i.e., substrings
of a given text T of the form SRGS for two strings S and G, where SR denotes the reverse of
S. This factorization is defined as follows: Given a factorization T = F; - - - F; for a string T,
it is the non-overlapping reversed LZ factorization of T if each factor F, for x € [1..z], is
either the leftmost occurrence of a character or the longest prefix of Fy - - - F, whose reverse
has an occurrence in F; - - - Fy_1. It is a greedy parsing in the sense that it always selects
the longest possible such prefix as the candidate for the factor Fy. The factorization can
be written like a macro scheme [2], i.e., by a list storing either plain characters or pairs
of referred positions and lengths, where a referred position is a previous text position
from where the characters of the respective factor can be borrowed. Among all variants
of such a left-to-right parsing using the reversed as a reference to the formerly parsed
part of the text, the greedy parsing achieves optimality with respect to the number of
factors [3] ([Theorem 3.1]) since the reversed occurrence of Fy can be the prefix of any suffix
in F; - - - F;_1, and thus fulfills the suffix-closed property [3] ([Definition 2.2]).

Kolpakov and Kucherov [1] also gave an algorithm computing the reversed LZ fac-
torization in O (n1g o) time using O(n1gn) bits of space, by applying Weiner’s suffix tree
construction algorithm [4] on the reversed text TR. Later, Sugimoto et al. [5] presented an
online factorization algorithm running in O(nlg? o) time using O(n1g) bits of space. We
can also compute the reversed LZ factorization with the longest previous non-overlapping
reverse factor table LPnrF storing the longest previous non-overlapping reverse factor for
each text position. There are algorithms [6-10] computing LPnrF in linear time for strings
whose characters are drawn from alphabets with constant sizes; their used data structures
include the suffix automaton [11], the suffix tree of TR, the position heap [12], and the suffix
heap [13]. Finally, Crochemore et al. [14] presented a linear-time algorithm working with in-
teger alphabets by leveraging the suffix array [15]. To find the longest gapped palindromes
of the form SRGS with the length of G restricted in a given interval Z, Dumitran et al. [16]
([Theorem 1]) restricted the distance of the previous reverse occurrence relative to the
starting position of the respective factor within 7 in their modified definition of LPnrF, and
achieved the same time and space bounds of [14]. However, all mentioned linear-time
approaches use either pointer-based data structures of O(nlgn) bits, or multiple integer
arrays of length n to compute LPnrF or the reversed LZ factorization.

Algorithms 2021, 14, 161. https://doi.org/10.3390/a14060161

https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8721-4444
https://www.mdpi.com/1999-4893/14/6/161?type=check_update&version=1
https://doi.org/10.3390/a14060161
https://doi.org/10.3390/a14060161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14060161
https://www.mdpi.com/journal/algorithms

Algorithms 2021, 14, 161

2 of 25

1.1. Our Contribution

The aim of this paper is to compute the reversed LZ factorization in less space while
retaining the linear time bound. For that, we follow the idea of Crochemore et al. [14]
([Section 4]) who built text indexing data structures on T - # - TR to compute LPnrF for
an artificial character #. However, they need random access to the suffix array, which
makes it hard to achieve linear time for working space bounds within o(n1gn) bits. We
can omit the need for random access to the suffix array by a different approach based on
suffix tree traversals. As a precursor of this line of research we can include the work of
Gusfield [17] ([APL16]) and Nakashima et al. [18]. The former studies the non-overlapping
Lempel-Ziv-Storer-Szymanski (LZSS) factorization [2,19] while the latter the Lempel-Ziv-
78 factorization [20]. Although their used techniques are similar to ours, they still need
O(nlgn) bits of space. To actually improve the space bounds, we follow two approaches:
On the one hand, we use the leaf-to-root traversals proposed by Fischer et al. [21] ([Sec-
tion 3]) for the overlapping LZSS factorization [2] during which they mark visited nodes
acting as signposts for candidates for previous occurrences of the factors. On the other
hand, we use the root-to-leaf traversals proposed in [22] for the leaves corresponding to
the text positions of T to find the lowest marked nodes whose paths to the root constitute
the lengths of the non-overlapping LZSS factors. Although we mimic two approaches for
computing factorizations different to the reversed LZ factorization, we can show that these
traversals on the suffix tree of T - # - TR help us to detect the factors of the reversed LZ
factorization. Our result is as follows:

Theorem 1. Given a text T of length n — 1 whose characters are drawn from an integer alphabet
with size 0 = n®W), we can compute its reversed LZ factorization

o in O(en) time using (2 + €)nlgn + O(n) bits (excluding the read-only text T), or
o in O(en) time using O(e~'nlgo) bits,
for a selectable parameter € € (0,1].

On the downside, we have to admit that the results are not based on new tools, but
rather a combination of already existing data structures with different algorithmic ideas.
On the upside, Theorem 1 presents the first linear-time algorithm computing the reversed
LZ factorization using a number of bits linear to the input text T, which is o(nlgn) bits
for Igo = o(lgn). Interestingly, this has not yet been achieved for the seemingly easier
non-overlapping LZSS factorization, for which we have O(e~1nlog n) time within the
same space bound [22] ([Theorem 1]). We can also adapt the algorithm of Theorem 1 to
compute LPnrF, but losing the linear time for the O(n lg o)-bits solution:

Theorem 2. Given a text T of length n — 1 whose characters are drawn from an integer al-
phabet with size ¢ = n°W), we can compute a 2n-bits representation of its longest previous
non-overlapping reverse factor table LPnrF

o inO(e 'n) time using (2 + €)nlgn + O(n) bits (excluding the read-only text T), or

o inO(e nlogs n) time using O(e 1nlgo) bits,

for a selectable parameter € € (0,1]. We can augment our LPnrF representation with an o(n)-bits
data structure to provide constant-time random access to LPnrF entries.

We obtain the 2n-bits representation of LPnrF with the same compression technique
used for the permuted longest common prefix array [23] ([Theorem 1]) (see [24] ([Defini-
tion 4]) for several other examples).

1.2. Related Work

To put the above theorems into the context of space-efficient factorization algorithms
that can also compute factor tables like LPnrF, we briefly list some approaches for different
variants of the LZ factorization and of LPnrF. We give Table 1 as an overview. We are

Algorithms 2021, 14, 161

30f25

aware of approaches to compute the overlapping and non-overlapping LZSS factorization,
as well as the longest previous factor (LPF) table LPF [25,26] and the longest previous
non-overlapping table LPnF [14]. We can observe in Table 1 that only the overlapping
LZSS factorization does not come with a multiplicative log’, 1 time penalty when working
within O(e~'nlg o) bits. Note that the time and space bounds have an additional multi-
plicative e ! penalty (unlike described in the references therein) because the currently best
construction algorithms of the compressed suffix tree (described later in Section 2) works
in O(e~'n) time and needs O (e~ 'nlg o) bits of space [27] ([Section 6.1]).

Regarding space-efficient algorithms computing the LZSS factorization, we are aware
of the linear-time algorithm of Goto and Bannai [28] using n1gn 4+ O(c1gn) bits of work-
ing space. For en bits of space, Kiarkkdinen et al. [29] can compute the factorization
in O(nlgnlglgo) time, which got improved to O(n(lgo + lglgn)) by Kosolobov [30].
Finally, the algorithm of Belazzougui and Puglisi [31] uses O(n1g) bits of working space
and O(nlglgo) time.

Another line of research is the online computation of LPF. Here, Okanohara and
Sadakane [32] gave a solution that works in 1 1g & + O (n) bits of space and needs O (n1g> 1)
time. This time bound got recently improved to O (n1g? 1) by Prezza and Rosone [33].

Table 1. Complexity bounds of related approaches described in Section 1.2 for a selectable parameter
€€ (0,1].

(1+ e)nlgn + O(n) Bits of Working Space (Excluding the Read-Only Text T)

Reference Type Time

[21] ([Corollary 3.7]) overlapping LZSS O(en)

[34] ((Lemma 6]) LPF O(e™n)

[22] ([Theorem 1]) non-overlapping LZSS O(eiln)
[22]([Theorem 3]) LPnF O(e_ln)

O (e nlg o) Bits of Working Space

Reference Type Time

[21] ([Corollary 3.4]) overlapping LZSS O(eiln)

[34] ([Lemma 6]) LPF O(e tnlogs n)
[22] ([Theorem 1]) non-overlapping LZSS O(e"n logé n)
[22] ([Theorem 3]) LPnF O(e~tnlogs n)

1.3. Structure of this Article

This article is structured as follows: In Section 2, we start with the introduction of the
suffix tree representations we build on the string T - # - TR, and introduce the reversed LZ
factorization in Section 3. We present in Section 3.2 our solution for the claim of Theorem 1
without the referred positions, which we compute subsequently in Section 3.3. Finally, we
introduce LPnrF in Section 4, and give two solutions for Theorem 2. One is a derivation
of our reversed-LZ factorization algorithm of Section 3.2.2 (cf. Section 4.1), the other is a
translation of [14] ([Algorithm 2]) to suffix trees (cf. Section 4.2).

2. Preliminaries

With lg we denote the logarithm log, to base two. Our computational model is the
word RAM model with machine word size ()(Ign) for a given input size n. Accessing a
word costs O(1) time.

Let T be a text of length n — 1 whose characters are drawn from an integer alphabet
Y =1[1..0] witho = n9) . Given X,Y,Z € L* with T = XYZ, then X, Y and Z are
called a prefix, substring and suffix of T, respectively. We call T[i..] the i-th suffix of T,
and denote a substring T[i|T[i + 1] -- - T[j] with T[i..j]. Fori > j, [i..] and T[i.. j] denote
the empty set and the empty string, respectively. The reverse TR of T is the concatenation
TR := T[n — 1]T[n — 2] - - - T[1]. We further write T[i .. j]% := T[j]T[j — 1] - - - T[i].

Algorithms 2021, 14, 161

4 0f 25

Given a character ¢ € X, and an integer j, the rank query T.rank.(j) counts the
occurrences of ¢ in T[1..j], and the select query T.select.(j) gives the position of the j-th ¢
in T, if it exists. We stipulate that rank.(0) = select.(0) = 0. If the alphabet is binary, i.e.,
when T is a bit vector, there are data structures [35,36] that use o(| T|) extra bits of space, and
can compute rank and select in constant time, respectively. There are representations [37]
with the same constant-time bounds that can be constructed in time linear in |T|. We say
that a bit vector has a rank-support and a select-support if it is endowed by data structures
providing constant time access to rank and select, respectively.

From now on, we assume that there exist two special characters # and $ that do not
appear in T, with $ < # < ¢ for every character ¢ € 2. Under this assumption, none of
the suffixes of T - # and TR - $ has another suffix as a prefix. Let R := T -#- TR - . R has
length |R| = 2|T| 42 = 2n.

The suffix tree ST of R is the tree obtained by compacting the suffix trie, which is the
trie of all suffixes of R. ST has 2n leaves and at most 2n — 1 internal nodes. The string
stored in a suffix tree edge e is called the label of e. The children of a node v are sorted
lexicographically with respect to the labels of the edges connecting the children with v.
We identify each node of the suffix tree by its pre-order number. We do so implicitly such
that we can say, for instance, that a node v is marked in a bit vector B, i.e., B[v] = 1, but
actually have B[i] = 1, where i is the pre-order number of v. The string label of a node v
is defined as the concatenation of all edge labels on the path from the root to v; v’s string
depth, denoted by str_depth(v), is the length of v’s string label. The operation suffixlink(v)
returns the node with string label S[2..] or the root node, given that the string label of v
is S with |S| > 2 or a single character, respectively. suffixlink is undefined for the root node.

The leaf corresponding to the i-th suffix R[i..] is labeled with the suffix number i €
[1..2n]. We write sufnum(A) for the suffix number of a leaf A. The leaf-rank is the preorder
rank (€ [1..2n]) of a leaf among the set of all ST leaves. For instance, the leftmost leaf
in ST has leaf-rank 1, while the rightmost leaf has leaf-rank 2n. To avoid confusing the
leaf-rank with the suffix number of a leaf, let us bear in mind that the leaf-ranks correspond
to the lexicographical order of the suffixes (represented by the leaves) in R, while the suffix
numbers induce a ranking based on the text order of R’s suffixes. In this context, the
function suffixlink (A) returns the leaf whose suffix number is sufnum(A) + 1. The reverse
function of suffixlink on leaves is prev_leaf(A) that returns the leaf whose suffix number is
sufnum(A) — 1, or 2 if sufnum(A) = 1 (We do not need to compute suffixlink(A) for a leaf
with sufnum(A) = 2n, but want to compute prev_leaf(A) for the border case sufnum(A) = 1.).

In this article, we focus on the following two ST representations: the compressed
suffix tree (CST) [23,38] and the succinct suffix tree (SST) [21] ([Section 2.2.3]). Both can be
computed in O(e 1) time, where the former is due to a construction algorithm given by
Belazzougui et al. [27] ([Section 6.1]), and the latter due to [21] ([Theorem 2.8]). These two
representations provide some of the above described operations in the time bounds listed
in Table 2. Each representation additionally stores the pointer smallest_leaf to the leaf with
suffix number 1, and supports the following operations in constant time, independent of e:

leaf rank(A) returns the leaf-rank of the leaf A;

depth(v) returns the depth of the node v, which is the number of nodes on the path
between v and the root (exclusive) such that root has depth zero;

level_anc(A,d) returns the level-ancestor of the A on depth d; and
Ica(u,v) returns the lowest common ancestor (LCA) of u and v.

As previously stated, we implicitly represent nodes by their pre-order numbers such
that the above operations actually take pre-order numbers as arguments.

Algorithms 2021, 14, 161

5of 25

Table 2. Left: construction time and needed space in bits for the succinct suffix tree (SST) and
compressed suffix tree (CST) representations (cf. [21] ([Section 2.2)). Right: time bounds for certain
operations needed by our LZ factorization algorithms. Although not explicitly mentioned in [21], the
time for prev_leaf is obtained with the Burrows—Wheeler transform [39] stored in the CST [38] ([A.1])
by constant-time partial rank queries [27,38] ([Section 3.4] and [A.4]).

SST CST Operation SST Time CST Time
Time O(n/e) O(e™n) sufnum(A) O(1/¢) O(n)
Space (2+e)nlgn+0O(n) O(e nlgo) str_depth(v) O(1/€) O(str_depth(v))
suffixlink(v) O(1/€) o)
prev_leaf O(1/e€) o)

3. Reversed LZ Factorization

A factorization of T of size z partitions T into z substrings F; - - - F;, = T. Each such
substring Fy is called a factor. A factorization is called reversed LZ factorization if each
factor Fy is either the leftmost occurrence of a character or the longest prefix of Fy - - - F,
that occurs at least once in (F; - - - Fx_l)R, for x € [1..z]. A similar but much well-studied
factorization is the non-overlapping LZSS factorization, where each factor F; is either
the leftmost occurrence of a character or the longest prefix of Fy - - - F;, that occurs at least
oncein Fy - - - F,_1, for x € [1..z]. See Figure 1 for an example and a comparison of both
factorizations. In what follows, let z denote the number of reversed-LZ factors of T.

T — a b B8 b'5'a BIaNb T—abB@Ebbabab
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
T J (N)
(5,3) (1,2)
Coding: Coding;:

ab(2,2)(3,3)(5,3)

reversed LZ

ab(2,1)(1,3)(1,2)(1,2)
non-overlapping LZSS

Figure 1. The reversed LZ and the non-overlapping LZSS factorization of the string T = abbabbabab.
A factor F is visualized by a rounded rectangle. Its coding consists of a mere character if it has
no reference; otherwise, its coding consists of its referred position p and its length ¢ such that
F = T[p—{+1..p]% for the reversed LZ factorization, and F = T[p..p + ¢ — 1] for the non-
overlapping LZSS factorization.

3.1. Coding

We classify factors into fresh and referencing factors: We say that a factor is fresh
if it is the leftmost occurrence of a character. We call all other factors referencing. A
referencing factor Fy has a reference pointing to the ending position of its longest previous
non-overlapping reverse occurrence; as a tie break, we always select the leftmost such
ending position. We call this ending position the referred position of Fy. More precisely, the
referred position of a factor F, = T[i..i+ ¢ — 1] is the smallest text position j with j <i—1
and T[j—¢+1.. j]R = T[i..i+ ¢ —1]. If we represent each referencing factor as a pair
consisting of its referred position and its length, we obtain the coding shown in Figure 1.
Although our tie breaking rule selecting the leftmost position among all candidates for the
referred position seems up to now arbitrary, it technically simplifies the algorithm in that
we only have to index the very first occurrence.

3.2. Factorization Algorithm

In the following, we describe our factorization algorithm working with ST. This
algorithm performs traversals on paths connecting leaves with the root, during which it

Algorithms 2021, 14, 161

6 of 25

marks certain nodes. One kind of these marked nodes are phrase leaves: A phrase leaf
is a leaf whose suffix number is the starting position of a factor. We say that a phrase
leaf A corresponds to a factor F if the suffix number of / is the starting position of F. We
call all other leaves non-phrase leaves. Another kind are witnesses, a notion borrowed
from [21] ([Section 3]): Witnesses are nodes that create a connection between referencing
factors and their referred positions. We formally define them as follows: given A is the
phrase leaf corresponding to a referencing factor F, the witness w of F is the LCA of A and
a leaf with suffix number 2n — j (with j € [1..n — 1]) such that T[j — str_depth(w) + 1. .j]R
is the longest substring in T[1.. sufnum(A) — 1% that is a prefix of T[sufnum(A) ..]. The
smallest such j is the referred position of A, which is needed for the coding in Section 3.1.
See Figure 2 for a sketch of the setting. In what follows, we show that the witness of
a referencing factor F is the node whose string label is F. Generally speaking, for each
substring S of T, there is always a node whose string label has S as a prefix, but there
maybe no node whose string label is precisely S. This is in particular the case for the
non-overlapping LZSS factorization [22] ([Section 3.1]). Here, we can make use of the fact
that the suffix number 27 — j for a referred position j is always larger than the length of T,
which we want to factorize:

root

7

:
=

[

e

Figure 2. Witness node w of a referencing factor F starting at text position i. Given j is the referred
position of F, the witness w of F is the node in the suffix tree having (a) F as a prefix of its string label
and (b) the leaves with suffix numbers 21 — j and i in its subtree. Lemma 1 shows that w is uniquely
defined to be the node whose string label is F.

Lemma 1. The witness of each referencing factor exists and is well-defined.

Proof. To show that each referencing factor is indeed the string label of an ST node, we
review the definition of right-maximal repeats: A right-maximal repeat is a substring of R
having atleast two occurrences R[ij ..i1 + ¢ — 1] and Rlip . .ip + £ — 1] with R[i; +¢] # R[ip +
¢]. A right-maximal repeat is the string label of an ST node since this node has at least two
children; those two children are connected by edges whose labels start with R[i; + ¢] and
Rlip + ¢], respectively. It is therefore sufficient to show that each factor F is a right-maximal
repeat. Given j is the referred position of F = T[i..i+ |[F| —1], F = T[j— |F| +1..j]f =
R[2n—j..2n—j+ |F| —1]. If j = |F|, then T[i + |F|] # R[2n — j+ |F|] = $, and thus F is
a right-maximal repeat. For the other case that j > |F| + 1, assume that F is not a right-
maximal repeat. Then T[i + |F|] = R[2n — j + |F|] = T[j — |F|]. However, this means that
F is not the longest reversed factor being a prefix of T[i..], a contradiction. We visualized
the situation in Figure 3. O

Consequently, the referred position of a factor Fy = T[i..i+ ¢ — 1] is the smallest text
position j in T with j <i — 1 and one of the two equivalent conditions hold:

o T[j—t+1..]R=Tli..i+¢—1];0r
e R[i..]and R[2n — j..] have the longest common prefix of length .

Algorithms 2021, 14, 161

7 of 25

R=| [a] ER F [a] [#] j F [a] [$]

j—|F] J+1 i+ |F| 2n —j + |F|
K T Ak TR A
Figure 3. A reversed-LZ factor F starting at position i in R with a referred positionj > |F|+ 1. Ifa=a

with a,a € X, then we could extend F by one character, contradicting its definition to be the longest
prefix of T[i..] whose reverse occurs in T[1..i — 1]. Hence, a # & and F is a right-maximal repeat.

3.2.1. Overview

We explain our factorization algorithm in terms of a cooperative game with two
players (We use this notation only for didactic purposes; the terminology must not be
confused with game theory. Here, the notion of player is basically a subroutine of the
algorithm having private and shared variables.), whose pseudo code we sketched in
Algorithm 1. Player 1 and Player 2 are allowed to access the leaves with suffix numbers
in the ranges [1..#n] and [n..2n — 1], respectively. Player 1 (resp. Player 2) starts at the
leaf with the smallest (resp. largest) suffix number, and is allowed to access the leaf with
the subsequently next (resp. previous) suffix number via suffixlink (resp. prev_leaf). Hence,
Player 1 simulates a linear forward scan in the text T, while Player 2 simulates a linear
backward scan in TR. Both players take turns at accessing leaves at the same pace. To be
more precise, in the i-th turn, Player 1 processes the leaf with suffix number i, whereas
Player 2 processes the leaf with suffix number 2n — i. In one turn, a player accesses a
leaf A and maybe performs a traversal on the path connecting the root with A. For such a
traversal, we use level ancestor queries to traverse each node on the path in constant time.
Whenever Player 2 accesses the leaf with suffix number 7 (shared among both players), the
game ends; at that time both players access the same leaf (cf. Line 6 in Algorithm 1). In
the following, we call this game a pass (with the meaning that we pass all relevant text
positions). Depending on the allowed working space, our algorithm consists of one or two
passes (cf. Section 3.3). The goal of Player 2 is to keep track of all nodes she visits. Player 2
does this by maintaining a bit vector By of length 4n such that By[v] stores whether a
node v has already been visited by Player 2, where we represent a node v by its pre-order
number when using it as an index of a bit vector. To keep things simple, we initially mark
the root node in By at the start of each pass. By doing so, after the i-th turn of Player 2 we
can read any substring of T[1 ..] R by a top-down traversal from the suffix tree root, only
visiting nodes marked in By. This is because of the invariant that the set of nodes marked
in By is upper-closed, i.e., if a node v is marked in By, then all its ancestors are marked in
By as well.

The goal of Player 1 is to find the phrase leaves and the witnesses. For that, she
maintains two bit vectors By, and By of length n and 4n, respectively, whose entries are
marked similarly to By by using the suffix numbers (€ [1..#1]) of the leaves accessed by
Player 1 and preorder numbers of the internal nodes. We initially mark smallest_leaf in
By since text position 1 is always the starting position of the fresh factor F;. By doing so,
after the i-th turn of Player 1 we know the ending positions of those factors contained in
T[1..i], which are marked in By. To sum up, after the i-th turn of both players we know
the computed factors starting at text positions up to i thanks to Player 1, and can find the
factor lengths thanks to Player 2, which we explain in detail in Section 3.2.2. There, we will
show that the actions of Player 2 allow Player 1 to determine the starting position of the
next factor. For that, she computes the string depth of the lowest ancestor marked in By of
the previously visited phrase leaf. See Appendix A.

As a side note: since we are only interested in the factorization of T[1..7n — 1] (omitting
the appended # at position n), we do not need Player 1 to declare the leaf with suffix

Algorithms 2021, 14, 161

8 of 25

number n a phrase leaf. We also terminate the algorithm when both players meet at
position n without checking whether we have found a new factor starting at position 7.

Algorithm 1: Algorithm of Section 3.2.2 computing the non-overlapping re-
versed LZ factorization. The function max_sufnum is described in Section 3.3.

1 ST « suffixtreeof R=T-#-TR-$

> AR« prev_leaf(prev_leaf(smallest leaf)) > sufnum(AR) = 2n — 1
3 A ¢ smallest leaf
4 By[rootnode] + 1 > at the beginning, only the root node is marked in By
5 BL[1] + 1 > |Fy | starts at text position 1
6 while A # AR do > we stop after having parsed T|[1..n]
7 | if By[sufnum(A)] = 1 then > turn of Player 1
8 d<+0
9 while By[level_anc(A,d+1)] =1dod «+d+1
10 w < level_anc(A,d) > w is lowest node marked in By
11 if w is the root then
12 output fresh factor
13 B [sufnum(A) +1] +— 1 > next factor starts directly after sufnum(A)
14 else > w is the witness of A
15 output length str_depth(w)
16 B [sufnum(A) + str_depth(w)] < 1
17 output referred position 21 — max_sufnum(w) > for the one-pass
variant
18 Bw[w] 1 > for the two-pass variant
19 | A < suffixlink(A) > end of Player 1’s turn
20 foreach node v on the path from AR up to the root do > turn of Player 2
21 if By[v] = 1 thenbreak > end turn on reaching an already marked node
22 L By[v] 1
25 | AR« prev_leaf(AR) > end of Player 2’s turn

3.2.2. One-Pass Algorithm in Detail

In detail, a pass works as follows: at the start, Player 1 and Player 2 select smallest_leaf
and prev_leaf(prev_leaf(smallest_leaf)), i.e., the leaves with suffix numbers 1 and 2n — 1,
respectively. Now the players take action in alternating turns, starting with Player 1.
Nevertheless, we first explain the actions of Player 2, since Player 2 acts independently of
Player 1, while Player 1’s actions depend on Player 2.

Suppose that Player 2 is at a leaf AR (cf. Line 20 of Algorithm 1). Player 2 traverses
the path from AR to the root upwards and marks all visited nodes in By until arriving at
a node v already marked in By (such a node exists since we mark the root in By at the
beginning of a pass.). When reaching the marked node v, we end the turn of Player 2, and
move Player 2 to prev_leaf(AR) at Line 23 (and terminate the whole pass in Line 6 when
this leaf has suffix number n). The foreach loop (Line 20) of the algorithm can be more
verbosely expressed with a loop iterating over all depth offsets d in increasing order while
computing v « level_anc(AR,d) until either reaching the root or a node marked in By.
Subsequently, the turn of Player 1 starts (cf. Line 7). We depict the state after the first turn
of Player 2 in Figure 4.

If Player 1 is at a non-phrase leaf A, we skip the turn of Player 1, move Player 1 to
suffixlink(A) at Line 19, and let Player 2 take action. Now suppose that Player 1 is at a
phrase leaf A corresponding to a factor F. Then we traverse the path from the root to A
downwards to find the lowest ancestor w of A marked in By. If w is the root node, then F is
a fresh factor (cf. Line 11), and we know that the next factor starts immediately after F (cf.
Line 13). Consequently, the leaf suffixlink(A) is a phrase leaf. Otherwise, w is the witness
of A, and str_depth(w) = |F| (cf. Line 14). Hence, sufnum(A) + str_depth(w) is the suffix

Algorithms 2021, 14, 161

9 of 25

number of the phrase leaf A that Player 1 will subsequently access. We therefore mark w and
sufnum(A) = sufnum(A) + str_depth(w) in By and in By, respectively (cf. Lines 16 and 18).
We depict the fifth turn of our running example in Figure 5, during which Player 1 marks a
witness node. Finally, we end the turn of Player 1, move Player 1 to suffixlink(A) at Line 19,
and let Player 2 take action.

al
4

Figure 4. Suffix tree of T# - TR . $ used in Section 3.2, where T = abbabbabab is our running example.
The nodes are labeled by their preorder numbers. The suffix number of each leaf A is the underlined
number drawn in dark yellow below A. We trimmed the label of each edge to a leaf having more than
two characters and display only the first character and the vertical dots *" as a sign of omission. The
tree shows the state of Algorithm 1 after the first turn of both players. The nodes visited by Player 2
are colored in blue (_]), the phrase leaves are colored in green). Player 1 and 2 are represented by
the hands & and @, respectively, pointing to the respective leaves they visited during the first turn.

Figure 5. Continuation of Figure 4 with the state at the fifth turn of Player 1. Additionally to the
coloring used in Figure 4, witnesses are colored in red). In this figure, Player 1 just finished her
turn on making the node with preorder number 32 the witness w of the leaf with suffix number 5.
With w we know that the factor starting at text position 5 has the length str_depth(w) and that the
next phrase leaf has suffix number 8. For visualization purposes, we left the hand () of Player 2
below the leaf of her last turn.

Correctness. When Player 1 accesses the leaf A with suffix number i, Player 2 has
processed all leaves with suffix numbers [2n —i +1..2n — 1]. Due to the leaf-to-root
traversals of Player 2, each node marked in By has a leaf with a suffix number in [2n —i +
1..2n —1] inits subtree. In particular, a node w is marked in By if and only if the string label

Algorithms 2021, 14, 161

10 of 25

of wis a substring of R[2n —i+1..2n — 1]. Because R2n —i+1..2n — R=T..i-1,
the longest prefix of T[i..| having a reversed occurrence in T[1..7 — 1] is therefore one of
the string labels of the nodes marked in By. In particular, we search the longest string label
among those nodes, which we obtain with the lowest ancestor of A marked in By.

3.2.3. Time Complexity

First, let us agree on that we never compute the suffix number of a leaf since this is a
costly operation for CST (cf. Table 2). Although we need the suffix numbers at multiple
occasions, we can infer them if each player maintains a counter for the suffix number
of the currently visited leaf. A counter is initialized with 1 (resp. 2n — 1) and becomes
incremented (resp. decremented) by one when moving to the succeeding (resp. preceding)
leaf in suffix number order. This works since both players traverse the leaves linearly in
the order of the suffix numbers (either in ascending or descending order).

Player 2 visits n leaves, and visits only unvisited nodes during a leaf-to-root traversal.
Hence, Player 2’s actions take O(n) overall time.

Player 1 also visits n leaves. Since Player 1 has no business with the non-phrase leaves,
we only need to analyze the time spent by Player 1 for a phrase leaf corresponding to
a factor F: If F is fresh, then the root-to-leaf traversal ends prematurely at the root, and
hence we can determine in constant time whether F is fresh or not. If F is referencing, we
descend from the root to the lowest ancestor w marked in By, and compute str_depth(w)
to determine the suffix number of the next phrase leaf (cf. Line 15 of Algorithm 1). Since
depth(w) < str_depth(w), we visit at most |F| + 1 nodes before reaching w. Computing
str_depth(w) takes O(1/€) time for the SST, and O(|F|) time for the CST. This seems costly,
but we compute str_depth(w) for each factor only once. Since the sum of all factor lengths
is n, we spend O(n + z/¢€) time or O(n) time for computing all factor lengths when using
the SST or the CST, respectively. We finally obtain the time bounds stated in Theorem 1 for
computing the factorization.

3.3. Determining the Referred Position

Up to now, we can determine the reversed-LZ factors F; - - - F, = T with By, marking
the starting position of each factor with a one. Yet, we have not the referred positions
necessary for the coding of the factors (cf. Section 3.1). To obtain them, we have two options:
The first option is easier but comes with the requirement for a support data structure on ST
for the operation

max_sufnum(v) returning the maximum among all suffix numbers of the leaves in the
subtree rooted in v.

We can build such a support data structure in O(e~'n) time (resp. O (e~ 'nlog n)
time) using O (n) bits to support max_sufnum in O(e~!) time (resp. O (e~ log® n) time) for
the SST (resp. CST); see [22] ([Section 3.3]). Being able to query max_sufnum, we can directly
compute the referred position of a factor F when discovering its witness w during a turn of
Player 1 by max_sufnum(w). max_sufnum(w) gives us the suffix number of a leaf that has
already been accessed by Player 2 since Player 2 accesses the leaves in descending order
with respect to the suffix numbers, and w must have already been accessed by Player 2
during a leaf-to-root traversal (otherwise w would not have been marked in By). Since
R[max_sufnum(w) .. max_sufnum(w) + str_depth(w) — 1] = FR, the referred position of F is
2n — max_sufnum(w). Consequently, we can compute the coding of the factors during a
single pass (cf. Line 17 of Algorithm 1), and are done when the pass finishes.

The second option does not need to compute max_sufnum and retains the linear time
bound when using CST. Here, the idea is to run an additional pass, whose pseudo code
is given in Algorithm 2. For this additional pass, we do the following preparations: Let
zw be the number of witnesses, which is at most z since there can be multiple factors
having the same witness. We keep By, and Bw marking the phrase leaves and the wit-
nesses, respectively. However, we clear By such that Player 2 has again the job to log her

Algorithms 2021, 14, 161

11 of 25

visited nodes in By. We augment By with a rank-support such that we can enumerate
the witnesses with ranks from 1 to at most zy, which we call the witness rank. We addi-
tionally create an array W of zy 1g n bits. We want W[By. rank; (w)] to store the referred
position 2n — max_sufnum(w) € [1..n — 1] for each witness w such that we can read the
respective referred position from W when Player 1 accesses w. We assign the task for
maintaining W to Player 2. Player 2 can handle this task by taking additional action when
visiting a witness (i.e., a node marked in By) during a leaf-to-root traversal: When visiting
a witness node w with witness rank i from a leaf A, we write W[i] + 2n — sufnum(A) if
w is not yet marked in By (cf. Line 15 in Algorithm 2). Like before, Player 2 terminates
her turn whenever she visits an already visited node. The actions of Player 1 differ in
that she no longer needs to compute By and By: When Player 1 visits a phrase leaf A, she
locates the lowest ancestor w of A marked in By, which has to be marked in By, too (as a
side note: storing the depth of the witness of each phrase leaf in a list, sorted by the suffix
numbers of these leaves, helps us to directly jump to the respective witness in constant
time. We can encode this list as a bit vector of length O(n) by storing each depth in unary
coding (cf. [22] ([Section 3.4])). Nevertheless, we can afford the root-to-witness traversals
of Player 1 since we visit at most }_;_; |Fx| = #n nodes in total.). With the rank-support on
Bw, we can compute w'’s witness rank i, and obtain the referred position of A with W[i] (cf.
Line 10 of Algorithm 2). We show the final state after the first pass in Figure 6, together
with W computed in the second pass.

i
Bw.select; (i) 20 22 32
Wi 2 5 3

Figure 6. State of our running example at termination of Algorithm 1. We have computed the bit
vector By, of length n = 11 storing a one at the entries 1,2, 3,5, and 8, i.e., the suffix numbers of the
phrase leaves, which are marked in green (), and the bit vector By of length 38 (the maximum
preorder number of an ST node) storing a one at the entries 20,22, and 32, i.e., the preorder numbers
of the witnesses, which are colored red (D). During the second pass described in Section 3.3, we
compute W storing the referred positions in the order of the witness ranks (left table).

Overall, the time complexity is O(e~!n) time when working with either the SST or
the CST. We use o(n) additional bits of space for the rank-support of By, but costly zyw lgn
bits for the array W. However, we can bound zyw by O(nlgo/1gn) since zy is the number
of distinct reversed LZ factors, and by an enumeration argument [40] ([Thm. 2]), a text
of length n can be partitioned into at most O(n/ log, n) distinct factors. Hence, we can

Algorithms 2021, 14, 161

12 of 25

store W in zyw Ign = O(nlg o) bits of space. With that, we finally obtain the working space
bound of O(e~!nlg o) bits for the CST solution as claimed in Theorem 1.

Algorithm 2: Determining the referred positions in a second pass described in
Section 3.3.

1 AR < prev_leaf(prev_leaf(smallest leaf)) and A < smallest leaf

2 clear By and set By [root node| + 1

3 W < array of size z1gz

2 while A # AR do

5 | if Bp[sufnum(A)] =1 then > turn of Player 1

6 d<0

7 while By[level_anc(A,d+1)] =1dod «—d+1

8 w < level_anc(A,d)

9 if w is the root then output fresh factor

10 else output referred position W[By. rank; (w)] > invariant: By [w] = 1
11 A < suffixlink(A) > end of Player 1’s turn
12 foreach node v on the path from AR up to the root do > turn of Player 2
13 if By[v] = 1thenbreak > end turn on reaching an already marked node
14 By[v] «+ 1

15 if By [0] = 1 then W[By. rank; (v)] = 21 — sufnum(AR)
16 | AR« prev_leaf(AR) > end of Player 2’s turn

4. Computing LPnrF

The longest previous non-overlapping reverse factor table LPnrF[1 .. 1] is an array
such that LPnrF[i] is the length of the longest prefix of T[i ..] - # occurring as a substring
of T[1..i—1]%. (Appending # at the end is not needed, but simplifies the analysis for
T[1..n — 1] - # having precisely n characters.) Having LPnrF, we can iteratively compute
the reversed LZ factorization because Fy = Tlky .. kyx + max (0, LPnrF[ky] — 1)] with ky :=
1 +Z;;%‘Fy| forx e [1..z].

The counterpart of LPnrF for the non-overlapping LZSS factorization is the longest
previous non-overlapping factor table LPnF[1 .. 1], which is defined similarly, but stores the
maximal length of the longest common prefix (LCP) of T ..] with all substrings T[j..i — 1]
forj € [1..i—1]. See Table 3 for a comparison. Analogously to [34] ([Corollary 5]) or [24]
([Definition 4]) for the longest previous factor table LPF [22,26] ([Lemma 1]) for LPnF, LPnrF
holds the following property:

Lemma 2 ([14] (Lemma 2)). LPnrF[i —1] —1 < LPnrF[i] <n—ifori e [2..n].

Hence, we can encode LPnrF in 21 bits by writing the differences LPnrF[i] — LPnrF[i —

1] 4+ 1 > 0 in unary, obtaining a bit sequence of (a) n ones for the n entries and (b)

* o (LPnrF[i] — LPnrF[i — 1] + 1) < n many zeros. We can decode this bit sequence
by reading the differences linearly because we know that LPnrF[1] = 0.

Table 3. LPnrF and LPnF of our running example. Both arrays are defined in Section 4. See Section 5
for the definition of LPrF.

i 1 2 3 4 5 6 7 8 9 10 11
T# a b b a b b a b a b #
LPnrF 0 0 2 1 3 3 2 3 2 1 0
LPnF 0 0 1 3 3 3 2 3 2 1 0
LPrF 0 6 5 5 4 3 2 3 2 1 0

Algorithms 2021, 14, 161

13 of 25

4.1. Adaptation of the Single-Pass Algorithm

Having an O(n)-bits representation of LPnrF gives us hope to find an algorithm
computing LPnrF in a total workspace space of o(n1gn) bits. Indeed, we can adapt our
algorithm devised for the reversed LZ factorization to compute LPnrF. For that, we just
have to promote all leaves to phrase leaves such that the condition in Line 7 of Algorithm 1
is always true. Consequently, Player 1 performs a root-to-leaf traversal for finding the
lowest node marked in By of each leaf. By doing so, the time complexity becomes O(n?),
however, since we visit at most Y/ ; LPan[| = O(n?) many nodes during the root-to-leaf
traversals (there are strings like T = a - - - a for which this sum becomes @ (n?)).

To lower this time bound, we follow the same strategy as in [22] ([Section 3.5]) or [34]
([Lemma 6]) using suffixlink and Lemma 2: After Player 1 has computed str_depth(w) =
LPnrF[i — 1] for w being the lowest ancestor marked in By of the leaf with suffix number i —
1, we cache @ := suffixlink(w) for the next turn of Player 1 such that Player 1 can start the
root-to-leaf traversal to the leaf A with suffix number i directly from @ and thus skips the
nodes from the root to @. This works because @ is the ancestor of A with str_depth(@) =
LPnrF[i — 1] — 1, and @ must have been marked in By since LPnrF[i] > str_depth(@). See
Figure 7 for a visualization. By skipping the nodes from the root to @, we visit only
LPnrF[i] — LPnrF[i — 1] + 1 many nodes during the i-th turn of Player 1. A telescoping sum
together with Lemma 2 shows that Player 1 visits } /' ,(LPnrF[i] — LPnrF[i —1] +1) = O(n)
nodes in total.

The final bottleneck for CST are the n evaluations of str_depth(w) to compute the actual
values of LPnrF (cf. Line 15 of Algorithm 1). Here, we use a support data structure on CST
for str_depth [34] ([Lemma 6]), which can be constructed in O(e~!nlogt n) time, uses O(n)
bits of space, and answers str_depth in O (e~ ! log¢ 1) time. This finally gives Theorem 2.

root
str_depth(w) g str_depth(w) — 1
=LPnrF[i — 1] w
sufﬁxhnk §
J
sufﬁxlmk i [AR

/f]

Figure 7. Setting of Section 4.1. Nodes marked in By are colored in blue ((_})). Curly arcs symbolize
paths that can visit multiple nodes (which are not visualized). When visiting the lowest ancestor
of A marked in By for computing LPnrF[i — 1], Player 1 determines @ = suffixlink(w) such that she
can skip the nodes on the path from the root to the leaf A for computing LPnrF[i] (these nodes are
symbolized by the curly arc highlighted in yellow () on the right). There are leaves AR and AR
with suffix numbers of at least 2n — i 4- 2 and 2n — i + 3, respectively, since otherwise w would not
have been marked in By by Player 2.

4.2. Algorithm of Crochemore et al.

We can also run the algorithm of Crochemore et al. [14] ([Algorithm 2]) with our suffix
tree representations to obtain the same space and time bounds as stated in Theorem 2.
For that, let us explain this algorithm in suffix tree terminology: For each leaf A with
suffix number i, the idea for computing LPnrF[i] is to scan the leaves for the leaf A* with
2n — sufnum(A*) being the referred position, and hence the string depth of lca(A, A*) is
LPnrF[i]. To compute A*, we approach A from the left and from the right to find Ay, (resp.
AR) having the deepest LCA with A among all leaves to the left (resp. right) side of A
whose suffix numbers are greater than 2n — i. Then either Ay or A is A*. Let ¢ [i] +
str_depth(Ica(Ar, A)) and fR[i] < str_depth(lca(Ag, A)). Then LPnrF[i] = max(£L[i], ¢r[i]),
and the referred position is either 2n — sufnum(Ar) or 2n — sufnum(Ag), depending on

Algorithms 2021, 14, 161

14 of 25

whose respective LCA has the deeper string depth. Note that the referred positions in this
algorithm are not necessarily always the leftmost possible ones.

Correctness. Let j be the referred position of the leaf A with suffix number i such
that R[i..] and R[2n — j..] have the LCP F of length LPnrF[i]. Due to Lemma 1, there
is a suffix tree node w whose string label is F. Consequently, A and the leaf with suffix
number 2n — j are in the subtree rooted at w. Now suppose that we have computed Ay,
and AR according to the above described algorithm. On the one hand, let us first assume
that /R [i] > LPnrF[i] (the case /1 [i] > LPnrF[i] is treated symmetrically). By definition of
(Rr]i], there is a descendant w’ of w with the string depth ¢g|[i], and w’ has both Ag and A in
its subtree. However, this means that R[i..] and R[sufnum(AR) ..] have a common prefix
longer than LPnrF[i], a contradiction to LPnrF[i] storing the length of the longest such LCP.
On the other hand, let us assume that max(¢y [i], /r[i]) < LPnrF[i]. Then w is a descendant
of the node w’ being the LCA of A and Ag. Without loss of generality, let us stipulate that
the leaf A* with suffix number 21 — j is to the right of A (the other case to the left of A works
with Ap, by symmetry). Then A* is to the left of AR, i.e., A* is between A and Ag. Since
j > 2n — i, this contradicts the selection of AR to be the closest leaf on the right hand side of
A with a suffix number larger than 2n — i.

Finding the Starting Points. Finally, to find the starting points of A1 and AR being ini-
tially the leaves with the maximal suffix number to the left and to the right of A, respectively,
we use a data structure for answering.

maxsuf _leaf(j;,j») returning the leaf with the maximum suffix number among all leaves
whose leaf-ranks are in [j; .. o).

We can modify the data structure computing max_sufnum in Section 3.3 to return
the leaf-rank instead of the suffix number (the used data structure for max_sufnum first
computes the leaf-rank and then the respective suffix number). Finally, we need to take
the border case into account that A is the leftmost leaf or the rightmost leaf in the suffix
tree, in which case we only need to approach A from the right side or from the left side,
respectively.

The algorithm explained up to now already computes LPnrF correctly, but visits O (n)
leaves per LPnrF entry, or O(n?) leaves in total. To improve this bound to O(n) leaves, we
apply two tricks. To ease the explanation of these tricks, let us focus on the right-hand side
of A; the left-hand side is treated symmetrically.

Overview for Algorithmic Improvements. Given we want to compute (R[], we start
with a pointer Aj to a leaf to the right of A with suffix number larger than 2n — i, and
approach A with A}, from the right until there is no leaf closer to A on its right side with a
suffix number larger than 21 — i. Then Ay, is Ag, and we can compute ([i] being the string
depth of the LCA of A and A. If we scan linearly the suffix tree leaves to reach Ag with
the pointer A, this gives us O(n) leaves to process. Now the first trick lets us reduce the
number of these leaves up to 2/r[i] many for computing ¢g[i]. The broad idea is that with
the max_sufnum operation we can find a leaf closer to A whose LCA is at least one string
depth deeper than the LCA with the previously processed leaf. In total, the first trick helps
us to compute LPnrF by processing at most Y- max(/L[i], [i]) = O(n?) many leaves. In
the second trick, we show that we can reuse the already computed neighboring leaves Ay
and AR by following their suffix links such we process at most 2(¢g[i + 1] — ¢r[i] + 1) many
leaves (instead of 2¢R[i + 1]) for computing (g [i + 1]. Finally, by a telescoping sum, we
obtain a linear number of leaves to process.

First Trick. The first trick is to jump over leaves whose respective suffixes all share the
same longest common prefix with T[i ..]. We start with Ag <— maxsuf_leaf(leaf_rank(A) + 1,
2n) being the leaf on the right-hand side of A with the largest suffix number. As long as
sufnum(AR) > 2n — i, we search the leftmost leaf A’ between A and AR (to be more precise:
leaf_rank(A’) € [leaf_rank(A) +1.. leaf_rank(AR)]) with Ica(A’,) = Ica(Ag, A). Having A/,
we consider:

Algorithms 2021, 14, 161

15 of 25

e Ifleaf rank(A’) = leaf_rank(A) + 1 (meaning A’ is to the right of A and there is no leaf
between A and A’), we terminate.

e Otherwise, we set Aﬁ to the leaf with the largest suffix number among the leaves with
leaf-ranks in the range [leaf_rank(A) + 1.. leaf_rank(A’) — 1]. If sufnum(Ag) > 2n — i,
we set AR + A{{ and recurse. Otherwise we terminate.

On termination, ¢ [i] = str_depth(lca(Ag, A)) because there is no leaf A" on the right
of A closer to A than Ag with str_depth(lca(A”, A)) > str_depth(lca(Ag, A)) and sufnum(A”) >
2n — i. Hence, sufnum(AR) is the referred position, and we continue with the computation
of (R [i + 1]. See Figure 8 for a visualization.

root,
:
: :
v
: i
;)\/ ko ___-

: . jump
- maxsuf_leaf

Figure 8. Computing LPnrF with [14] ([Algorithm 2]) as explained in Section 4.2. Starting at the
leaf AR, we jump to the leftmost leaf A’ with Ica(A’, 1) = lca(Ag, A). Then, we use the operation
max_sufnum(Z) returning the leaf-rank of the leaf A; having the largest suffix number among the
query interval Z = [leaf_rank(A) +1.. leaf_rank(A’) — 1]. If sufnum(Ag) > 2n — i, we recurse by
setting AR < AL. The LCA of A} and A is at least as deep as the child v of u on the path towards A
(the figure shows the case that v = Ica(A}, A)), and hence (R |i] is at least str_depth(v) if we recurse.

Broadly speaking, the idea is that the closer AR gets to A, the deeper the string depth
of Ica(Agr, A) becomes. However, we have to stop when there is no closer leaf with a
suffix number larger than 2n — i. So we first scan until reaching a A’ having the same
lowest common ancestor with A, and then search within the interval of leaves between A
and A’ for the remaining leaf A with the largest suffix number. We search for A’ because
we can jump from A to A’ with a range minimum query on the LCP array returning
the index of the leftmost minimum in a given range. We can answer this query with an
O(n)-bits data structure in O(e~1) or O(e ! log n) time for the SST or the CST, respec-
tively, and build it in O(e~!n) time or O(e~'n log¢ 1) time (cf. [22] ([Section 3.3) and [41]
([Lemma 3]) for details). However, with this algorithm, we may visit as many leaves
as Y1 4 20R[i] < Y 2LPnrF[i] since each jump from AR to A via A’ brings us at least
one value closer to (R[i]. To lower this bound to O(n) leaf-visits, we again make use of
Lemma 2 (cf. Section 4.1), but exchange LPnrF[i] with ¢R[i] (or respectively ¢ [i]) in the
statement of the lemma.

Second Trick. Assume that we have computed fg[i — 1] = lca(Ag,A) with j =
sufnum(AR) > 2n — i. We subsequently set A < suffixlink(A), but also Ar < suffixlink(AR).
Now A has suffix number i. If /g[i — 1] > 1, then the string depth of the Ica(Ag, A) is
lr[i — 1] — 1, and R[sufnum(AR) ..] is lexicographically larger than R[sufnum(A) ..]; hence
AR is to the right of A with sufnum(AR) = j + 1 (generally speaking, given two leaves A4
and A, whose LCA is not the root, then leaf rank(A;) < leaf rank(A,) if and only if
leaf_rank(suffixlink(A1)) < leaf_rank(suffixlink(A;)).). Otherwise (¢r[i — 1] = 0), we reset
AR < maxsuf_leaf(leaf_rank(A),2n). By doing so, we assure that Ay is always a leaf to the
right of A with sufnum(Ag) > 2n — i (if such a leaf exists), and that we have already skipped
max(0, lr[i — 1] — 1) string depths for the search of Ag with str_depth(Ica(Ag, A)) = lR]i].
Since (g[i] < LPnrF[i], the telescoping sum (R[1] + Y1 5 ((r[i] — ¢r][i — 1] +1) = O(n)
shows that we visit O(n) leaves in total.

In total, we obtain an algorithm that visits O(n) leaves, and spends O(e~!) or
O(e !logt n) time per leaf when using the SST or the CST, respectively. We need O (n)

Algorithms 2021, 14, 161

16 of 25

bits of working space on top of ST since we only need the values ¢ [i —1..1], {g[i —1..1],
AL, and AR to compute LPnrF[i]. We note that Crochemore et al. [14] do not need the suffix
tree topology, since they only access the suffix array, its inverse, and the LCP array, which
we translated to ST leaves and the string depths of their LCAs.

5. Open Problems

There are some problems left open, which we would like to address in what follows:

5.1. Overlapping Reversed LZ Factorization

Crochemore et al. [14] ([Section 5]) gave a variation of LPnrF that supports overlaps,
and called the resulting array the longest previous reverse factor table LPrF, where LPrF[i]
is the maximum length ¢ such that T[i..i+ ¢ —1] = T[j..j+¢—1]R foraj < i. The
respective factorization, called the overlapping reversed LZ factorization, was proposed by
Sugimoto et al. [5] ([Definition 4]): A factorization F; - - - F, = T is called the overlapping
reversed LZ factorization of T if each factor Fy is either the leftmost occurrence of a character
or the longest prefix of Fy - - - F; that has at least one reversed occurrence in F - - - Fy starting
before Fy, for x € [1..z]. We can compute the overlapping reversed LZ factorization
with LPrF analogously to computing the (non-overlapping) reversed LZ factorization with
LPnrF. As an example, the overlapping reversed LZ factorization of T = abbabbabab is
a - bbabba - bab. Table 3 gives an example for LPrF.

Since LPrF[i] > LPnrF[i] by definition, the overlapping factorization seems more likely
to have fewer factors. Unfortunately, this factorization cannot be expressed in a compact
coding like Section 3.1 that stores enough information to restore the original text. To see
this, take a palindrome P, and compute the overlapping reversed LZ factorization of aPa.
The factorization creates the two factors a and Pa. The second factor is Pa since (Pa) R—aP.
However, a coding of the second factor needs to store additional information about P to
support restoring the characters of this factor. It seems that we need to store the entire left
arm of P, including the middle character for odd palindromes.

Besides searching for an efficient coding for the overlapping reversed LZ factorization,
we would like to improve the working space bounds needed for its computation. All algo-
rithms we are aware of [5,14] embrace Manacher’s algorithm [42,43] to find the maximal
palindromes of each text position. To run in linear time, Manacher stores the arm lengths
of these palindromes in a plain array of #n lg n bits. Unfortunately, we are unaware of any
time/space trade-offs regarding this array.

5.2. Computing LPF in Linear Time with Compressed Space

Having a 2n-bit representation for four different kinds of longest previous factor
tables (we can exchange LPnrF with LPrF in the proof of Lemma 2), we wonder whether
it is possible to compute any of these variants in linear time with o(n1gn) bits of space.
If we want to compute LPF or LPnrF within a working space of O(nlgo) bits, it seems
hard to achieve linear running time. That is because we need access to the string depth
of the suffix tree node w for each entry LPF[i] (resp. LPnrF[i]), where w is the lowest node
having the leaf A with suffix number i and a leaf with a suffix number less than i (resp.
greater than 2n — i for LPnrF) in its subtree, cf. [34] ([Lemma 6]) for LPF and the actions of
Player 1 in Section 4.1 for LPnrF. While we need to compute str_depth(w) for determining
the starting position of the subsequent factor (i.e., suffix number of the next phrase leaf,
cf. Line 16) for the reversed LZ factorization, the algorithms for computing LPF (cf. [34]
([Lemma 6]) or [44] ([Section 3.4.4])) and LPnrF work independently of the computed factor
lengths and therefore can store a batch of str_depth-queries. Our question would be whether
there is a § = O((nlgo)/lgn) such that we can accesses d suffix array positions with a
O(nlgo)-bits suffix array representation in O(J) time. (We can afford storing ¢ integers
of Ign bits in O(nlgo) bits.) Grossi and Vitter [45] ([Theorem 3]) have a partial answer
for sequential accesses to suffix array regions with large LCP values. Belazzougui and
Cunial [24] ([Theorem 1]) experienced the same problem for computing matching statistics,

Algorithms 2021, 14, 161

17 of 25

but could evade the evaluation of str_depth with backward search steps on the reversed
Burrows—Wheeler transform. Unfortunately, we do not see how to apply their solution
here since the referred positions of LPF and LPnrF have to belong to specific text ranges
(which is not the case for matching statistics).

5.3. Applications in Compressors

Although it seems appealing to use the reversed LZ factorization for compression, we
have to note that the bounds for the number of factors z are not promising:

Lemma 3. The size of the reversed LZ factorization can be as small as 1gn + 1 and as large as n.

Proof. The lower bound is obtained for T = a---a with |T| = 2*~! since |F}| = |R| =
1,|F| = 2|F_q| for x € [2..2] with F---F, = (F,---F)R being a (not necessarily
proper) prefix of T[|F; - - - Fx| ..]. For the upper bound, we consider the ternary string

T = abc - abc---abc whose factorization consists only of factors of length one since
TR = cba - cba- - - cba has no substring of T of length 2 (namely, ab, bc, or ca) as a
substring (cf. [46] ([Theorem 5])). O

Even for binary alphabets, there are strings for which z = ©(n):

Lemma 4 ([46] (Theorem 9)). There exists an infinite text T whose characters are drawn from the
binary alphabet such that, for every substring S of T with |S| > 5, SR is not a substring of T.

Funding: This work is funded by the JSPS KAKENHI Grant Numbers JP18F18120 and JP21K17701.
Data Availability Statement: Not applicable.

Acknowledgments: We thank a CPM’2021 reviewer for pointing out that it suffices to store W
in zy lgn bits of space in Section 3.3, and that the currently best construction algorithm of the
compressed suffix tree indeed needs O (e 1) time instead of just O(n) time.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Flip Book

In this appendix, we provide a detailed execution of the algorithm sketched in
Figures 4-6 by showing one figure per turn. In our running example, each player has
10 turns.

$| # al b
. 4 18
0o L8 bl # al b
- 6 . 20
oot a b] b] a
- 22 32
: b a 10 20 # a b $l‘ bl
8 11 . 34
g # p| 8 b| : b a g,al b
- . 13 24 27 -
1 oge b o # b| $] bl a
(01010 S 2 3
7 13 : a : 17 al b 5 $| b
15 A
$) b . :
im[R E0) 1Y ES
15 3 14 2
1
i

Figure Al. Cont.

Algorithms 2021, 14, 161 18 of 25

Turn 1 of Player 1.

Turn 1 of Player 2.

Turn 2 of Player 1.

Figure Al. Cont.

Algorithms 2021, 14, 161 19 of 25

Turn 2 of Player 2.

Turn 3 of Player 1.

Turn 3 of Player 2.

Figure Al. Cont.

Algorithms 2021, 14, 161 20 of 25

Turn 4 of Player 1.

Turn 4 of Player 2.

Turn 5 of Player 1.

Figure Al. Cont.

Algorithms 2021, 14, 161 21 of 25

Turn 5 of Player 2.

Turn 6 of Player 1.

Turn 6 of Player 2.

Figure Al. Cont.

Algorithms 2021, 14, 161 22 of 25

Turn 7 of Player 1.

[
—

Turn 7 of Player 2.

‘[\J E...

Turn 8 of Player 1.

Figure A1. Cont.

Algorithms 2021, 14, 161 23 of 25

Turn 8 of Player 2.

Turn 9 of Player 1.

Turn 9 of Player 2.

Figure A1. Cont.

Algorithms 2021, 14, 161 24 of 25

Turn 10 of Player 1.

Turn 10 of Player 2.

Figure A1. Initial State.

References

1. Kolpakov, R.; Kucherov, G. Searching for gapped palindromes. Theor. Comput. Sci. 2009, 410, 5365-5373.

2. Storer, J.A.; Szymanski, T.G. Data compression via textural substitution. J. ACM 1982, 29, 928-951.

3. Crochemore, M.; Langiu, A.; Mignosi, F. Note on the greedy parsing optimality for dictionary-based text compression. Theor.
Comput. Sci. 2014, 525, 55-59.

4. Weiner, P. Linear Pattern Matching Algorithms. In Proceedings of the 14th Annual Symposium on Switching and Automata
Theory (swat 1973) SWAT, lowa City, IA, USA, 15-17 October 1973; pp. 1-11.

5. Sugimoto, S.; Tomohiro, I.; Inenaga, S.; Bannai, H.; Takeda, M. Computing Reversed Lempel-Ziv Factorization Online. Avaliable
online: http://stringology.org/papers/PSC2013.pdf#page=115 (accessed on 15 April 2021).

6. Chairungsee, S.; Crochemore, M. Efficient Computing of Longest Previous Reverse Factors. In Proceedings of the Computer
Science and Information Technologies, Yerevan, Armenia, 28 September—2 October 2009; pp. 27-30.

7. Badkobeh, G.; Chairungsee, S.; Crochemore, M. Hunting Redundancies in Strings. In International Conference on Developments in
Language Theory; LNCS; Springer, Berlin/Heidelberg, Germany, 2011; Volume 6795, pp. 1-14.

8. Chairungsee, S. Searching for Gapped Palindrome. Avaliable online: https:/ /www.sciencedirect.com/science/article/pii/S030
4397509006409 (accessed on 15 April 2021).

9. Charoenrak, S.; Chairungsee, S. Palindrome Detection Using On-Line Position. In Proceedings of the 2017 International
Conference on Information Technology, Singapore, 27-29 December 2017; pp. 62—65.

10. Charoenrak, S.; Chairungsee, S. Algorithm for Palindrome Detection by Suffix Heap. In Proceedings of the 2019 7th International
Conference on Information Technology: IoT and Smart City, Shanghai China, 2023 December 2019; pp. 85-88.

11. Blumer, A.; Blumer, J.; Ehrenfeucht, A.; Haussler, D.; McConnell, R. M. Building the Minimal DFA for the Set of all Subwords
of a Word On-line in Linear Time. In International Colloquium on Automata, Languages, and Programming; LNCS; Springer:
Berlin/Heidelberg, Germany, 1984; Volume 172, pp. 109-118.

12. Ehrenfeucht, A.; McConnell, RM.; Osheim, N.; Woo, S. Position heaps: A simple and dynamic text indexing data structure.

J. Discret. Algorithms 2011, 9, 100-121.

http://stringology.org/papers/PSC2013.pdf#page=115
https://www.sciencedirect.com/science/article/pii/S0304397509006409
https://www.sciencedirect.com/science/article/pii/S0304397509006409

Algorithms 2021, 14, 161 25 of 25

13.

14.

15.
16.

17.
18.
19.
20.
21.
22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.
41.
42.

43.
44.
45.

46.

Gagie, T.; Hon, W.; Ku, T. New Algorithms for Position Heaps. In Annual Symposium on Combinatorial Pattern Matching, LNCS;
Springer, Berlin/Heidelberg, Germany, 2013; Volume 7922, pp. 95-106.

Crochemore, M.; Iliopoulos, C.S.; Kubica, M.; Rytter, W.; Walen, T. Efficient algorithms for three variants of the LPF table.
J. Discret. Algorithms 2012, 11, 51-61.

Manber, U.; Myers, EW. Suffix Arrays: A New Method for On-Line String Searches. SIAM . Comput. 1993, 22, 935-948.
Dumitran, M.; Gawrychowski, P.; Manea, F. Longest Gapped Repeats and Palindromes. Discret. Math. Theor. Comput. Sci.
2017, 19, 205-217.

Gusfield, D. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology; Cambridge University Press:
Cambridge, UK, 1997.

Nakashima, Y.; Tomohiro, I.; Inenaga, S.; Bannai, H.; Takeda, M. Constructing LZ78 tries and position heaps in linear time for
large alphabets. Inf. Process. Lett. 2015, 115, 655-659.

Ziv,].; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337-343.

Ziv,].; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, 24, 530-536.
Fischer, J.; I, T.; Képpl, D.; Sadakane, K. Lempel-Ziv Factorization Powered by Space Efficient Suffix Trees. Algorithmica 2018,
80, 2048-2081.

Koppl, D. Non-Overlapping LZ77 Factorization and LZ78 Substring Compression Queries with Suffix Trees. Algorithms 2021,
14,1-21.

Sadakane, K. Compressed Suffix Trees with Full Functionality. Theory Comput. Syst. 2007, 41, 589-607.

Belazzougui, D.; Cunial, F. Indexed Matching Statistics and Shortest Unique Substrings. In International Symposium on String
Processing and Information Retrieval; LNCS; Springer: Cham, Switzerland, 2014; Volume 8799, pp. 179-190.

Franek, F; Holub, J.; Smyth, W.E,; Xiao, X. Computing Quasi Suffix Arrays. |. Autom. Lang. Comb. 2003, 8, 593-606.
Crochemore, M; Ilie, L. Computing Longest Previous Factor in linear time and applications. Inf. Process. Lett. 2008, 106, 75-80.
Belazzougui, D.; Cunial, F.; Karkkainen, J.; Médkinen, V. Linear-time String Indexing and Analysis in Small Space. ACM Trans.
Algorithms 2020, 16, 17:1-17:54.

Goto, K.; Bannai, H. Space Efficient Linear Time Lempel-Ziv Factorization for Small Alphabets. In Proceedings of the 2014 Data
Compression Conference, Snowbird, UT, USA, 26-28 March 2014; pp. 163-172.

Kérkkiinen, J.; Kempa, D.; Puglisi, S.J. Lightweight Lempel-Ziv Parsing. In International Symposium on Experimental Algorithms;
LNCS; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7933, pp. 139-150.

Kosolobov, D. Faster Lightweight Lempel-Ziv Parsing. In International Symposium on Mathematical Foundations of Computer Science;
LNCS; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9235, pp. 432—444.

Belazzougui, D.; Puglisi, S.J. Range Predecessor and Lempel-Ziv Parsing. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, USA, 10-12 January 2016; pp. 2053-2071.

Okanohara, D.; Sadakane, K. An Online Algorithm for Finding the Longest Previous Factors. In European Symposium on
Algorithms; LNCS; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5193, pp. 696-707.

Prezza, N.; Rosone, G. Faster Online Computation of the Succinct Longest Previous Factor Array. In Conference on Computability
in Europe; LNCS; Springer: Cham, Switzerland, 2020; Volume 12098, pp. 339-352.

Bannai, H.; Inenaga, S.; Koppl, D. Computing All Distinct Squares in Linear Time for Integer Alphabets. Proc. CPM, 2017;
Volume 78, LIPIcs, pp. 22:1-22:18. Available online: https:/ /link.springer.com/chapter/10.1007/978-3-662-48057-1_16 (accessed
on 16 April 2021).

Jacobson, G. Space-efficient Static Trees and Graphs. In Proceedings of the 30th Annual Symposium on Foundations of Computer
Science Research, Triangle Park, NC, USA, 30 October-1 November 1989; pp. 549-554.

Clark, D.R. Compact Pat Trees. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 1996.

Baumann, T.; Hagerup, T. Rank-Select Indices Without Tears. In Proceedings of the Algorithms and Data Structures—16th
International Symposium, WADS 2019, Edmonton, AB, Canada, 5-7 August 2019; LNCS, Volume 11646, pp. 85-98.

Munro,].I; Navarro, G.; Nekrich, Y. Space-Efficient Construction of Compressed Indexes in Deterministic Linear Time.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, Barcelona, Spain, 16-19 January
2017; pp. 408-424.

Burrows, M.; Wheeler, D.J. A Block Sorting Lossless Data Compression Algorithm; Technical Report 124; Digital Equipment
Corporation: Palo Alto, CA, USA, 1994.

Lempel, A.; Ziv,]. On the Complexity of Finite Sequences. IEEE Trans. Inf. Theory 1976, 22, 75-81.

Fischer,].; Médkinen, V.; Navarro, G. Faster entropy-bounded compressed suffix trees. Theor. Comput. Sci. 2009, 410, 5354-5364.
Manacher, G.K. A New Linear-Time “On-Line” Algorithm for Finding the Smallest Initial Palindrome of a String. J]. ACM 1975,
22, 346-351.

Apostolico, A.; Breslauer, D.; Galil, Z. Parallel Detection of all Palindromes in a String. Theor. Comput. Sci. 1995, 141, 163-173.
Koppl, D. Exploring Regular Structures in Strings. Ph.D. Thesis, TU Dortmund, Dortmund, Germany, 2018.

Grossi, R.; Vitter,].S. Compressed Suffix Arrays and Suffix Trees with Applications to Text Indexing and String Matching. SIAM].
Comput. 2005, 35, 378—407.

Fleischer, L.; Shallit,].O. Words Avoiding Reversed Factors, Revisited. arXiv 2019, arXiv:1911.11704.

https://link.springer.com/chapter/10.1007/978-3-662-48057-1_16

	Introduction
	Our Contribution
	Related Work
	Structure of this Article

	Preliminaries
	Reversed LZ Factorization
	Coding
	Factorization Algorithm
	Overview
	One-Pass Algorithm in Detail
	Time Complexity

	Determining the Referred Position

	Computing LPnrF
	Adaptation of the Single-Pass Algorithm
	Algorithm of Crochemore et al.

	Open Problems
	Overlapping Reversed LZ Factorization
	Computing LPF in Linear Time with Compressed Space
	Applications in Compressors

	Flip Book
	References

