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Abstract: Increasing processing capabilities and input/output constraints of supercomputers have
increased the use of co-processing approaches, i.e., visualizing and analyzing data sets of simulations
on the fly. We present a method that evaluates the importance of different regions of simulation data
and a data-driven approach that uses the proposed method to accelerate in-transit co-processing
of large-scale simulations. We use the importance metrics to simultaneously employ multiple
compression methods on different data regions to accelerate the in-transit co-processing. Our
approach strives to adaptively compress data on the fly and uses load balancing to counteract
memory imbalances. We demonstrate the method’s efficiency through a fluid mechanics application,
a Richtmyer–Meshkov instability simulation, showing how to accelerate the in-transit co-processing
of simulations. The results show that the proposed method expeditiously can identify regions of
interest, even when using multiple metrics. Our approach achieved a speedup of 1.29× in a lossless
scenario. The data decompression time was sped up by 2× compared to using a single compression
method uniformly.

Keywords: visualization; parallel computing; in-transit; co-processing

1. Introduction

The processing capabilities of modern supercomputers are improving at a tremendous
pace. However, input/output (I/O) bandwidth has advanced at a much slower rate,
leading to bottlenecks in many applications [1,2]. This is one of the most pressing matters
for large-scale scientific simulations. Simulations can result in multiple tera- or petabytes of
generated data, making it challenging to save all necessary data to permanent storage due
to limited storage capacity or time-consuming I/O operations [3–6]. In-situ or in-transit
visualization and analysis are often used for each time step while the data is generated.

In-situ co-processing is typically performed on the same compute nodes as the simula-
tion and can achieve high performance, partly because of the locality of the data. However,
in-situ co-processing takes up valuable simulation time. Many researchers are reluctant to
dedicate computing resources used by the simulation to other compute-intensive tasks [2,4],
meaning that the time available for in-situ co-processing often is short compared to that
of the simulation. One option to reduce the co-processing time is to lower the frequency
at which time steps are analyzed. Another is to limit the available time to perform co-
processing for each analyzed time step. Both these options are undesirable because they
limit the amount of data available to the researcher after the simulation has been completed.
Furthermore, a significant amount of the available memory is used by the simulation in
an in-situ scenario, meaning that only a tiny amount can be allocated for visualization or
analysis purposes [7].
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In contrast, in-transit co-processing [8,9], illustrated in Figure 1, is generally performed
on a separate group of compute nodes, which we refer to as transit nodes. Utilizing
a different group of nodes means that co-processing can be performed asynchronously
during the simulation stage, resulting in a less strict time limitation than an in-situ approach.
Furthermore, the transit nodes can be equipped with different hardware to accelerate the
co-processing tasks. The main drawback of in-transit co-processing is that the relevant
simulation data needs to be transferred to the transit nodes. Moreover, it is not guaranteed
that the simulation nodes can hold an extra copy of the data in memory. It is often
impossible to transfer the data asynchronously while simulating the next time step.

Figure 1. In-transit co-processing. The simulation is performed on one set of nodes, whereas
visualization, analysis, and I/O operations are performed on a different set (transit nodes).

The data transfer required to perform in-transit co-processing can be accelerated
by reducing or compressing the simulation data. However, using a reduction or a lossy
compression method could lower the detail and accuracy of the whole data set, including
regions of interest. It could instead be beneficial to selectively compress areas of data
based on their contribution to the simulated phenomenon. Reducing or compressing areas
that are not of interest would result in less time-consuming data transfers without any
significant loss in the data quality.

To determine the frequency at which data is analyzed, the time available for co-
processing and what compression method(s) to use to accelerate the data transfers, there
is a need to identify the importance of the underlying simulation data. Such information
can be used for a wide variety of cases, including guiding the simulation, determining
which time steps of the simulation to analyze or save to permanent storage, removing or
reducing unimportant data, and finding interesting camera locations for co-processing
purposes. Some of these cases have been explored in related work [10–17]. However, these
methods have either been limited in the amount of used importance metrics [10,12–17] or
been unable to combine multiple metrics to create advanced importance metrics and to
make more advanced decisions [11].

We propose a method that efficiently can identify the importance of subsets of simula-
tion data, which consists of multivariate and temporal data sets in the form of structured
rectilinear grids. User-defined importance metrics and filters are used to determine the
importance of blocks; contiguous and convex regions of data that combined make up
the generated simulation data. The calculated importance can then be used for a wide
variety of purposes to accelerate or guide the simulation, such as identifying important
regions, down-sample, reducing, compressing, or simply removing parts of the data based
on user-defined constraints and the underlying hardware. What sets the proposed method
apart from related work is its ability to calculate importance when using multiple analyses
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efficiently. It can adaptively make any number of decisions based on the importance,
compared to only a binary decision, which is typical in other methods.

We also propose an approach that uses the proposed method to identify how to best
combine the usage of multiple different compression methods based on the importance
of the underlying data, which can be seen as a use case of the proposed method. In the
case of lossy compression, loss of detail in regions of interest can be kept at a minimum by
reducing unimportant areas. Using this data-driven approach, we strive to reduce the data
size and the in-transit data transfer time to accelerate in-transit co-processing. The main
contributions of this work are as follows:

1. An efficient method to determine the block importance of large-scale simulations.
Calculating the importance of various regions of data was a time-consuming task
in many related works. As such, only a few importance metrics tend to be used.
The main goal of our proposed method is to provide researchers with a customizable
and easy-to-use way to efficiently determine the importance of subsets of large-scale
simulation data, even when using multiple complex analyses to determine such
importance. To reach this goal, we have developed a scheme that uses a separate
buffer to transform the data to a more suitable structure for analysis and strives to
schedule importance analyses in a fashion that improves the cache hit rates. We also
introduce the usage of an adaptive condition window; a custom range within which
multiple condition parameters can vary. Using a condition window allows parameters
to change based on the current constraints of the environment. For example, if a data
transfer is too time-consuming, the parameters can be adapted to compress or remove
more data in the coming time step.

2. A flexible approach to accelerate in-transit co-processing. We observe that the ef-
fectiveness of a certain compression algorithm often depends on the underlying
compressed data. By identifying the importance and the most suitable compression
for each region of generated simulation data, we strive to minimize the data size and
the in-transit data transfer time by combining the use of multiple compression meth-
ods integrated into a pipeline. The approach explored in this paper puts no additional
restraints on the contents of the co-processing stage. It can be used in tandem with
various visualization software, e.g., Paraview [18], VisIt [19], or OSPRay [20].

3. A case study of how the in-transit co-processing of a Richtmyer–Meshkov instabil-
ity (RMI) simulation can be accelerated using the proposed approach. The RMI
simulation is performed using CNS3D, a state-of-the-art program for numerical
fluid simulations.

The structure of this paper is organized as follows. Related work is discussed in
Section 2. The proposed approach is presented in Section 3. In Section 4, we evaluate the
performance of the proposed approach. Lastly, our conclusions are presented in Section 5.

2. Related Work

Determining and analyzing regions of interest in three-dimensional (3D) data sets
has been an important topic in many research fields, and has as such been explored in
many related works [10–17]. A commonly used technique is Adaptive Mesh Refinement
(AMR) [13–15]. Using AMR, the simulated region is divided into multiple sub-regions,
commonly by using a tree structure such as an octree [21]. After the simulation has been
completed, important regions in the tree structure are subdivided to create even smaller
sub-regions, on which more compute-intensive operations can be used to, for example,
increase the accuracy or resolution of the simulation. This process can be performed
recursively based on the researcher’s specifications. The analysis required to calculate
block-based importance metrics results in a fairly uniform data access over all data points
in the simulation region. As such, the recursive, top-down AMR approach could result
in redundant calculations and low cache hit rates. This notion is confirmed in related
work [12], where a bottom-up approach, i.e., calculating the importance of each individual
block, could achieve significantly better performance.
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Close to our work is a paper by Dorier et al. [10], in which calculated importance
metrics were used to adaptively reduce unimportant blocks. The technique targets explicitly
in-situ visualization and supports elementary data reduction and load balancing based on
a random distribution. However, the technique only supports a single reduction strategy.
Furthermore, their technique assumes that simulation data is stored as blocks, which is not
the case for most simulations. For their technique to work in the general case, all simulation
data first needs to be preprocessed and partitioned into blocks, which is time-consuming
and increases the memory usage as two sets of the simulation data need to be maintained
while performing the importance analysis.

Wang et al. [11] introduced an importance curve to store the derived importance of all
data blocks for a time-varying data set. By analyzing the changing block importance be-
tween different time steps it would be possible to characterize temporal behaviors exhibited
by simulation data. Such information could be used to make informed processing decisions,
e.g., setting a time budget for the co-processing stage or saving data to permanent storage.

Nouanesengsy et al. [12] presented a prioritization method for 3D data sets inspired
by AMR. Data sets were recursively partitioned into smaller regions based on user defined
importance metrics. A prioritization tree was constructed for the data set, which then could
be used to identify interesting camera placements or to determine compression strategies
for saving data to permanent storage.

Some data sampling and summarization methods [16,17] use importance based on
entropy metrics to prioritize the reduction of unimportant data. Here, reduced subsets of
the simulation data are saved to permanent storage for post-hoc analysis; more than 99%
of simulation data is removed in some applications [16]. Data sampling methods are not
suited for applications that operate on lossless simulation data. Moreover, these methods
do not support use cases that require custom metrics to define important data.

Table 1 shows a qualitative comparison to related work. Here, we specifically compare
features related to the use case considered in this work. Method [11] is processed post-
hoc, whereas methods [12–15] have no defined behavior of how to use the calculated
importance values to compress unimportant data. Out of the methods used for comparison,
only related work [10,16,17] explore using the data importance to prioritize compression
or reduction of unimportant data. However, in contrast to our work, none of the methods
support lossless compression or simultaneously using multiple compression and reduction
methods. In addition, there is no defined behavior of how to use the methods for in-transit
co-processing. A quantitative comparison is difficult, as each work has a different feature
set and use case. We, therefore, chose to evaluate our method independently, as was also
done in related work [10–12].

Table 1. Comparing features of related work [10–17] to this work.

Method

This Work [10] [11] [12] [13–15] [16,17]

Processing approach In-transit In-situ Post-hoc In-situ In-situ In-situ
Supports custom importance metrics X X X X
Decisions based on multiple metrics X X
Tracks time-varying data X X
Used to compress unimportant data X X X

lossless/lossy lossy lossy
Multiple compression methods X — — —

Many visualization and analysis techniques have been proposed for in-situ and in-
transit co-processing. Some aim to batch-render images of each time step of the simulation
from multiple viewpoints, thus allowing researchers to interactively explore different
regions of the simulation post-hoc [22,23]. Other techniques focus on extracting features,
metadata, or samples of the simulation [2,24–26]. Using many different types of visualiza-
tions and analyses would generally be desired to extract as much information from the
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simulation as possible. However, each additional task would increase the execution time.
The logical approach would be to use in-transit co-processing in such a scenario due to
the often limited time available to perform such computations in-situ. To make in-transit
co-processing a viable option, we need new techniques to achieve faster data transfers
between simulation and transit nodes. Many researchers have developed methods to lower
the data transfer time required to perform in-transit co-processing [5,27–29]. Most works
have focused on uniformly reducing or compressing data [5,27,28]. Although efficient,
regions of interest within the data are reduced to the same extent as unimportant regions.

Lossy compression methods such as zfp [30] and an extension of SZ [31] strive to lower
the compression error by analyzing the entropy of the data. Data sets are split into blocks
of size 4× 4× 4 and 6× 6× 6, respectively. A function is then used to predict a suitable
level of compression for each block, based on the estimated compression error. These lossy
methods have proved to achieve good performance [30,31]. However, the fact that they are
lossy makes them unusable in many use cases. We also note that these methods are unable
to determine the importance of regions of data, and that although the level of compression
varies, they ultimately use the same lossy compression method on the whole data set. Both
of these compression methods can be integrated into the proposed approach, as presented
in Section 3, to be used on a subset of the available data blocks.

In summary, effectively performing in-transit co-processing of data generated by
scientific simulations remains an important research topic in the field of high-performance
computing. Many methods which uniformly reduce or compress data have been proposed.
However, the characteristics of the simulation data can vary substantially depending on the
current time step, meaning that the need for compression and analysis also can vary. Some
techniques which analyze the characteristics of the data also exist. However, one of the most
commonly used techniques, AMR, is often unable to efficiently calculate individual block
importance because of the different data access pattern. Although alternatives [10–12,16,17]
have been proposed, they are generally limited in scope or in their ability to perform
multiple analyses to determine block importance or characteristics of different parts in the
studied simulation data. Our work improves upon this related work by efficiently handling
multiple importance analyses and by adaptively utilizing multiple different compression
and reduction strategies.

3. Adaptive In-Transit Co-Processing

In this section, we present the proposed method and an approach to accelerate in-
transit co-processing. To the best of our knowledge, this is the first work to accelerate
in-transit processing by simultaneously using more than one compression method based
on multiple importance analyses of the underlying simulation data. The workflow of the
approach is shown in Figure 2.

The approach consists of three distinct stages:

1. The in-situ stage (Sections 3.1–3.4), which consists of the proposed method. The block
importance is calculated, and which compression method to use is determined on a
per-block basis.

2. The distribution stage (Section 3.5), where data is compressed, load balanced and
transferred over the network to the transit nodes.

3. The in-transit stage (Section 3.6), where compressed data is decompressed and re-
structured on the transit nodes.
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Figure 2. Typical in-transit workflow using the proposed approach. 3D data sets are partitioned into
blocks, analyzed and compressed in parallel on the simulation nodes. The blocks are then transferred
to the transit nodes, where they are decompressed and reconstructed into the original data sets.
The in-situ stage consists of the proposed method.

3.1. Calculating Importance

Calculating block importance has been a time-consuming task in many related works,
even for relatively small data sets. Because of this reason, the block importance in re-
lated work has generally been calculated using one or a few importance measurements.
However, simulation data often contains many different types of regions of interest. Fur-
thermore, the best compression algorithm might differ based on the entropy of the data
in the different regions, meaning that there are many situations in which using multiple
importance measurements would be preferable. Typically, the computation time would
increase proportionally to the number of used importance measurements. However, in our
solution, we strive to minimize this increase in computation time. In addition to performing
importance calculations on a block’s complete simulation data, we also support using a
random sample of a block’s data. That is to say, importance calculations can either be
performed on the entire simulation data of a block or a smaller, random sampled subset
of a block’s data. Using only a sample of the simulation data can result in a significant
speedup. The calculated importance would not be entirely accurate, which might be
an issue in specific applications. However, sampling could still be useful in most cases.
For example, random sampling could be used to identify blocks that appear only to contain
homogeneous space, i.e., blocks in which all values are identical. A non-sampled analysis
of the data could then be performed on the subset identified by the sampled importance,
which substantially could reduce the total computation time.

A key issue when calculating the importance is data locality. The simulated region
is typically allocated in contiguous memory space. However, a block makes up a 3D
subset of the simulated area, which leads to low cache hit rates, especially for small block
sizes. Using multiple importance metrics or metrics that utilize advanced data access
patterns further complicates this issue. Some related work [10] has solved this issue by
assuming the simulated region is allocated on a per-block basis. However, we feel that
this is too limiting. Our solution is to dynamically allocate and deallocate a separate buffer
for a block or a block sample when it is analyzed. All relevant importance analyses are
then applied in sequence on a per-block basis, which leads to higher cache hit rates and
low memory overhead. Furthermore, this approach ensures that simulation data of each
analyzed block only needs to be allocated and copied once, minimizing the computation
time overhead introduced by this step. Operating on a separate buffer of a block’s subset
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of the simulated area leads to a much higher data locality, which means that multiple
importance calculations can be performed at a lower computational cost.

A pipeline consists of a list of filters, which are executed in sequence. Filters contain
probes, which are functions that analyze the data on a per-block basis. An overview of a
pipeline’s block importance analysis scheme is provided in Algorithm 1.

Algorithm 1 Scheme used to calculate the importance of all blocks. The importance is used to determine the action of
each block.
Require:
B = {1, 2, . . . , N}: set of all N blocks
F : set of all active filters in pipeline
W = {wp}: set of weights, where wp is the weight of probe p

Ensure:
I = {i1, i2, . . . , iN}: set of importances, where ib is the importance for block b ∈ B
A = {a1, a2, . . . , aN}: set of actions, where ab is the action for block b ∈ B

1: for each block b ∈ B do
2: ib ← 0; . Importance initially set to zero for block b
3: ab ← NONE; . Action initially set to NONE for block b
4: for each filter f ∈ F do
5: if ab is in the scope of f then . Each scope is a set of zero or more actions
6: for each probe p of filter f do . p ∈ {Mean, Range, SD, AVGSEQ, Distinct, Entropy }
7: if p analyzes a sample which is not allocated then
8: allocate sample of block b;
9: if p analyzes a block which is not allocated then

10: allocate block b;
11: ib = ib + p(b)/wp; . p(b) calculates the importance for probe p on block b

12: if ib satisfies the condition of filter f then
13: ab ← action of filter f ; . ab ∈ { NONE, Skip, RLE, LZ77, HOMO }
14: Free the allocated memory of block b;
15: return I , A;

A filter contains zero or more probes, which are used to analyze each block in sequence.
Each probe executed by a filter is assigned a custom weight (by default, 1). Given a block b,
a filter f and a set of probes for filter f , P f , the resulting importance of block b, ib, after a
filter has been applied is

ib = ∑
p∈P f

p(b)
wp

, (1)

where wp is the weight of probe p and p(b) is the function by probe p to calculate the block
importance of block b. A filter also contains an action, a condition, and a scope. An action
specifies how a block should be handled during the data transfer stage. By default, a block
has no specified action. However, a block’s action can be changed by a filter to, for example,
use a specific reduction strategy during the data transfer stage. Whether a block should
assume a filter’s action depends on if the block’s importance fulfills the filter’s condition.
The condition returns either true or false depending on a block’s importance; for example,
a condition could specify ib > 0.8, in which case all blocks with importance higher than 0.8
will assume the filter’s action. The scope, a set of one or more actions, determines which
blocks should be processed by a specific filter. For a filter to be applied, the block’s action
needs to match one of the scope’s actions. This structure makes it possible to target specific
subsets of blocks to perform further analysis and importance calculations.

Data is analyzed by using probes. Probes are short functions that analyze and output
the importance of each individual block, based on the full content or a sample of a block.
That is to say, the output of a probe calculating the mean value of a block is computed by
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iterating through each element in the block and then calculating the average value. In our
testing, six different probes were used. The six probes are defined as follows:

• Mean. Calculates the mean of all values in a block.
• Range. Calculates the range of the values in a block.
• SD. Calculates the standard deviation of the values in a block.
• AVGSEQ. Calculates the average sequence length of identical values in a block. This

probe is only used on non-sampled data, as sampled data would not retain enough
information about the average sequence length.

• Distinct. Calculates the number of distinct values compared to the total number of
values in a block.

• Entropy. Calculates the entropy of a block [10].

3.2. Block Actions

Block actions consist of three stages: initialization, pre-processing, and post-processing.
Block actions can act as tags for a wide variety of acceleration purposes, and can be seen as
the action that has been taken for a specific block, based on its importance and the used
filter conditions. However, in the context of this paper, we consider actions as tags for
different types of compression methods. The initialization stage can be used to initialize
resources and to specify the estimated compressed data size. Such information could be
used to, for example, improve load balancing. The pre-processing and post-processing
stages can be used to compress and decompress a block’s data, respectively. Five different
actions are used in our testing:

• No Action (NONE). No reduction or compression is performed. Blocks have this
action set by default. This action is mainly useful for blocks where the time overhead
introduced by compression outweighs the speedup of data transfers.

• Skip. Blocks with this action are never allocated or sent to the transit nodes. This
action is useful if, for example, a region of the simulated grid is not of interest. Using
the Skip action can, as such, substantially reduce the data transfer and co-processing
times in some scenarios.

• Run-Length Encoding (RLE). Blocks with the RLE action are compressed using RLE.
Both the compression and decompression of data can be completed in one pass.

• LZ77. Block with this action are compressed using the LZ77 compression algo-
rithm [32]. Compared to the RLE compression method, LZ77 can be used to more
effectively compress repeating sequences of data. This means that its usefulness differs
depending on the simulation as well as on each individual block.

• Homogeneous (HOMO). Blocks that are Homogeneous are allocated as a single value.
Similarly to the Skip action, it can dramatically reduce the data transfer time. This
action is useful for empty or homogeneous space, and can also be used to reduce
regions that are not of interest. The main benefit that the Homogeneous action has
over other types of compression and reduction algorithms is the compression time,
which has a time complexity of O(1).
We note that although these compression and reduction methods are used in the

context of this paper, the proposed approach can be used in combination with any existing
compression and reduction methods, including lossy methods like zfp [30], SZ [33], and its
extension [31].

3.3. Adaptive Condition Window

The time required to perform importance calculations and data transfers largely
depends on the filters and the target block actions, which are based on the specified filter
conditions. Setting static filter conditions, i.e., each condition has a non-changing, constant
value, could work in some situations. However, simulation data is rarely the same between
any two time steps. As such, the execution time and memory usage could vary substantially.
Instead, it could be preferable to adaptively change the parameters of the filter conditions
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based on some criterion. This criterion could be based on, for example, the execution time,
memory usage, or the remaining allocated time on a compute cluster. We refer to this kind
of filter condition as an adaptive condition.

In our approach, we have to consider multiple filters, all of which could include
adaptive conditions. The key issue is how to adaptively modify the conditions without
affecting the intended flow of the analysis. Our solution is to use an adaptive condition win-
dow, ω, by which multiple adaptive condition values can vary predictably. The condition
window is a value that slides between 0.0 and 1.0, at 0.05 intervals. The condition window
can slide one interval towards 0.0 or 1.0 after each time step. All filters have a defined
range (upper bound u and lower bound l) for their condition value. The filter condition
values are reevaluated after each executed time step based on input to the program, using
the expression

l + (u− l) ·ω. (2)

The upper and lower bounds can be set to the same value, in which case the condition
value of that filter is constant.

For example, a researcher could determine that as much important data as possible
should be saved to permanent storage after each time step. However, there is a strict time
limit for the length of the I/O operation. The researcher would first decide on probes
and filters that accurately can identify important data for the specific use case. The l and
u variables would then be set to 0.0, 1.0, respectively. Initially, ω is set to 0.0. However,
after each time step, ω can increase by 0.05 based on if the I/O time exceeds the specified
time limit. Over time, ω moves to the highest value possible such that the I/O operation
does not exceed the time limit. As a result, the researcher can maximize the amount of data
that can be stored for each time step. This behavior further scales to work with multiple
probes and filters, meaning that many decisions can be made about different aspects of the
simulation data.

The adaptive condition window ensures that the condition values of all filters can be
modified in a controlled manner, thus retaining the intended analysis flow. One condition
window is used per pipeline, meaning that different condition windows can be used for
different data sets if required.

3.4. Advantages of the Pipeline Structure

The proposed structure facilitates pipeline construction in practical applications.
Specifically, the pipeline has three key advantages compared to alternative structures
(e.g., a directed acyclic graph (DAG) or a decision tree approach [34] that calculates an
importance metric on each branch node):

1. Ease of use. Using the structure of the proposed pipeline, each component (e.g., a filter
or probe) is categorized and serves a clear purpose. In practice, it is easy to construct
and understand the structure of the proposed pipeline. In contrast, some structures
(e.g., decision trees) would not be intuitive without a visual interface.

2. Gradual refinement. A new action can be assigned to a block after each filter has
been applied. As filters are applied in sequence, this behavior enables a gradual
refinement of the importance analysis. More advanced or time-consuming analyses
can be limited to the relevant subsets of the simulation data. Although this behavior
can be mirrored by other structures (e.g., a DAG or tree structure), it would be more
complicated to create.

3. Reusability. It is easy to reuse parts of a pipeline (e.g., filters or probes) in other
applications as all parts of the pipeline are compartmentalized.

3.5. Data Distribution

Load balancing blocks of 3D data sets has been the focus of extensive research [10,35–40].
A load balancing technique can either create a static distribution of the data or dynamically
change the distribution based on some variables. Typically, dynamic load balancing
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techniques strive to minimize either the difference in computation time or the difference in
memory usage on each process.

Scientific simulations often generate large quantities of data, meaning that memory
usage is of primary concern. Therefore, we currently consider a static and a dynamic
different load balancing technique. The static technique is based on the initial distribution
in a k-d tree [41], which distributes blocks to all processes on the transit nodes. However,
some blocks may have been removed using the Skip action. As such, using this technique
could result in a memory imbalance on the transit nodes. The dynamic technique partly
resolves this issue by rebalancing the k-d tree. Let Bt be the list of blocks on transit process
t, µ the average number of blocks per process, and n the number of transit processes.
The goal is then to minimize

n

∑
t=1

√
|Bt| − µ

n
, (3)

i.e., the difference in allocated memory on each process on the transit nodes.
Blocks sent to a specific process on a transit node make up a contiguous and convex

subset of the original 3D data set. They can, as such, be decompressed in parallel and
combined to reconstruct a single region in 3D space. This step is essential to perform
certain types of analyses and visualizations efficiently. For example, many volume ren-
dering engines utilize internal block structures to perform empty space skipping [42] and
optimization techniques such as early ray termination [43,44]. Prematurely partitioning the
3D data set into multiple blocks can negatively affect the effectiveness of such techniques.

At the start of the distribution stage, we utilize distributed filters to apply filters
that require information about blocks from multiple processes. For evaluation, only one
distributed filter is used, Filter Borders. The Filter Borders distributed filter attempts to
identify blocks of a specific action on the border of the 3D data set. If a slice of border
blocks can be identified, their action is changed to the target action specified by the filter.
For example, this distributed filter can be used to identify slices of homogeneous blocks
along the border of the 3D volume, and then exclude them from the in-transit rendering
process by changing the action to Skip.

3.6. In-Transit Co-Processing

Blocks transferred to processes on transit nodes might have been reduced or com-
pressed during the in-situ stage. To perform any visualization or analysis of the data,
the blocks first need to be decompressed. Blocks are decompressed based on the used
compression algorithms. Because blocks on a specific process make up contiguous and
convex regions in 3D space they can also easily be aggregated into a single block, which
significantly can improve the performance of the co-processing process.

The content of the co-processing is not part of our proposed approach. Instead,
the approach only handles data decompression and data reconstruction on the transit
nodes. Analysis and visualization can be performed in a normal fashion according to
the researcher’s needs, without any need to integrate existing tools and software with
our approach.

4. Experimental Evaluation

To evaluate the proposed method and the approach to accelerate in-transit co-processing,
we have run a series of tests on two different compute clusters, cluster A and cluster B
(Octopus) [45], at different resolutions using up to 864 cores. Information about the test
environments is detailed in Table 2.
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Table 2. Test environments. Each cluster system has Infiniband EDR as its interconnection.

Cluster A Cluster B

Simulation Node Transit Node Simulation Node Transit Node

CPU Xeon Xeon Silver Xeon Gold Xeon Gold
E5-1650 v4 4110 6126 × 2 6126 × 2
6 cores 8 cores 12 cores × 2 12 cores × 2

Memory (GB) 128 96 192 192
Node count 16 2 32 4
Processes 16 2 64 8
Software GCC version 7.3.0 ICC

OpenMPI version 3.1.0 Intel MPI version 18.0.3

4.1. Experiment Description

We used the RMI simulation data to evaluate the performance of our proposed ap-
proach. The RMI test-case set-up as well as numerical methods considered are similar to
previous work [46,47]. However, here, the effect of the membrane mesh separating the
two gases is modelled in the simulations according to well-defined modes combined with
random perturbation components [48,49].

To mimic a realistic co-processing scenario, we used up to three different variables in
each analyzed time step: the mass fraction (MF) and two axes of the momentum (MY and
MZ). The data of these variables were analyzed, compressed, and transferred to the transit
nodes using the proposed approach. On the transit nodes, data decompression and data
reconstruction were also performed. However, no additional co-processing was included
as part of the testing.

A grid resolution of 1601× 401× 801 was used on cluster A, resulting in 11.5 GB of
data spread over three variables, each time step. Similarly, the grid resolution on cluster B
was set to 2401× 601× 1201, resulting in 38.7 GB of data for the three analyzed variables.

We chose to perform co-processing for time steps at a 5× 10−5 second interval (sim-
ulated time). In practice, this amounts to approximately 1 out of every 127 and 1 out of
193 time steps, respectively. The simulations ran for 10,292 time steps on cluster A and
15,653 time steps on cluster B, out of which 81 were analyzed. That is to say, up to 0.91 TB
(cluster A) and 3.06 TB (cluster B) of data were analyzed. It took a total of 117.5 h on
cluster A and 100.9 h on cluster B to run the simulations.

The data was loaded into memory as 64-bit floats during the testing. Figure 3 shows a
visualization of the MF data set, using the OSPRay rendering engine [20], version 1.7.3.

The proposed approach can utilize a combination of existing compression methods,
and its performance depends on the performance of the used methods. We, therefore,
chose to compare the approach to uniformly applying each compression method used by
the approach on the full data set. In the context of this paper, those methods consist of RLE,
LZ77, and HOMO, as specified in Section 3.2.
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(a) (b) (c)
Figure 3. Visualization of the MF data set generated by the RMI simulation at time (a) 0 ms, (b) 2 ms,
and (c) 4 ms; blue represents pure air, red represents pure sulfur-hexafluoride (SF6), while yellow
represents the binary mixture comprising of the two miscible components.

4.2. Block Size

Analysis operations are heavily dependent on the size of each individual block. Ap-
propriate block sizes for volume rendering has been investigated in related work [36],
which found that blocks with a 64× 64× 64 resolution achieved the best result in their
use case. A similar block resolution has been used in research related to this work [10], al-
though with no motivation. We analyzed five resolution to determine an appropriate block
resolution for our use case: 50× 50× 50, 50× 50× 100, 50× 100× 100, 100× 100× 100,
and 100× 100× 200.

Tests were performed on cluster A using the MF data set and a Mean probe. As per
the results, shown in Figure 4, a block size of 50× 50× 100 or 50× 100× 100 achieved the
fastest computation time. We chose to use the block size of 50× 100× 100 in all successive
tests on cluster A presented in this paper. The simulation resolution and the number of
processes on cluster B differ from that of cluster A. As a result, it was not possible to use
the same block size. Instead, we set the block size on cluster B to 75× 75× 75, which was
the closest alternative.
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Figure 4. The average time required to perform the importance analysis for the MF data set on
cluster A. The error bars display the standard deviation of the computation times.
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4.3. Performance of the Proposed Method

The computation time varied between different probes, as shown in Figure 5. For sam-
pled probes we used a block sample size of 2390 and 2387 for the two respective resolutions.
All sampled probes were consistently faster; the best example being the Distinct probe,
which on average took 1.19 s to complete on cluster A. In comparison, the sampled Distinct
probe only required 0.02 s of computation time (a speedup of 61.14). Similar results were
obtained on cluster B.

(a) (b)
Figure 5. The importance calculation times on (a) cluster A and (b) cluster B using the MF data set.
The y-axis has a logarithmic scale.

We observe that the sampled probes generally were able to achieve more significant
speedups on cluster A. This is primarily because of two reasons. First, simulation processes
on cluster A had to process more data than the processes on cluster B. Second, simulation
processes on cluster B could more efficiently calculate the importance due to having access
to more cores. Calculating the importance of sampled blocks is limited by the time required
to complete the initial data access, which is similar on both clusters.

As discussed in Section 3.1, one of the goals of the proposed method was to minimize
the computation overhead of utilizing multiple probes. As seen in Figure 6, the compu-
tation time increased linearly when using multiple non-sampled Mean probes. However,
increasing the number of probes from one to four and eight only increased the computa-
tion time on cluster A by 2.28× and 4×, respectively, and 2.24× and 3.96× on cluster B,
as compared to the expected 4× and 8×. Similarly, the increase was only 1% and 3% for
the sampled Mean probes on cluster A, whereas all results were within the margin of
error on cluster B. By preprocessing the block data and using the block-based importance
calculation process described in Section 3.1, the importance calculation time is not directly
proportional to the number of used probes. This is especially the case for sampled probes,
where the increase in computation time was negligible in our tests. The initial data re-
organization required to achieve this performance results in some overhead, increasing
the computation time for a probe with a simplistic data access pattern. However, as seen
in Figure 6, the performance is better when using multiple probes or probes with more
advanced data access patterns as a result of the improved cache hit rate. The performance
of our method is directly affected by the data access pattern of the used probe(s). Intuitively,
probes with advanced data access patterns should benefit more from the higher cache hit
rates and improved data locality. A one-pass algorithm, such as the Mean probe, should as
such represent a worst-case scenario.

The accuracy of the sampled probes depends on the sample size as well as the used
probe algorithm. Table 3 shows the absolute error, E, of the sampled probes using the
MF data set on cluster A at time step 80. E is equivalent to xi − x, where xi and x are the
measured and true values, respectively. Using the Mean or SD sampled probes resulted
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in all blocks having an importance value within 0.01 of the correct importance value.
However, The Range and Distinct sampled probes were not as accurate as the Mean, SD,
and Entropy probes. In some scenarios, the calculated importance of these probes depends
on a small subset of the data. For example, by changing a single data value in some blocks,
the importance calculated by the Range probe can increase from 0 to 1.
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Figure 6. The average importance calculation times using up to eight Mean probes on (a) clus-
ter A and (b) cluster B for the MF data set. The error bars display the standard deviation of the
computation times.

Table 3. Accuracy of the sampled probes. Percentage of all sampled block importance values which
absolute error is less than 0.001, 0.005, 0.01, 0.05, and 0.1. Tests were run on cluster A, using the MF
data set and time step 80. The AVGSEQ probe is not included, as it is only used on non-sampled data.

<1 × 10−3 <0.005 <0.01 <0.05 <0.1

Mean 71.9 98.5 100 100 100
Range 72.9 75.0 76.4 86.4 95.1
SD 71.9 99.4 100 100 100
Distinct 51.2 60.1 63.9 82.2 98.3
Entropy 50.2 56.4 61.3 85.4 99.7

In summary, the importance analysis scheme could successfully improve the perfor-
mance when using multiple probes. Sampled probes could achieve a high accuracy and
further accelerate the importance analysis computation.

4.4. Evaluating the Proposed Approach

In this section we evaluate the performance of the approach used to accelerate in-
transit co-processing. The compression performance is discussed in Section 4.4.1, whereas
its ability to accelerate the execution time of the co-processing of the RMI simulation is
discussed in Section 4.4.2.

4.4.1. Compression Performance

Intuitively, different probes should reflect different information about the underlying
block data. It should then be possible to use this information to, for example, select the
best compression technique for a specific use case. Figure 7 shows the relation between
the RLE-, HOMO-, and LZ77-compressed block sizes and the importance calculated by
the used probes. The Distinct probe provided an almost linear relationship between the
importance and the compressed data size, as seen in the figure. Similarly, the AVGSEQ
and Entropy probes had clear connections between their calculated importance and the
compressed block sizes.
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The compressed data size achieved by using RLE compression was generally smaller
than when using LZ77. This trend was caused by the entropy of the used data set, which
does not contain many repeating sequences of values. Similarly, the effectiveness of the
RLE compression is linked to the many homogeneous regions in the investigated data
set. However, as seen in Figures 8 and 9, the performance of the various compression
methods vary throughout the simulation. The initial data set, at time step 0, contains
many homogeneous regions. Consequently, the initial compressed data size is minimal.
As the simulation progresses, the homogeneous regions become smaller and disappear,
which increases the compressed data size. The total compressed data size remains lower
than that of the uncompressed data throughout the simulation. However, for some blocks,
the compression time overhead becomes higher than the speedup of data transfers, as seen
for the RLE method in Figure 8. This further reinforces our notion of selectively choosing
which compression method to use on a per-block basis for each time step.
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Figure 7. The compressed block sizes compared to the calculated importance for the MF data set using the Mean, Range,
SD, AVGSEQ, Distinct, and Entropy probes. Tests were conducted on cluster A at time step 80.
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Figure 8. The total compression, load balancing and data transfer times on (a) cluster A and (b) clus-
ter B, using the MF, MY, and MZ data sets. The error bars display the standard deviation of the
computation times.
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Figure 9. The size of the compressed data transferred during the distribution stage on (a) cluster A
and (b) cluster B, using the MF, MY, and MZ data sets.

4.4.2. Assessing the Execution Times of the Proposed Approach

Pipelines should be devised based on the needs of the researcher and the nature of
the used simulation. It is not possible to create a pipeline that is optimal in all scenarios.
Furthermore, which compression methods to use also depend on the specific use case.
We designed two advanced pipelines: one lossless and one lossy which uses a condition
window to reduce the least important data adaptively. Both pipelines used a distributed
filter to remove homogeneous border blocks (i.e., block which are not of any significance to
the analysis of the simulation data). Furthermore, the pipelines were evaluated using both
no load balancing (static) and a k-d tree load balancing technique (kd) to equalize the data
distribution after the use of the distributed filter.

Pipeline 1 is structured as follows. Initially, all blocks are sampled using the Range
probe. Blocks with an importance of 0 have their actions set to RLE. A non-sampled
Range probe is then used on all blocks with action RLE. If the importance is 0, the action
is set to Homogeneous. By initially using a sampled probe, the non-sampled probe only
has to operate on a subset of all blocks, which reduces the computation time. Finally,
the third filter uses a sampled Distinct probe to change the action of blocks with the NONE
action and an importance ≤0.9 to RLE. The value 0.9 is based on previous experiments
to evaluate the compressed block sizes, displayed in Figure 7. Using the Distinct probe,
having importance lower than approximately 0.9 resulted in a lower block size than the
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original non-compressed data. Intuitively, blocks with many distinct values might also be
more time-consuming to compress and decompress, further increasing the data transfer
time. We chose to use a sampled version of the Distinct probe to accelerate the in-situ
computation time. Note that the resulting compression of Pipeline 1 is lossless.

The idea behind Pipeline 2 is to reduce the most unimportant data (in this case,
the blocks containing the lowest amount of distinct values) on-the-fly to achieve a total
compressed data size of between 1200 to 1600 MB (cluster A) and 4000 to 5400 MB (cluster B)
for each data set (i.e., using all three data sets, up to 4.69 GB and 15.82 GB of data for each
time step on clusters A and B, respectively). We use a range rather than a specific threshold
to reduce the volatility of the compressed data size between each time step. The initial
three filters of Pipeline 2 are identical to those of Pipeline 1. However, Pipeline 2 includes
a fourth filter that utilizes a condition window. The filter uses a Distinct sampled probe,
and targets blocks with the RLE or NONE actions. The condition value range is set as
[0, 1.0], with an initial value of 0. If the condition of the filter is fulfilled, the action is
changed to Homogeneous.

The data size of homogeneous blocks using the Homogeneous compression method
was almost the same as when using RLE compression. This can be seen in Figure 10,
where the compressed data size of Pipeline 1 is almost identical to when utilizing an RLE
compression. However, Pipeline 2 achieved a significantly lower data size because of the
additional adaptive (lossy) reduction filter. Noteworthy is that Pipeline 2 never reached
the upper limits of 4.69 GB and 15.82 GB. This is because the compressed data size of at
least one data set remained below the specified upper data size threshold.
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Figure 10. Size of the transferred compressed data using the MF, MY, and MZ data sets on (a) cluster A
and (b) cluster B. The results of the RLE and Pipeline 1 tests overlap.

The impact of the proposed approach on the entire simulation time widely depends
on the used simulation and co-processing. For example, the simulation time of a single
time step, detailed in Section 4.1, and the in-transit co-processing time can vary by orders
of magnitude depending on the simulation, the specified simulation parameters and which
types of analysis and visualization tasks are performed during the co-processing stage.
Furthermore, co-processing could be performed for each simulated time step or for a small
fraction of time steps. As such, we chose to focus the evaluation exclusively on the actual
performance of the three main stages of the proposed approach, i.e., the co-processing
stage only consists of data decompression and data reconstruction. The average execution
times of each stage are shown in Figure 11. The importance calculation of the RLE, HOMO,
and LZ77 tests used for comparison consisted of a single Mean probe.
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Figure 11. Average time step execution time for the three main stages using all three data sets on (a) cluster A and
(b) cluster B. The error bars display the standard deviation of the computation times.

Out of the lossless compression methods used for comparison, RLE achieved the
best performance. For the total execution time, the RLE compression method achieved
a speedup of 1.26× (cluster A) and 1.3× (cluster B) compared to using no compression.
The lossless Pipeline 1 achieved an even more significant speedup; 1.62× on cluster A
and 1.55× on cluster B. Compared to RLE, Pipeline 1 could speed up the execution time
by up to 1.29× and 1.19× on the two respective clusters. Similarly, Pipeline 2, which
reduces unimportant data, achieved total speedups of 1.69× and 1.52× compared to the
RLE method. Table 4 summarizes the average speedups of the total execution time for both
pipelines compared to the other evaluated methods.

Table 4. Relative speedups of the total execution time for Pipeline 1 and Pipeline 2 compared to the
other evaluated methods.

Cluster A Cluster B

None RLE HOMO LZ77 None RLE HOMO LZ77

Pipeline 1 1.62 1.29 0.55 3.51 1.55 1.19 0.26 2.98
Pipeline 2 2.13 1.69 0.72 4.60 1.98 1.52 0.33 3.81

In more detail, both Pipeline 1 and Pipeline 2 achieved significantly better perfor-
mance for the data distribution and co-processing stages than the NONE, RLE, and LZ77
methods. The execution time of the co-processing stage for Pipeline 1 was similar to the
RLE test when using static load balancing. The uneven load caused this; although multiple
transit processes achieved significantly lower computation time than when using only RLE
compression, the total execution time is dependent on the slowest process. Using a k-d load
balancing technique solved the uneven load on the transit nodes. On cluster A, Pipelines 1
and 2 achieved speedups of 1.91× and 1.94× of the co-processing stage as compared to
using RLE compression, and speedups of 1.32× and 1.33× compared to using no compres-
sion. Similarly, on cluster B the two pipelines achieved speedups of 2.00× and 1.99× as
compared to an RLE compression. Compared to using no compression, the speedup of the
co-processing stage was 1.05× and 1.04× for the two respective pipelines.
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Utilizing dynamic load balancing significantly improved the execution times of the
co-processing stage. However, the load balancing only determines where data is sent.
The compression time and the amount of data that needs to be transferred from each
simulation process do not change. Using a dynamic load balancing technique did not
improve the execution time of the data distribution stage to the same extent. On cluster A,
the two pipelines achieved speedups of 1.17× and 1.70× as compared to an RLE compres-
sion and speedups of 1.83× and 2.65× compared to using no compression. On cluster B,
the pipelines achieved speedups of 1.14× and 1.58× compared to RLE compression and
speedups of 1.77× and 2.44× compared to no compression.

Interestingly, the lossless Pipeline 1 was able to achieve better performance in all
aspects (the compressed data size and the compression, data transfer, and decompression
times) than the other lossless compression methods. This results from the fact that both
of the pipelines scale with the utilized compression methods; in this case, using NONE,
RLE, and HOMO. This scaling can be seen in Figure 10, where the compressed data size
of Pipeline 1 closely follows that of the RLE compression. This behavior should extend to
other compression methods as well.

5. Conclusions

In this paper, we have presented a method to efficiently determine the importance of
regions of interest of simulation data, emphasizing on using multiple importance metrics.
In addition, we have presented a use case where the method was used to accelerate the in-
transit co-processing of an RMI simulation by lowering the data transfer time. The approach
to accelerate in-transit co-processing uses the importance of regions of interest to determine
how to best combine the usage of multiple different compression methods on different
subsets of the simulation data. Simulation data is analyzed to determine the importance of
all regions of the 3D data sets, which is then used as a basis to utilize multiple compression
and reduction methods adaptively.

We have evaluated the performance of the proposed method and approach by con-
ducting tests on two different compute clusters, using multivariate data from an RMI
simulation. Our proposed method was able to expeditiously calculate block importance,
even when multiple data probes were used. The above was especially the case for probes
using sampled data, which could calculate accurate importance values at a much faster rate.
The proposed method was also able to adaptively identify regions of important data in a
reliable manner. The excellent scalability when using multiple data probes and low compu-
tation times also make the method viable to be used in many other in-situ and in-transit
scenarios, such as: guiding the simulation; saving important data to permanent storage;
or in tandem with additional analysis or visualization software. As for the approach,
we were able to achieve better performance in all aspects (the compressed data size and
the compression, data transfer, and decompression times) than the compression methods
used for comparison. Compared to an RLE compression, using the proposed approach
in a lossless scenario resulted in a speedup of up to 1.29× for the overall execution time,
and 2× when performing data decompression. We conclude that the proposed approach
significantly can accelerate the in-transit co-processing process.

In future work, we will investigate how the proposed method can be used for other
use cases. Furthermore, we plan to extend the proposed approach to work better with
in-situ co-processing workflows.
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